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ABSTRACT 

CALCIUM-DEPENDENT PROTEIN KINASES IN 

PHYSCOMITRELLA PATENS 

by

Kathryn Chervincky 

University of New Hampshire, December, 2006 

Calcium-dependent protein kinases (CDPKs) are a group of plant serine-threonine 

kinases that are stimulated in response to increases in intracellular calcium 

concentrations. Physcomitrella patens is a moss and a member of the bryophyte family. 

Physcomitrella has gained popularity as a model research organism due to the simple 

morphology of the plant as well as many other desirable characteristics. My research 

utilized Physcomitrella to accomplish four goals. The first goal was to identify and 

obtain sequence for as many CDPKs as possible in Physcomitrella. The second goal was 

to confirm the calcium-activated protein kinase activity of the identified CDPKs. The 

third goal consisted of two parts: first, to determine the expression pattern of a specific 

CDPK (CPK6) and second, to determine the role of a 5’ UTR intron in CPK6 expression. 

The fourth goal was to silence expression of CPK6, and possibly other closely related 

CDPKs, by RNA interference (RNAi) in order to screen for a phenotype.

My results showed that there are at least 16 CDPKs in Physcomitrella patens.

Two of those CDPKs were tested and displayed calcium-activated protein kinase activity. 

Expression analysis of CPK6 showed strongest expression in protonemal tip cells, 

immature phyllids, base of the gametophore at the site of protonemal attachment, and
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occasionally in axillary hair cells. Weaker expression was seen in non-tip protonemal 

cells and mature phyllids. Removal of the 5’ UTR intron resulted in overall decreased 

expression levels, but did not change the expression pattern. RNAi results indicated that 

the RNAi response pathway was activated, however no phenotype was observed under 

normal growth conditions.
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CHAPTER I 

INTRODUCTION

Physcomitrella patens

Physcomitrella patens is a moss and a member of the Bryophyte family, the oldest 

group of land plants that is presently part of Earth’s flora. Bryophyta includes all mosses, 

homworts and liverworts. Organisms in this group lack the complexity of true leaves, 

roots, and a vascular system, all of which are present in other groups of land plants. 

Physcomitrella has been recently gaining popularity as a research organism due to many 

characteristics that make it a convenient plant to study. First, unlike most vascular plants, 

Physcomitrella spends most of its life cycle in the haploid gametophytic phase (Figure 1), 

and has only a brief, diploid sporophytic phase (Schaefer and Zryd, 2001). This is an 

attractive attribute for a research organism since there is only one copy of each gene that 

needs to be inactivated when creating a knockout mutant. Second, Physcomitrella more 

efficiently undergoes homologous recombination with introduced DNA than other land 

plants do (Schaefer and Zryd, 1997). This characteristic allows for site-directed 

mutagenesis of genes and provides increased reproducibility in expression analyses using 

reporter genes since the site of gene insertion can be controlled. Third, Physcomitrella 

has successfully been used in RNA interference (RNAi) experiments where gene 

expression was downregulated through mRNA degradation (Bezanilla et al., 2005). 

Fourth, as confirmed by my own experience, Physcomitrella is a very compact plant and 

is easily cultured on simple growth medium in a laboratory environment. The plant can 

also remain dormant for years when refrigerated, allowing for easy storage (E. Hrabak,

1
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Figure 1. Life cycle of Physcomitrella (from Schaefer and Zryd, 2001). Stages are listed in order 
from 1 to 11, starting with spores and ending with sporophyte (in the diploid phase, circled yellow).



personal communication). Fifth, the sequence of the relatively small genome of 460 Mb 

(three times the size of the popular model vascular plant Arabidopsis thaliana) has been 

completed recently and is currently being annotated (http://www.jgi.doe.gov). My 

research utilizes Physcomitrella to investigate calcium-dependent protein kinases 

(CDPKs).

Calcium-Dependent Protein Kinases

Ca2+ is an important second messenger in many cellular signal transduction 

pathways. Fluctuations in calcium levels occur within cells in response to external 

stimuli such as salt and drought stress (Knight et al., 1997), hypo-osmotic stress 

(Takahashi et al., 1997), cold stress (Knight et al., 1996) and oxidative stress (Price et al., 

1994). Each stimulus is predicted to cause differences in the amplitude, duration and 

frequency, as well as the location, of the Ca2+ signal within the cell (Sanders et al., 1999). 

Differences in Ca2+ spiking lead to different biochemical responses within the cell. For 

these biochemical responses to occur, different types of calcium signals must be 

perceived correctly and then converted into responses. Examples of enzymes that 

respond to calcium signals include protein kinase C (PKC), two types of 

calcium/calmodulin-dependent protein kinases (CaMKs and CCaMKs) and calcium- 

dependent protein kinases (CDPKs). Each of these calcium-sensing kinases is activated 

by Ca2+ in a different way. Protein kinase C is fully activated by a two-step process.

First Ca2+ binds to cytosolic PKC, which results in the exposure of the PKC 

phospholipid-binding site through a conformational change of the protein. After binding
2_j_

Ca , PKC translocates to the membrane and binds diacylglycerol, resulting in the fully

3
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active form of the enzyme (Oancea and Meyer, 1998). CaMKs are activated by the 

binding of a calcium-calmodulin complex, where calmodulin is a protein that binds Ca2+ 

(Colbran et al., 1988). CCaMKs are slightly activated by the binding of Ca2+, but require 

binding of a calcium-calmodulin complex for full activation (Takezawa et al., 1996).

94 -CDPKs are activated directly by the binding of Ca and do not require calmodulin

(Harper et al., 1991). CaMKs and PKCs are the two major types of kinases that respond

2+to Ca signaling in animal cells, but do not seem to be present in plants (Hrabak et al., 

2003). CCaMKs and CDPKs are two of the major kinases that respond to Ca2+ in plant 

cells and do not seem to be present in animal cells (Hrabak et al., 2003). Only CDPKs 

will be discussed in detail here since they are the focus of my research.

CDPKs form a major family of serine/threonine kinases that are found only in 

plants and organisms of the Apicomplexan protist subgroup (Hrabak, 2000) such as 

Plasmodium falciparum. These kinases phosphorylate their corresponding substrate 

proteins in a Ca -dependent manner, making them the only group of kinases consistently 

found in all plants that are directly activated by Ca2+. The calcium-dependent protein 

kinase activity of CDPKs makes them prime candidates for interpreting Ca2+ fluctuations 

within plant cells and converting the calcium signal into a biochemical response by 

activating or inactivating substrate proteins through phosphorylation. Certain CDPKs are 

involved in responses to stresses such as drought, salt and cold (Sheen, 1996; Saijo et al., 

2000) and pathogen attack (Romeis et al., 2001).

Each CDPK enzyme consists of four domains: the variable domain, the catalytic 

domain, the autoregulatory domain, and the calmodulin-like domain (Figure 2). The 

variable domain differs in length and amino acid content between individual CDPKs. In

4
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some CDPKs, this domain contains sites for the addition of the fatty acids myristate and 

palmitate that enable localization of CDPKs to membranes (Resh, 1999; Martin and 

Busconi, 2000; Lu and Hrabak, 2002; A. Argyros and E. Hrabak, unpublished data). The 

catalytic domain transfers the y-phosphate of ATP to a serine or threonine residue of the 

corresponding substrate protein (Hrabak et al., 2003). The autoinhibitory domain acts as 

a pseudosubstrate of the kinase domain, inhibiting phosphorylation (Harmon et al., 1994; 

Harper et al., 1994). This inhibition is released when calcium binds to the four EF-hands 

of the calmodulin-like domain causing a conformational change in the protein that results 

in the removal of the autoinhibitory domain from the kinase domain (Harmon et al., 

1987).

No previous research has been done on CDPKs and CDPK function in 

Physcomitrella. My research includes identifying and obtaining sequence for as many 

CDPKs in Physcomitrella as possible and confirming calcium-dependent protein kinase 

activity of CPK4 and CPK6. Additional experiments focus on CPK6 with the goals of 

defining the expression pattern of CPK6, determining whether an intron found in the 5’ 

UTR of CPK6 affects gene expression, and attempting to silence expression of CPK6, as 

well as three closely related CDPKs in the same Physcomitrella transformant, through the 

use of RNAi.

The GUS Reporter Gene

Understanding the regulation of gene expression is instrumental in discerning the 

function of any given gene. Reporter genes are a class of naturally-occurring genes that 

have been isolated and manipulated in such a way that they become useful in indicating

6
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the expression pattern of a gene of interest. In order to utilize a reporter gene, it is fused 

downstream of the promoter of a gene of interest. There are two general types of reporter 

gene fusions: the reporter can be fused immediately downstream of the promoter 

(transcriptional fusion) or the reporter gene can be fused to the open reading frame 

(translational fusion). If all regulatory elements are contained in the DNA segment that 

has been fused to the reporter gene, then either approach should result in the reporter 

gene being transcribed in the same fashion as the gene of interest. The protein product of 

the reporter gene can then be detected in order to characterize the expression profile of 

the gene of interest. The use of reporter genes has become common in research. Due to 

the popularity of reporter genes, many different types have been developed and include 

GUS ()9-glucuronidase; Jefferson, 1987), GFP (green fluorescent protein; Chalfie et al., 

1994) and LUC (luciferase; Palomares et al., 1989). Only GUS will be described here in 

detail since this is the reporter gene I utilized in my research.

The GUS reporter gene was isolated from Escherichia coli and encodes /?- 

glucuronidase. This enzyme functions as a tetramer whose monomers have a molecular 

weight of 68.2 kDa (Jefferson, 1987). During colorimetric detection, ̂ -glucuronidase 

cleaves the colorless substrate X-Gluc (5-bromo-4-chloro-3-indolyl p-D-glucuronide) 

into glucuronic acid and compound X, which dimerizes to form an insoluble blue product 

called dichloro-dibromo-indigo (Lojda, 1970). When the coding region of /?- 

glucuronidase is fused to the promoter or coding region of a gene of interest, expression 

of /?-glucuronidase should occur in the same pattern throughout the organism as the gene 

in question. The organism can then be incubated with the X-gluc substrate, which will 

result in a blue color wherever the given gene is normally expressed. However, some

7
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drawbacks to using the GUS reporter gene to determine expression profiles include the 

fact that the half-life of the GUS protein may be different than the half-life of the protein 

of the gene of interest, and it is always possible that not 100% of the gene regulatory 

information was included in the promoter-GI/S construct. Aside from these drawbacks, 

the GUS reporter gene method is likely to give a close to accurate expression profile of 

the gene of interest.

Intron Effects on Gene Expression

Introns are sequences that are spliced out of pre-mRNA transcripts in eukaryotes 

during processing in the nucleus. Two functions that have been described for introns 

include the ability to produce multiple proteins from a single gene through alternative 

intron splicing and allowing the evolution of new protein encoding genes through exon 

shuffling (Le Hir et al., 2003). More recently, introns have been shown to positively 

influence gene expression (Furger et al., 2002; Nott et al., 2004; Chung et al., 2006; 

Morello et al., 2006). Introns are thought to be involved in many stages of gene 

expression, including transcription, processing of the initial transcript and nuclear export, 

as well as translation and decay of the mature mRNA (Le Hir et al., 2003). In addition, 

introns found in the 5’ UTR have a greater positive effect on gene expression than introns 

found in the coding region or the 3’ UTR. Any positive effect of an intron in the coding 

region is reduced the farther downstream the intron is placed from the start codon (Rose, 

2004; Chung et al., 2006). Genes that do not have introns in the 5’ UTR often show 

enhancement of expression if one is inserted (Chaubet-Gigot et al., 2001).

8
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Some introns affect transcription of genes since a reduction in transcription has 

been observed following removal of introns from the coding region, inactivation of the 5’ 

splice site, or moving the position of the splice site farther downstream of the 

transcription start site (McKenzie and Brennan, 1996; Furger et al., 2002). Some 

transgenes have shown 10 to 100 times greater transcription efficiency than genes that are 

otherwise identical but lack introns (Brinster et al., 1988). It is also interesting to note 

that although only ~3.8% of genes in the Saccharomyces cerevisiae genome contain 

introns (Spingola et al., 1999), nearly 10,000 of the almost 38,000 mRNA transcripts 

produced per hour in yeast cells are from this small percentage of intron-containing genes 

(Holstege et al., 1998). Two different mechanisms can regulate gene expression at the 

transcriptional level. First, the presence of introns can result in an ordered nucleosome 

arrangement that becomes disrupted upon removal of the introns. It is hypothesized that 

a signal present in the genomic sequence results in a characteristic nucleosome 

arrangement that optimizes RNA polymerase binding (Liu et al., 1995). Second, 

transcription can be upregulated due to the presence of enhancer sequences contained 

within an intron immediately upstream of the first exon (Sleckman et al., 1996).

Introns can affect additional aspects of pre-mRNA processing which may impact 

gene expression. An increase in polyadenylation efficiency has been seen in response to 

intron splicing (Vagner et al., 2000). Since the poly A tail is involved in a variety of 

processes such as mRNA stability, export from the nucleus and translation in the 

cytoplasm, increased efficiency of polyadenylation could lead to an increase in 

expression (Furger et al., 2002).

9
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Three processes subsequent to pre-mRNA processing are affected based on 

whether or not an mRNA has been spliced: nuclear export of mRNA, translation 

efficiency of the mRNA once in the cytoplasm, and stability of the mRNA as regulated 

by nonsense-mediated decay (NMD; (Le Hir et al., 2003). The act of splicing a pre- 

mRNA results in the binding of the exon junction complex (EJC) 20-24 bp upstream of 

exon-exon junctions (Le Hir et al., 2000). At least seven proteins have been identified in 

the EJC of Drosophila melanogaster: REF/Aly, RNPS1, SRml60, Y14, Magoh, UAP56 

and Upf3. Each of these proteins, with the exception of Upf3, is involved in at least one 

of the following processes: RNA splicing, nuclear export, or shuttling between the 

nucleus and cytoplasm (Blencowe et al., 1998; Mayeda et al., 1999; Conti and Izaurralde, 

2001; Hachet and Ephrussi, 2001; Mohr et al., 2001; Reed and Hurt, 2002). Upf3 is a 

nonsense-mediated decay (NMD) factor, which will be explained in more detail below. 

