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Casuarina Root Exudates Alter the Physiology, Surface Properties, and
Plant Infectivity of Frankia sp. Strain CcI3

Nicholas J. Beauchemin,a Teal Furnholm,a Julien Lavenus,b Sergio Svistoonoff,b Patrick Doumas,b* Didier Bogusz,b Laurent Laplaze,b,c

and Louis S. Tisaa

Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USAa; Institut de Recherche pour le Développement
(IRD), UMR DIADE (IRD/UM2), Montpellier, Franceb; and Laboratoire Commun de Microbiologie (IRD/ISRA/UCAD), Centre de Recherche de Bel-Air, Dakar, Senegalc

The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing
more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in
the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We
measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal
symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient condi-
tions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon
source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hy-
phal “curling” in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates al-
tered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform
infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed
to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These
data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.

Actinorhizal symbioses are mutualistic interactions that occur
between actinorhizal plants and the actinomycete genus

Frankia (27, 38). Frankia exists either in a free-living state in the
soil or in symbiosis with actinorhizal plants (2, 4, 31). Actinorhizal
plants consist of 8 different plant families, including over 200 dif-
ferent species of woody dicotyledonous trees and shrubs (31, 38,
42). The globally distributed actinorhizal plants are found on ev-
ery continent except Antarctica and are able to grow in a diverse
set of natural habitats, including arid lands, plains, tundra, and
temperate forests. Actinorhizal plants are pioneer plant species
that are able to grow in extremely nutrient-poor soil conditions
and, with the aid of Frankia, are able to reclaim surrounding soil in
disrupted environments. Actinorhizal plants are important in
agroforestry, in soil reclamation, and as a fuel source.

While actinorhizal symbiosis has been well studied at a mor-
phological level since the 1970s, very little is known about the
molecular interactions that occur between the plant hosts and
Frankia during the establishment of the association. The establish-
ment of the symbiosis encompasses the infection and nodulation
processes (23, 27, 38). In general, the bacterium needs to recognize
a host plant and the host needs to identify the bacterium as a
friend, not a foe. The bacteria enter the plant and establish the
association after several steps. The infection ultimately leads to the
formation of the mature nodule.

There is a paucity of information on the initial interactions
occurring between actinorhizal host plants and their symbiont,
Frankia, in the rhizosphere. In this study, we investigate whether
actinorhizal host plants excrete a chemical signal in the rhizo-
sphere that is perceived by Frankia and that changes its physiology
prior to infection. For this study, Casuarina cunninghamiana and
Frankia sp. strain CcI3 were chosen for several reasons. The
Frankia CcI3 genome is completely sequenced (22), and it repre-
sents a narrow-host-range symbiont. The relationship between
the plant host and symbiont, including the nodulation process, is

well studied (17, 18, 27, 35, 41). The purpose of this study was to
develop a system to identify chemical signaling between the mi-
crobe and its host plant.

MATERIALS AND METHODS
Growth media and culture conditions. Frankia strain CcI3 was grown
and maintained in basal MP growth medium with 5.0 mM NH4Cl as a
nitrogen source and 5.0 mM propionate as a carbon source at 28°C, as
described previously (33, 34). For some experiments, cells were grown in
BAP medium as described previously (26). For growth under nitrogen-
sufficient conditions, 5 mM NH4CL was added to either MP or BAP me-
dium. For growth under nitrogen-deficient conditions, N2 was the sole
nitrogen source.

Plant growth conditions. Casuarina cunninghamiana seeds were in-
cubated overnight in sterile tap water and surface-sterilized with 30%
hydrogen peroxide with 2 drops of Tween 20. Seeds were extensively
washed with sterilized deionized H2O (sdH2O). Surface-sterilized seeds
were germinated at 28°C with a 16-h light period and 8-h dark period in
Magenta GA-7 boxes with autoclaved perlite and one-quarter-strength
Hoagland’s modified basal salt solution (1/4 HS). Elaeagnus angustifolia
seeds were sterilized in 30% bleach. The treated seeds were extensively
washed with sdH2O and treated again with 30% H2O2. Seeds were germi-
nated in sterilized pebbles and 25 ml of 1/4 HS.

Conditions for production and collection of root exudates. At 7 to 12
days after seed germination, C. cunninghamiana and E. angustifolia seed-
lings were aseptically transplanted to a Brite-Kote aluminum screen in a
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Magenta GA-7 box suspended over 50 ml of 1/4 HS medium. For each
Magenta box, spent growth medium was replaced weekly with fresh, ster-
ile 1/4 HS medium. Root exudates were collected at 3 weeks, 1 month, and
2 months of plant growth and filter sterilized. At each point, root exudates
were collected over a 1-week period from these aged plants. The root
exudates were stored at �20°C until use. The same procedure was re-
peated with seedlings incubated in 50 ml without a source of nitrogen in
one-quarter-strength Hoagland’s solution [1/4 HS(N2); 22.5 �M
Na2EDTA, 22.5 �M FeSO4 · 7H2O, 0.5 mM MgSO4 · 7H2O, 0.5 mM
K2SO4, 0.625 mM CaSO4 · 2H2O, and Hoagland’s micronutrients, at a
final pH of 5.5]. Hoagland’s micronutrients contained 0.115 mM boric
acid, 0.08 �M CuSO4 · 5H2O, 2.3 �M MnCl2 · 4H2O, 0.19 �M ZnSO4, and
0.026 �M Na2MoO4 · 2H2O.

