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ABSTRACT

CORRELATING SEA OTTER DENSITY AND BEHAVIOR TO HABITAT 

ATTRIBUTES IN PRINCE WILLIAM SOUND, ALASKA: A MODEL FOR

PREDICTION

by

Heather A. Coletti 

University of New Hampshire, December, 2006

As a benthic foraging marine mammal, sea otters (Enhydra lutris) present 

a unique opportunity for conducting a quantitative assessment of behavior based 

on habitat use as well as developing a habitat based density model using GIS 

because of the sea otter’s well defined habitat requirements. Several studies 

have documented sea otter behavior but none have calculated the probability of 

occurrence of a particular behavior based on habitat attributes. Previous 

predictive models of sea otter density have been constructed, however these 

models have excluded offshore habitat. Seven aerial surveys, that included 

offshore habitats, were conducted between 1995 and 2005 in western Prince 

William Sound to estimate distribution and abundance of sea otters (Enhydra 

lutris).

The location and densities of sea otters that resulted from these surveys 

were used to explore relationships between sea otters and habitat attributes,

both nearshore and offshore. These relationships described in western Prince
xi
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William Sound were then used to construct habitat based models to predict sea 

otter carrying capacity and total abundance at different spatial scales. The data 

from the aerial surveys were also used to quantify the relationship between a sea 

otter’s behavior and the habitat attributes associated with the location of the 

animals when the behavior occurred.

Stepwise logistic regression was used to describe relationships between 

behavior, diving or not diving (assumed resting) and habitat attributes. Three 

subsets of the data were examined; all animals, all single animals without pups 

and all single animals with pups. Bathymetry was consistently significant (alpha = 

0.05) in determining the probability of a behavior being diving or not diving, 

regardless of size of group or reproductive status. Group size was the first 

variable to enter the stepwise regression analysis of all available sightings, 

regardless of reproductive status, with bathymetry as the second and final 

variable. Among single animals with pups bathymetry was the first variable and 

distance to shore was the second and final variable to enter the model. 

Bathymetry was the only significant variable in the analysis of single animals 

without pups.

The aerial survey data from western Prince William Sound, AK, was used 

to create a predictive density model based on five habitat attributes; bathymetry, 

distance to the closest shoreline, distance to the closest protected shoreline, 

distance to the closest tidewater glacier and distance to the closest anadromous 

stream. The mean predictive density estimate was 2.0316/ km2 with a total

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



corrected population estimate within the survey boundaries of 16,441, with a 

range of 14,468 to 18,803 (alpha = 0.05).

Special attention was given to northern Knight Island, an area heavily 

impacted by the Exxon Valdez oil spill in 1989. Predicted densities within that 

area were 1.5792/km2 with an estimated abundance of 384. The actual mean 

abundance estimate at northern Knight Island between 1995 and 2005 was 68 

with a range of 34 to 102 (alpha = 0.05), illustrating a discrepancy between 

predicted estimates and of actual survey abundance estimates.

The analysis and results presented in this work give insight into the 

density and distribution variation of sea otters in Prince William Sound as well as 

contribute to the understanding of the sea otter’s use of its nearshore habitat.

xiii
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GENERAL INTRODUCTION

Sea otters (Enhydra lutris) were once hunted to near extinction until the 

implementation of the Fur Seal Treaty in 1911, protecting the otters from further 

commercial harvest. At this time, little pre-decline abundance data were 

available. Eleven remnant populations persisted, most of these in the Aleutian 

Archipelago, and they increased in size to eventually repopulate most available 

habitat between Prince William Sound and the Kuril Islands in Russia. The Rat 

Island group in the Aleutian Archipelago displayed the earliest and most 

extensive sea otter population recovery in Alaska (Kenyon 1969). The population 

at Amchitka, the largest of the Rat Islands, was thought to be at carrying capacity 

by the mid 1960s and was likely providing immigrants to the other islands 

(Kenyon 1969). By the 1980s most of the Aleutian Islands were re-populated 

(Estes 1990) with an estimated 55,000 to 74,000 otters (Calkins and Schneider 

1985). However, subsequent skiff based surveys conducted in the early 1990s, in 

the Rat and Andreanof Islands, showed a rapid population decline (Doroff et al 

2003). This rapid decline was apparently due to predation from killer whales 

(Orcinus orca) (Estes et al. 1998). Subsequent aerial surveys throughout the 

Aleutian Islands and Alaska Peninsula have identified the geographic extent of 

the decline to include m ost o f the entire southwest stock o f sea otters extending 

1500km from near Kodiak Island to Attu Island (US Fish and Wildlife Stock 

Assessment Report 2002) (Fig.1).

1
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Three distinct stocks of sea otters have been defined in Alaska, the 

southeast stock, the southcentral stock and the southwestern stock (Gorbics and 

Bodkin 2001). The US Geological Survey has conducted annual aerial surveys of 

sea otters in Prince William Sound as well as along the Kenai Peninsula/Cook 

Inlet. The Kenai Peninsula/Cook Inlet area borders the Alaska Peninsula to the 

east. Prince William Sound and the Kenai Peninsula/Cook Inlet area comprise 

much of the southcentral stock and this population is bordered on the west by the 

southwestern stock (Fig. 1). While the data from the Prince William Sound 

surveys have resulted in population size estimates, little work has been done to 

relate variation in abundance and distribution with habitat attributes. The Prince 

William Sound population is considered stable (Bodkin et al. 2002) and will serve 

as the base to construct a habitat based population density model. This will aid in 

understanding variation in the distribution and density of sea otters within Prince 

William Sound and may be applied elsewhere where little pre-decline population 

data exists.

There are three main objectives to this study. The first one is to build a 

model correlating sea otter densities, distribution and behaviors to various habitat 

attributes within Prince William Sound. The various habitat characteristics that 

have been chosen are described further and could be applicable to other sea 

otter populations outside Prince William Sound. Understanding variation in sea 

otter distribution may aid managers in decision making processes such as habitat 

protection or resource allocation during a natural or anthropogenic occurrence. 

The second objective to this study is the creation of a methodology for calculating

2
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densities based on habitat attributes utilizing abundance data. This methodology 

may be applied to other areas where population density and distribution may be 

unknown, uncertain or, as in some Aleutian Islands, where abundance prior to 

the recent decline may be unknown, but where some survey data have been 

collected. The model may change based on area of study; however, the model 

development process will remain the same and possibly aid in the comparison of 

available habitat across the sea otter’s range.

The third objective is to calculate sea otter densities in areas where little 

data are available or where recovery or re-colonization has not yet occurred. For 

Prince William Sound this is accomplished by applying the model to the entire 

Sound and calculating densities in the northern Knight Island region (a highly 

impacted area from the Exxon Valdez oil spill) to determine if the current 

abundance, as measured by aerial survey results, is below the estimate of what 

the habitat can support based on the habitat model results. This may be because 

sea otters are still being impacted by the Exxon Valdez oil spill.

General Study Area

Prince William Sound is located in southcentral Alaska, along the northern 

curve of the Gulf of Alaska (Fig. 2). It is completely surrounded by the Chugach 

National Forest, while the Kenai Fjords National Park is located to the southwest 

(Morris and Loughlin 1994). Bathymetry varies within the Sound, with depths 

averaging about 200m with a maximum depth of 750m in the northern region

3
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(Weingartner 2005). The Sound is considered a central estuarine basin with 

several fjords (Muench and Heggie 1978, Irons et al. 1988). The Alaska Coastal 

Current flows into the Sound through Hinchinbrook entrance on the southeastern 

end and exits on the southwestern end through Montague Strait (Muench and 

Heggie 1978, Weingartner 2005) (Fig. 3). The study area for this work is defined 

by the area encompassed by the aerial survey. The 100m bathymetry contour, 

which generally parallels the shoreline and varies in distance offshore, as well as 

a minimum distance offshore, regardless of depth, define the survey area. Prince 

William Sound supports large numbers of various forms of wildlife from marine 

birds and mammals to a diverse intertidal and subtidal community as well as 

several commercially important fish species (Spies et al.1996). However, there 

are relatively few shallow water areas that would provide suitable habitat for a 

variety of shallow benthic foraging species like sea otters and some marine birds 

(Irons et al. 1984).

General Methods

Aerial Survey

Aerial surveys of Prince William Sound were completed in 2005. Details of 

the survey method are described thoroughly in, An aerial survey method to 

estimate sea otter abundance (Bodkin and Udevitz 1999). Briefly, the survey 

design consists of two basic components. The first component is the strip 

transect. These transects are stratified by depth into high (0-40m) and low (40-

4
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100m) density transects. Strips are 400m in width and are spaced at least 1.2km 

apart. Transects run perpendicular from the shoreline to the 100m depth contour 

or 400m offshore, whichever is greater. Allocation of strip survey effort was 

proportional to anticipated sea otter density with 80% of the effort in the high 

strata (<40m depth) and 20% in the low strata (>40m depth) (Fig. 4). The second 

component to the survey method is the intensive search unit or ISU. Intensive 

search units are sampled by flying five 400m diameter concentric circles within 

the strip transects and are conducted systematically to account for animals not 

seen on the strip so a correction factor can be applied to the strip counts (Fig. 4). 