After export from the nucleus to the cytoplasm, Y14 and Magoh remain bound to the 

mRNA and are not removed until the first ribosomal passage (Le Hir et al., 2003). All 

other known nuclear EJC proteins are no longer associated with the mRNA in the 

cytoplasm (Le Hir et al., 2001a). In addition, the cytoplasmic NMD factor Upf2 

associates with the mRNA once the transcript reaches the cytoplasm.

There is strong evidence that the EJC is involved in mRNA nuclear export. Since 

EJCs bind 20-24 nt upstream of exon-exon junctions, a truncated mRNA that would be 

too short (<19 bases in the 5’ exon) to allow EJC binding was created by the Le Hir lab at 

Brandeis University. The Le Hir lab also created a second mRNA with a 5’ exon longer 

than 19 bases, but otherwise identical to the truncated mRNA, that would allow EJC 

binding. The longer mRNA was shown to be associated with all aforementioned EJC

10
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proteins and was efficiently exported whereas the shorter mRNA was not efficiently 

exported and was not associated with the EJC proteins (Le Hir et al., 2001b). Since 

intron splicing is needed for the binding of the EJC to mRNAs and the EJC allows for 

efficient transport of mRNAs out of the nucleus, these results show that introns are 

indirectly involved in efficient export of mRNA into the cytoplasm.

An increase in translational yield and higher ribosomal affinity has been observed 

in spliced mRNA when compared to an identical version of the mRNA that was not 

produced by splicing (Nott et al., 2004). Furthermore, translational yield and ribosomal 

affinity were restored when individual EJC proteins or NMD factors were tethered to an 

mRNA that was not produced by splicing (Nott et al., 2004). These results suggest that 

EJC and NMD proteins, deposited either by tethering or by post-splicing events, increase 

translational efficiency of the mRNA. Other studies have also shown that more protein 

molecules are produced per molecule of spliced mRNA than from identical mRNAs that 

were not produced by splicing (Braddock et al., 1994; Matsumoto et al., 1998; Lu and 

Cullen, 2003; Wiegand et al., 2003) and this increase in translation is independent of the 

rate of nuclear export.

Nonsense-mediated decay (NMD) is the process whereby mRNAs containing a 

premature stop codon, due to processes such as mutation, are degraded. In mammalian 

cells, the stop codon is defined as premature when it is located 50 nucleotides or more 

upstream of an exon-exon junction (Maquat and Carmichael, 2001). It is not surprising 

then to find that few mammalian genes contain introns in their 3’ UTR (Le Hir et al., 

2003). Since an NMD factor is always associated with the EJC which is located 20-24 

nucleotides upstream of all exon-exon junctions, a mechanism is provided that explains

11
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how exon-exon junctions that occur after stop codons in mammalian cells are recognized 

for NMD (Le Hir et al., 2003). Since EJC proteins remain bound to mRNA until the first 

ribosomal passage, if the EJC occurs after the stop codon, EJC proteins will not 

dissociate as a function of ribosomal passage and the NMD factor will most likely remain 

bound to the mRNA. This is the only case in which the presence of an intron results in 

downregulation of gene expression.

It is well documented that introns in the 5’ UTR usually enhance gene expression 

in vascular plants. Examples of genes that are upregulated due to an intron in the 5’ UTR 

include the triosephosphate isomerase gene (tpi) in Oryza sativa, the sucrose synthase 

gene (Sus3) in potato and the polyubiquitin gene ( Ubi. U4) in Nicotiana tabacum (Fu et 

al., 1995; Snowden et al., 1996; Plesse et al., 2001). A 291 bp intron in the 5’ UTR of a 

CDPK gene has also been shown to influence expression in Oryza (Morello et al., 2006). 

This CDPK study was particularly interesting because, not only did the removal of the 5’ 

UTR intron almost completely abolish OsCDPK2 expression in both stable and transient 

transformants, but the removal of 83 bp at the 3’ end of the intron, which resulted in the 

inactivation of the 3’ splice site of the intron, also showed almost complete absence of 

expression in transient and stable transformants as detected through the use of the GUS 

reporter gene (Morello et al., 2006). Since the majority of the intron was left intact, these 

results show that the act of splicing is more likely responsible for enhanced expression of 

the CDPK than sequences within the intron itself, indicating that the EJC is involved in 

increasing expression. Little has been published on intron-mediated enhancement of 

gene expression in moss and no results have been published on intron-mediated 

enhancement of CDPKs in non-vascular plants.
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RNA Interference (RNAi)

RNA interference or RNAi is the general term for targeted degradation of mRNA 

through the RNA-induced silencing complex (RISC) in eukaryotes. There are two types 

of RNAi triggers: microRNA (miRNA) and small interfereing RNA (siRNA). miRNAs 

are created from stem loops in endogenous RNAs and commonly results in gene down- 

regulation (Sontheimer and Carthew, 2005). siRNAs are created from long double­

stranded RNA from a variety of sources, such as pathogens and transposons, and result in 

the targeted degredation of RNA (Sontheimer and Carthew, 2005). The RNAi pathway 

can be taken advantage of by creating artificial triggers to downregulate or silence 

expression of a gene of interest. Here I will focus on siRNA since this is what I utilized 

in my research.

Long dsRNA is recognized by the Dicer enzyme, a -200 kDa protein that 

generally contains an ATPase/helicase domain, a PAZ domain, two catalytic RNase III 

domains, and a C-terminal dsRNA binding domain (Filipowicz, 2005). Dicer cleaves 

dsRNA precursors into segments called siRNA duplexes that are 21-25 nucleotides in 

length. The RISC binds the siRNA duplexes produced by Dicer. Once an siRNA duplex 

is incorporated into the RISC, the double-stranded siRNA duplex is unwound through an 

unknown mechanism, although ATP-dependent helicases embedded within the complex 

are suspected to be involved (Preall and Sontheimer, 2005). Only one of the siRNA 

strands is retained in the RISC. It is believed that which strand is retained is based on its 

thermodynamic properties, typically low internal stability especially at the 5’ end 

(Khvorova et al., 2003). Once the siRNA duplex becomes a single-stranded siRNA, it is
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used as a guide to target the RISC to RNA molecules containing complementary 

sequence. Once bound, the RISC will degrade the RNA molecule to which the siRNA 

has annealed. This results in either the silencing or downregulation of any gene that 

produces an mRNA with sequence similarity above the required threshold of identity to 

the siRNA.

The RISC has been shown to have multiple proteins associated with it; however 

the only group of proteins consistently found in all RISC complexes are the Argonautes 

(Parker et al., 2004). All Argonaute proteins are composed of an N-terminal PAZ 

domain of ~20 kDa and a C-terminal PIWI domain of -40 kDa (Parker et al., 2004). 

Recently, the PAZ domain has been shown to interact with RNA and may serve as the 

binding site for the 21-25 nucleotide siRNA (Ma et al., 2004). The PIWI domain has 

been shown to contain an RNase H-like fold, suggesting that this domain of eukaryotic 

Argonautes could possess RNase activity and may be responsible for the cleavage of 

target mRNAs (Parker et al., 2004). Phylogenetic analysis shows that the Argonaute 

group can be divided into two subgroups, Ago and Piwi; however no functional 

distinction between the two subgroups has yet been detected (Carmell et al., 2002).

RNAi has been utilized in Physcomitrella and in some cases has produced a 

phenotype. The FtsZ2-l gene, whose loss of function is known to produce altered 

chloroplast morphology in vascular plants (Strepp et al., 1998), was successfully silenced 

to produce the altered chloroplast phenotype in Physcomitrella through the use of RNAi 

(Bezanilla et al., 2005). RNAi has also been used to silence a CDPK in Medicago 

truncatula, which resulted in a significant reduction in root hair and root cell length, as 

well as significantly lower levels of rhizobial and mycorrhizal symbiotic association
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(Ivashuta et al., 2005). RNAi of the same CDPK also resulted in altered expression of 

cell wall and defense-related genes (Ivashuta et al., 2005). RNAi is capable of silencing 

multiple members of a closely-related gene family when using an siRNA trigger 

sequence that has -80% sequence identity to the target genes (Miki et al., 2005). Taken 

together, these facts support the hypothesis that RNAi can be utilized in Physcomitrella 

to silence multiple closely-related CDPKs. Since closely-related CDPKs are thought to 

have functional redundancy (Cheng et al., 2002), silencing of multiple CDPKs may be 

necessary to observe a phenotype.
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CHAPTER II 

MATERIALS AND METHODS

Identification of CDPKs

CDPKs were identified using two methods. The first method consisted of work 

done by Dr. Estelle Hrabak using Arabidopsis thaliana CDPKs to execute nucleotide- 

nucleotide BLAST searches (blastn) for Physcomitrella expressed sequence tags (ESTs) 

on PHYSCObase (http://moss.nibb.ac.jp). For ESTs that showed sequence identity to the 

Arabidopsis CDPKs, primers were designed using the OLIGO program (Molecular 

Biology Insights) to bind within both the 5’ and 3’ ESTs. Each open reading frame along 

with any available untranslated region (UTR) sequences was amplified by from 

Physcomitrella total cDNA template by either myself or Dr Estelle Hrabak. In addition, 

the entire transcribed region between each primer set was amplified from genomic DNA. 

PCR products were cloned into the pCR®2.1-T0P0® vector (Invitrogen) for sequencing.

The second method of identifying CDPKs utilized the Physcomitrella CDPK 

sequences obtained from the previous method. I used these sequences to execute 

nucleotide-nucleotide BLAST searches (blastn) against the Physcomitrella genome 

project in the trace archives at NCBI (http:// ncbi.nih.gov) to identify individual 

sequences that showed identity or similarity to the previously identified CDPKs. At the 

time that this research was performed, the genome had not been assembled and only 

individual sequence fragments of about 600-1000 bp were available. These sequences 

were sorted and assembled into individual CDPK gene coding regions using the SeqMan
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program from the DNAStar package (Lasergene). Sequences upstream and downstream 

of the coding regions ranging from 300 bp to 2 kb were also assembled.

Expression of CDPK Proteins in Escherichia coli

The coding sequences, including the stop codons, of CDPK genes were amplified 

from genomic DNA. PCR products were cloned into the pET200/D-TOPO® (Invitrogen) 

expression vector. These expression plasmids were provided by Estelle Hrabak. 

Upstream of the cloning site, pET200/D-TOPO contains sequence which adds a 6xHis 

tag and an Xpress epitope to the N-terminus of the expressed CDPK protein. Clones 

were sequenced by the University of New Hampshire sequencing facility to determine 

whether or not clones were error-free. An error-free clone of each CDPK was 

electroporated into Escherichia coli BL21(DE3). Cells containing the expression vector 

were grown to an ODgoo of ~0.5 in 50 ml LB broth [1% tryptone, 0.5% yeast extract, 1% 

sodium chloride], then induced with 1 mM IPTG for 2.5 hours. Cells were pelleted and 

resuspended in 1.25 ml TBS [140 mM NaCl, 20 mM Tris-Cl, pH 7.6] containing 0.1% 

Tween 20,2 mM EDTA, 1 mM DTT, and 1 mM PMSF. Cells were lysed with a 100 

pg/ml lysozyme treatment for 0.5 hours on ice followed by five sonications of 5 sec each 

with chilling on ice for 1 min between each sonication. The supernatant was added to 0.5 

ml HIS-Select Nickel Affinity Gel (Sigma) that had been washed with 10 ml of 

equilibration buffer [0.3 M NaCl, 50 mM sodium phosphate, pH 8.0]. The E. coli protein 

extract and affinity gel were incubated at 4°C for 30 min with gentle agitation. The 

nickel gel complexed with 6His-tagged protein was pelleted at 500 x g for 2 min, 

resuspended in wash buffer [50 mM sodium phosphate, pH 8.0, 0.3 M sodium chloride,
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10 mM imidazole], and re-pelleted. The wash was repeated a total of three times. The 

protein was eluted by resuspending the nickel gel in elution buffer [50 mM sodium 

phosphate, pH 8.0,0.3 M sodium chloride, 250 mM imidazole] and incubating with 

agitation (-175 rpm) for five min at room temperature. The nickel gel was pelleted at 

500 x g for 2 min and supernatant containing protein was collected. The elution process 

was repeated a total of three times. Eluted proteins were stored at -80°C.

CDPK Immunodetection

Samples containing either 1 pg or 5 pg of protein were combined with an equal 

volume of sample loading buffer [2% (w/v) SDS, 62.5 mM Tris-HCl, pH 6.8, 10% (v/v) 

glycerol, 5% (v/v) P-mercaptoethanol, 0.05% (w/v) bromophenol blue] on an 8% SDS 

polyacrylamide gel (Harlow and Lane, 1988). The protein was transferred to a PVDF 

membrane (Millipore) by electroblotting in transfer buffer [25 mM Tris-HCl, 192 mM 

glycine, 0.025% (w/v) SDS] for one hour following manufacturer’s instructions.

The PYDF membrane was incubated in blocking buffer (TBS-T [20 mM Tris-Cl, 

pH 7.6,137 mM NaCl, 0.1% Tween-20] containing 5% non-fat dry milk) at 4°C 

overnight. The membrane was then incubated at room temperature in blocking buffer 

containing anti-Xpress antibody conjugated to horseradish peroxidase (Invitrogen) at a 

1:5000 dilution for one hour. The membrane was washed in TBS-T containing 0.5% 

non-fat dry milk for 10 minutes at room temperature for a total of three times. Antibody 

was detected by incubating the membrane in SuperSignal West Pico Chemiluminescent 

Substrate (Pierce) for ~5 minutes, followed by exposure of X-ray film (ISC BioExpress). 

