COMPTEL observations of gamma-ray bursts - Imaging and localization

A Connors
University of New Hampshire - Main Campus

H Aarts
SRON

K Bennett
ESTEC

H Bloemen
Space Research Organization of the Netherlands

H de Boer
SRON

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/ssc

Part of the Astrophysics and Astronomy Commons

Recommended Citation
COMPTEL observations of gamma-ray bursts - Imaging and localization

Comments
For copyright information please see: http://www.adsabs.harvard.edu/

Authors
COMPTEL observations of gamma–ray bursts: imaging and localization

1 Max-Planck Institut für extraterrestrische Physik, D-8046 Garching, Germany
2 Laboratory for Space Research, Leiden, P.B. 9504, NL-2300 RA Leiden, The Netherlands
3 University of New Hampshire, Institute for the Study of Earth, Oceans and Space, Durham NH 03824, U.S.A.
4 Astrophysics Division, Space Science Department of ESA/ESTEC, NL-2200 AG Noordwijk, The Netherlands

Received June 3; accepted August 12, 1992

Abstract. — The COMPTEL experiment on GRO images 0.7 – 30 MeV celestial gamma–radiation that falls within its 1 seradian field of view. During the first eleven months of orbit, preliminary localizations from BATSE triggers indicated that about 1 in 6 cosmic events could have fallen within COMPTEL’s field of view. We present COMPTEL positions for four of the brighter of these gamma–ray bursts.

Key words: gamma rays — gamma ray bursts.

1. Introduction.

For the past two decades, γ-ray burst localization has meant either arcminute error boxes from timing comparisons among widely separated spacecraft; or error boxes ~10° wide based on broad, anisotropic instrument response (Hurley et al. 1984). Studies of these positions revealed an apparently isotropic distribution on the sky (Pedersen et al. 1984; Hurley 1992); and, surprisingly, not a single compelling quiescent counterpart at any wavelength (Schaefer 1992 and references therein), with the well-known exception of GRB 790305 (Cline et al. 1980). This drove speculation that the fine error boxes based on timing could be misleading, due either to nearby sources (e.g. < 100 AU, Kuznetsov 1982), at one distance extreme; or to gravitational lensing and beaming effects at the other (McBreen & Metcalfe 1987). Recent BATSE results have dramatically highlighted this distance controversy (Meegan et al. 1992).

The COMPTEL experiment can directly image MeV sources, offering a completely independent γ-ray burst localization method. In COMPTEL’s “telescope” mode, ideally, a photon Compton–scatters once in one of the seven upper D1 detectors, then is completely photo-absorbed in one of the lower array of fourteen high–Z D2 detectors (see Schönfelder et al. 1984; also Winkler et al. 1986). In this simple case the possible γ-ray source positions lie on a circle of radius \(\phi \) around the direction of the scattered photon, with

\[
\cos \phi = 1 - \frac{1}{\epsilon_1} + \frac{1}{\epsilon_1 + \epsilon_2},
\]

where \(\epsilon_1 \) and \(\epsilon_2 \) are the energy deposits measured in the upper (D1) and lower (D2) detectors, respectively, in units of the electron rest–mass. The intersection of these circles produces an image. In practice the full instrument response includes the effect of multiple scatters and partial energy absorption, which smear and broaden this ideal response substantially, as a function of energy and photon scatter–direction measurements (Diehl et al. 1991). Comparisons of burst positions measured by COMPTEL with those based on timing have so far been in agreement (Hurley et al. these proceedings; Varendorff et al. 1992).

2. Data and analysis.

Roughly half of the BATSE burst trigger messages contain preliminary positions, with typical error radii of 10°–15°. Of these, about 16% had been given BATSE positions within 45° of COMPTEL’s telescope zenith, and were potential candidates for imaging. COMPTEL results for one very intense event, GRB 910503, have already
been published (Winkler et al. 1992a). In this paper we present position constraints for four more bright events: GRB 910425 (BATSE trigger: 2268 s UT; COMPTEL zenith of 45°); GRB 910601 (BATSE trigger: 69736 s UT; COMPTEL zenith of 8°); GRB 910627 (BATSE trigger: 16159 s UT; COMPTEL zenith of 10°); and GRB 910814 (BATSE trigger: 69275 s UT; COMPTEL zenith of 28°).

For each burst, a time window was selected using the BATSE trigger time and extending over the total burst duration. Only telescope events which satisfied the optimum event selection criteria were used. Spectra and light–curves for these events are described by Collmar et al. (these proceedings) and Winkler et al. (1992b).

COMPTEL uses several imaging methods, including a maximum entropy technique to estimate the count–rate per angular bin on the sky. This general method is detailed by Strong et al. (1991); and its application to imaging γ-ray bursts by Varendorff et al. (1992). In this paper we focus on quantitative constraints on source positions, for which a maximum likelihood fitting technique is used (de Boer et al. 1991; also Kuiper et al. 1992).

