7-2013

The preservation of atmospheric nitrate in snow at Summit, Greenland

Dorothy L. Fibiger
Brown University

Meredith G. Hastings
Brown University

Jack E. Dibb
University of New Hampshire, jack.dibb@unh.edu

L Gregory Huey
Georgia Institute of Technology - Main Campus

Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub
Part of the Atmospheric Sciences Commons

Recommended Citation

This Article is brought to you for free and open access by the Earth Sciences at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Earth Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
The preservation of atmospheric nitrate in snow at Summit, Greenland

Dorothy L. Fibiger,1 Meredith G. Hastings,2 Jack E. Dibb,3 and L. Gregory Huey4

Received 10 April 2013; revised 7 June 2013; accepted 12 June 2013; published 9 July 2013.

[1] There is great interest in using nitrate (NO₃⁻) isotopic composition in ice cores to track the history of precursor nitrogen oxides (NOₓ = NO + NO₂) in the atmosphere. NOₓ, however, can be lost from the snow by surface processes, such as photolysis back to NOx upon exposure to sunlight, making it difficult to interpret records of NOₓ as a tracer of atmospheric NOₓ loading. In a campaign consisting of two field seasons (May–June) at Summit, Greenland, high temporal frequency surface snow samples were collected and analyzed for the oxygen isotopic composition of NO₃⁻. The strong, linear relationship observed between the oxygen isotopic composition in ice cores to track the history of precursor nitrogen oxides (NOₓ) in the atmosphere. NOₓ, however, can be lost from the snow by surface processes, such as photolysis back to NOₓ upon exposure to sunlight, making it difficult to interpret records of NOₓ as a tracer of atmospheric NOₓ loading. In a campaign consisting of two field seasons (May–June) at Summit, Greenland, high temporal frequency surface snow samples were collected and analyzed for the oxygen isotopic composition of NO₃⁻. The strong, linear relationship observed between the oxygen isotopic composition of NO₃⁻ in ice cores and the oxygen isotopic composition of NO₃⁻ in the snow at Summit is most feasibly explained as preserved atmospheric NO₃⁻ deposition. Citation: Fibiger, D. L., M. G. Hastings, J. E. Dibb, and L. G. Huey (2013), The preservation of atmospheric nitrate in snow at Summit, Greenland, Geophys. Res. Lett., 40, 3484–3489, doi:10.1002/grl.50659.

1. Introduction

[2] Ideally, nitrate (NO₃⁻), a major ion present in ice cores, could be used to trace the history of its precursor nitrogen oxides (NOₓ = NO + NO₂) sources and impact on the atmosphere. Natural (lightning, microbial process in soils, and stratospheric N₂O oxidation) and anthropogenic (fossil fuels combustion and biomass/biofuel burning) sources both make important contributions to the global atmospheric burden of NOₓ; these emissions have a direct impact on the oxidation capacity of the atmosphere through NOₓ interactions with ozone (O₃) and HO₂ (hydroxyl and hydroperoxyl radicals). Understanding of NOₓ concentration records has long been complicated by the fact that NOₓ can be postdepositionally processed in surface snow [Honrath et al., 1999]. Recent studies of the isotopic composition of NOₓ in snow have aimed to trace the preservation of NOₓ source and chemistry signals and/or assess the postdepositional loss of NO₃⁻ [Blunier et al., 2005; Frey et al., 2009; Hastings et al., 2009].

[3] At Summit, Greenland (72.6°N, 38.5°W), observations of NOₓ fluxes from the snow have been ascribed to the photolysis of snow NO₃⁻ [Dibb et al., 2002; Honrath et al., 1999] with NOₓ concentrations of up to 50 pptv measured in the boundary layer [Yang et al., 2002]. In addition, it has been suggested, based on nitrate concentration ([NO₃⁻]), that 5–25% of NO₃⁻ is lost from the snow [Burkhardt et al., 2004; Dibb et al., 2007]. This large amount of loss does not fit with current modeling simulations [Thomas et al., 2011], which suggest that very little NO₃⁻ loss is required to explain the locally observed atmospheric concentrations of NOₓ in the summertime boundary layer.