Size of the proteins was determined using the BenchMark protein ladder (Invitrogen).
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Kinase Assay

Three separate 50 pi reactions were set up for each CDPK: one with substrate and 

calcium, one lacking substrate, and one lacking calcium. Reactions consisted of IX 

kinase buffer [20 mM Tris-Cl, pH 7.3, 6 mM MgCh], 0.5 mg/ml Histone III-S (Sigma) 

(not present in reactions lacking substrate), 0.1 mM CaCl2 (replaced with 0.2 mM EGTA 

in reactions lacking calcium), 50 pM adenosine triphosphate, 5 pCi adenosine 5’-[y- 

32P]triphosphate (Amersham, catalog # AA0068), and 1 pg of CDPK (expressed in and 

isolated from E. coli as described above). Reactions were incubated at room temperature 

for 20 min.

After incubation, 25 pi of each reaction was spotted on blotting paper (VWR), 

which was washed three times at 5 min per wash in —250 mis 10% trichloroacetic acid,

10 mM disodium pyrophosphate. Filter papers were counted for radioactivity using a 

scintillation counter.

The remaining 25 pi of each reaction was added to 25 pi of sample loading buffer. 

Twenty pi of each sample was electrophoresed on an 8% SDS-polyacrylamide gel and 

incubated with Coomassie stain [0.1% Coomassie blue R-250,40% methanol, 10% acetic 

acid] for fifteen min with gentle agitation. The gel was incubated in destaining solution 

[40% methanol, 10% acetic acid] with gentle agitation overnight. Gel drying was done 

between two sheets of cellophane (Research Products International Corp.). The dried gel 

was exposed to X-ray film.
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CPK6 Promoter-Ct/y Constructs

Using Pfu Ultra DNA polymerase (Stratagene), the GUS genq-NOS terminator 

cassette was amplified from pBI101.2 (Clontech) using a forward primer that added both 

Sail and Hindlll sites and a reverse primer that added an Xhol site (restriction sites are 

bold and underlined):

Forward:
5,-TTTGTCGACTTCTCGAGTTTAAGCTTGGTAGGTCAGTCCCTTATG-3,

Reverse:
5 ’-ACTCGAGCC AGT GAATTCCCGATCTAG-3 ’

The PCR product was co-digested with Sail and Xhol (Promega) for 4 hours following 

manufacturer’s instructions. The pT vector (obtained from the Bezanilla lab at the 

University of Massachusetts, Amherst) that contains a unique Sail site was also digested 

with Sail for 4 hrs. Ligation of the digested PCR product into the pT vector was done 

using T4 DNA ligase (Promega) to create the pT-GUS construct. The ligation reaction 

was electroporated into E. coli TOP 10 cells. Bacteria were selected by plating on LB 

plates containing 100 pg/ml carbenicillin. Resistant colonies were checked for presence 

of the GUS terminator-AOS insert in the pT vector by PCR amplification and by 

restriction digestion with Sail and Xhol. One clone containing the GUS terminator-AOS 

cassette was saved and named pT-GUS.

A 3 kb region of CPK6 genomic DNA consisting of 1.8 kb of sequence upstream 

of the 5’ UTR, the 1.1 kb 5’ UTR containing a ~0.3 kb intron, and 110 bp of coding 

sequence was amplified in two independent reactions using Ex Taq DNA polymerase
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(Takara) and primers that added a Sail site at the 5’ end and a Hindlll site at the 3’ end 

(restriction sites are bold and underlined):

Forward: 5 ’ -TTT GTCG ACCTTTTTCC AACTTT GAT GT C-3 ’

Reverse: 5 ’-GGGAAGCTTATTGGTCTTTCGCTCTCATTC-3 ’

Each PCR product was digested with Sail and Hindlll in sequential reactions for 4 hrs 

per digestion. The pT-GUS construct was digested with the same enzymes. The digested 

products from each PCR were ligated into the pT-GUS construct at the Sail and Hindlll 

sites using T4 DNA ligase to create the pT-GUS-6a and pT-GUS-6b constructs for CPK6 

promoter-GCS assays. Constructs were electroporated into the E. coli TOP 10 strain and 

plated on LB plates containing 100 fig/ml carbenicillin. Colonies were screened for 

plasmids containing the correct insert by checking with PCR amplification and by 

restriction digestion with Sail and Hindlll.

CPK6 Promoter-G’fAS' Constructs Lacking the 5* UTR Intron

Overlap extension amplification (Horton et al., 1993) was used to create CPK6 

promoter-GGiS' constructs in which the intron in the 5’ UTR was removed. The forward 

and reverse primers from the previous section were used, as well as a second nested set of 

forward and reverse primers designed to flank the intron:

Nested Fwd. 5 ’ -GGC ACT GG AGTTGGTTTTG-3 ’

Nested Rev. 5 ’ -CAAAACCAACTCCAGTGCCGTAGTTGGCAAGCGCTTCAG-3 ’
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The nested reverse primer contained 19 bp of sequence (bold and underlined) that 

overlapped with the 5’ sequence of the nested forward primer (Figure 3). DNA 

sequences upstream and downstream of the intron were amplified with Pfu Ultra DNA 

polymerase in separate reactions pairing the forward primer with the nested reverse 

primer and the nested forward primer with the reverse primer, respectively. Once 

amplified, the upstream and downstream PCR products were combined in a new PCR 

with the un-nested forward and reverse primers to amplify the CPK6 regulatory region 

lacking the 5’ UTR intron. Two overlap extension reactions were performed 

independently using pT-GUS-6a and pT-GUS-6b as templates. The final PCR products 

and the pT-GUS vector were digested with Sail and Hindlll and combined in a ligation 

reaction with T4 DNA ligase to create pT-GUS-6a(-) and pT-GUS-6b(-). Constructs 

were electroporated into E. coli TOP 10 cells. Transformants were selected on LB plates 

containing 100 ug/ml carbenicillin. Colonies were screened for plasmids containing the 

correct insert by PCR amplification and by restriction digestion with Sail and Hindlll.

CDPK RNAi Construct

An RNAi construct was made using the pTUGGi Gateway vector (Bezanilla et 

al., 2005). A 255 bp segment of the CPK6 kinase region which had -80-90% sequence 

identity to the analogous region in the CPK1, CPK3, CPK4 and CPK8 genes was 

amplified using a forward primer with a 5’ attBl sequence and a reverse primer with a 5’ 

attBl sequence for Gateway cloning (attB 1 and attB2 sites are bold and underlined):
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Forward:
5 ’-ACAAGTTTGTACAAAAAAGCAGGCTGAGGACAGGCATTCCGTGCA-3 ’

Reverse:
5’-ACCACTTTGTACAAGAAAGCTGGGTGCTTGAAGAAAGTCGAAAGACC-3,

Gateway cloning was done using a Gateway cloning kit (Invitrogen) according to the 

manufacturer’s standard protocol. Clones were checked for correctness by PCR and 

sequencing.

Physcomitrella Growth Conditions

The Physcomitrella Gransden isolate obtained from Dr. David Cove at University 

of Leeds was grown on PpNFL growth medium (Marella et al., 2006) overlaid with 

cellophane discs (A.A. Packaging Limited). Plates were kept at 25°C with a 12-hr 

photoperiod. Moss was subcultured by homogenizing tissue in sterile water with a 

PowerGen 125 grinder equipped with Omni disposable generator probes (Fisher 

Scientific) and plating the homogenate onto fresh PpNFL medium overlaid with 

cellophane.

Physcomitrella Transformation

The most commonly used method for moss transformation was biolistics, also 

known as particle bombardment. Target tissue was prepared by homogenizing and 

plating moss onto PpNH4 medium lacking di-ammonium tartrate and overlaid with 

cellophane discs. These plates were incubated for 4-5 days at 25 °C with a 12-hr 

photoperiod.
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Three mg of tungsten particles (Sylvania GTE) were coated with 12 pg of plasmid 

and loaded onto macrocarriers (Bio-Rad) for bombardment according to Bio-Rad’s 

standard protocol. Bombardment was done using a Biolistics Particle Delivery System 

(Bio-Rad Model # PDS-1000/He) and a 1350 psi rupture disc (Bio-Rad).

Bombarded moss tissue was grown on the same plates for 3 days, then 

homogenized and plated on PpNPLi plates containing 15 pg/ml hygromycin B (Roche). 

Transformed plant cells produced visible protonema after ten day’s growth at 25°C in a 

12-hr photoperiod.

A second method used for moss transformation was protoplast transformation. 

Moss tissue was homogenized and plated on PpNfLt medium overlaid with cellophane 

discs and grown for 4-5 days at 25°C. Moss tissue was then used for protoplast 

transformation (Schaefer et al., 1991). Protoplasts were plated and allowed to regenerate 

cell walls on PpNTLj for 4-5 days at 25 °C. Regenerated plant cells were moved to PpNKU 

medium containing 15pg/ml hygromycin B. Resistant plantlets became visible to the eye 

after-15 days.

Selecting for Stable Transformants

Initial transformants obtained from either biolistics or protoplast transformation 

were removed from PpNHt medium containing 15 pg/ml hygromycin and transferred to 

PpNPU medium without selection for 12-14 days at 25°C with a 12-hr photoperiod. 

Transformants were transferred back to PpNEL* medium containing 15 pg/ml 

hygromycin. Plants that were only transiently transformed either died or grew at a slower
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rate. Stably transformed plants grew at the same rate in the presence or absence of 

hygromycin.

Histochemical GUS Assay

Stable transformants were grown to the leafy gametophore stage on PpNH4 

growth medium (~3 weeks). Plant tissue was incubated in GUS substrate solution [0.5 

mg/ml X-Gluc, 0.1 M sodium phosphate pH 7.0,1 mM potassium ferricyanide, 1 mM 

potassium ferrocyanide, 10 mM EDTA, 4% Triton X-100] at 37°C. Plants were 

destained in 70% ethanol for 30 min. Digital images were obtained using a Q-color 3 

camera attached to an SZX9 dissecting zoom microscope (Olympus).
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CHAPTER III

RESULTS

Identification of CDPKs

I have identified a total of 16 CDPKs in Physcomitrella. Initially, eight CDPKs 

were identified from paired 5’ and 3’ EST sequences available on the PHYSCObase 

website (http://moss.nibb.ac.jp). Based on the EST data, cDNA sequences for these eight 

CDPKs were amplified by PCR, cloned, and sequenced. In order to identify introns, 

genomic copies of each gene were also amplified, cloned and sequenced (Figure 4).

Eight additional CDPKs were identified by compiling raw sequence data that showed 

sequence similarity to the previously identified CDPKs. The raw sequence data was 

produced by the Physcomitrella sequencing project conducted by the DOE Joint Genome 

Institute and available on the NCBI website (http://www.ncbi.nlm.nih.gov/). Sequences 

from the NCBI website were also compared to the original eight CDPK sequences to 

confirm that they were correct since they were generated by PCR. This analysis revealed 

only one nucleotide difference among all eight genes.

The amino acid sequences for each CDPK were predicted using the EditSeq 

program of the DNAStar package (Lasergene). The amino acid sequences for each 

CDPK domain were aligned using MegAlign of the DNAStar package (Lasergene; 

Figures 5-8). Distance matrices were calculated using MegAlign based on the alignments 

of each domain (Tables 1-4). A distance matrix was also calculated based on the amino 

acid sequence alignment of the full-length CDPK proteins (Table 5). The distance 

matrices revealed that, on average, the kinase domain is the most conserved of the four
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27.9 35.6
23.3 23.3

29.7
210.0

167.3 246.0
220.0

451.0 493.0 493.0 451.0 360.0
143.2 169.5 132.3 471.0

317.0 234.0 377.0 456.0 321.0 202.0 377.0
181.8 183.2 176.6 193.3 276.0 230.0
493.0 262.0 1000.0 360.0 360.0 155.2 451.0

471.0 347.0 347.0 181.8 347.0
210.0 451.0 132.6 234.0 205.0 262.0

204.0 226.0 204.0 204.0 451.0 226.0 183.8 262.0 399.0
220.0 220.0 246.0 246.0 451.0 187.8 277.0 179.0 262.0 399.0
347.0 264.0 321.0 414.0 277.0 365.0 176.6 342.0 299.0 234.0 284.0

Table 1. Percent identity (upper right) and divergence (lower left) between the variable domains of Physcomitrella CDPKs as 
calculated by MegAlign from the DNAStar package (Lasergene). Percent identity is the percentage of identical amino acids 
between two sequences. Percent divergence is derived from the phylogeny reconstructed by the amino acid alignment. Note 
that percent identity and divergence do not usually equal 100%. CDPK gene numbers are listed around the perimeter of table. 
The lowest percent identity is shaded red, while the highest percent identity is shaded red and bolded. Sequences that are the 
most diverged from each other have their percent divergence shaded blue, while the two genes that are the least diverged have 
their percent divergence shaded blue and bolded.