Correction factors vary little across survey years (Table 1). These correction 

factors are applied to the final unadjusted model estimates. The ISU observer 

also records a behavior for each animal seen in the circle. Behavior is described 

as either diving (D) or not diving (N) (assumed resting). Data collected include 

group size, behavior (diving or not diving) and location. A group is defined as 1 or 

more otters separated by less than 4 meters (Bodkin et al. 2002). Flights were 

conducted during daylight hours in the summer (June to August) and only while 

the sea state was calm (Beaufort <2) and the ceiling was > 500ft. Therefore, 

behavior during hours of darkness, other seasons of the year or in weather 

conditions less than suitable for surveying cannot be assumed from this analysis.

The aerial survey method described above was created in this manner to 

take into account the sea otter’s diving habits, both duration and depth. At the 

time of its implementation, it was generally believed that otter foraging depths 

were concentrated inshore of the 40m depth contour (Lensink 1962, Kenyon

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1969, Estes 1981, Riedman and Estes 1990) with occasional records of animals 

foraging in waters as deep as 54-100m (Kenyon 1969, Newby 1975). Bodkin et 

al. (2004) conducted a study implanting time depth recorders (TDR, Wildlife 

Computers, Redmond, WA) into otters in Southeast Alaska. The study (Bodkin et 

al. 2004) created a more accurate estimate of sea otter dive depths than has 

been possible before. Data analysis revealed two types of divers, unimodal and 

bimodal. Most foraging dives occurred in less than 25m for the unimodal divers, 

while the bimodal divers exhibited dive behavior that occurred in the less than 

20m contour as well as in the 35-55m contour (Bodkin et al. 2004). Besides 

depth, duration of the dive is an important factor in detection as well. Sea otter 

dive duration averages 74 seconds but can last for upwards of 200 seconds in 

California sea otters (Enhydra lutris nereis), a sub-species of the sea otter (Ralls 

et al. 1995). However, during the Southeast Alaska TDR study, the average 

foraging dive lasted 85 seconds (Bodkin et al. 2004) and in 2006 an otter in 

Prince William Sound had a recorded dive of over seven minutes (Bodkin unpub. 

data 2006). Intensive search Units (ISUs) are flown to account for animals not 

seen on the strip count, but that might be underwater at the time of ISU initiation. 

For the time it takes to complete the minimum of five circles (230 seconds), a 

majority of otters diving would have surfaced during the ISU to be counted.

There are three variations to the aerial surveys in terms of spatial 

coverage; all of Prince William Sound (Fig. 5), western Prince William Sound 

(Fig. 6) and replicate surveys which consist of northern Knight Island (spill 

effected) and northern Montague Island (reference) (Fig. 7). Replicate surveys

6
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are conducted a minimum of four times and a maximum of five times within one 

survey year. Replicate surveys are identical in design to the other surveys, but 

are required for small areas where sighting and ISU data are too sparse for 

precise or accurate estimates of abundance. These surveys vary in spatial 

coverage as well as sampling intensity. Therefore, the spacing of the transects 

depends entirely on which survey is being conducted. All variations of the aerial 

survey design are encompassed within the survey boundaries (Fig. 8).

Surveys conducted in only the western portion of Prince William Sound as 

well as the Montague portion of the replicate surveys are used to predict location 

and density of sea otters in the remaining areas of the Sound to validate the 

model as well as illustrate areas of concern where sea otter densities are lower 

than the model predicts. The data from the western Prince William Sound survey 

were chosen because there are seven years of aerial survey data from western 

Prince William Sound as opposed to only three years of data from the entire 

Sound survey. One set of data from the Montague replicate survey for each 

corresponding year of the western Prince William Sound survey were utilized as 

well because Montague is considered a reference area, unaffected by the 1989 

Exxon Valdez oil spill, and has relatively high sea otter densities that may aid in 

the predictive capabilities of the model into other areas within Prince William 

Sound that have high sea otter densities.

7
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Geographical Information Systems (G1S)

The overall design of this study is to use existing sea otter aerial survey 

abundance and location data to explore the relationships between sea otter 

densities and carefully chosen habitat attributes. These attributes include: 

bathymetry, distance to closest shoreline, distance to closest protected shoreline, 

distance to closest tidewater glacier, distance to closest human population center 

and distance to closest anadromous stream (Table 2). It is well documented that 

sea otters forage nearshore in rocky and soft sediment habitats and feed almost 

exclusively on benthic prey (Kenyon 1969, Estes 1981, Estes et al. 1981, Estes 

1989, Reidman and Estes 1990, Bodkin et al. 2004). However, this observation 

doesn’t fully explain the variation is sea otter distribution throughout Prince 

William Sound. A map of the sea otter distribution throughout Prince William 

Sound clearly illustrates this variation (Fig. 9). Habitat features other than 

bathymetry and benthic sediment composition have largely been overlooked as 

influences that explain sea otter distribution and density. Therefore, a new 

approach was implemented. Frequency of adults counted during the survey were 

plotted against each variable separately a priori to examine relationships 

between habitat characteristics and number of adult sea otters observed during a 

survey (Fig. 10-15). Based on the plots of adult sea otter frequency based on 

depth bins, there was a negative trend. As depth increases, sea otter frequency 

decreased (Fig. 10). There is a similar trend shown between frequency of adult 

sea otters and closest distances to both the shoreline as well as closest distance 

to protected shorelines (Fig. 11 and 12), where sea otter frequency tends to

8
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decrease as distances from shorelines increased. However, there was a slight 

increase in the frequency of adult sea otters from the <800m distance to the 

closest shoreline bin to the <1000m distance bin. This spike may have indicated 

shallow areas offshore. There was little discernable pattern from the a priori plot 

of adult sea otter frequency based on distance to the closest tidewater glacier 

(Fig. 13). However, because of the abundance of tidewater glaciers within Prince 

William Sound, tidewater glaciers were utilized in the model building process.

The plot of adult sea otter frequency based on the closest distance to a human 

population center illustrated lower frequencies of sea otters close to the 

designated population centers, but increased steadily with a maximum frequency 

of adult sea otters at 5km from the closest human population center. Frequencies 

dropped rapidly as distance increased above 5km (Fig. 14). However, because 

this graph did not show a clear positive trend and there were marked decreases 

in animal frequencies as distances from population centers increased above 

5km, there was an assumption that some other physical or biological factor 

dictated sea otter distribution based on closest distances to a human population 

center such as protection from inclement weather or marine productivity. The 

decrease in sea otter frequency as distance from anadromous streams increased 

(Fig. 15) may be due to the marine derived nutrients deposited in the nearshore 

by the decomposing carcasses of the fish, therefore potentially increasing benthic 

productivity. An alternative hypothesis for the negative trend between sea otter 

frequency and distance to the closest anadromous stream was that because of 

the high number of salmon streams evenly distributed within Prince William

9
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Sound, distance to the closest anadromous stream could have correlated with 

distances to the closest shorelines. Without anadromous stream run size, power 

to detect the influence a large salmon run or a small run might have on the 

nearshore benthic community is decreased.

All survey results were digitized from paper maps using ArcGIS 9.1 (ESRI, 

Redlands, CA). Survey attribute tables consisted of several fields that include: 

transect number, number of adults in each group, number of pups in each group, 

total number observed on each transect (adults + pups), date, and notes. 

Geographically referenced shoreline data for Prince William Sound was obtained 

from US Geological Survey shoreline data and is the same shoreline layer used 

to create the aerial survey transects. Bathymetry data were obtained from the 

NOAA Geophysical Data Systems for Hydrographic Survey Data and is a 

categorical variable with 8 levels, 0-20m, 20-40m, 40-60m, 60-80m, 80-100m, 

100-120m, 120-200m and >200m. Anadromous stream locations were obtained 

from the Alaska Department of Fish and Game Fish Distribution Database (FDD 

2006). While several studies have taken place to understand the role of 

anadromous fish, particularly salmon, in the transport of marine derived nutrients 

(MDN) into terrestrial ecosystems (Ben-David et al. 1997, Ben-David et al. 1998, 

Bartz 2002, Stockner 2003) relatively little work has been done to examine the 

effect of salmon derived nutrients on the nearshore environment. Some 

populations of salmon, particularly chum (Oncorhynchus keta) and pink 

(Oncorhynchus gorbuscha) salmon, travel shorter distances to spawn and this 

allows the nutrients to be distributed to the estuaries and nearshore habitats
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(Stockner and Ashley 2003). A majority of the salmon runs in Prince William 

Sound are composed of pink and chum salmon (Moffitt and Merizon 2006). 

Distance to the nearest salmon stream was calculated for each group of sea 

otters and used as a covariate of sea otter density from this dataset. Because the 

size of each salmon run is not available from this dataset, the lack of scale in 

salmon run size will likely reduce the power to detect the influence a large 

salmon run might have on the nearshore benthic community versus a small run, 

and whether these factors influence nearshore sea otter habitat use and 

productivity.