[4] The nitrogen and oxygen isotopic composition of NO₃⁻ has been used to document the postdepositional processing of snow NO₃⁻ in polar environments. In low snow accumulation environments, such as Dome C, Antarctica (10 cm of snow per year [Rothlisberger et al., 2000]), the isotopes serve as a tracer of postdepositional loss [Blunier et al., 2005; Frey et al., 2009; Rothlisberger et al., 2002]. In higher accumulation environments, such as Summit (65 cm of snow per year [Dibb and Fahnestock, 2004]), work thus far has indicated that the majority of NO₃⁻ and its isotopic composition is preserved in the snow [Hastings et al., 2004, 2009; Jarvis et al., 2009]. It is possible, however, that recycling of NOₓ occurs locally, i.e., postdepositional loss of NOₓ from the snow as NOₓ, followed by local oxidation of NOₓ to NO₃⁻ and redeposition. At Summit, accumulation occurs year-round [Dibb and Fahnestock, 2004], with riming and fog in addition to snow deposition possible during the spring and summer.

[5] Here we use the isotopic composition of NO₃⁻ to quantify the significance of postdepositional processing of NO₃⁻ in snow. This work presents the first complete oxygen isotopic measurements, δ¹⁸O and Δ¹⁷O, for NO₃⁻ in surface snow at Summit with both (δ = (R_sample/R_VSMOW−1) * 1000‰, where R = ¹⁸O/¹⁶O for δ¹⁸O and R = ¹⁷O/¹⁶O for Δ¹⁷O, Δ¹⁷O = δ¹⁷O − 0.52 * δ¹⁸O reported). The oxygen isotopic composition of atmospheric NO₃⁻ is representative of the oxidation pathways of NO₃⁻ formation. Δ¹⁷O is the measure of deviation from the typical “mass-dependent” relationship between ¹⁸O and ¹⁷O, and anomalously high Δ¹⁷O values are found in atmospheric NO₃⁻ as a result of the interaction of NOₓ with O₃.

[6] Both modeling and observational studies suggest that photolysis is the primary driver of NOₓ loss from the snowpack; while other postdepositional processes such as evaporation and volatilization may contribute some to NOₓ loss, they are not believed to be as important in locations with low [NO₃⁻] and temperatures [Frey et al., 2009; Rothlisberger et al., 2002]. The various photolysis pathways (Figure 1) should induce different effects on the oxygen isotopes of NO₃⁻ due to fractionation and exchange of oxygen atoms. Based on theoretical calculations [Frey et al., 2009], additional supporting information may be found in the online version of this article.

1Department of Chemistry, Brown University, Providence, Rhode Island, USA.
2Department of Geological Sciences and Environmental Change Initiative, Brown University, Providence, Rhode Island, USA.
3Earth System Research Center, Institute for the Study of the Earth, Ocean, and Space, University of New Hampshire, Durham, New Hampshire, USA.
4School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.

Corresponding author: D. L. Fibiger, Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA. (dorothy.fibiger@brown.edu)

©2013. American Geophysical Union. All Rights Reserved. 0094-8227/13/10.1002/grl.50659
photonolysis of NO$_3$ to gas-phase NO$_2$ (Figure 1, pathway a) should increase δ^{18}O-NO$_3$ in the surface snow, while Δ^{17}O-NO$_3$ should remain constant. The resulting NO$_2$ may be cycled as NO$_x$ in the atmosphere and, ultimately, converted back to HNO$_3$ (Figure 1, pathway b). If HNO$_3$ is formed and redeposited locally, this would imprint a local oxidant composition on the snow NO$_3$ (Figure 1, pathway c). It is also possible that NO$_3$ is photolyzed to a compound (e.g., NO$_2$) that remains in the condensed phase (Figure 1, pathway d) and is capable of exchanging oxygen atoms with an oxidant also in the condensed phase. In this case, the resultant NO$_3$ will have an isotopic composition that is similar to that of water (snow).