Figure 6. Amino acid alignment of the kinase domain of Physcomitrella CDPKs. Alignment was done using the ClustalW 
method in MegAlign from the DNAStar package (Lasergene). Shaded areas represent amino acids identical to the 
consensus sequence at that position. CDPK gene number is listed to the right of each line.
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Table 2. Percent identity (upper right) and divergence (lower left) between the kinase domains of Physcomitrella CDPKs as 
calculated by MegAlign from the DNAStar package (Lasergene). Percent identity is the percentage of identical amino acids 
between two sequences. Percent divergence is derived from the phylogeny reconstructed by the amino acid alignment. Note that 
percent identity and divergence do not usually equal 100%. CDPK gene numbers are listed around the perimeter of table. The 
lowest percent identity is shaded red, while the highest percent identity is shaded red and bolded. Sequences that are the most 
diverged from each other have their percent divergence shaded blue, while the two genes that are the least diverged have their 
percent divergence shaded blue and bolded.
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Figure 7. Amino acid alignment of the autoinhibitory domain of 
Physcomitrella CDPKs. Alignment was done using the ClustalW 
method in MegAlign of the DNAStar package (Lasergene). Shaded areas 
represent amino acids identical to the consensus sequence at that 
position. CDPK gene number is listed to the right of each line.
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Table 3. Percent identity (upper right) and divergence (lower left) between the autoinhibitory domains of Physcomitrella 
CDPKs as calculated by MegAlign from the DNAStar package (Lasergene). Percent identity is the percentage of identical 
amino acids between two sequences. Percent divergence is derived from the phylogeny reconstructed by the amino acid 
alignment. Note that percent identity and divergence do not usually equal 100%. CDPK gene numbers are listed around the 
perimeter of table. The lowest percent identity is shaded red, while the highest percent identity is shaded red and bolded. 
Sequences that are the most diverged from each other have their percent divergence shaded blue, while the two genes that are 
the least diverged have their percent divergence shaded blue and bolded.
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Figure 8. Amino acid alignment of the calmodulin-like domain of 
Physcomitrella CDPKs. Alignment was done using the ClustalW method in 
MegAlign from the DNAStar package (Lasergene). Shaded areas represent 
amino acids that match the consensus sequence at that position. CDPK gene 
number is listed to the right of figure. Ca2+ binding domains are boxed in pink.
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Table 4. Percent identity (upper right) and divergence (lower left) between the calmodulin-like domains of Physcomitrella CDPKs as 
calculated by MegAlign from the DNAStar package (Lasergene). Percent identity is the percentage of identical amino acids between 
two sequences. Percent divergence is derived from the phylogeny reconstructed by the amino acid alignment. Note that percent 
identity and divergence do not usually equal 100%. CDPK gene numbers are listed around the perimeter of table. The lowest 
percent identity is shaded red, while the highest percent identity is shaded red and bolded. Sequences that are the most diverged from 
each other have their percent divergence shaded blue, while the two genes that are the least diverged have their percent divergence 
shaded blue and bolded.
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Table 5. Percent identity (upper right) and divergence (lower left) between the full-length amino acid sequences of Physcomitrella 
CDPKs as calculated by MegAlign from the DNAStar package (Lasergene). Percent identity is the percentage of identical amino 
acids between two sequences. Percent divergence is derived from the phylogeny reconstructed by the amino acid alignment.
Note that percent identity and divergence do not usually equal 100%. CDPK gene numbers are listed around the perimeter of 
table. The lowest percent identity is shaded red, while the highest percent identity is shaded red and bolded. Sequences that are 
the most diverged from each other have their percent divergence shaded blue, while the two genes that are the least diverged have 
their percent divergence shaded blue and bolded.



CDPK domains while the variable domain, as expected, is the least conserved. Amino 

acid identity for CDPK domains range from 6.9% (CPK3 and CPK11) to 86.0% (CPK2 

and CPK13) identity for the variable domain, 60.5% (CPK3 and CPK7) to 97.0% (CPK5 

and CPK14) identity for the kinase domain, 45.2% (CPK7 and CPK8) to 100% (CPK2, 

CPK5 and CPK15; CPK9 and CPK16\ CPK11 and CPK12; CPK13 and CPK14) identity 

for the autoinhibitory domain, and 38.5% (CPK7 and CPK14) to 91.7% (CPK11 and 

CPK12) identity for the calmodulin-like domain. The broad range of sequence identities 

for each domain indicates that some CDPKs are more closely related to each other than 

they are to others. In order to better define relationships between the individual CDPKs, 

Phylogenetic analysis was done.

The well-conserved kinase domain was used to construct a Physcomitrella CDPK 

tree. The analysis showed that Physcomitrella CDPKs formed three major groups 

(Figure 9). This was not unexpected since a similar pattern has been observed in trees 

created from Arabidopsis CDPKs based on the kinase domain amino acid sequence 

(Hrabak et al., 2003) and Oryza CDPKs based on full-length amino acid sequence (Asano 

et al., 2005). CDPKs in Group 3 (CPK2, CPK5, CPK13, CPK14 and CPK15) have the 

shortest branch lengths when compared with the other two groups, indicating that this 

group contains the CDPKs that are the most closely related to each other. The close 

relationship of CDPKs in Group 3 was supported by results from the distance matrices 

for the full-length amino acid sequences as well as the individual domains. The percent 

divergence from the full-length distance matrix between the CDPKs in Group 3 is on 

average smaller than what is seen in Group 1, ranging from 9.0% to 14.8%, indicating 

that these CDPKs have diverged more recently than Group 1 CDPKs. CDPKs in Group 1
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Figure 9. Dendrogram of 
Physcomitrella CDPKs. Rooted 
tree was constructed using MrBayes 
at 2xl06 generations and was based 
on the highly conserved kinase 
domain of each CDPK. A 
Plasmodium falciparum CDPK 
(GenBank Accession #
XP_966095) was included as an 
outgroup. Shading indicates the 
three groups formed by 
Physcomitrella CDPKs. Bootstrap 
support is color coded.



(CPK1, CPK3, CPK4, CPK6, CPK8 and CPK10) and Group 2 (CPK7, CPK9, CPK11, 

CPK12 and CPK16) on average showed more divergence, ranging from 23.4% to 44.3% 

and 6.8% to 49.2% respectively. CPK7 has the greatest branch length relative to all moss 

CDPKs, which is also reflected in the complete amino acid distance matrix where the 

percent divergence between CPK7 and all other CDPKs ranges from 47.0% to 78.5%.

When compared to CDPK sequences from vascular plants, the three groups 

formed by the Physcomitrella CDPKs associated with the three groups formed by the 

Arabidopsis and Oryza CDPKs (Figure 10); however, Arabidopsis and Oryza CDPKs 

were interspersed amongst each other within each group whereas Physcomitrella CDPKs 

were always on a separate branch. CDPK sequences from two other moss species, 

Tortula ruralis and Funaria hygrometrica, associated with Physcomitrella CDPKs in 

Groups 2 and 3 respectively. A CDPK sequence from the liverwort Marchantia 

polymorpha segregated into Group 1, but did not associate with Physcomitrella CDPKs 

any more so than vascular plant CDPKs. A minor group of Arabidopsis and Oryza 

CDPKs (A16, A18, A24, 04 and 018) consisted of CDPKs that are more closely related 

to the CDPK-related kinases (CRKs) in amino acid sequence than they are to other 

CDPKs (Hrabak et al., 2003). The CRKs are a group of serine/threonine kinases that are 

similar in protein domain structure to CDPKs, except that they lack Ca2+-binding EF- 

hands (Lindzen and Choi, 1995). Interestingly, the intron/exon structure of this minor 

CDPK group is much more similar to the CRK group (data not shown), which supports 

the close phylogenetic relationship of these proteins (Hrabak et al., 2003). CDPK 

sequences from Plasmodium falciparum (protist), Dunaliella tertiolecta (green alga) and 

Clamydomonas eugametos (green alga) did not clearly associate with CDPKs from any
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Figure 10. Dendrogram of CDPKs from 
Physcomitrella, Arabidopsis, Oryza, 
additional bryophytes, green algae and 
protist. Rooted tree was constructed 
using MrBayes at 2xl06 generations and 
was based on the amino acid sequence of 
the conserved kinase domain of each 
CDPK. Labels starting with A are 
CDPKs from Arabidopsis, O are CDPKs 
from Oryza, and P are CDPKs from P. 
patens. CDPKs from Plasmodium 
falciparum (GenBank Accession # 
XP_966095), Chlamydomonas 
eugatmetos (GenBank Accession # 
CAA89202), Dunaliella tertiolecta 
(GenBank Accession # AAF21062), 
Funaria hygrometrica (GenBank 
Accession # AAK62812), Tortula ruralis 
(GenBank Accession # AAB70706) and 
Marchantiapolymorpha (GenBank 
Accession # BAA81749) are also 
included in the alignment.



group and functioned as outgroups. Characteristics of Physcomitrella CDPK protein 

sequences are listed in Table 6. The number of amino acids for each CDPK ranges from 

491 to 628 and the molecular weight of each CDPK ranges from 55.1 to 64.0 kDa. Both 

the number of amino acids and molecular weights are within the normal range for CDPKs 

from Arabidopsis and Oryza (Hrabak et al., 2003; Asano et al., 2005; Cheng et al., 2002). 

The isoelectric points (pi) for the CDPKs range from 4.74 to 6.20, where the most acidic 

CDPKs belong to Group 2. All CDPKs contain four EF hands, the most common 

number of EF hands in CDPKs (Hrabak, 2000), which happens to be an even number 

since EF hands bind Ca2+as pairs (Zhang and Yuan, 1998). Characteristics of the CDPK 

variable domains are listed in Table 7. Variable domains range from 28 to 171 amino 

acids in length, which accounts for the majority of variability in CDPK length. A plant 

myristoylation prediction algorithm (available at

http://plantsp.genomics.purdue.edu/plantsp/html/myrist.html) predicted 11 CDPKs to be 

myristoylated, indicating a slightly lower percentage of myristoylated CDPKs in 

Physcomitrella than what is observed in Arabidopsis (Argyros, 2005). Myristoylation is 

the attachment of a myristate (14-carbon fatty acid) to an N-terminal glycine of a protein 

(Towler et al., 1988). Two CDPKs additional CDPKs contain an N-terminal glycine, but 

were not predicted to be myristoylated. The hydrophobicity of the myristate enables the 

protein to loosely associate with a membrane which brings the protein in contact with 

palmitoyl transferases, most of which are integral membrane proteins (Resh, 1999). 

Palmitoylation is the attachment of a palmitate (16-carbon fatty acid) to a cysteine near a 

myristoylated N-terminal glycine. The hydrophobicity of the palmitate provides a 

stronger association of the protein to a membrane than does myristate. Of the 11 CDPKs
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Table 6. Characteristics of predicted CDPK proteins from Physcomitrella. 
Phylogenetic group refers to sequence clusters shown in Figure 8. Molecular 
weight and pi (isoelectric point) were calculated using the Expasy website 
(http://ca.expasy.org/tools/pi_tool.html). Number of EF hands was calculated 
using the SMART website (http://smart.embl-heidelberg.de/).

Gene Name Group 
Number 

from Figures 
9 and 10

Number 
of Amino 

Acids

Molecular
Weight
(kDa)

Pi Number
ofEF
Hands

CPK1 1 549 60.6 5.86 4
CPK2 3 523 59.3 6.13 4
CPK3 1 567 62.5 6.05 4
CPK4 1 628 68.5 6.07 4
CPK5 3 524 59.3 6.18 4
CPK6 1 578 64.0 6.05 4
CPK7 2 494 55.4 4.74 4
CPK8 1 534 59.7 6.20 4
CPK9 2 575 63.8 5.58 4

CPK10 1 545 60.6 6.17 4
CPK11 2 492 55.3 5.23 4
CPK12 2 491 55.1 5.30 4
CPK13 3 523 58.5 6.10 4
CPK14 3 525 59.6 5.99 4
CPK15 3 527 59.8 6.07 4
CPK16 2 568 63.0 5.74 4
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Table 7. Variable domain characteristics of predicted CDPK proteins from 
Physcomitrella. Potential myristoylation sites (bold) were determined by a plant- 
specific myristoylation algorithm available at
http://plantsp.genomics.purdue.edu/plantsp/html/myrist.html. Potential 
palmitoylation sites (underlined) were determined by the presence of a cysteine near 
a predicted myristoylation site (Resh, 1999). The cysteines in the variable domains 
of CPK10 and CPK16 are not underlined since both proteins are not predicted to be 
myristoylated by the plant-specific myristoylation algorithm.

Gene Name Amino Acids 
in Variable 

Domain

Potential
Myristoylation

Site.

Potential
Palmitoylation

Sites

N-terminal Amino 
Acids

CPK1 92 YES 0 MGNTSSRG
CPK2 43 YES 2 MGNCCVGS
CPK3 111 YES 0 MGNSSGRP
CPK4 171 YES 0 MGNVSGRQ
CPK5 45 YES 2 MGNCCVGS
CPK6 124 YES 0 MGNISGRP
CPK7 29 NO 0 MAEVALLN
CPK8 78 YES 0 MGNTSARP
CPK9 111 YES 1 MGNTCVGA
CPK10 91 NO 0 MGNQCVGA
CPK11 29 NO 0 MRRAGLNL
CPK12 28 NO 0 MRRGVNLV
CPK13 43 YES 2 MGNCCAGS
CPK14 46 YES 2 MGNCCVGS
CPK15 45 YES 2 MGNCCVGS
CPK16 109 NO 0 MGNTCIGA
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predicted to be myristoylated, 6 contained one or more potential palmitoylation sites as 

well. Further information on myristoylation and palmitoylation will be presented in the 

discussion.

Kinase Assay

A kinase assay was performed on recombinant CPK4 and CPK6 proteins in order 

to determine whether they were bona fide protein kinases, and if so, whether their activity 

was calcium-dependent. To accomplish this, CPK4 and CPK6 proteins were expressed in 

E. coli. Expression clones contained the CPK4 or CPK6 open reading frames 

downstream of both a 6xHis tag and an Xpress epitope. Thus, CPK4 and CPK6 were 

expressed as fusion proteins with a 36 amino acid sequence containing the 6xHis motif (6 

amino acids) and the Xpress epitope (8 amino acids) at the N-terminus (Figure 11). The 

CDPKs were isolated by affinity purification on nickel-agarose beads using the 6xHis 

tag. Proteins were separated by SDS-PAGE and detected with a total protein stain 

(Figure 12A). The major protein products detected in the Coomassie-stained gel were of 

the expected size for CPK4 and CPK6, 72.6 kDa and 68.2 kDa respectively. Proteins on 

a duplicate gel were transferred to a PVDF membrane and detected by immuno blotting 

using anti-Xpress antibody conjugated to horseradish peroxidase. Horseradish peroxidase 

was detected following incubation with a chemiluminescent substrate by exposing X-ray 

film (Figure 12B). Western blotting confirmed that the affinity-purified proteins 

contained an Xpress epitope tag and represented the CDPK fusion proteins.