Data pertaining to human population centers in Prince William Sound were 

obtained from the Alaska State Geo-Spatial Data Clearinghouse (ASGDC 2005a) 

created by the Alaska Department of Community and Regional Affairs (ADCR 

1998). The population centers within Prince William Sound are: Cordova, Valdez, 

Whittier, Tatitlek, Eyak and Chenega Bay (Fig. 3). There are ferry services 

between Valdez, Whittier and Cordova that lead to potential boat traffic increases 

near harbors. Whittier is the closest boat harbor access to Prince William Sound 

from Anchorage on the road system in Alaska. Due to the large human 

population in Anchorage as well as the number of tour operators and cruise ships 

that come and go from Whittier, the town contributes to increased boat traffic 

within Prince William Sound. The remaining communities of Eyak, Tatitlek and 

Chenega Bay are primarily Native Alaskan villages. The Alutiiq people populate 

the majority of Tatitlek and Chenega Bay. Eyak is populated mainly by the Eyak 

Athabascan people (Alaska Department of Commerce, Community and
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Economic Development 2006). Harvest of sea otters for subsistence purposes is 

provided for under an exemption to the U.S. Marine Mammal Protection Act 

(MMPA) of 1972 (Public Law 92-522) and there are no limits to the harvest.

While it is likely that subsistence hunting has not contributed to the decline of sea 

otters in other areas of its range (Burn 2005), it is possible that the location of 

human population centers effects variation in the sea otters density and 

distribution.

Protected areas are potentially important by providing sheltered waters 

from storms or inclement weather. Protected shorelines are defined by the 

protection offered from prevailing winds in this analysis. NOAA historical data 

was taken from buoy # 46061. The historical wind data from buoy #46061 was 

used to determine prevailing winds in the region based on average direction over 

11 years (1995-2005) during the months of July and August. The average wind 

direction was calculated to be from the southeast. From this calculation, 

protected bays were determined by shifting the Prince William Sound coverage 

on the x- and y-axis to shadow protected shorelines from prevailing winds. These 

shorelines were then used to create a new raster layer for distance 

measurements from observed sea otter locations.

Location of tidal glaciers are potentially important because of the benthic 

community they support (Hoskin 1977, Carpenter 1983, Feder and Jewett 1987). 

Glacier location data were obtained from the Alaska State Geo-Spatial Data 

Clearinghouse (ASGDC 2005b) and created by the Alaska Department of Natural 

Resources (ADNR). Prince William Sound has over 40 glacial fjords, 20 of these
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glacial fjords are tidewater glaciers (Molnia 2001). These 20 tidewater glaciers 

reside in the western and northwestern region of the Sound (Fig. 3). Tidewater 

glaciers were digitized into ArcGIS. Distance measurements from observed sea 

otter locations to these habitats were calculated. Tidal glaciers exhibit slower 

sedimentation rates than turbid outwash glaciers because the terminus of a 

turbid outwash glacier does not reach the sea (Lethcoe 1987). The turbid 

outwash glaciers tend to be less productive because of increased sedimentation 

rates (Weslawski et al. 1995, Weslawski et al. 2000, Zajaczkowski and 

Legezynska 2001) as well as increased sediment loads (Carpenter 1983). High 

sedimentation rates from glacial streams inhibit mussels (Mytilus sp.), a prey item 

of sea otters, from settling as well as decreasing the distribution of other sessile 

organisms (Feder and Shaw 1986). There is evidence that tidewater glaciers 

contribute to increased biological production compared to turbid outwash glaciers 

(Hoskin 1977, Carpenter 1983, Feder and Jewett 1987). The increase in 

production and abundance of food sources may influence where sea otters are 

located (Irons et al. 1988). However, compared to areas with little sedimentation 

flux, biomass is considerably lower in the glacier fed water bodies, regardless of 

glacier type (Hoskin 1977).

For analysis, all data layers are converted into rasters. All distance rasters 

were created using ArcGIS Spatial Analyst Cost Distance tool (ESRI, Redlands, 

CA). By using the Cost Distance tool, the grid representing water was used as 

the “cost” grid, which allowed for the calculation of distances only across water 

bodies, excluding the land masses as possible routes of travel for sea otters.
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Each raster represents a data layer such as sea otter locations, shoreline, 

bathymetry, etc. Each one of these rasters is made of an equal number and 

equal size of pixels or cells and all of these rasters are stacked or “snapped” to 

each other. When sample analysis is performed (Grid, Arclnfo Workstation,

ESRI, Redlands, CA) all the values from each raster are exported for each cell. 

An example of a sea otter location and the various attribute data collected from 

the location is given in Figure 16.

A critical element in the model building process was the selection of the 

spatial scale of analysis. The pixel or cell size of 50m x 50m was chosen for two 

reasons. One was due to the transect lines. Only the area sampled by the 

observer while flying the transect lines are used in this analysis to build the 

model. It is difficult to represent a smooth transect line with cells, especially if the 

transect line does not necessarily run in the north-south direction or east-west 

direction. Because of this, if larger pixel sizes were created, the transects would 

become “stair-stepped” and not necessarily represent the surveyed area (Fig.

17). The second reason for the 50m x 50m pixel size was to optimize the 

availability of marine habitat. Prince William Sound has many small bays and 

inlets that would be classified as land, based on the land feature that might be 

present in the center of the cell (ESRI 2004) (Fig. 18), therefore these cells would 

be excluded from the analysis of sea otter habitat. Conversely, land masses that 

are not sea otter habitat could be classified as marine based in the same 

classification process mentioned above (Fig. 18). Opposing reasons for the 50m 

x 50m cell size are many as well. Certainly accuracy of the data, both the
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observed sea otter locations as well as the many habitat attributes used in the 

analysis, could come into question with this cell size. To overcome this issue of 

small cell size for the strip distribution and density analysis, a buffer was placed 

around each observed sea otter location. The buffer has a radius of 1.2km. The 

buffer size was chosen for two reasons. 1) A sea otter study conducted in 

California showed an average daily movement of 0.13 -  1.15km per day (Kage 

2004), inferring that a buffer size of 1.2km could encompass an individual’s entire 

daily movements and 2) 1.2km is the minimum spacing between each high 

density transect. Therefore, each transect did not allow for the possibility of 

double counting an animal in the same day. The buffer surrounding each otter 

sighting was designated occupied sea otter habitat, however, only the attribute 

values associated with the 50m x 50m pixel that contained a sea otter were used 

in the analysis. If there were no additional observed sea otters in any pixels 

within this buffer, the values associated with each pixel were not used as zeros 

or non-locations in the analysis. Therefore, areas designated as zeros or non

locations for analysis, were a minimum of 1,2km from the nearest observed otter 

location (Fig. 19).

It was critical during analysis that occupied and unoccupied pixels were 

chosen in the same ratio as seen during the aerial survey. This was first 

discovered when individual survey years were used to calculate densities. Those 

results were compared to density calculations from the combined surveys. Large 

discrepancies existed between the single year survey density estimates and the 

combined survey density estimates. The discrepancy was due to the ratio of
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occupied to unoccupied pixels for the combined survey data. When the data had 

been combined, duplicate unoccupied pixels were discarded and occupied sea 

otter pixels values were summed. This methodology not only increased the ratio 

of occupied to unoccupied pixels that is actually observed during an aerial 

survey, but the resulting estimated density was also much higher. However, the 

desire was to utilize the combined survey data across years for analysis to 

generate one best model regardless of year instead of one best model per year. 

To overcome the issue of pixel ratios, duplicates were not discarded during 

analysis, nor were otter sightings summed if in the same pixel but observed 

during a different survey year. For example, a pixel may have been occupied in 

three of the seven surveys, unoccupied during two of the seven surveys and 

ignored because the pixel was within 1,2km of an occupied pixel for the 

remaining two surveys. The various habitat values for that pixel were entered into 

the analysis five times. The values were only entered five of seven times 

because of the ignored values when the pixels fell within the 1.2km survey buffer. 

Not only did this approach allow for an accurate occupied to unoccupied ratio, 

there was no overestimating abundance or density because of summing of data 

across years.

The same justifications as mentioned above were used to rationalize the 

small pixel size for behavior analysis.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Analysis

Methods for analysis vary for each of the following three chapters. Logistic 

regression and probability analysis was done in Chapter I. Poisson regression, 

Akaike’s Information Criterion (AIC) and semivariograms were the methods 

chosen in Chapter II. Chapter III utilized data from Chapter II and compared 

density estimates from the best model explained in Chapter II for northern Knight 

Island to post-Exxon Valdez oil spill aerial survey estimates from the same area. 