2. Methods

[7] Two field seasons were conducted: 17 May to 22 June 2010 and 24 May to 26 June 2011. Throughout both, surface snow samples, comprising the top 1–2 cm of snow from 100 to 400 cm2 areas, were collected every 4–12 h and included all major snowfall events. At each sampling time, three replicate samples were collected adjacent to each other within a 10 m by 5 m section of the clean air sector using a Lexan scraper, and each snow sample was stored frozen in a high-density polyethylene bottle until analysis, with all materials precleaned in 18 MΩ cm water. The samples were then analyzed for a suite of ion concentrations at the University of New Hampshire, including NO$_3$, on a Dionex ion chromatograph. (Dibb et al. [2007] provided details on the sampling and analytical protocols, as well as data screening criteria.)

[8] The complete isotopic composition of NO$_3$ was measured at Brown University for each sample. The δ^{18}O-NO$_3$ and Δ^{17}O-NO$_3$ are quantified using the bacterial denitrifier method [Casciotti et al., 2002; Kaiser et al., 2007], where nitrous oxide (N$_2$O) generated from NO$_3$ by denitrifying bacteria is used to determine δ^{18}O, and Δ^{17}O is determined by quantitatively decomposing the N$_2$O into molecular oxygen (O$_2$) and nitrogen (N$_2$). The supporting information includes further discussion of measurement techniques and data correction. In contrast to other studies, the δ^{18}O-NO$_3$ and Δ^{17}O-NO$_3$ data should be considered independent since different aliquots of the samples are run separately for

![Figure 1](image1.png)

Figure 1. A simplified schematic of reaction pathways for photolysis of NO$_3$ in snow. Pathway a represents photolytic loss of NO$_3$, with pathway b showing NO$_3$ cycling and pathway c showing redeposition. Pathway d shows an example mechanism for NO$_3$ exchanging O atoms with H$_2$O. The NO$_2$ here should be considered representative of any NO$_3$ photolysis product trapped in the condensed phase that can be oxidized back to NO$_3$. H$_2$O represents any oxidant in the condensed phase that shares the isotopic composition of H$_2$O.

![Figure 2](image2.png)

Figure 2. (left) [NO$_3$], (middle) Δ^{17}O, and (right) δ^{18}O-NO$_3$ comparison for the 2010 ($n = 277$) and 2011 ($n = 345$) seasons, which show remarkably different average values and ranges. The black lines indicate median values, with the boxes encompassing the upper and lower quartiles. The individual points are more than 1.5 times the interquartile distance.

3. Results

[10] The 2010 and 2011 field seasons show markedly different ranges and average values for NO_3^- concentration and oxygen isotopes (Figure 2). Comparable high temporal resolution measurements of surface snow are not available for $\Delta^{17}\text{O}-\text{NO}_3^-$, but measurements from 1 m snowpits at Summit ranged from ~23‰ to 30‰ for summertime snow [Kunasek et al., 2008], similar to the mean values observed in the May–June surface snow. An average $\Delta^{17}\text{O}-\text{NO}_3^-$ of 26‰ calculated for atmospheric NO_3^- in June from a global 3-D atmospheric chemistry model simulation [Alexander et al., 2009] also compares generally well with the surface snow mean values found in 2010 and 2011. Interestingly, there is a great deal of variability in $\Delta^{17}\text{O}-\text{NO}_3^-$ measured in surface snow, even within a single day, which is not represented by previous snow pit data. Jarvis et al. [2009] reported $\delta^{18}\text{O}$ of surface snow with a range shifted slightly higher (45‰ to 108‰ versus 30‰ to 95‰) than what was observed in the 2010 and 2011 seasons.

[11] Despite the differences in range and average values (Figure 2), similar relationships between $\text{[NO}_3^-]$, $\delta^{18}\text{O-NO}_3^-$, and $\Delta^{17}\text{O-NO}_3^-$ were found in both seasons. In both the 2010 and 2011 field seasons, no correlation was found in the surface snow between $\text{[NO}_3^-]$ and the oxygen isotopic composition of NO_3^- (Figure S1). On the other hand, in both seasons, a very strong linear relationship was found between $\delta^{18}\text{O-NO}_3^-$ and $\Delta^{17}\text{O-NO}_3^-$ (Figure 3a). As outlined below, this relationship is difficult to explain in the presence of significant postdepositional processing of NO_3^- given what is known about isotope effects of photolytic processes.