An in vitro kinase assay was performed using the purified CDPK, [y-32P] 

adenosine 5’-triphosphate and histone, which is a general substrate for serine/threonine 

kinases. Three reactions were set up for each CDPK: one reaction contained CDPK
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Figure 11. Schematic of the CDPK fusion protein expressed in E. coli. The 6xHis tag was used for affinity purification. 
The Xpress epitope was used for immunodetection of the fusion protein. Figure is not to scale. AA = amino acids.
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Figure 12. Detection of affinity-purified CPK4 and CPK6. A) Coomassie-stained polyacrylamide gel showing 
affinity-purified CPK4 fusion protein (72.6 kDa) and CPK6 fusion protein (68.2 kDa). The sizes of protein 
markers are given in kDa to the left of the figure. B) Chemiluminescent immunodetection of CPK4 and CPK6 
fusion proteins. Lanes 1 and 3 contain CPK4 while lanes 2 and 4 contain CPK6. Lanes 1 and 2 contain 1 pg 
protein, lanes 3 and 4 contain 5 pg protein.



enzyme, histone substrate and Ca2+, one reaction contained CDPK enzyme and histone 

substrate but lacked Ca2+, and one reaction contained CDPK enzyme and Ca2+ but lacked 

histone substrate. Following the 20 min reaction, half of the sample was spotted on filter 

paper and washed to remove unincorporated ATP before scintillation counting. The 

other half was used for SDS-PAGE and subsequent detection using X-ray film. For both 

CDPKs, a ~15 fold increase of radioactivity was detected by scintillation counting in 

reactions which contained both histone substrate and calcium as compared to reactions 

containing histone but lacking Ca2+ (Table 8). These results confirm the calcium- 

stimulated phosphorylation activity of CPK4 and CPK6. Lanes 1 and 4 (Figure 13), 

which contain CDPK, histone and Ca2+, show strong phosphorylation of the histone 

substrate protein, which appeared as multiple bands on the polyacrylamide gel as 

expected due the highly basic nature of the protein. Lanes 2 and 5, which contain only
I

CDPK and histone but lack Ca , showed less intense phosphorylation of the histone, 

indicating that less kinase activity occurred in the reactions that lack Ca2+. Reactions in 

lanes 3 and 6, which contained Ca2+ but lacked histone, showed that CDPK 

autophosphorylation had occurred. This was not unexpected as CDPK 

autophosphorylation activity has previously been observed in CDPKs from Arabidopsis 

(Hrabak et al., 1996; Hegeman et al., 2006), Oryza (Abo-el-Saad and Wu, 1995), 

Nicotiana tabacum (Iwata et al., 1998) and Glycine max (Putnam-Evans et al., 1990).
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Table 8. Scintillation, counts after in vitro kinase assays. Results are shown as the average counts per minute over a course 
of three minutes. The blank reaction was a filter paper that was not spotted with any sample but was processed in the same 
manner as the filter papers spotted with the kinase reaction components in order to detect the level of radiation retained on 
the filter papers after washing.

4*.V©

Reaction Contents Raw Scintillation Counts Counts Corrected for 
Background

Fold Stimulation by 
Ca2+

Blank 13,891 - -

CPK4 + Ca2+ + histone 379,462 365,571 16.3
CPK4 + histone 36,266 22,373 -

CPK4 + Ca2+ 23,636 9745 -

CPK6 + Ca2+ + histone 476,888 462,996 14.3
CPK6 + histone 46,273 32,382 -

CPK6 + Ca2+ 48,474 34,584 -
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Figure 13. Autoradiography after kinase assays. A) X-ray film after 2 Vi hour exposure to polyacrylamide gel 
containing kinase reactions. B) X-ray film after overnight exposure to polyacrylamide gel containing kinase reactions. 
Lanes 1-3 contain CPK4 and lanes 4-6 contain CPK6. Lanes 1 and 4 contain histone substrate and Ca2+, lanes 2 and 5 
contain histone substrate without Ca2+, lanes 3 and 6 contain Ca2+ without histone substrate.



CPK6 Promoter-Gt/tS Expression

Duplicate CPK6 promoter-GUS constructs named pT-GUS-6a and pT-GUS-6b 

(Figure 14) were made in order to define the expression pattern of CPK6 in 

Physcomitrella. The constructs were made as independent duplicates in order to confirm 

the reproducibility of results. These constructs contained 1.8 kb of sequence upstream of 

the transcription start site, the 1.1 kb 5’ UTR containing a ~0.3 kb intron, and 110 bp of 

coding sequence from CPK6 fused to the open reading frame of the GUS gene. A second 

set of duplicate CPK6 promoter-GUS constructs named pT-GUS-6a(-) and pT-GUS-6b(-) 

(Figure 15) were constructed that are identical to pT-GUS-6a and pT-GUS-6b except that 

they lacked the intron in the 5’ UTR. These constructs were used to determine the role of 

the intron in CPK6 expression.

One or two stable transformants were obtained for each of the four promoter-GUS 

constructs and are labeled either #1 or #2. Transformants were incubated with GUS 

substrate at different developmental stages. After incubation, chlorophyll was removed 

by ethanol. Transformants were examined under a microscope for expression in the 

protonema, and the developing and mature phyllids of the gametophore (Figure 16). The 

different stages of gametophore development examined included the gametophore bud, 

young gametophore and more mature gametophore. Plants that were stably transformed 

with pT-GUS-6a or pT-GUS-6b containing the 5’ UTR intron showed strongest GUS 

expression in gametophore buds, immature phyllids, the base of the gametophore at the 

site of protonemal attachment and protonemal tip cells (Figures 17-19). Strong 

expression was also seen in the axillary hair cells, though this was not consistent.
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Gametophore Protonema and
Rhizoids

Figure 16. Anatomy of a ~4 week old wild-type Physcomitrella plant.
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Figure 17. Light micrographs 
of Physcomitrella stably 
transformed with pT-GUS-6a; 
transformant #1. Plants were 
incubated with GUS substrate 
for 5 hours. A) Two 
gametophore buds showing 
stronger GUS expression than 
surrounding protonemal 
tissue. B) Young 
gametophore showing 
strongest GUS expression in 
the youngest phyllids and at 
the site of attachment to 
protonema. C) Gametophore 
showing strong overall GUS 
expression. D) Protonemal 
tissue showing strongest GUS 
expression in certain tip cells 
indicated by arrows.
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Figure 18. Light micrographs 
Physcomitrella stably 
transformed with pT-GUS-6a; 
transformant #2. Plants were 
incubated with GUS substrate 
for 5 hours. A) A 
gametophore bud showing 
stronger GUS expression than 
surrounding protonemal 
tissue. B) Young 
gametophore showing 
strongest expression in the 
immature phyllids and at the 
site of attachment to 
protonema. C) Gametophore 
showing strongest expression 
in the immature phyllids and 
at the site of attachment to the 
protonema. D) Protonemal 
tissue showing strongest GUS 
expression in the tip cells.
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Figure 19. Light 
micrographs of 
Physcomitrella stably 
transformed with pT-GUS- 
6b; transformant #1. Plants 
were incubated with GUS 
substrate for 5 hours. A) A 
gametophore bud showing 
stronger GUS expression 
than surrounding 
protonemal tissue. B) 
Young gametophore 
showing strongest GUS 
expression in the youngest 
phyllids and at the site of 
attachment to the 
protonema. C) 
Gametophore showing 
strongest GUS expression 
in the youngest phyllids and 
at the site of attachment to 
the protonema. D) 
Protonemal tissue showing 
strongest GUS expression 
in the tip cells.



Weaker expression was seen in the mature phyllids and protonemal tissue with the 

exception of tip cells (Figures 17-19). Overall, these results indicated that CPK6 is more 

strongly expressed in areas of the plant where cells are actively dividing, with the 

exception of the axillary hair cells and gametophore base, and less strongly in areas of the 

plant that are not actively dividing, i.e. the mature phyllids and protonemal cells that were 

not tip cells. It should be pointed out that there are some drawbacks to using the GUS 

reporter gene method for detecting expression patterns since the half-life of the GUS 

protein may be different from that of CPK6, and it is possible that not 100% of the 

regulatory elements were included in the CPK6 promoter-G US construct. However, 

aside from these drawbacks, it is likely that the GUS expression results are close to the 

actual expression profile of CPK6.

Plants that were stably transformed with pT-GUS-6a(-) or pT-GUS-6b(-) lacking 

the 5’ UTR intron showed less GUS expression than plants transformed with pT-GUS-6a 

or pT-GUS-6b. However, the overall pattern of expression remained the same. Strongest 

GUS expression was seen in gametophore buds, immature phyllids, base of the 

gametophore at the site of protonemal attachment, axillary hair cells of mature 

gametophores and protonemal tip cells. Little or no expression was seen in mature 

phyllids and protonemal cells that weren’t tip cells (Figures 20-22). These results 

indicate that the intron in the 5’ UTR plays a role in upregulating the overall level of 

CPK6 expression, but doesn’t change when or where CPK6 is expressed in the plant
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Figure 20. Light 
micrographs of 
Physcomitrella stably 
transformed with pT-GUS- 
6a(-); transformant #1. 
Plants were incubated with 
GUS substrate for 5 hours. 
A) A gametophore bud 
showing weak GUS 
expression. B) Young 
gametophore showing weak 
GUS expression in the 
youngest phyllids and at the 
site of attachment to the 
protonema. C) 
Gametophore showing 
strongest GUS expression 
in the youngest phyllids, 
axillary hair cells and at the 
site of attachment to the 
protonema. D) Protonemal 
tissue showing strongest 
GUS expression in the tip 
cells.
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Figure 21. Light 
micrographs of 
Physcomitrella stably 
transformed with pT-GUS- 
6b(-); transformant #1. 
Plants were incubated with 
GUS substrate for 5 hours. 
A) A gametophore bud 
showing weak GUS 
expression. B) Young 
gametophore showing very 
slight GUS expression in 
youngest phyllids and at the 
site of attachment to 
protonema.
C) Gametophore showing 
extremely weak GUS 
expression in the youngest 
phyllids. D) Protonemal 
tissue showing weak GUS 
expression in the tip cells.
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Figure 22. Light 
micrographs of 
Physcomitrella stably 
transformed with pT-GUS- 
6b(-); transformant #2. 
Plants were incubated with 
GUS substrate for 5 hours. 
A) A gametophore bud 
showing weak GUS 
expression and rhizoids 
(arrow) showing stronger 
GUS expression. B) Young 
gametophore showing 
strongest GUS in the base 
at the site of protonemal 
attachment.
C) Gametophore showing 
GUS expression in 
immature phyllids, axillary 
hair cells and the base at the 
site of protonemal 
attachment.
D) Protonemal tissue 
showing strongest GUS 
expression in the tip cells.



CDPKRNAi

An RNAi construct (pTUGGi-RNAi6) was made that would produce a 255 bp 

double-stranded segment of RNA containing part of the CPK6 coding sequence (Figure 

23) in Physcomitrella following transformation in order to silence CPK6 expression. The 

segment of CPK6 sequence used to produce the dsRNA was amplified from the kinase 

region and shows high sequence identity (~80-90%) to CPK1, CPK3, CPK4 and CPK8, 

which may result in silencing of these genes also since identity of ~80% or greater is 

sufficient to downregulate gene expression (Miki et al., 2005). The pTUGGi-RNAi6 

(Figure 24) vector and the pTUGi control vector (Figure 25), were transformed 

independently into the Physcomitrella NLS-4 line (Bezanilla et al., 2003), where each 

vector will produce a double-stranded RNA segment of GUS sequence. The NLS-4 line 

expresses a GFP-GUS fusion protein that is localized to the nucleus (Figure 26). The 

nuclear GFP can be detected easily using a fluorescence microscope. The double­

stranded RNA segment of GUS sequence matches a segment of the GFP-GUS mRNA, 

and is sufficient to cause degradation of the transcript through RNAi (Bezanilla et al., 

2003). When either vector is transformed into the NLS-4 line, RNAi should be activated 

and this can be confirmed since fluorescence will no longer be detectable. GFP silencing 

acts as an internal control to show that RNAi is being triggered by dsRNA produced from 

either pTUGi or pTUGGi-RNAi6. Transient transformants were obtained for both 

pTUGi and pTUGGi-RNAi6. Examination of these transformants with a fluorescence 

microscope revealed that expression of GFP-GUS was being silenced (Figures 27 & 28, 

D-F), indicating that RNAi was being triggered by dsRNA produced from both 

constructs. However, no obvious difference in phenotype was observed between
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transformants containing the pTUGi control vector and transformants containing the 

pTUGGi-RNAi6 vector (Figures 27 & 28, A-C).
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Figure 23. Segment of DNA from a conserved region of the kinase domain used for CPK6 RNAi aligned to corresponding 
segments of closely-related CDPKs. Alignment was done using the ClustalW method in MegAlign from the DNAStar 
package (Lasergene). Shaded areas represent nucleotides identical to consensus sequence at the position. CDPK gene 
number is listed to the right of each line.
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Pp108 5' Fragment

35S Prom.

Aph [IV]

Pp108 3' Fragment
35S Term.

NOS Term

GUS CPK6

CPK6

Loop Ubi Prom.

GUS

Figure 24. Diagram of pTUGi-RNAi6 construct for CDPK silencing. Ppl08 5’ and 3’ fragments are identical to sites in 
the Physcomitrella genome and can serve as sites for homologous recombination. The 35S promoter is from 
cauliflower mosaic virus (Odell et al., 1985) is a moderate-strength promoter in Physcomitrella (M. Bezanilla, personal 
communication. In this construct, the 35S promoter is used to express the Aph [IV] gene in concert with the 35S 
terminator. Aph [IV] confers hygromycin resistance. The maize ubiquitin promoter drives transcription of the GUS and 
CPK6 inverted repeats in concert with the NOS terminator. Transcription yields GUS and CPK6 double-stranded RNA.
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Ppl 0 8  5' Fragment

35S Prom.

p T U G i

11162 bp
Aph [IV]

35S Term. Ppl 08  3' Fragment
NOS Term.

GUS

GUS Ubi Prom.