Analysis methods are explained in detail in each chapter where they are first 

used.
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CHAPTER I

CALCULATING BEHAVIOR PROBABLITIES OF SEA OTTERS IN RELATION
TO HABITAT ATTRIBUTES

Introduction

As a benthic foraging marine mammal, sea otters (Enhydra lutris) are 

restricted in their use of habitat both by depth and distance to foraging depths. It 

is well documented that sea otters forage nearshore in rocky and soft sediment 

habitats and feed almost exclusively on benthic prey (Kenyon 1969, Estes 1981, 

Estes et al. 1981, Estes 1989, Reidman and Estes 1990, Bodkin et al. 2004). 

However, in some cases where shallow water extends several kilometers 

offshore, sea otters may be common (Kenyon 1969, Newby 1975, Reidman and 

Estes 1990).

Sea otters generally forage individually, but tend to rest in groups 

(Garshelis et al. 1984, Estes and Jameson 1988, Reidman and Estes 1990). 

Resting and foraging behaviors often occur in different locations (Shimek and 

Monk 1977, Reidman and Estes 1990). If kelp is present, resting areas are 

typically in the kelp beds, which are limited to relatively shallow habitats of <20m, 

to protect a resting otter from winds, rough water or currents (Kenyon 1969). 

Without the presence of kelp beds, the assumption was that an otter would 

desire finding an area that offers similar protection. Observed otters on Adak 

Island occupied nearshore, sheltered areas during inclement weather (Gelatt
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1996). These resting groups are usually segregated by sex with male resting 

groups usually much larger than female resting groups (Reidman and Estes 

1990), but with most habitats occupied by lower densities of females and 

territorial males (Ralls et al. 1985).

Because of their restricted diving capabilities and almost exclusive 

consumption of benthic prey (Kenyon 1969, Estes 1981, Estes et al. 1981, Estes 

1989, Reidman and Estes 1990), sea otter foraging areas were thought to be 

largely within the 20m contour (Kenyon 1969, Reidman and Estes 1990) with 

relatively little foraging in depths >20m (Newby 1975). However, with recent Time 

Depth Recorder (TDR) (Wildlife Computers, Redmond WA) data from a study 

conducted in Southeast Alaska, a majority of foraging took place within the 30m 

contour. Foraging ranged to the 100m contour, with significant foraging of some 

individuals to the 60m contour (Bodkin et al. 2004).

The time of day the aerial survey was conducted should not have an effect 

on the ISU results. Time allocated to foraging seems to be positively related to 

sea otter density and negatively related to prey availability, allowing a 

conclusions that sea otter densities may respond to food availability. When prey 

are abundant, less time is required to meet energetic requirements from foraging 

and densities of sea otters may increase (Estes, et al. 1982, Garshelis 1983). 

Conversely, as densities increase prey may become more limiting, more foraging 

time may be necessary to meet energetic requirements and densities may 

decline. There are, however, several examples of daily activity patterns in sea 

otter activity. A study conducted on Amchitka Island, Alaska illustrated that the
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majority of feeding occurs during daylight hours with the exception of females 

with small pups (<10 weeks) presumably to avoid pup predation by bald eagles 

(Haliaeetus leucocephalus) (Gelatt 1996, Gelatt et al. 2002). Another study in 

Prince William Sound determined that sea otters forage in daylight during the 

early morning and early evening (Garshelis 1983). However, this work did not 

show similarities in activity budgets beyond the morning and evening foraging 

bouts between different study sites. More recent TDR work is currently being 

analyzed from Prince William Sound, AK where foraging behavior may be related 

to seasons, tides and time of day (Bodkin per. comm.) Because current available 

data shows that otters tend to forage and rest at various times of the day with 

little discernable time pattern (Kenyon 1969, Bodkin et al. 2004, Tinker 2004), 

behavior is largely independent of time of day at the population level. Therefore, 

the time of day the aerial survey was conducted should not have an effect on the 

ISU results.

Little or no work has been done to determine if foraging and resting occurs 

in different areas within Prince William Sound nor has any work been done to 

examine the differences in habitat characteristics of these resting and foraging 

areas if they exist. Also, no work has been done to quantify these differences in 

behavior based on habitat attributes or group size. This chapter quantifies these 

relations. The expectation had been that variation in habitat use that was 

determined to exist from this analysis might have aided in the explanation of the 

variation of sea otter distribution throughout Prince William Sound. However, as 

Chapter II will explain, this was not the case.
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Methods

Aerial Surveys

The intensive search unit or ISU portion of the aerial survey was used in 

this analysis. Intensive search units are sampled by flying five 400m diameter 

concentric circles within the strip transects and are conducted systematically to 

account for animals not seen on the strip so a correction factor can be applied to 

the strip counts. The ISU observer also records a behavior for each animal seen 

in the circle. Behavior is described as either diving (D) or not diving (N) (assumed 

resting). Data collected include group size, behavior (diving or not diving) and 

location.

Analysis

The behavior information from each ISU is used to assess if there is a 

relation between habitat attributes associated with each otter location and the 

behavior of the animal at that location. Because of the relatively low sample size 

of ISUs (intensive search units) collected per survey year, all survey years were 

combined to examine the behavior recorded for each otter sighting during an ISU 

(n=1764) based on habitat characteristics. Stepwise logistic regression (SAS 

ASSIT, SAS Institute, Cary, NC) analysis was used to examine the behavior 

data. In stepwise logistic regression, the first variable selected is the variable 

most strongly associated with the response (SAS Institute, Cary, NC). The 

probability of diving was modeled and effects left in the model were significant at
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the 0.05 level. Analysis was performed on three aspects of the data; all the ISUs 

(n=1764), only the ISUs of single animals without pups (n=766), and all the ISUs 

of single animals with pups (n=567). The purpose of analyzing the data for all 

ISUs was to determine if there was a difference in habitat use based on behavior 

at the population level, regardless of reproductive status. In addition to the 

variables listed in the general methods section, the number of adults in a group 

was one of the independent variables for the analysis of the all the data, while D 

(diving) or N (not diving) was the categorical response variable. The number of 

adults was one of the variables because of the sea otters’ documented tendency 

to rest in groups and forage independently (Garshelis et al. 1984, Estes and 

Jameson 1988, Reidman and Estes 1990). Analysis of the ISUs comprised of 

single animals with pups and single animals without pups were conducted to 

examine the potential differences in habitat use based on reproductive status. 

Time budget studies of sea otters on Adak Island have shown that females with 

young pups forage for 21% less time than single animals (Gelatt 1996) and more 

recent TDR data from Prince William Sound shows similar differences in foraging 

activity between females with small pups and single animals (ASC, USGS unpub. 

data), however, no studies have been conducted to examine habitat use 

differences between sea otters with pups and sea otters without pups. Data 

analysis from the intensive search units was used to calculate a percentage of 

animals partaking in one behavior or the other. The location of an animal during 

an ISU was used to determine habitat use differences based on the recorded
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behavior by the observer. Arclnfo Workstation Grid (ESRI, Redlands, CA) was 

used to sample all the variables based on the location of the ISU.

Results

All ISUs

A total of 1,759 observations were used from the survey years of 1994 to 

2005. Of the 1,759 observations, 31% (549 of the total ISUs) were categorized 

as diving and 69% (1,210 of the total ISUs) were categorized as not diving. All 

effects were removed from the model except number of adults in a group and 

bathymetry because of failure to reach the 0.05 significance level. The number of 

adults in a group was selected for the model first and had a p-value < 0.001. 

Bathymetry was selected second with a p-value <0.0001 as well. From the 

probability analysis, a single animal has a 37% probability of exhibiting diving 

behavior while a group of otters > 1 only has a 15% probability of exhibiting 

diving behavior. Figure 20 illustrates the decline in diving behavior in the survey 

as group size increases. Figure 21 illustrates the decline in diving behavior as 

bathymetry increases.

Single Animals without pups ISUs

A total of 763 observations of single animals without pups were sampled 

from the total ISUs. Of these 763 observations, 47% (357 of the 763 

observations) were categorized as diving and 56% (199 of the 357 observations)
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of those categorized as diving were within the 20m depth contour and 85% (303 

of the 357 observations) were within the 40m depth contour. Fifty three percent 

(406 of the 763 observations) of the observations were categorized as not diving. 

All habitat attributes were removed from the model except bathymetry (p<0.001) 

because of failure to reach the 0.05 significance level. Figure 22 illustrates the 

decline in diving behavior as depth increases. In this figure, the probability of 

observing diving behavior as a function of depth is also modeled for single 

animals with pups to illustrate the potential differences in time allocated to 

foraging as a consequence of reproductive status.

Single Animals with pups ISUs

A total of 566 observations of single animals with pups were sampled 

from the total ISUs. Of these 566 observations, 24% (134 of the 566 

observations) were categorized as diving and 63% (85 of the 134 observations) 

of those categorized as diving were within the 20m depth contour and 90% (120 

of the 134 observations) within the 40m depth contour. Seventy six percent (432 

of the 566 observations) of the observations were categorized as not diving. All 

effects were removed from the model except bathymetry (p=0.0166) and 

distance to the closest shoreline (p=0.0172) because of failure to reach the 0.05 

significance level. Bathymetry was the first variable selected by stepwise 

regression and distance to the closest shoreline was the second. Figure 22 

illustrates the decline in diving behavior as depth increases and figure 23
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illustrates the decline in diving behavior as distance to the closest shoreline 

increases.