4. Discussion

[12] In interpreting the isotope results, the discussion below focuses on photolysis as a primary driver of the potential postdepositional processing of NO_3^- in snow at Summit. The possible impacts of photolytic loss of NO_3^-, exchange of oxygen atoms within the snow and photolytic driven exchange of oxygen atoms in the snow, are considered.

4.1. Isotopic Impacts of NO_3^- Processing

[13] As discussed above (section 1), different photolysis pathways will induce different isotopic effects. For NO_3^- deposited to the snow that is then photolyzed, a theoretical fractionation factor, ϵ_{18}, that assumes Rayleigh fractionation, can be used to quantify the change in $\delta^{18}\text{O}$ with the degree of photolytic loss of NO_3^- as follows:

$$
\ln(\delta^{18}\text{O}_{\text{final}} + 1000) = \epsilon_{18} \ln(\text{[NO}_3^-]_{\text{final}} / \text{[NO}_3^-]_{\text{initial}}) + \ln(\delta^{18}\text{O}_{\text{initial}} + 1000)
$$

[14] For conditions at Dome C, Frey et al. [2009] calculated ϵ_{18} as −34‰ serving to increase the residual $\delta^{18}\text{O-NO}_3^-$ in the snow ($\delta^{18}\text{O}_{\text{final}}$) and recalculated for average Summit radiation conditions, $\epsilon_{18} = −32‰$. As a mass dependent process, the loss of NO_3^- from the snow should have no impact on the $\Delta^{17}\text{O-NO}_3^-$, if we assume that some portion of the data presented in Figure 3a reflects direct deposition, photolysis would serve to move the snow composition away from the observed $\Delta^{17}\text{O-NO}_3^-$ versus $\delta^{18}\text{O-NO}_3^-$ relationship along lines of constant $\Delta^{17}\text{O}$ by differing amounts depending on the amount of loss. There is, however, considerable uncertainty associated with the calculated oxygen enrichment factor for photolysis of NO_3^-: the calculations are for the gas phase only (i.e., there is no consideration of matrix effects), the quantum yield has no wavelength dependence, and it is assumed that photolyzed NO_3^- is lost directly to the gas phase only as O_3.

[15] The enrichment in snow $\delta^{18}\text{O-NO}_3^-$ due to photolytic loss fits neither with the data from Summit nor with other measurements of photolytic loss made in the laboratory or field [Frey et al., 2009; McCabe et al., 2005]. In laboratory photolysis experiments and in situ snow measurements, depletion in H_2O has been observed and assumed to be the result of competing factors of enrichment due to photolysis and mixing of the residual NO_3^- with a source depleted in H_2O. The most likely source of this low $\delta^{18}\text{O}$, due to its abundance, is water or an isotopically similar oxidant. Indeed, laboratory studies of photolysis of nitrate have shown, when
beginning with a single NO$_3^-$ source, that photolysis of USGS35 NaNO$_3$ results in a single line for δ^{15}O-NO$_3^-$ versus δ^{18}O-NO$_3^-$ that has markedly different slopes when in waters of differing isotopic composition [McCaibe et al., 2005].

[16] If NO$_3^-$ were to simply exchange oxygen atoms with water, with no loss at all, the expected result would be for the δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ to be pulled toward that of water. For our samples, δ^{18}O-H$_2$O = $-38.0_{\%o}$ to $-20.0_{\%o}$ and Δ^{17}O-H$_2$O = 0‰. This would serve to decrease both δ^{18}O and Δ^{17}O of the NO$_3^-$ in the snow, though not in the ratio that fits with our observations. For example, starting at the mean values for 2011 (δ^{18}O-NO$_3^-$ = 70.1‰ and Δ^{17}O-NO$_3^-$ = 25.3‰), if 10% of the oxygen atoms were to exchange with water at δ^{18}O = $-38.0_{\%o}$, the new isotopic composition would be δ^{18}O-NO$_3^-$ = 59.3‰ and Δ^{17}O-NO$_3^-$ = 22.8‰, using equation (2).