Figure 25. Diagram of pTUGi construct used as control for RNAi. Ppl08 5’ and 3’ fragments are identical to sites in 
the Physcomitrella genome and can serve as sites for homologous recombination. The 35S promoter is from 
cauliflower mosaic virus (Odell et al., 1985) and is a moderate-strength promoter in Physcomitrella (M. Bezanilla, 
personal communication). In this construct, the 35S promoter is used to express the Aph [IV] gene in concert with the 
35 S terminator. Aph [IV] confers hygromycin resistance. The maize ubiquitin promoter drives transcription of the 
inverted GUS sequences in concert with the NOS terminator. Transcription of GUS inverted repeats produces GUS 
double-stranded RNA.
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B

Figure 26. Physcomitrella NLS4 line. A) Light micrograph of NLS4 plant. B) NLS4 plant showing GFP 
localized to the nucleus under a fluorescence microscope. Section of plant in light micrograph that 
corresponds to image taken by fluorescence scope is outlined in black.
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Transformant 1 Transformant 2 Transformant 3

Figure 27. Independent Physcomitrella NLS4 plants transiently transformed with the Gt/S-RNAi control 
vector, pTUGi. A-C) Light micrographs of transformants. D-F) Confirmation of silencing of transformants by 
a lack of GFP localized to the nucleus under a fluorescence microscope. Section of plant in light micrograph 
that corresponds to image taken by fluorescence scope is outlined in black.
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Transformant 1 Transformant 2 Transformant 3

Figure 28. Independent Physcomitrella NLS4 plants transiently transformed with the GUS-CPK6-RNA1 
construct, pTUGGi-RNAi6. A-C) Light micrographs of transformants. D-F) Confirmation of silencing of 
transformants by a lack of GFP localized to the nucleus under a fluorescence microscope. Section of plant in 
light micrograph that corresponds to image taken by fluorescence scope is outlined in black.



CHAPTER IV 

DISCUSSION

Identification of CDPKs

To date, I have identified sixteen CDPKs in Physcomitrella using the two 

previously described methods. This is fewer than the number of CDPKs that have been 

identified in vascular plants where the genome has been completely sequenced and 

annotated (34 CDPKs in Arabidopsis and 29 CDPKs in Oryza; Hrabak et al., 2003;

Asano et al., 2005). Since there seems to be fewer CDPKs in Physcomitrella than in 

Arabidopsis and Oryza, there may be less functional overlap of individual CDPKs. Less 

functional redundancy would make it easier to produce a phenotype through gene 

inactivation. This makes Physcomitrella a good plant in which to study CDPKs.

Previous phylogenetic analysis showed that CDPKs in vascular plants are 

arranged in three major groups with one minor group (Hrabak et al., 2003; Asano et al., 

2005). The minor group consists of CDPKs that resemble the CDPK-related kinases 

(CRKs). CRKs are kinases that have similar sequence to CDPKs but lack Ca2+ binding 

motifs (EF-hands) in the C-terminal domain. The CDPKs in the minor group still contain

9 +EF-hand, Ca -binding motifs, but are more similar in sequence and in intron-exon 

structure to CRKs than to CDPKs. Interestingly, Physcomitrella does contain at least 

five CRK genes (K. Chervincky, personal observation), but I have not identified any 

CRK-like CDPKs. Similar to vascular plants, the Physcomitrella CDPKs that I have 

identified also formed three major groups; however no minor group of CRK-like CDPKs 

was present. Either Physcomitrella CDPK members of the CRK-like group were not
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identified by my search of the moss sequence database or this minor group is missing 

altogether. It would be interesting if this minor group of CDPKs was missing from all 

bryophytes since that would indicate that these CRK-like CDPKs arose in vascular plants 

after the split from bryophytes.

Phylogenetic analyses were done comparing Physcomitrella CDPKs to CDPKs 

from Arabidopsis, Oryza, additional bryophytes, green algae and Plasmodium 

falciparum, the best-studied protist from the CDPK-containing Apicomplexans. CDPKs 

from Arabidopsis and Oryza were found interspersed amongst each other within each 

major group, whereas Physcomitrella CDPKs remain on their own branch within each 

group. This result indicates that within each of the three groups, CDPKs from the 

vascular plants are more closely related to each other than they are to CDPKs from 

Physcomitrella. I found that CDPKs from the mosses Tortula and Funaria were located 

on the same branch as Physcomitrella CDPKs in groups 2 and 3 respectively, indicating 

that these moss CDPKs are more closely related to each other than they are to the CDPKs 

from vascular plants. The CDPK from the liverwort Marchantia was located in Group 1; 

however, it did not associate any more so with Physcomitrella CDPKs than with vascular 

plant CDPKs, indicating that the liverwort CDPK isn’t more closely-related to either type 

of plant. CDPKs from Plasmodium and from the green algae Dunaliella and 

Chlamydomonas were not obviously associated with any of the major groups of CDPKs 

from the plants that I used to construct my tree, indicating the distant relationship of 

CDPKs from these organisms to CDPKs in land plants.

Of the three groups formed by Physcomitrella CDPKs, Group 1 had the least 

amount of overall amino acid sequence conservation, showing 66.5% to 82.9% overall
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identity to each other. The variable domains in Group 1 were the least conserved when 

compared to each other, ranging from 14.0% to 47.8% identity. The variable domain for 

each CDPK in Group 1 is predicted to be myristoylated by the plant-based myristoylation 

algorithm (available at http://plantsp.genomics.purdue.edu/plantsp/html/myrist.html) with 

the exception of CPK10. Myristoylation is a type of acylation where a myristate (14- 

carbon fatty acid) is attached to an N-terminal glycine. The hydrophobicity of the 

myristate can cause the protein to loosely associate with a membrane. Myristoylation 

algorithms are created by examining consensus sequences of known myristoylated 

proteins. It should be pointed out that myristoylation prediction algorithms are not 100% 

accurate, especially the algorithm for plants which is still being developed. Since CPK10 

contains an N-terminal glycine it may in fact be myristoylated, however this would have 

to be determined experimentally. All Physcomitrella CDPKs in Group 1 (with the 

possible exception of CPK10) contain predicted myristoylation sites. All Arabidopsis 

CDPKs in Group 1 also contain predicted myristoylation sites, and nine of the twelve 

CDPKs have been experimentally tested and shown to be myristoylated (A. Argyros and 

E. Hrabak, unpublished data).

Palmitoylation is another type of acylation where a palmitate (16-carbon fatty 

acid) is attached to a cysteine. A common acylation motif, the SH4 domain consists of 

one or more cysteins near a myristoylation site (Resh, 1999). CDPKs that contain an 

SH4 domain are usually palmitoylated (A. Argyros and E. Hrabak, unpublished data; 

Martin and Busconi, 2000). The palmitate is hydrophobic enough to provide a strong 

association between a palmitoylated protein and a membrane. If CPK10 is in fact 

myristoylated, it is likely to be palmitoylated as well since it contains a cysteine near the
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N-terminus. The variable domains of each Arabidopsis CDPK in Group 1 (except for 

CPK3) also contain at least one potential palmitoylation site. The subcellular 

localizations of CDPKs in Arabidopsis and Oryza have been tested using both GFP 

fusions and subcellular fractionation experiments (Martin and Busconi, 2000; Dammann 

et al., 2003; Argyros, 2005). Previously known Arabidopsis CDPK localization results 

are listed in Table 9. All tested CDPKs that contain both myristoylation and 

palmitoylation sites are localized to membranes, but are found in the soluble fraction 

upon the disruption of the myristoylation site (Argyros, 2005), indicating that 

palmitoylation is dependent upon myristoylation. All tested Arabidopsis CDPKs in 

Group 1 (except CPK3) were plasma membrane-associated. CPK3 was localized to the 

nucleus (Dammann et al., 2003; Argyros, 2005; Table 9). These results suggest that 

Physcomitrella CPK10 is likely to be membrane-associated if it is in fact myristoylated 

and palmitoylated. It is difficult to predict the subcellular localization of the remaining 

Physcomitrella CDPKs in Group 1 since myristate can only loosely associate a protein 

with a membrane (Peitzsch and McLaughlin, 1993).

Physcomitrella CDPKs in Group 2 on average showed slightly more overall 

amino acid sequence identity to each other (63.7% to 93.5%) than did CDPKs in Group 

1. The variable domain of CDPKs in Group 2 showed a wider range of sequence identity 

(15.5% to 82.8%) than did CDPKs in Group 1. The variable domain of CPK9 is 

predicted to be myristoylated by the plant-specific myristoylation prediction algorithm 

and contains one potential palmitoylation site. CPK16 was not predicted to be 

myristoylated, though it does contain an N-terminal glycine. As previously mentioned, 

the plant-specific prediction algorithm is not 100% accurate, so CPK16 may in fact be
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Table 9. Phylogenetic groupings of Physcomitrella and Arabidopsis CDPKs 
(group number listed on left). N-terminal amino acids are shown to the right 
of each gene. Potential myristoylation sites are shown in bold and potential 
palmitoylation sites are underlined. Subcellular localization results of 
Arabidopsis CDPKs (Argyros, 2005; Damman et al., 2003) are shown in the 
far right column. Dashed lines indicate there is no subcellular localization 
data available. Arabidopsis CDPKs from the CRK-like group are not shown. 
PM=plasma membrane; ER=endoplasmic reticulum.

Physcomitrella Arabidopsis

Gene N-terminal Gene N-terminal Subcellular
Name AAs Name AAs localization

CPK1 MGNTSSR CPK3 MGHRHSK Nucleus
CPK3 MGNSSGR CPK9 MGNCFAK PM
CPK4 MGNVSGR CPK15 MGCFSSK PM
CPK6 MGNISGR CPK17 MGNCCSH PM
CPK8 MGNTSAR CPK19 MGCLCIN —

CPK10 MGNQCVG CPK21 MGCFSSK PM
1 CPK22 MGNCCGS —

CPK23 MGCFSSK PM
CPK27 MGCFSSK PM
CPK29 MGFCFSK —

CPK31 MGCYSSK PM
CPK33 MGNCLAK PM

CPK7 MAEVALL CPK1 MGNTCVG Peroxisome
CPK9 MGNTCVG CPK2 MGNACVG ER, Soluble
CPK11 MRRAGLN CPK4 MEKPNPR Soluble
CPK12 MRRGVNL CPK5 MGNSCRG PM, Soluble

2 CPK16 MGNTCIG CPK6 MGNSCRG PM, Soluble
CPK11 METKPNP Soluble
CPK12 MANKPRT Soluble
CPK20 MGNTCVG —

CPK25 MGNVCVH PM
CPK26 MKHSGGN Soluble

CPK2 MGNCCVG CPK7 MGNCCGN PM
CPK5 MGNCCVG CPK8 MGNCCAS PM
CPK13 MGNCCAG CPK10 MGNCNAC PM
CPK14 MGNCCVG CPK13 MGNCCRS PM

3 CPK15 MGNCCVG CPK14 MGNCCGT —

CPK24 MGSCVSS —

CPK30 MGNCIAC PM
CPK32 MGNCCGT PM
CPK34 MGNCCSH PM
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myristoylated. If CPK16 is myristoylated, it is probably palmitoylated as well since there 

is a nearby cysteine. The variable domains of the other three CDPKs in Group 2 (CPK7, 

CPK11 and CPK12) had neither potential acylation site. Six of the Arabidopsis CDPK 

variable domains from Group 2 had one potential myristoylation site and one potential 

palmitoylation site, while the other four CDPK variable domains had neither.

Arabidopsis CDPKs that were tested for subcellular localization in Group 2 were 

associated with a membrane when potential myristoylation and palmitoylation sites were 

present. CDPKs that did not possess any potential acylation sites were soluble 

(Dammann et al., 2003; Argyros 2005, Table 9). If the mechanisms that control 

membrane binding of acylated proteins are the same in Arabidopsis and Physcomitrella, 

then CPK9 and CPK16 of the Physcomitrella CDPKs in Group 2 may be membrane- 

associated while the other three are most likely soluble.

Physcomitrella CDPKs from Group 3 are the most closely related to each other, 

showing an overall amino acid identity ranging from 86.6% to 93.1%. The variable 

domain, which showed higher divergence in the other two Physcomitrella CDPK groups, 

had sequence identity ranging from 65.1% to 81.4%. All variable domains of CDPKs in 

Group 3 contained one potential myristoylation site and two potential palmitoylation sites. 

This pattern was reflected in Arabidopsis CDPKs in Group 3, which also contained one 

potential myristoylation site and, except for CPK24, two potential palmitoylation sites. 

CPK24 contained only one potential palmitoylation site (Table 9). Of the Arabidopsis 

CDPKs in Group 3 that were tested for subcellular localization, all were plasma membrane- 

associated (Dammann et al., 2003; Argyros, 2005; Table 9). This suggests that all
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Physcomitrella CDPKs in Group 3 are membrane-associated, again depending on whether 

or not similar acylation enzymes exist in Arabidopsis and Physcomitrella.

The kinase, autoinhibitory and calmodulin-like domains were all more conserved 

within each group than the variable domain. On average, Group 1 showed the lowest 

amount of amino acid identity for each domain, ranging from 74.5% to 90.5% for the 

kinase domain, 83.9% to 93.5% for the autoinhibitory domain and 71.1% to 86.8% for the 

calmodulin-like domain. Group 2 on average showed more amino acid identity for each 

domain with the exception of CPK7, which consistently showed the least amount of 

identity. Amino acid identity for Group 2 ranged from 70.1% to 95.8% for the kinase 

domain, 67.7% to 100% for the autoinhibitory domain and 58.1% to 91.7% for the 

calmodulin-like domain. Group 3 showed the highest amount of sequence identity for each 

domain, ranging from 92.8% to 97% for the kinase domain, 96.7% to 100% for the 

autoinhibitory domain and 81.1% to 90.0% for the calmodulin-like domain. The fact that 

all three domains show conservation indicates that these domains must be necessary for 

typical CDPK function. Since the variable domain is much less conserved, this region may 

be the most responsible for varying protein function amongst individual CDPKs.
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Kinase Assay

The kinase assay was done to confirm that two of the genes that I identified 

encode enzymes that phosphorylate substrates in a Ca2+-dependent manner. The kinase 

activity of CPK4 and CPK6 was stimulated ~15-fold in the presence of Ca2+. This result 

showed that these two enzymes phosphorylate a model substrate protein in a Ca2+ 

concentration-dependent manner, confirming that these enzymes are indeed calcium- 

dependent protein kinases. Though only two CDPKs were actually assayed, the other 

fourteen CDPKs probably function in a similar manner also since the kinase, 

autoinhibitory and calmodulin-like domains are similar in amino acid sequence to those 

of CPK4 and CPK6. In addition, the calmodulin-like domain of every Physcomitrella 

CDPK contains four predicted EF-hands for binding Ca2+.