Discussion

While there have been numerous studies documenting and discussing sea 

otter behavior and the formation of resting groups and individual foraging, 

allowing for the assumption that group size is indicative of behavior (Garshelis et 

al. 1984, Estes and Jameson 1988, Reidman and Estes 1990), little work has 

been done to quantify the probability of diving based on group size. In this 

analysis, group size is a significant (p<0.001) indicator of diving behavior, with 

the probability of diving inversely related to group size and the probability of not 

diving positively related to group size.

Results from the single animal ISU (regardless of reproductive status) 

analysis show that the use of the varying bathymetric contours is fairly restricted 

during observed diving behavior with a majority of the diving occurring within the 

0-20m depth contour and 85-90% of all diving behavior is done within the 40m 

depth contour, supportive of previous work (Kenyon 1969, Reidman and Estes 

1990, Bodkin 2004). Single females with pups also showed a significant negative 

effect with the percent of diving behavior decreasing as distance to closest 

shoreline increasing. Females with young pups might require the shelter offered 

by land masses more frequently than single animals (Kenyon 1969). However, 

during aerial surveys, quite often sea otters recorded as pups are young and
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easily identified during ISUs because of their small size, inability to dive and are 

often being carried by the mother. However, small pups can be difficult to 

observe during strip counts, because of the same reasons they are easier to 

detect during ISUs. Identification of large pups is difficult for opposing reasons. 

Large pups may be of similar size to the mother, are no longer carried on the 

chest and may be diving independently of the mother. These large pups may be 

misclassified as independent animals (ASC, USGS unpub. data). Therefore, 

analysis of this type may be biased towards small pups and may not be 

applicable to larger pups that swim and dive independently of their mother.

While none of these conclusions are surprising based on prior studies of 

sea otter behavior, many of these prior studies were conducted with tagged 

animals for long term monitoring. In this study we were able to use survey 

abundance data of untagged animals to arrive at similar conclusions and quantify 

the results. In future applications, this type of behavioral data collection may aid 

managers in understanding a population’s habitat use and allocation based on 

behavior before investing in long term tagging studies. For example, ISU analysis 

of diving behavior could indicate a food limited population based on the percent 

of observed sea otters that were recorded as diving. In this analysis, 47% of 

observed single animals without pups were diving. In other populations where 

prey availability may be decreased either because of high sea otter densities or 

some other factor effecting prey density, time allocated to foraging may be 

higher. The opposite can be said for low densities of sea otters or high prey 

availability. This theory could be tested by isolating high and low density areas of
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sea otters within this study area and examine differences in habitat use and 

behavior.

While individual tagging studies and TDR data give a detailed insight into 

an individual’s activity budgets and use of habitat, these studies can be difficult to 

extrapolate into a larger population or study area. By implementing aerial surveys 

and conducting the analysis described in this chapter, populations or areas with 

anomalous results could be targeted for further intensive study, therefore 

efficiently allocating resources.
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CHAPTER II

SEA OTTER DENSITY, ABUNDANCE AND DISTRIBUTION RELATED TO
HABITAT ATTRIBUTES

Introduction

Sea otters were abundant in Prince William Sound prior to the Russian fur 

trade (Lensink 1962), but were hunted to near extinction across the sea otter’s 

range. A remnant population persisted in Prince William Sound (Lensink 1962). 

As late as 1962, linear shoreline surveys of sea otter densities in Prince William 

Sound, based on the 10 and 50 fathom contours, were below the density values 

reported from the Aleutian Islands (Lensink 1962). Lensink flew several aerial 

surveys between 1959 and 1960. Calculated abundance estimates for Prince 

William Sound were 1,000 to 1,500 animals (Lensink 1962). In 1973 and 1974 

coastline aerial surveys were conducted by the Alaska Department of Fish and 

Game. The survey design was based on the contour of the shoreline, about 200 

yards off shore (Pitcher 1975). The summarized distribution data from these 

aerial surveys (Pitcher 1975) has been provided by Irons et al. 1988 (Fig.24). 

These surveys illustrated an expanding population with an estimated 5,000 sea 

otters (Alaska Department of Fish and Game 1973). By the mid-1970’s, the 

population in Prince William Sound had re-colonized nearly all known available 

habitat (Johnson 1987). In 1984 and 1985, US Fish and Wildlife Service
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conducted coastline boat based surveys for sea otters throughout Prince William 

Sound to examine changes in abundance and distribution. Some offshore 

transects were completed as well but were conducted only when traveling in- 

between shoreline transects, with no explicit design. The corrected results for the 

1984 and 1985 surveys of all of Prince William Sound were 4,509 animals with 

259 animals at all of Knight Island and the population was more “evenly” 

distributed than in the previous 1973 survey (Irons et al. 1988) However, there 

were still questions as to the sources of observed variation in the distribution. 

Irons et al. (1988) hypothesized that the potential reasons for the variation in 

distribution were related to available habitat and the possibility that the Prince 

William Sound population was still re-colonizing the area in 1985 (Irons et al. 

1988). Johnson (1987) estimated a carrying capacity of 8 otters per mi2 (3.1/ km2) 

resulting in a population estimate of 6,500 animals based on the 30 fathom 

contour. However, the density estimate used was derived from an area thought 

to be at carrying capacity and ignored areas in the northwest because of a lack of 

bathymetry data (Johnson 1987).

Currently, the entire Prince William Sound population is considered stable 

with the actual mean abundance estimate in Prince William Sound between 1995 

and 2005 was 12,536 with a range of 11,289 to 13,783 (alpha = 0.05 significance 

level) (Table 4). The mean aerial survey calculated density was 1.7607/ km2 

(ASC, USGS unpub. data).

In western Prince William Sound, an area heavily affected by the Exxon 

Valdez Oil Spill in 1989, there are about 2500 sea otters. Between 1993 and
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2000, the population has been increasing in numbers at a rate of about 5% or 

half the recovery rate of the sea otter re-colonization of Prince William Sound 

after exploitation ended in the early 1900’s (Bodkin et al. 2002). The data from 

the Western Prince William Sound surveys was used to build a habitat based 

population density model to be applied to the entire Sound. This will aid in the 

understanding of the variation of the distribution and density of sea otters within 

Prince William Sound. Little work has been done to relate sea otter population 

density or variation with habitat attributes.

Methods

Aerial Surveys

A detailed description of the aerial survey method is given in the General 

methods section of this paper. The information from each otter sighting (number 

and location) was used to establish and quantify if there is a relation between 

habitat attributes and the densities of sea otters in western Prince William Sound. 

Only the survey data from the western portion of Prince William Sound (excluding 

northern Knight Island) was used to create the model. The model was then used 

to estimate abundance and calculate density for the entire Sound including 

northern Knight Island.
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Analysis

Because count data were collected, Poisson regression was used to 

analyze the survey data and create a predictive density model for the entire 

Sound. However, Poisson regression assumes all count events are independent 

which may cause error by overestimating where densities are low and 

underestimating where densities are high (Jones et al. 2002). All western Prince 

William Sound surveys were sampled and analyzed using Arclnfo Workstation 

GRID (ESRI, Redlands, CA) and SAS PROC GEMOD (SAS Institute, Cary, NC). 

All occupied and unoccupied pixels within the survey boundaries were sampled, 

except those pixels that were within the buffer of an observed sea otter location 

(Fig. 19). Predicted densities as well as upper and lower confidence intervals 

(alpha=0.05) were calculated based on the best fitting model. The model was 

determined by calculating Akaike’s Information Criterion (AIC) (Akaike 1973) and 

calculating the weight of evidence, Wi, to quantify the strength of the model 

(Burnham and Anderson 2002) (Table 3).

Seven separate yearly surveys from Western Prince William Sound were 

analyzed for the variables listed in the General Methods Section (Table 1.) Year 

was also added as a continuous variable to determine if year improved the 

model. As a continuous variable, years are analyzed in chronological order. If 

year had been entered as a discrete variable, order would have been ignored. 

Because there was an assumption that the sea otter population was linearly 

increasing as time passed, chronological order of the data was important.
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Once calculations were completed, predicted densities and their 

respective x, y location data were imported into ArcMap to create a map of the 

predicted high and low density areas within Prince William Sound. Digitized 

results of whole Sound surveys were superimposed on the predicted map of high 

and low density areas to examine any discrepancies in the predictive mapping.