\[\delta^{18}\text{O-NO}_3^-(\text{final}) = 0.9 \times \delta^{18}\text{O-NO}_3^-(\text{initial}) + 0.1 \times \delta^{18}\text{O-H}_2\text{O} \] (2)

[17] If the water δ^{18}O = $-20.0_{\%o}$, δ^{18}O-NO$_3^-$ = 61.1‰, and Δ^{17}O-NO$_3^-$ would remain at 22.8‰. With increasing exchange, the data point would move toward the isotopic composition of water, i.e., a line set by the water composition endpoint (or range) and the starting composition of the NO$_3^-$ (e.g., Figure 3b, green dashed line). The slope of increasing exchange would vary from 0.07 to 0.33 depending upon the initial NO$_3^-$ composition and the composition of water but would never be equal to the observed value of 0.46.

[18] The competing processes of enrichment due to photolysis and mixing with a depleted oxygen source could result in apparent fractionation along the relationship we observe between δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$, if they happen in a specific ratio. With a higher degree of loss, a larger amount of mixing with the depleted source would be required to maintain this relationship. This seems plausible, as the proposed mechanisms for mixing with water involve branching photolysis, with some fraction of the NO$_3^-$ becoming NO$_2^-$ and another portion of NO$_3^-$ following a path that remains in the condensed phase. The condensed phase NO$_2^-$/NO$_3^-$ can exchange oxygen atoms with the solvent water and then reform NO$_3^-$ (Figure 1, pathway d). As more NO$_3^-$ is photolyzed to gas-phase NO$_2^-$, more NO$_3^-$ may also be photolyzed to the condensed-phase substance (NO$_3^-$), thus increasing the oxygen exchange with water. As long as these reactions occur in the necessary ratios, the linear relationship between δ^{18}O and Δ^{17}O of the residual nitrate can be maintained. For instance, using the range of NO$_3^-$ loss from snow concentration studies [Burkhardt et al., 2004; Dibb et al., 2007], if a 10% loss of NO$_3^-$ were occurring, 7% of the remaining NO$_3^-$ oxygen atoms must exchange with water in order to maintain the observed relationship between δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ (i.e., applying equation (1) and then equation (2)). At a 25% loss, a 16% exchange is needed, assuming that the water has a δ^{18}O of $-30.0_{\%o}$ and Δ^{17}O of 0‰.

[19] If the water had a constant δ^{18}O, competing photolytic enrichment and exchange with water would be a logical explanation for the relationship observed between δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$, the water observed over the May–June 2010 and May–June 2011 seasons, however, varies in δ^{18}O from $-38.0_{\%o}$ to $-20.0_{\%o}$. With a 25% photolytic loss and water with δ^{18}O of $-20.0_{\%o}$, a 22% exchange of remaining oxygen atoms is required to maintain the relationship between δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$, while with water δ^{18}O of $-38.0_{\%o}$, a 15% exchange is required to maintain the relationship. The differences in exchange required with varying water isotopic composition change with differing degrees of NO$_3^-$ loss. If the isotopic composition of the water were to vary in concert with the photolysis of NO$_3^-$, we would expect to find a relationship between δ^{18}O-H$_2$O and δ^{18}O-NO$_3^-$, but there is none.

[20] If the degree of NO$_3^-$ photolysis and the δ^{18}O-H$_2$O were to vary synchronously, that would require them to both be controlled by the same factors. If the only control on sublimation of water, and therefore δ^{18}O-H$_2$O increase, was actinic flux, then it would be possible to relate it to the degree of photolysis of NO$_3^-$. The δ^{18}O-H$_2$O should, however, be primarily controlled by relative humidity, which should have no effect on NO$_3^-$ photolysis. In addition, concurrent changes in NO$_3^-$ photolysis and δ^{18}O-H$_2$O would require δ^{18}O-H$_2$O to reset to the same values each evening before NO$_3^-$ photolysis restarts in the morning. This is improbable, as the water deposition can come from a variety of sources with different δ^{18}O-H$_2$O, e.g., riming, fog deposition, or snowfall. In addition, if sublimation were driving the change in δ^{18}O-H$_2$O, there should be a change in deuterium excess in the snow [Stichler et al., 2001], but all the samples fall along a line with a slope of 8 (δ^{18}O = 8.0 * x + 6.0; R^2 = 0.99). This indicates that all isotopic changes in water are derived at equilibrium; therefore, sublimation cannot be the source of variation in δ^{18}O-H$_2$O. The most likely source of δ^{18}O-H$_2$O variation is deposition of new water.