CDPKs from vascular plants such as Arabidopsis, Oryza, Nicotiana tabacum and 

Glycine max have been shown to autophosphorylate in vitro (Putnam-Evans et al., 1990; 

Abo-el-Saad and Wu, 1995; Yoon et al., 1999; Hegeman et al., 2006). CPK4 and CPK6

'X 'y •enzymes from Physcomitrella showed P incorporation indicating that Physcomitrella 

CDPKs also autophosphorylate in vitro, behaving in a similar fashion to CDPKs from 

vascular plants. Little is known of the function of CDPK autophosphorylation in vivo, 

though one study claims that autophosphorylation leads to CDPK activation (Romeis et 

al., 2001). However more research needs to be done on CDPK autophosphorylation 

before any conclusions can be drawn regarding its effect on CDPK activity.
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CPK6 Promoter-G'fAS' Expression

GUS expression in Physcomitrella stably transformed with the CPK6 promoter- 

GUS constructs containing the 5’ UTR intron (pT-GUS-6a or pT-GUS-6b) was strong in 

gametophore buds, young phyllids, protonemal tip cells and the base of the gametophore 

at the site of protonemal attachment. Expression was also strong in axillary hair cells, but 

this was not consistently observed. Perhaps this variation in expression occurs because 

CPK6 is expressed in the axillary hair cells only at certain stages of development, and 

there is no easy way to ensure plant samples are at exactly comparable stages of 

development when they are collected for GUS assays. Less expression was seen in 

mature phyllids and protonemal cells with the exception of tip cells. In general these 

results indicate that CPK6 seems to be more strongly expressed in areas of the plant that 

are actively growing, with the exception of the axillary hair cells and the gametophore 

base. CPK6 expression seems to be weaker in areas of the plant that in which cells are 

not actively dividing, i.e. mature phyllids and non-tip protonemal cells. These results 

suggest that CPK6 may play a larger role in actively dividing cells as opposed to non­

dividing cells, however CPK6 probably plays a role in non-dividing cells as well since 

was still observed in these parts of the plant. It is interesting that CPK6 is expressed in 

virtually all tissues of Physcomitrella to some degree, whereas the expression of CPK2 in 

Arabidopsis is only in specific areas of the plant (E. Hrabak, unpublished results). It 

should be pointed out that there are some drawbacks to using the GUS reporter gene, 

some of which include the fact that the GUS protein probably doesn’t have the same half- 

life as the CPK6 protein, and it is possible that not all of the CPK6 regulatory information 

was contained in the CPK6 promoter-GUS' construct. The only way to obtain 100%
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accurate CPK6 expression results is through techniques such as an in situ hybridization 

with RNA probes or antibodies, both of which are difficult techniques to successfully 

execute (E. Hrabak, personal communication).

Stable transformants containing pT-GUS-6a or pT-GUS-6b showed overall 

stronger expression levels than stable transformants that lacked the 5’ UTR intron, pT- 

GUS-6a(-) or pT-GUS-6b(-). Since these constructs are identical except for the presence 

of the 5’ UTR intron in pT-GUS-6a and pT-GUS-6b, the change in expression can be 

attributed to the intron sequence. The overall expression pattern between the two sets of 

constructs is similar, but the total expression is greatly reduced in constructs without the 

intron. These results suggest that the intron in the 5’UTR enhances expression of CPK6, 

but doesn’t have a major influence on when and where CPK6 is expressed.

The reduced amount of GUS expression seen in Physcomitrella transformants that 

contain constructs lacking the intron in the 5’ UTR is consistent with results from studies 

in vascular plants. For example, in Oryza, a rubi3 promoter-GUS fusion construct 

containing a 1140 bp 5’ UTR intron immediately before the translation start site was used 

for transient transformation and compared with transformants that lacked the intron. 

Removal of the intron resulted in a 20-fold decrease in GUS expression in transient 

transformants (Sivamani and Qu, 2006). Also in Oryza, removal of a 291 bp intron from 

the 5’ UTR of a CPK2 promoter-GUS construct almost completely abolished GUS 

expression in transformants. When an 83 bp 3’ sequence of the same intron was 

removed, leaving the majority of the intron intact, but disrupting the 3’ splice site, little to 

no GUS expression was observed in Oryza transformants. The results from the disruption 

of the splice site suggests that it is not the intron sequence, but rather the act of intron
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splicing that is necessary for enhanced CPK2 expression (Morello et al., 2006). In 

Arabidopsis, the absence of a 602 bp intron in the 5’ UTR of the EFla-A3 gene in 

promoter fusions to the firefly luciferase gene resulted in significantly less expression in 

both transient and stable transformants than in plants transformed with an identical 

construct containing the 602 bp intron in the 5’ UTR (Chung et al., 2006). The effect of 

intron length was also examined by partial deletion of the intron internal to the splice 

sites. This experiment revealed that partial deletion of the intron can result in 

downregulation of expression as well suggesting that other factors, possibly enhancers, in 

addition to the act of splicing affect expression of the EFla-A3 gene (Chung et al., 2006).

In other studies, removal of the first intron resulted in a different expression 

profile as compared to the expression of genes where the intron was left intact. For 

example, a subtle difference was seen in the sucrose synthase gene (Sus3) of potato 

where the deletion of an intron from the 5’ UTR resulted in a 5-fold reduction of 

expression in roots, but no change in levels of expression in leaves, stems or tubers (Fu et 

al., 1995). A more drastic change in expression profile was observed in Oryza where two 

OsTubAl promoter-GUS constructs were made. One contained the first three exons and 

two introns, and the other contained only part of the first exon and no introns. 

Transformants that contained the former construct showed strongest expression in root 

cells that were actively dividing and in young shoots. Transformants containing the latter 

construct showed strongest expression in the elongation zones of roots and equal 

expression in young and mature shoots (Jeon et al., 2000). This is one of the few reports 

where an intron in the 5’ UTR impacts the expression profile of a gene. A change in the 

expression profile was not seen in my CPK6 expression results.
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Many mechanisms have been proposed for intron-mediated enhancement and are 

outlined in the introduction. However the mechanisms that seem to have received the 

most experimental attention are associated with the binding of the exon-junction complex 

(EJC) to an mRNA after intron splicing has occurred. The EJC enhances expression by 

increasing mRNA nuclear export and translation rates in eukaryotes (Le Hir et al., 2003). 

Proteins that make up the EJC in the nucleus include Y14, Magoh, SRml60, RNPS1, 

REF, UAP56 and Upf3. However, once the in cytoplasm most of these proteins are no 

longer associated with the mRNA with the exception of Y14 and Magoh. Upf2 becomes 

associated with the mRNA in the cytoplasm, although it was not associated with it in the 

nucleus (Le Hir et al., 2000; Gatfield et al., 2001; Kataoka et al., 2001; Kim et al., 2001; 

Le Hir et al., 2001a). The EJC proteins that are involved in nuclear export include REF 

and UAP56. REF upregulates mRNA export by directly contacting the nuclear export 

factor TAP. TAP, with its partner pi 5, directly binds to the nuclear pore complex (Conti 

and Izaurralde, 2001). UAP56 is a spliceosome factor, but is also crucial for recruitment 

of REF to the EJC (Reed and Hurt, 2002). Once in the cytoplasm, it is unclear how the 

EJC upregulates translation and increases ribosomal affinity to the mRNA. Y14 and 

Magoh may play a role since they are the only EJC proteins left associated with the 

mRNA, however there may be undiscovered components of the EJC that are also 

involved.

I suspect that the decrease of GUS expression in the construct containing the 

intronless CPK6 regulatory region is at least partially due to the lack of an EJC binding to 

the pre-mRNA transcript. However, it is impossible to tell from my results if the 

decrease in GUS expression is due to processes involved in mRNA export, translation or
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both. Other mechanisms may also be involved as mentioned in the introduction, 

including the upregulation of polyadenylation, which would increase the stability of the 

mRNA, and an increase in transcription due to sequences in the intron. It is also probable 

that not all processes that result in intron-mediated enhancement have been described yet. 

In all likelihood a combination of mechanisms, those mentioned and those not yet 

discovered, cooperate to enhance CPK6 expression in Physcomitrella. Nevertheless, my 

results are among the first to demonstrate intron-mediated enhancement in 

Physcomitrella, and are the first to show intron-mediated enhancement of CDPKs in 

Physcomitrella.

CDPKRNAi

RNAi experiments were performed using the NLS4 line of Physcomitrella that 

contains a GFP-GUS fusion protein that is localized to the nucleus. Physcomitrella 

transiently transformed with vectors that produce dsRNA matching GUS RNA sequence 

(pTUGi and pTUGGi-RNAi6) displayed silencing of the GFP-GUS fusion protein as 

shown by a lack of GFP fluorescence in the nucleus. The fact that no GFP fluorescence 

was seen indicated that RNAi was occurring in plants containing these constructs. In 

addition to producing a segment of GUS dsRNA, pTUGGi-RNAi6 should be producing a 

segment of CPK6 dsRNA that had -80-90% sequence identity to CPK1, CPK3, CPK4 

and CPK8. Since expression of the GFP-GUS fusion protein was silenced, expression of 

at least CPK6 and possibly CPK1, CPK3, CPK4 and CPK8 may have been silenced as 

well, however this would have to be proven experimentally through an approach such as 

reverse transcriptase-PCR. However, no obvious phenotype was observed in these
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plants. There are a few possible explanations for this result. First, the lack of phenotype 

may be due to the fact that some CDPKs in vascular plants are involved in stress 

responses to drought, salt, cold (Saijo et al., 2000; Sheen, 1996) and pathogen attack 

(Romeis et al., 2001). If the CDPKs being silenced are in fact involved in stress 

responses, it is quite possible that a phenotype would not be observed since the 

transformants were not exposed to any stress. Since RNAi no longer silences GFP after a 

period of less than a month in transient transformants, it is difficult to expose plants to 

stress and effectively screen for a phenotype. Stable transformants are needed that 

consistently silence CPK6 expression so that single stable plant lines can be exposed to 

numerous types of stress.

A second possibility is that even though the pTUGGi-RNAi6 construct was 

designed to silence multiple CDPKs, it is possible that only CPK6 was silenced. If the 

CPK6 protein function overlaps with the function of the other closely-related CDPK 

proteins that weren’t silenced, a phenotype would not be observed due to CDPK 

functional redundancy.

A third reason that may explain why a phenotype was not observed is that, although 

silencing of GFP was observed, silencing of CPK6 or any of the other CDPKs may not have 

occurred. However I believe that this is a less likely scenario since a study has shown that 

using the same vector to silence FtsZ2-l resulted in 100% of transient transformants 

displaying the altered chloroplast phenotype when GFP expression was silenced (Bezanilla 

et al., 2005). However, this is the only experiment that has been published using the 

pTUGGi vector in Physcomitrella, so it is difficult to make any assumptions. The only way
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to tell whether CPK6 or any of the other CDPKs are being silenced is by detecting the level 

of mRNA transcript.

It will be difficult to directly test whether expression of any CDPKs was being 

silenced since transient transformants do not produce enough tissue for RNA extraction 

before the RNAi pathway is no longer acting to silence GFP. In order to directly test 

whether or not any of the CDPKs are being silenced, an NLS4 plant must be stably 

transformed with the pTUGGi-RNAi6 construct and must show constitutive GFP silencing 

to indicate that the RNAi pathway is operating using dsRNA from the pTUGGi-RNAi6 

construct as a trigger. It would also be desirable to obtain an NLS4 plant stably transformed 

with the pTUGi construct that shows consistent GFP silencing as a control. Unfortunately, 

no stable transformants have been obtained to date that showed consistent GFP silencing, 

although it has been shown that acquiring such a stable in the NLS4 line is possible 

(Bezanilla et al., 2003). Although RNAi of GFP-GUS was successfully triggered by the 

pTUGGi-RNAi6 and pTUGi constructs, no conclusion can be drawn about the gene silencing 

and function of CPK6 at this point, except for the fact that a phenotype for a CPK6 knockout 

is somewhat expected since results from the GUS experiments indicate that CPK6 is 

expressed throughout the plant.