Spatial autocorrelation, as defined by Ver Hoef et al., is “a random 

variable [that] may be correlated to itself when separated by some non-zero 

distance” (Ver Hoeff et al. 2001). In this type of analysis, unaccounted for spatial 

autocorrelation was present if residual deviations that are close (in distance) to 

each other are less variable than random deviations. Generally, proximate 

neighbors are more alike than distant neighbors (Barbujani 1988, Henebrey and 

Merchant 2002).The presence of unaccounted for spatial autocorrelation could 

lead to the inflated significance of variables within the model (Henebrey and 

Merchant 2002). To determine whether or not the model accounted for spatial 

autocorrelation, semivariograms were created in ArcMap Geostatistical Analyst 

(ESRI, Redlands, CA) based on the residuals calculated from known densities 

minus predicted densities on a per pixel basis. In this analysis, variograms or 

semivariograms illustrated how correlated the residuals from one pixel to another 

are given a certain distance (LeCorre et al. 1998, Thompson et al. 2005). These 

residuals were plotted by distance and direction on an x, y-grid to determine if a 

pattern existed. If no discernable pattern was present, then the model had taken 

into account spatial autocorrelation and any remaining error was random. If there 

was a pattern present, an assumption was made that the model is missing some
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variable and error was not just random (Cooper per. comm.). Spatial 

autocorrelation was looked for over 10 intervals (lags) of a distance up to 5,000m 

(lag size) from each pixel. These values were calculated from a general rule in 

geostatistics that the number of lags multiplied by the distance (lag size) should 

not exceed the value of the maximum distance of one pixel to another (LeCorre 

et al. 1998, Thompson et al. 2005). Partial sills were also calculated in this 

analysis. Partial sills are the sill (the value that the semivariogram model attains 

when it levels out on the y-axis) minus the nugget (parameter of a semivariogram 

model that represents independent error or measurement error) (ERSI,

Redlands, CA). Partial sills close to 0 indicate that little or no spatial 

autocorrelation exists because there is no increase in the variability as distance 

or direction change. Partial sills were determined with anisotropy in several 

directions ranging from 0° to 180° at 45° increments. Only the interval from 0° to 

180° was used because semivariogram values in one direction are equal in the 

opposite direction (Johnston et al. 2004). Partial sills were also calculated without 

anisotropy.

Results

The addition of year as a variable improved the model slightly; however, 

year was left out of the final model for several reasons. Uncorrected estimates 

from the best model by year showed almost no difference on a per year basis. 

Only when the estimates were corrected based on calculated correction factors
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from the aerial survey (Bodkin and Udevitz 1999) of that given year was there a 

marked difference in estimates by survey year (Figures 25 and 26). Because 

uncorrected counts were used to build the model, not corrected estimates, year 

was left out of the model. Also, because the model is being tested on a stable 

population (entire Prince William Sound) and is built based on an unstable 

population (western Prince William Sound), surveys across years were combined 

to eliminate the variation associated with yearly surveys and utilize seven years 

of data to reduce the result to one best model for prediction.

All other remaining variables (Table 2) were left in the model except 

distance to population centers. Distance to human population centers actually 

showed a negative correlation to sea otter density. As distances from towns and 

villages increased, sea otter density decreased, implying that there is some other 

biological or physical feature that contributes to the presence of both sea otters 

and human population centers such as protection from inclement weather or 

marine productivity. Bathymetry levels 7(120m-200m) and 8(>200m) were 

collapsed into 1 level, which improved the model slightly. This inferred that at 

these depths, there is little difference between the two bathymetry levels. Two 

interaction terms were part of the model; 1) The interaction between bathymetry 

and distances to land, and 2) the interaction between distances to land and 

distances to protected shoreline. Because bathymetry was a categorical variable 

with 7 levels, K, or the number of model variables =20 (Burnham and Anderson, 

2002) (Table 2).
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From the best model, densities on a per km2 basis had an uncorrected 

mean of 2/km2 and a range of 0/km2 to 37/km2. Correction factors from all seven 

surveys were averaged and applied to the total predicted values (predicted, 

upper and lower confidence intervals) to attain a final corrected density estimate 

for all of Prince William Sound. The estimated total population size with upper 

and lower confidence intervals (alpha = 0.05) was calculated by summing the 

densities of all the pixels. Estimated corrected total population size is 16,441 

(+2,363, -1,973). Figure 27 illustrated the predicted high and low density areas 

across Prince William Sound calculated from the best model. From visual 

inspection of the superimposed survey results onto the predicted map of high 

and low density areas, many of the high density areas corresponded with actual 

Prince William Sound survey results (Fig. 28). However, in Port Wells, an area in 

the northwest region of Prince William Sound, there were high densities of sea 

otters from actual survey results. The model predicted relatively low densities of 

sea otters.

Visual examination of the semivariogram created from the residuals 

showed almost no spatial autocorrelation present. With and without anisotropy, 

partial sills ranged from 0.00030497 to 0.00094578.

Discussion

Sea otter densities vary across their range. Studies conducted in the 

Commander Islands showed densities as high a 9.2/km2 (Bodkin et al 2000).
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However, these high densities preceded a density-dependent population decline. 

Post-decline estimates were calculated to be 6.1/km2 (Bodkin et al. 2000). Laidre 

et al. (2001) reported sea otter densities at about 5/km2 along the California 

coast in rocky substrate habitats and densities varying from 4.55/km2 within the 

20m contour to 0.97/km2 within the 40m contour along the Washington state 

coastline (Laidre et al. 2002). Reported densities of sea otters in Prince William 

Sound have been estimated to be as high as 8 otters per mi2 (3.1/ km2) within the 

30 fathom contour (Johnson 1987). However, an aerial survey conducted in 1994 

within Prince William Sound suggested an average sea otter density of 1.28/km2 

(Bodkin and Udevitz 1999). More recent estimates suggest the average density 

to be 1.7607/km2 (ASC, USGS unpub. data). Density calculations from the best 

model created in this study were calculated to be 2.0316/km2 within the entire 

Prince William Sound survey boundaries. However, density calculations from the 

best model included northern Knight Island, an area heavily impacted by the 

Exxon Valdez oil spill, and an area that is still not at pre-spill population levels 

(Chapter III). Total corrected population was estimated at 16,441 (+2,363, - 

1,973).

Although there was no spatial autocorrelation in the model, indicating that 

error in the model was random and not due to any missing variables, 

improvements to the variables used in the model could enhance it. Benthic prey 

abundance and densities are unknown throughout Prince William Sound. The 

location and abundance of available food resources for sea otters most likely 

would have been a variable that improved the model. Until prey data is available,
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using bathymetry as an indicator of prey availability is the only option. A more 

accurate and precise bathymetry layer may improve the model by indicating 

areas of shallow water habitat, not currently available in digital form. For 

example, in Port Wells, an area of high sea otter density according to the aerial 

survey results, the model predicted low densities of sea otters. One reason may 

be the lack of shallow water habitat available according to the bathymetry data 

used in the analysis. There are many shallow moraines that are not represented 

by the bathymetry layer used in the analysis. If a more accurate digital 

bathymetry layer was available, the model would likely predict higher densities 

within Port Wells.

Applying correction factors from the aerial surveys by year so the model 

would have been built on population estimates instead of population counts might 

have improved the model somewhat.

Another possibility for the discrepancy between the predicted densities 

and the observed densities is the correction factor itself. The correction factor is 

calculated from the ISU data to account for animals not seen during strip counts. 

As mentioned previously, the ISUs last for a maximum of 230 seconds. Sea otter 

dive duration averages 74 seconds but can last for upwards of 200 seconds in 

California sea otters (Enhydra lutris nereis), a sub-species of the sea otter (Ralls 

et al. 1995). However, during the Southeast Alaska TDR study, the average 

foraging dive lasted 85 seconds (Bodkin et al. 2004). However, a TDR dive 

record retrieved from an animal in Prince William Sound in 2006 had a recorded 

dive of 422 seconds (Bodkin unpub. data 2006). If longer dives (>230s) are more
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prevalent within the sea otter population than originally thought, ISUs utilized in 

this analysis to calculate correction factors might not have observed animals still 

underwater. If that was the case, then correction factors used to calculate 

abundance would underestimate the overall abundance of sea otters within 

Prince William Sound.

Predictive models of sea otter density have been constructed in the past 

(Laidre et al. 2001, Laidre et al. 2002). However, these models were built using 

data collected from shoreline based aerial or shore based observer surveys and 

calculated density based on the linear habitat parallel to the shoreline, excluding 

any potential offshore habitat. These models also do not account for variables 

other than substrate (i.e. rocky, sandy, or mixed) such as protection or distances 

to potentially biologically productive areas. The surveys conducted in Prince 

William Sound are created perpendicular to the shoreline and are based on the 

100m bathymetry contour as well as geological formations that may contribute to 

sea otter presence such as protected bays or inlets. Because of this, sea otter 

counts are collected in a way that allowed for the inclusion of potential offshore 

habitats. Therefore, density calculations are not restricted to the shoreline since 

this may underestimate sea otter populations within Prince William Sound. Thus, 

estimates of abundance may be less biased than those based solely on the 

nearshore habitat.