[21] Additionally, stratospheric O$_3$ concentration, and therefore UV penetration to the surface at Summit, is an important control on the photolysis of NO$_3^-$. It is notable that despite significant depletion in stratospheric O$_3$ during spring 2011 compared to spring 2010 [Manney et al., 2011], the observed relationship between Δ^{17}O and δ^{18}O of NO$_3^-$ is the same in both years (Figure 3a).

[22] In summary, the observed relationship between δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ cannot be explained by postdepositional processing of NO$_3^-$ in the snow, considering our current understanding of the isotopic imprints of the processes discussed above. The oxygen isotopic signals observed in NO$_3^-$ at Summit are more plausibly explained as representing atmospheric NO$_3^-$ deposition to Summit.

4.2. Atmospheric Production of NO$_5$

[23] Most linear relationships of the type found between δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ at Summit are interpreted as the result of mixing of different oxidants that react with NO$_3^-$ to produce atmospheric NO$_5$ [e.g., Michalski et al., 2004]. The linear relationship between δ^{18}O-NO$_3^-$ and Δ^{17}O-NO$_3^-$ suggests isotopic mixing between a high end-member with δ^{18}O = 100‰ and Δ^{17}O = 39‰ and a low end-member with δ^{18}O = 18‰ and Δ^{17}O = 0‰ (Figure 3a). The high-end-member likely results from stratospheric O$_3$. The lower end-member is more difficult to identify. The atmospheric oxidant with the closest isotopic composition is molecular oxygen (O$_2$) (δ^{18}O-O$_2$ = 23.9‰, Δ^{17}O-O$_2$ = 0‰ versus Vienna standard mean ocean water [Barkan and Luz., 2005]). A mixing line between these two oxidants (O$_3$ and stratospheric O$_3$) (Figure 3b, red solid line) is the best fit to the surface snow data, compared with other oxidants of Δ^{17}O = 0‰. For instance, H$_2$O vapor (or OH in isotopic equilibrium) would have δ^{18}O between $-30.0_{\%o}$ and $-10.0_{\%o}$ (Figure 3b, green dashed line shows $-20.0_{\%o}$), which does not fit the data. If
OH maintains some of its O$_3$ character from O(1D) [e.g., Kunasek et al., 2008], the mixing line would remain the same, but the lower endpoint would be moved toward O$_3$. Assuming an equilibrium fractionation of 44% between OH and H$_2$O [Michalski et al., 2012] results in an OH-O$_3$ mixing line that is an even worse fit for the data (Figure 3b, orange dotted line). Thus, it would appear that oxygen atoms from stratospheric O$_3$ and atmospheric O$_2$ are the main controls on the isotopic composition of NO$_3^-$ that is ultimately deposited to Summit. Furthermore, the influence of the stratosphere on NO$_3^-$ (e.g., NO$_3^-$ formed in the troposphere via reaction of NO$_x$ and stratospheric O$_3$) may account for the higher than expected summertime Δ17O-NO$_3^-$ at Summit based on models [Alexander et al., 2009; Kunasek et al., 2008].

4.3. NO$_3^-$ Production From Snow NO$_3^-$

[24] The conclusion, based upon the isotopic data, that the NO$_3^-$ seen in Summit snow is a direct atmospheric signal that reflects little to no postdepositional loss contrasts with the estimates of NO$_3^-$ loss based upon snow concentration measurements made in the past [Burkhart et al., 2004; Dibb et al., 2007]. Gas-phase observations and recent modeling work, however, suggest that very small fractions of NO$_3^-$ are involved in the postdepositional processing at Summit [Honrath et al., 1999; Thomas et al., 2011].