One first transforms to the spatial coordinates χ, ψ, $\bar{\phi}$, plus E_{TOT}; where $\bar{\phi}$ was defined in Equation 1, E_{TOT} is the total energy deposited in both D1 and D2, and (χ, ψ) represent convenient telescope coordinates for the photon scatter–direction. For a single energy interval, COMPTEL’s complex instrument response is factored into an instrument geometry and exposure, which depend on the absolute telescope position; and a point spread function, which depends on the relative coordinates $\chi, \psi, \bar{\phi}$ (Diehl et al. 1991 and references therein). This is then integrated over an assumed input energy spectrum.

For each gamma–ray burst, a point source was convolved with the instrument response, and added to a simple background. This model was compared to the data–counts in each $\chi, \psi, \bar{\phi}$–bin, using the standard maximum–likelihood statistic appropriate for Poisson counts per bin (de Boer et al. 1991). The source flux and background level (consistent with zero) were allowed to vary, as contours of constant probability were mapped out in (χ, ψ) space, at the equivalent of 1, 2, and 3σ significance for the case of two parameters (Lampton et al. 1976; Cash 1976).

3. Results.

We display these maximum–likelihood ratio contours, which incorporate statistical errors only, in Figures 1 through 4, for GRB 910425, GRB 910601, GRB 910627, and GRB 910814. The varying widths of the contours reflect the number of telescope events available for imaging, which ranged from ~ 30 to ~ 200.

<table>
<thead>
<tr>
<th>GRB ID (date)</th>
<th>Equatorial Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\alpha_{2000} \pm \sigma$</td>
</tr>
<tr>
<td>910425</td>
<td>$5^{h}59^{m} \pm 10^{m}$</td>
</tr>
<tr>
<td>910601</td>
<td>$20^{h}39^{m} \pm 4.8^{m}$</td>
</tr>
<tr>
<td>910627</td>
<td>$13^{h}15^{m} \pm 11.7^{m}$</td>
</tr>
<tr>
<td>910814</td>
<td>$22^{h}50^{m} \pm 4.4^{m}$</td>
</tr>
</tbody>
</table>

Ten years ago, time delays from four or more widely separated spacecraft were used to show that position constraints derived from cosine law detector response could be in error by $\geq 5^\circ$ (Hurley 1982 and references therein). Recently, BATSE results have demonstrated the significant impact of atmospheric backscatter when solving for...
We summarize our results in Table 1. To the 1σ statistical errors, we have added $\sim 1^\circ$ systematic uncertainties in quadrature.

4. Discussion.

COMPTEL's telescope locations and location arcs based on Ulysses–GRO burst arrival times are independent measurements of γ-ray burst source positions that can be combined into error boxes a few arcminutes wide by a few degrees long. This allow searches for counterparts at other wavelengths (Boer et al. these proceedings; Hurley et al. these proceedings).

It is also interesting to calculate how seriously one can constrain theories that predict that a γ-ray burst should not have the plane–wave signature of a distant point source. As one simple example, consider a nearby γ-ray burst source located at a position \mathbf{P} with respect to the Earth (which we take to be the origin), observed by two satellites, one in Earth orbit and the second some distance away at position \mathbf{S}. Let δt represent the delay in burst arrival time at the second and first spacecraft. For convenience, define the dimensionless parameters $\tau = c\delta t/|\mathbf{S}|$ and $\lambda = |\mathbf{P}|/|\mathbf{S}|$. If θ is the angle to the γ-ray burster from the Earth–spacecraft line, then:

$$\cos \theta = \tau + \frac{1 - \tau^2}{2\lambda}. \quad (2)$$

That is, if the source were nearby, the directional cosine inferred from the time–delay would be too small by a term that is inversely proportional to distance. As a specific example, suppose the second spacecraft were at $|\mathbf{S}| = 4$ AU, and the relative time delay τ were measured to be 0.5. Then for the ideal case when uncertainties in burst arrival times are negligible, the γ-ray burst source would have to be more distant than ~ 40 AU in order for the arc derived from timing to fall within 2° (i.e. $1 - 2\sigma$) of the COMPTEL position.

5. Conclusions.

In telescope mode, COMPTEL measures burst locations to within $1-2^\circ$. These can be combined with positions derived from burst arrival times at the GRO and Ulysses spacecraft, to provide a narrow window for the search for counterparts at other wavelengths.

Acknowledgements.

The ideas on possible implications of the agreement of COMPTEL and interplanetary network positions arose from discussions with M. Boer.
References

de Boer, H. et al. 1991, Workshop on Data Analysis in Astronomy IV, Plenum, NY, 241
Diehl, R., et al. 1991, Workshop on Data Analysis in Astronomy IV, Plenum, NY, 201
Kuiper, L. et al. 1992, B.A.A.S., 23, 1469
Kuznetsov, A.V., 1982, Cosmic Res., 20, 72
McBreen, B., & Metcalfe, L., 1987 Nat 330, 348
Meegan, C. A. et al. 1992, Nat 355, 143
Strong, A. et al. 1991, Data Analysis in Astronomy IV, Plenum, NY, 251
Winkler, C., et al. 1986, Adv. Space Res. 6, 113