This model will be further refined and tested in areas outside of Prince 

William Sound where similar aerial surveys for sea otter abundance have been 

conducted such as the Kenai Peninsula, Kodiak Island and possibly Southeast
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Alaska. Once completed, the model may be able to calculate sea otter densities 

in areas where little abundance information is available. Understanding the 

variation in sea otter distribution may aid managers in making decisions related 

to habitat protection or human or financial resource allocation during natural or 

anthropogenic events. It may also allow managers to adjust current sea otter 

density estimates as habitat use by sea otters changes over time due to 

predation or some other biological or physical occurrence.
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CHAPTER III

PREDICTED SEA OTTER DENSITY WITHIN NORTHERN KNIGHT ISLAND, A 
HEAVILY IMPACTED AREA FROM THE EXXON VALDEZ OIL SPILL, 

COMPARED TO SURVEY ESTIMATES FROM THE SAME AREA

Introduction

An estimated 1000 to 2800 sea otters were killed by the Exxon Valdez oil 

spill of 1989 (Garrott et al. 1993) in Prince William Sound. However, mortality 

was not equivalent in all areas. Northern Knight Island, in western Prince William 

Sound is considered to be a highly impacted area of the spill where an estimated 

90% of sea otters residing there died as a result of the spill (Bodkin and Weltz 

1990, Bodkin and Udevitz 1999) At northern Knight Island, numbers have not 

increased to estimated pre-spill abundance (Dean et al. 2000). An uncorrected 

count of sea otters at northern Knight Island in 1973 was 105 with a corrected 

range of 210 to 420 (Pitcher 1975). In 1984 and 1985, the US Fish and 

Wildlife Service conducted coastline boat based surveys for sea otters 

throughout Prince William Sound to examine changes in abundance and 

distribution. A count of sea otters throughout all of Knight Island gave an estimate 

of 259 (Irons et al. 1988). Dean et al. (2000) estimated 165 animals were residing 

around northern Knight Island based on analysis of carcass recovery data (Dean 

et al. 2000). Corrected aerial survey results of the northern Knight Island portion
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of the aerial survey from 1995 to 2005 are 68 sea otters with a range of 34 to 102 

(Bodkin unpub. data) and indicate a declining population since 1995 (Table 5).

Predicted densities were calculated for the northern Knight Island survey 

area and compared to actual aerial survey results to determine if a discrepancy 

between actual sea otter densities and predicted sea otter densities based on the 

model created for the entire Prince William Sound existed. From this model, it is 

quite evident that sea otters have not recovered to pre-spill densities.

Methods

After completing the analysis from Chapter II, the predicted densities from 

the northern Knight Island area were isolated. Based on the current model 

developed in Chapter II previously, the predicted number of individuals for 

Northern Knight Island was calculated and compared to the survey results of the 

past 10 years.

Results

The model created in Chapter II calculated densities for the entire Sound. 

Northern Knight Island results were isolated to determine the densities that were 

predicted in that area. Northern Knight Island densities on a per 50m2 pixel basis 

had an uncorrected mean of 0.003948 and a range of 0.00000 to 0.035719.
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These numbers convert to a mean density of 1.5792/km2 ranging from 0/ km2 to 

14.2876/ km2. Correction factors from all seven aerial surveys utilized to create 

the model in Chapter II were averaged and applied to the total predicted values 

(predicted, upper and lower confidence intervals) to attain a final corrected 

density estimate for northern Knight Island. The total estimated population size 

with upper and lower confidence intervals (alpha = 0.05) was calculated by 

summing the densities of all the pixels. The estimated corrected total population 

size is 384 (+53, - 43). Once calculations were completed, predicted densities 

and their respective x, y location data were imported into ArcMap to create a map 

of the predicted high and low density areas within the northern Knight Island 

survey area of Prince William Sound (Fig. 29). The digitized results of the 

northern Knight Island survey results were superimposed on the predicted map 

of high and low density areas to examine any discrepancies in between the aerial 

survey results and the predicted high and low density areas from the model (Fig. 

30).

Discussion

From visual inspection, many of the high density areas correspond with 

actual survey results. Flowever, many areas predicted as high density habitat are 

lacking animals or are well below predicted densities. Uncorrected results from
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surveys conducted before the Exxon Valdez oil spill estimate the Knight Island 

population to be 105 animals with a corrected range of 210 to 420 (Pitcher 1975) 

Corrected aerial survey results of the northern Knight Island portion of the aerial 

survey from 1995 to 2005 are 68 sea otters with a range of 34 to 102 (Bodkin 

unpub. data) (Table 5).

Although our estimate of 383 animals is greater than pre-spill estimates, 

Prince William Sound was still re-colonizing many areas as late as 1985.

Although the distribution of sea otter abundance appeared more “even” in 1985 

than in the previous 1973 survey, Irons et al. (1988) hypothesized that the 

potential reasons for the variation in distribution was related to available habitat 

and the possibility that the Prince William Sound population was still re-colonizing 

the area (Irons et al. 1983, Irons et al. 1988). Dean et al. (2000) estimated 165 

animals were residing around northern Knight Island based on analysis of 

carcass recovery data (Dean et al. 2000). Unfortunately, there were no surveys 

conducted any later than 1985 to further refine the pre-spill abundance and 

density of sea otters in northern Knight Island.

Another possible cause of the discrepancy is in the nature of the Poisson 

regression. Poisson regression assumes all count events are independent which 

may cause error by overestimating where densities are low and underestimating 

where densities are high (Jones et al. 2002). Overdispersion occurs when an 

incorrect assumption of independence is made (Burnham and Anderson 1998). A 

possible alternative form of analysis may be the zero-inflated Poisson model 

(Jones et al. 2002). This allows for the probability of the density of a pixel being

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



predicted as zero to be larger than a normal Poisson regression would calculate 

(Long 1997).

By testing our model in other areas outside Prince William Sound, this 

model may be further refined. Once completed, this model may be able to more 

accurately calculate sea otter densities in areas where pre-decline abundance 

information is not available, or in the case of the Aleutian Islands, prior to the 

decline. Understanding the variation in sea otter distribution may aid managers in 

making decisions related to habitat protection or resource allocation during 

natural or anthropogenic events.
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Uncorrected Corrected
Survey
Year

Correction
Factor Predicted Upper Cl Lower Cl Predicted Upper Cl

1995 1.36 11458.99 13097.4 10091.02 15584.226 17812.464
1996 1.27 11446.74 13083.46 10080.22 14537.36 16615.994
1997 1.34 11488.48 13128.76 10118.52 15394.563 17592.538
1998 2.04 11494.96 13137.24 10123.62 23449.718 26799.97
2000 1.54 11476.99 13117.16 10107.24 17674.565 20200.426
2004 1.59 11551.1 13205.96 10170.3 18366.249 20997.476
2005 1.31 11488.57 13134.66 10114.79 15050.027 17206.405

Average CF 1.492857143

Uncorrected Corrected
Predicted Upper Cl Lower Cl Predicted Upper Cl

Single
Model 11012.98 12595.55 9691.58 16440.806 18803.357

Table 1 Correction factors for survey years with calculated corrected and uncorrected estimates by year as well as single 
and uncorrected estimates that removed year effect from the model.
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Variable Description Type

Bathymetry
Depth contours classifies into 8 categories -1- 
20m, 20-40m, 40-60m, 60-80m, 80-100, 100- 

120m, 120-200m, >200m
Categorical

Distance to shorelines Shortest distance to a land mass Continuous

Distance to protected 
shorelines

Shortest distance to protected bays - based on 
prevailing winds; Continuous

Distance to tidewater glaciers Shortest distance to tidewater glaciers within 
Prince William Sound; n=20 Continuous

Distance to population 
centers

Shortest distance to populations centers within 
Prince William Sound; n=5 Continuous

Distance to anadromous 
streams

Shortest distance to anadromous streams - run 
size is not available; n=1337 Continuous

Table 2 Variables used in the model building process, description and type
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Model K (# of parameters) A exp(1/2A) w Log HI
All variables (sw*land)(land*bath) - (town) 20.0000 0.0000 1 0.6098306 -1931
All variables (sw*land)(land*bath) - (town) 22.0000 0.8932 0.6397998 0.3901694 -1931

All variables (bath*land) - (town) 19.0000 200.7278 2.585E-44 1.577E-44 -194',
All variables (bath*land) - (town) 21.0000 202.0874 1.31E-44 7.989E-45 -194;

All variables (bath*land) - (town,sal) 18.0000 226.9182 5.313E-50 3.24E-50 -1945
All variables (bath*land) - (town,sal) 20.0000 228.3350 2.616E-50 1.595E-50 -1945

All variables (bath*sw) - (town) 21.0000 313.7808 7.301 E-69 4.452E-69 -1955
All variables (bath*sw) - (town) 19.0000 322.3678 9.971 E-71 6.08E-71 -1955

All variables (bath*sw) - (town-glac) 20.0000 441.1866 1.576E-96 9.611E-97 -1955
All variables (bath*sw) - (town-glac) 18.0000 448.9424 3.261 E-98 1.989E-98 -196(

All variables (sw*land) - (town) 14.0000 491.2938 2.07E-107 1.27E-107 -196:
All variables (sw*land) - (town) 13.0000 495.4754 2.56E-108 1.56E-108 -196:

All variables (sw*land) - (town,sal) 13.0000 523.2600 2.37E-114 1.45E-114 -196'
All variables (sw*land) - (town,sal) 12.0000 526.7758 4.09E-115 2.5E-115 -196'