[25] Honrath et al. [1999] calculated that only a tiny amount of the NO$_3^-$ must photolyze in order to give a 1000 pptv NO$_3^-$ concentration in the interstitial snow (firm) air (i.e., 6×10^{-11} of the NO$_3^-$ in a 5 µmol L$^{-1}$ snow sample must be converted to NO$_2$). These numbers, however, were never translated into boundary layer concentrations.

[26] In a 1-D model that matches well with observed NO$_3^-$ concentrations, Thomas et al. [2011] showed that only 0.10% of the NO$_3^-$ in the top 10 cm of snow is required to be lost over a 3 day period in order to explain the NO$_3^-$ concentrations measured in the boundary layer at Summit. Assuming a summer accumulation rate of 5.1 cm mo$^{-1}$ [Dibb and Fahnestock, 2004], the top 10 cm of snow will be entirely replaced by fresh snow in less than 60 days. In that case, a loss of 2.1% of the NO$_3^-$ in the snow is required to account for the measured NO$_3^-$ concentrations, backing our interpretation that the postdepositional processing of NO$_3^-$ is small in magnitude and has little to no effect on the isotopes observed.

[27] The contrast between prior snow concentration measurements and the isotopic measurements, as well as the modeled NO$_3^-$ loss, is difficult to reconcile. We have demonstrated that large photolytic losses of NO$_3^-$ are not driving these measurements. Evaporative loss or volatilization of HNO$_3$ will also not account for the discrepancy, as HNO$_3$ concentrations in the atmosphere would have to be 4–10 times larger than the NO$_3^-$ concentrations, which is inconsistent with measurements at Summit [Dibb et al., 1998; Honrath et al., 2002]. The lower amount of NO$_3^-$ loss predicted from NO$_3^-$ concentrations in air fits with the isotope data, while loss predicted from snow concentration measurements does not. It is possible that the calculations based on snow concentrations are confounded by the spatial heterogeneity of NO$_3^-$ or by fluctuations in water content (e.g., evaporation). The isotopes of NO$_3^-$, therefore, present a more sensitive record of NO$_3^-$ chemistry than concentration alone in the snow at Summit.

5. Conclusions and Implications

[28] The isotopic composition of NO$_3^-$ in the snow at Summit, Greenland, is largely preserved and is representative of atmospheric NO$_3^-$ deposition to Summit. NO$_3^-$ at Summit shows a mix of oxidation processes by stratospheric O$_3$ and an unknown oxidant of low Δ17O and Δ18O that is isotopically similar to O$_2$, which influence NO$_3^-$ cycling and the formation of NO$_5^-$. It remains uncertain what accumulation rate is required to preserve the NO$_3^-$ signal, but at Summit, photolytically driven postdepositional processing is so small in magnitude that it does not have a significant effect on NO$_3^-$ concentration or isotopes in the snow. Simultaneous observations of gas-phase species and isotopes of NO$_3^-$ in air and snow may distinguish whether the signal represents regionally formed or long-range transported NO$_3^-$. In high accumulation areas, such as Summit, isotopic records of ice-core NO$_3^-$ can be interpreted as a preserved atmospheric signal and used as a tracer of past NO$_3$ and atmospheric oxidation conditions.

[29] Acknowledgments. This work was supported by the National Science Foundation under grant 0909374 (Arctic Natural Sciences). We thank C. Corr and E. Scheuer for their help with field sampling and ion analysis and Polar Field Services for their support with logistics.

[30] The Editor thanks two anonymous reviewers for their assistance in evaluating this paper.

References

Alexander, B. et al. (2009), Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (delta O-17) of atmospheric nitrate, Atmos. Chem. Phys., 9(14), 5043–5056.

Dibb, J. E., et al. (2007), Seasonal variations in the soluble ion content of snow at Summit, Greenland: Constraints from three years of daily surface snow samples, Atmos. Environ., 41(24), 5007–5019.