In conclusion, I have identified and sequenced sixteen CDPK genes in 

Physcomitrella. Calcium-dependent protein kinase activity of CPK4 and CPK6 was 

confirmed, showing that these genes produce enzymes that have similar calcium- 

stimulated kinase activity as CDPKs from vascular plants. I have defined the expression 

profile of CPK6, as well as demonstrated apparent intron-mediated enhancement of 

CPK6 expression. I have also produced Physcomitrella transformants that demonstrated
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an RNAi response, however no phenotype was observed in preliminary experiments 

under normal growth conditions.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF REFERENCES

Abo-el-Saad M, Wu R (1995) A rice membrane calcium-dependent protein kinase is 
induced by gibberellin. Plant Physiol 108: 787-793

Argyros A (2005) Myristoylation of calcium-dependent protein kinases from 
Arabidopsis thaliana. University of New Hampshire, Durham

Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide
identification of the rice calcium-dependent protein kinase and its closely related 
kinase gene families: comprehensive analysis of the CDPKs gene family in rice. 
Plant Cell Physiol 46: 356-366

Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella 
patens. Plant Physiol 133: 470-474

Bezanilla M, Perroud PF, Pan A, Klueh P, Quatrano RS (2005) An RNAi system in 
Physcomitrella patens with an internal marker for silencing allows for rapid 
identification of loss of function phenotypes. Plant Biol (Stuttg) 7: 251-257

Blencowe BJ, Issuer R, Nickerson JA, Sharp PA (1998) A coactivator of pre-mRNA 
splicing. Genes Dev 12: 996-1009

Braddock M, Muckenthaler M, White MR, Thorbum AM, Sommerville J,
Kingsman AJ, Kingsman SM (1994) Intron-less RNA injected into the nucleus 
of Xenopus oocytes accesses a regulated translation control pathway. Nucleic 
Acids Res 22: 5255-5264

Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD (1988) Introns
increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A 
85: 836-840

Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles 
that reach into RNAi, developmental control, stem cell maintenance, and 
tumorigenesis. Genes Dev 16: 2733-2742

Chalfie M, Tu Y, Euskirchen G, W ard WW, Prasher DC (1994) Green fluorescent 
protein as a marker for gene expression. Science 263: 802-805

Chaubet-Gigot N, Kapros T, Flenet M, Kahn K, Gigot C, Waterborg JH  (2001)
Tissue-dependent enhancement of transgene expression by introns of replacement 
histone H3 genes of Arabidopsis. Plant Mol Biol 45: 17-30

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through
protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. 
Plant Physiol 129: 469-485

Chung BY, Simons C, Firth AE, Brown CM, Hellens RP (2006) Effect of 5'UTR 
introns on gene expression in Arabidopsis thaliana. BMC Genomics 7: 120

Colbran RJ, Fong YL, Schworer CM, Soderling TR (1988) Regulatory interactions of 
the calmodulin-binding, inhibitory, and autophosphorylation domains of 
Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263: 18145-18151

Conti E, Izaurralde E (2001) Nucleocytoplasmic transport enters the atomic age. Curr 
Opin Cell Biol 13:310-319

Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC,
Pickard BG, Harper JF (2003) Subcellular targeting of nine calcium-dependent 
protein kinase isoforms from Arabidopsis. Plant Physiol 132: 1840-1848

Filipowicz W (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122: 17-20

Fu H, Kim SY, Park WD (1995) A potato Sus3 sucrose synthase gene contains a
context-dependent 3' element and a leader intron with both positive and negative 
tissue-specific effects. Plant Cell 7: 1395-1403

Furger A, O'Sullivan JM, Binnie A, Lee BA, Proudfoot NJ (2002) Promoter proximal 
splice sites enhance transcription. Genes Dev 16: 2792-2799

Gatfield D, Le Hir H, Schmitt C, Braun IC, Kocher T, Wilm M, Izaurralde E (2001) 
The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in 
Drosophila. Curr Biol 11: 1716-1721

Hachet O, Ephrussi A (2001) Drosophila Y14 shuttles to the posterior of the oocyte and 
is required for oskar mRNA transport. Curr Biol 11: 1666-1674

Harlow E, Lane D (1988) Antibodies: A Laboratoiy Manual. Cold Spring Harbor 
Laboratory, Cold Spring Harbor, NY

Harmon AC, Putnam-Evans C, Cormier MJ (1987) A calcium-dependent but
calmodulin-independent protein kinase from soybean. Plant Physiol 83: 830-837

Harmon AC, Yoo BC, McCaffery C (1994) Pseudosubstrate inhibition of CDPK, a 
protein kinase with a calmodulin-like domain. Biochemistry 33: 7278-7287

Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an autoinhibitor in 
CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33: 7267- 
7277

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon
AC (1991) A calcium-dependent protein kinase with a regulatory domain similar 
to calmodulin. Science 252: 951-954

Hegeman AD, Rodriguez M, Han BW, Uno Y, Phillips GN, Jr., Hrabak EM, 
Cushman JC, Harper JF, Harmon AC, Sussman MR (2006) A 
phyloproteomic characterization of in vitro autophosphorylation in calcium- 
dependent protein kinases. Proteomics 6: 3649-3664

Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub 
TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a 
eukaryotic genome. Cell 95: 717-728

Horton RM, Ho SN, Pullen JK, Hunt HD, Cai Z, Pease LR (1993) Gene splicing by 
overlap extension. Methods Enzymol 217: 270-279

Hrabak EM (2000) Calcium-dependent protein kinases and their relatives. Adv Bot Res 
32: 185-223

Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J,
Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, 
Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein 
kinases. Plant Physiol 132: 666-680

Hrabak EM, Dickmann LJ, Satterlee JS, Sussman MR (1996) Characterization of 
eight new members of the calmodulin-like domain protein kinase gene family 
from Arabidopsis thaliana. Plant Mol Biol 31: 405-412

Ivashuta S, Liu J, Liu J, Lohar DP, Haridas S, Bucciarelli B, VandenBosch KA, 
Vance CP, Harrison MJ, Gantt JS (2005) RNA interference identifies a 
calcium-dependent protein kinase involved in Medicago truncatula root 
development. Plant Cell 17:2911-2921

Iwata Y, Kuriyama M, Nakakita M, Kojima H, Ohto M, Nakamura K (1998)
Characterization of a calcium-dependent protein kinase of tobacco leaves that is 
associated with the plasma membrane and is inducible by sucrose. Plant Cell 
Physiol 39: 1176-1183

Jefferson R A  (1987) Assaying chimeric genes in plants: the GUS gene fusion system. 
Plant Mol Biol Rep 5: 387-405

Jeon JS, Lee S, Jung KH, Jun SH, Kim C, An G (2000) Tissue-preferential expression 
of a rice alpha-tubulin gene, OsTubAl, mediated by the first intron. Plant Physiol 
123: 1005-1014

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Kataoka N, Diem MD, Kim VN, Yong J, Dreyfuss G (2001) Magoh, a human homolog 
of Drosophila mago nashi protein, is a component of the splicing-dependent exon- 
exon junction complex. EMBO J 20: 6424-6433

Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit 
strand bias. Cell 115: 209-216

Kim VN, Yong J, Kataoka N, Abel L, Diem MD, Dreyfuss G (2001) The Y14 protein 
communicates to the cytoplasm the position of exon-exon junctions. EMBO J 20: 
2062-2068

Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis 
involves two cellular pools and a change in calcium signature after acclimation. 
Plant Cell 8: 489-503

Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis 
thaliana responding to drought and salinity. Plant J 12: 1067-1078

Le Hir H, Gatfield D, Braun IC, Forler D, Izaurralde E (2001a) The protein Mago 
provides a link between splicing and mRNA localization. EMBO Rep 2: 1119- 
1124

Le Hir H, Gatfield D, Izaurralde E, Moore MJ (2001b) The exon-exon junction
complex provides a binding platform for factors involved in mRNA export and 
nonsense-mediated mRNA decay. EMBO J 20: 4987-4997

Le Hir H^lzaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits 
multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. 
EMBO J 19: 6860-6869

Le Hir H, Nott A, Moore M J (2003) How introns influence and enhance eukaryotic 
gene expression. Trends Biochem Sci 28: 215-220

Lindzen E, Choi JH (1995) A carrot cDNA encoding an atypical protein kinase
homologous to plant calcium-dependent protein kinases. Plant Mol Biol 28: 785- 
797

Liu K, Sandgren EP, Palmiter RD, Stein A (1995) Rat growth hormone gene introns 
stimulate nucleosome alignment in vitro and in transgenic mice. Proc Natl Acad 
Sci U  S A  92: 7724-7728

Lojda Z (1970) Indigogenic methods for glycosidases. An improved method for beta-D- 
glucosidase and its application to localization studies on intestinal and renal 
enzymes. Histochemie 22: 347-361

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lu S, Cullen BR (2003) Analysis of the stimulatory effect of splicing on mRNA 
production and utilization in mammalian cells. RNA 9: 618-630

Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering 
RNA recognition by the PAZ domain. Nature 429: 318-322

Maquat LE, Carmichael GG (2001) Quality control of mRNA function. Cell 104: 173- 
176

Marella HH, Sakata Y, Quatrano RS (2006) Characterization and functional analysis 
of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens. 
Plant J 46: 1032-1044

Martin ML, Busconi L (2000) Membrane localization of a rice calcium-dependent
protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 
24: 429-435

Matsumoto K, Wassarman KM, Wolffe AP (1998) Nuclear history of a pre-mRNA 
determines the translational activity of cytoplasmic mRNA. EMBO J 17: 2107- 
2121

Mayeda A, Badolato J, Kobayashi R, Zhang MQ, Gardiner EM, Krainer AR (1999) 
Purification and characterization of human RNPS1: a general activator of pre- 
mRNA splicing. EMBO J 18: 4560-4570

McKenzie RW, Brennan MD (1996) The two small introns of the Drosophila
affinidisjuncta Adh gene are required for normal transcription. Nucleic Acids Res 
24:3635-3642

Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in 
a gene family of rice. Plant Physiol 138: 1903-1913

Mohr SE, Dillon ST, Boswell RE (2001) The RNA-binding protein Tsunagi interacts 
with Mago Nashi to establish polarity and localize oskar mRNA during 
Drosophila oogenesis. Genes Dev 15: 2886-2899

Morello L, Bardini M, Cricri M, Sala F, Breviario D (2006) Functional analysis of 
DNA sequences controlling the expression of the rice OsCDPK2 gene. Planta 
223: 479-491

Nott A, Le Hir H, Moore MJ (2004) Splicing enhances translation in mammalian cells: 
an additional function of the exon junction complex. Genes Dev 18: 210-222

Oancea E, Meyer T (1998) Protein kinase C as a molecular machine for decoding 
calcium and diacylglycerol signals. Cell 95: 307-318

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for 
activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810-812

Palomares AJ, DeLuca MA, Helinski DR (1989) Firefly luciferase as a reporter
enzyme for measuring gene expression in vegetative and symbiotic Rhizobium 
meliloti and other gram-negative bacteria. Gene 81: 55-64

Parker JS, Roe SM, Barford D (2004) Crystal structure of a PIWI protein suggests 
mechanisms for siRNA recognition and slicer activity. EMBO J 23: 4727-4737

Peitzsch RM, McLaughlin S (1993) Binding of acylated peptides and fatty acids to 
phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 32: 
10436-10443

Plesse B, Criqui MC, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of 
the polyubiquitin gene Ubi. U4 leader intron and first ubiquitin monomer on 
reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45: 655-667

Preall JB, Sontheimer E J (2005) RNAi: RISC gets loaded. Cell 123: 543-545

Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR (1994)
Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6: 1301-1310

Putnam-Evans CL, Harmon AC, Cormier M J (1990) Purification and characterization 
of a novel calcium-dependent protein kinase from soybean. Biochemistry 29: 
2488-2495

Reed R, H urt E (2002) A conserved mRNA export machinery coupled to pre-mRNA 
splicing. Cell 108: 523-531

Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of 
myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451: 1-16

Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases 
play an essential role in a plant defence response. EMBO J 20: 5556-5567

Rose AB (2004) The effect of intron location on intron-mediated enhancement of gene 
expression in Arabidopsis. Plant J 40: 744-751

Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single 
Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice 
plants. Plant J 23: 319-327

Sanders D, Brownlee C, Harper JF  (1999) Communicating with calcium. Plant Cell 
11: 691-706

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Schaefer D, Zryd JP, Knight CD, Cove DJ (1991) Stable transformation of the moss 
Physcomitrella patens. Mol Gen Genet 226: 418-424

Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella 
patens. Plant J 11: 1195-1206

Schaefer DG, Zryd JP (2001) The moss Physcomitrella patens, now and then. Plant 
Physiol 127: 1430-1438

2d-Sheen J (1996) Ca -dependent protein kinases and stress signal transduction in plants. 
Science 274: 1900-1902

Sivamani E, Qu R (2006) Expression enhancement of a rice polyubiquitin gene 
promoter. Plant Mol Biol 60: 225-239

Sleckman BP, Gorman JR, Alt FW (1996) Accessibility control of antigen-receptor 
variable-region gene assembly: role of cis-acting elements. Annu Rev Immunol 
14: 459-481

Snowden KC, Buchhholz WG, Hall TC (1996) Intron position affects expression from 
the tpi promoter in rice. Plant Mol Biol 31: 689-692

Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and 
miRNAs. Cell 122: 9-12

Spingola M, Grate L, Haussler D, Ares M, Jr. (1999) Genome-wide bioinformatic and 
molecular analysis of introns in Saccharomyces cerevisiae. RNA 5: 221-234

Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout 
reveals a role in plastid division for the homolog of the bacterial cell division 
protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci U S A 95: 4368-4373

Takahashi K, Isobe M, Knight MR, Trewavas AJ, Muto S (1997) Hypoosmotic shock 
induces increases in cytosolic Ca2+ in tobacco suspension-culture cells. Plant 
Physiol 113: 587-594

Takezawa D, Ramachandiran S, Paranjape V, Poovaiah BW (1996) Dual regulation 
of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin. J 
Biol Chem 271: 8126-8132

Towler DA, Adams SP, Eubanks SR, Toweiy DS, Jackson-Machelski E, Glaser L, 
Gordon JI (1988) Myristoyl CoA:proteinN-myristoyltransferase activities from 
rat liver and yeast possess overlapping yet distinct peptide substrate specificities. J 
Biol Chem 263: 1784-1790

Vagner S, Vagner C, Mattaj IW (2000) The carboxyl terminus of vertebrate poly(A)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



polymerase interacts with U2AF 65 to couple 3'-end processing and splicing. 
Genes Dev 14: 403-413

Wiegand HL, Lu S, Cullen BR (2003) Exon junction complexes mediate the enhancing 
effect of splicing on mRNA expression. Proc Natl Acad Sci U S A 100: 11327- 
11332

Yoon GM, Cho HS, Ha HJ, Liu JR, Lee HS (1999) Characterization of NtCDPKl, a 
calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of 
its encoded protein. Plant Mol Biol 39: 991-1001

Zhang M, Yuan T (1998) Molecular mechanisms of calmodulin's functional versatility. 
Biochem Cell Biol 76: 313-323

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Calcium-dependent protein kinases in Physcomitrella patens
	Recommended Citation

	tmp.1520441287.pdf.RaFCc