All variables - (town) 13.0000 552.1684 1.25E-120 7.64E-121 -1965
All variables - (town) 12.0000 555.2822 2.64E-121 1.61E-121 -1965

All variables - (town - glac) 12.0000 653.6876 1.13E-142 6.9E-143 -197'
All variables - (town - glac) 11.0000 658.1506 1.21E-143 7.41 E-144 -197-

All variables (bath*land) - (town-sw) 18.0000 718.5540 9.29E-157 5.66E-157 -197:
All variables (bath*land) - (town-sw) 20.0000 719.1434 6.92E-157 4.22E-157 -197:

All variables - (town-sw) 12.0000 1078.5026 6.4E-235 3.9E-235 -199:
All variables - (town-sw) 11.0000 1082.4002 9.12E-236 5.56E-236 -199:

PWS bath 50m 9.0000 1410.8538 4.34E-307 2.64E-307 -2005
PWS bath 50m 8.0000 1416.0268 3.26E-308 0 -2005

sw dist int 2.0000 2903.4812 0 0 -208'
land dist int 2.0000 3571.5042 0 0 -2115
sal dist int 2.0000 3763.1418 0 0 -212;

glac_dist_int 2.0000 3967.3214 0 0 -213;
town dist int 2.0000 3992.9738 0 0 -2135

Table 3 Weights and AIC scores of various density models
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PWS

Date Population
size Xj-X (Xi-X )2

Jul-99 13,234 698 487,204
Jul-02 12,385 -151 22,801
Jul-03 11,989 -547 299,209
total 37,608 0 809,214

average 12,536

variance 404607
SE 636

Cl's 11289 13783

Table 4 Average population estimates from the aerial surveys of Prince William Sound with 
calculated upper and lower confidence intervals (alpha = 0.05).
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Northern Knight

Date
Population

Est. X j-X (X i-X  ) 2

Jul-95 89 21 441
Jul-96 65 -3 9
Jul-97 76 8 64
Jul-98 76 8 64
Jul-00 79 11 121
Jul-04 54 -14 196
Jul-05 37 -31 961
total 476 0 1856

average 68

variance 309
SE 18

Cl's 34 102

Table 5 Average population estimates from the aerial surveys of northern Knight Island with 
calculated upper and lower confidence intervals (alpha = 0.05).
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Alaska Sea Otter Stock Structure
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Figure 1 Alaska sea otter stock structure
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Figure 3 Physical features and population centers of Prince William Sound

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/ \ /  Low density survey transect 

/ \ /  High density survey transect 

Low density 400m survey area 

High density 400m survey area

mMMmm
lip®!*

Figure 4 Aerial survey design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Prince William Sound Survey Transects
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Western Prince William Sound Survey Transects
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Prince William Sound Replicate Survey Transects
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Figure 7 Prince William Sound replicate aerial survey transects
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Aerial Survey Boundary for Prince William Sound
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Figure 8 Prince William Sound aerial survey boundary
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Sea Otter Distribution in Prince William Sound

Sea Otter Distribution 
Adults

• 5-19
•  20-54
•  55 -106
•  107-210

Figure 9 Sea otter distribution in Prince William Sound -  illustration of the 3 years of survey data 
available for the entire Sound.
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Frequency of adult sea otters based on 
depth bins
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Figure 10 Frequency of adults observed during aerial surveys based on depth bins (in meters).
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Frequency of adult sea otters based on
the distance to the closest shoreline
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Figure 11 Frequency of adults observed during aerial surveys based on distances to the closest 
shoreline (in meters). Increase of adult sea otters in the >1000 bin may indicate shallow areas 
offshore.
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Frequency of adult sea otters based on the
distance to the closest protected shoreline

1200

1000 -

I
(0 800 -

600 -
"D (0
O
>>o
§  400
a -<D

200 -

~Z2 sea otter adult frequency

<200 <400 <600 <800
t - 1— 1— 1— ‘—r—'— ‘- t - 1— i— 1— ■—r  

<1000 <1200 <1400 <1600 <1800 <2000

Distance to closest protected shoreline (m)

Figure 12 Frequency of adults observed during aerial surveys based on distances to the closest 
protected shoreline (in meters).
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Frequency of adult sea otters based on the
distance to the closest tidewater glacier
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Figure 13 Frequency of adults observed during aerial surveys based on the closest distance to a 
tidewater glacier. Spikes in sea otter frequency may indicate shallow water moraines.
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Frequency of adult sea otters based on the distance
to the closest human population center
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Figure 14 Frequency of adults observed during aerial surveys based on the closest distance to a 
human population center. Although this graph indicates an increase in adult sea otters as 
distance from population centers increases, the final model indicated a significant negative 
relation between sea otter density and distance from population centers. The final model 
indicates that there is some other biological or physical feature that influences sea otter presence 
and population center presence in the same areas such as protection from inclement weather or 
productivity.
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Frequency of adult sea otters based on the distance
to the closest anadromous stream
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Figure 15 Frequency of adults observed during aerial surveys based on the closest distance to 
an anadromous stream. The decrease in sea otter abundance as distance from anadromous 
streams increased may be due to the marine derived nutrients deposited by the decomposing 
carcasses of the fish in the nearshoreor because of the high number of salmon streams within 
Prince William Sound. High numbers of salmon streams evenly distributed within Prince 
William Sound could have correlated with distances to closest shorelines.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Illustration of the measured distances from a sea otter 
location to the closest given attribute

Attribute data:

Distance to closest anadromous stream = 5.7km 

Distance to closest tidewater glacier =  6.6km 

Distance to closest population center = 7.1 km 

Distance to closest protected shoreline =  1.9km 

Distance to closest shoreline =  0.5km 

Bathymetry =  80-100m

Tidewater Glacier

Shoreline

Population Center

I Iff

-  W T

Protected Shoreline

Anadromous Stream

Figure 16 Example of a sea otter location and the various attribute data collected from the 
location
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400m size transect pixels vs. 
50m size transect pixels

400m pixel size

50m pixel size

Figure 17 Example of the “stair stepped” phenomenon if pixel size is too large (ESRI)
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Portion of actual coastline polygon 
used to create rasters

400m pixel size

Figure 18 Example of the potential loss of sea otter habitat because of classification error due to 
large pixel size (ESRI)
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• Sea otter location
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Land
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Figure 19 Example of 1.2km buffer around an otter sighting. Transect pixels outside of the 
hashed area are considered unoccupied, while pixels inside the hashed area are not classified as 
unoccupied and are not used in the analysis. Raster transect values listed in the map key 
represent the assigned transect number.
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Probability of behavior being diving as a function of group size,
includes sightings of all adults and pups in ISUs

All ISU sightings

5 6 7 8-10 11-15 16-20 >20

Group size

Figure 20 Probability of behavior being diving as a function of group size. Bars indicate 95% 
confidence interval (alpha = 0.05).
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Probability of behavior being diving as a function of bathymetry
for all ISU sightings
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Figure 21 Probability of behavior being diving as a function of depth. Bars indicate 95% 
confidence interval (alpha = 0.05)
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Probability of behavior being diving as a function of bathymetry
for single mothers with pups and for single animals w/o pups
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Figure 22 Probability of behavior being diving as a function of depth for both single animals with 
pups and single animals without pups. Bars indicate 95%  confidence interval (alpha = 0 .05)
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Probability of behavior being diving as a function of distance from 
shoreline for single mothers with pups
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Figure 23 Probability of behavior being diving as a function of distance from shoreline for single 
animals with pups. Bars indicate 95% confidence interval (alpha = 0.05)
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Figure 24 Irons et al. 1988, sea otter distribution and re-colonization. Top image: 1950-1960; 
middle image: 1997; bottom image: 1974
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Uncorrected sea otter estimates by survey year
calculated from the best model
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Figure 25 Uncorrected model prediction of sea otter abundance by year. Error bars indicate 95% 
confidence intervals.
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Corrected sea otter estimates by survey year
calculated from the best model
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Figure 26 Corrected model prediction of sea otter abundance by year. Error bars indicate 95% 
confidence intervals.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Prince William Sound
predicted densities

Prince William Sound Density Estimates 
Value

High : 0.093101

Figure 27 Colored relief of high and low predicted sea otter density. Areas of blue are high 
density while areas of red are low density.
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Prince William Sound
predicted densities vs. actual counts
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Figure 28 Colored relief of high and low predicted sea otter density. Areas of blue are high 
density while areas of red are low density. Black dots indicate previous aerial survey counts of all 
three years of available survey data.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Northern Knight Island
predicted densities
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Value
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Figure 29 Colored relief of high and low predicted sea otter density. Areas of blue are high 
density while areas of red are low density.
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Northern Knight Island
predicted densities vs. actual counts
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Low: 0.000000

Figure 30 Colored relief of high and low predicted sea otter density. Areas of blue are high 
density while areas of red are low density. Black dots indicate previous aerial survey counts of all 
seven years of available survey data.
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