For root exudates collected from soil-grown plants, C. cunninghami-
ana seeds were sown into soil and incubated at 25°C on a 16-h light cycle
for 2 months. After the seedlings were washed in tap water and sdH2O,
they were aseptically transferred to 15-ml culture tubes containing 14 ml
of 1/4 HS medium. After a 1-week acclimation period, root exudates were
collected and filter sterilized. For plants under nitrogen-deficient condi-
tions, the process was repeated with 1/4 HS(N2) medium.

Plant nodulation studies. After C. cunninghamiana seeds were germi-
nated and seedlings were placed in Magenta boxes containing 5 seedlings,
as described above, plants were incubated at 28°C with a 16-h light period
for 2 weeks in 1/4 HS(N2) medium. In order to be used as an inoculum,
14-day-old Frankia sp. CcI3 cultures grown in MP medium with 5.0 mM
NH4Cl and 5.0 mM propionate were harvested and washed 2 times with
10 ml of 1/4 HS(N2) medium to remove all traces of nitrogen. The washed
cells were resuspended in a 25-ml solution of aqueous root exudates or 1/4
HS(N2) medium (the control) and incubated at 28°C for 6 days. The
treated Frankia suspensions were adjusted to equivalent final protein con-
centrations (60 �g/ml) in 1/4 HS(N2) medium. Spent plant growth me-
dium was decanted from each Magenta box and replaced with 50 ml of the
Frankia suspension. Control boxes contained 50 ml fresh 1/4 HS(N2)
medium. After inoculation, the plants were incubated at 25°C with a 16-h
light period and plant growth medium was replaced weekly for the dura-
tion of the experiment. The plant roots were monitored daily for nodule
formation. Both the number of plants with nodules and the total number
of nodules formed were recorded.

Experiments on the effect of root exudate exposure on Frankia
physiology. A 24-well growth assay was used to determine the effects of
root exudates on Frankia growth and physiology as described previously
(10). Briefly, cells were grown in MP medium for 14 days and growth was
measured by total cellular protein content or total cellular dry weight as
described below. Growth yield was determined by subtracting the protein
or dry weight content of the inoculum.

Total cellular protein and dry weight determination. Protein con-
tent was measured by the bicinchoninic acid (BCA) method (32). Total
cellular dry weight was determined using tarred polycarbonate mem-
branes (34).

Measurement of total phenolic and flavonoid content. The total phe-
nolic content of root exudates was measured by a modification to the
Waterhouse method (40). Root exudates (25 �l) were added to 125 �l
Folin-Ciocalteu reagent, and samples were mixed by agitation with a
Vortex-Genie 2. After the mixture was incubated for 5 min, 375 �l of 20%
sodium carbonate and 475 �l of H2O were added to each sample. The
samples were mixed and incubated at room temperature (RT) for 2 h.
Phenolic content was determined by measuring the A760 on a UV-2401 PC
spectrophotometer, with Gallic acid as a standard (10 to 200 �g/ml).

Flavonoid content of root exudates was determined by a modification
of the method used by Chang et al. (5). Root exudate samples (300 �l)
were added to 900 �l of 95% ethanol, 60 �l of 10% aluminum trichloride,
and 60 �l of 1 M potassium acetate. The reaction mixtures were mixed
and incubated at RT for 30 min. Flavonoid content was determined by
measuring the A415 on a UV-2401 PC spectrophotometer, with quercetin
as a standard (10 to 200 �g/ml).

GC. The volatile organic acid (C2 to C5 acids) content of root exudates
was measured by gas chromatography (GC) and the use of an 80/120
carbopack column (14). Root exudate samples (1 �l) were injected into
the HP6890 gas chromatograph fitted with an 80/120 carbopack B-DA
Carbowax 20 M packed column and flame ionization detector. The fol-
lowing GC parameters were used: injector port temperature of 200°C,
column temperature of 175°C, column N2 carrier flow rate of 24 ml/min,
and flame ionization detector temperature of 200°C. The retention time
and area under the peak of the samples were analyzed and compared to
those of the volatile acids standards (retention time [min]/area [pA · s],
mM): formic acid (0.654/106.5, 10 mM), acetic acid (1.722/1,562, 10
mM), propionic acid (3.377/2,490, 10 mM), isobutyric acid (5.706/2,414,
10 mM), butyric acid (7.4/2,738, 10 mM), isovaleric acid (13.9/2,410, 10
mM), and valeric acid (17.3/2,481, 10 mM).

Ammonium and nitrate measurements. Ammonium content in root
exudates was determined by the indophenol blue assay (6), with NH4Cl
(0.01 to 0.5 �g/ml) as a standard. Nitrate content in root exudates was
determined spectrophotometrically as previously described (15), with
KNO3 (0.01 to 0.2 mM) as a standard.

Microscopy of Frankia cultures. Photomicroscopy of Frankia cul-
tures was performed by the agar method of Pfenning and Wagener (28).
Cultures were observed under phase-contrast microscopy at �400 mag-
nification.

Congo red dye binding assay. Bacterial surface property changes were
measured by a modification of the Congo red dye binding assay (8).
Frankia cultures were incubated in MP growth medium at 28°C for 11
days. At day 11, 10 �l of Congo red (10 mg/ml) was added to the 1-ml
culture. After 3 more days of incubation at 28°C, Frankia mycelia were
collected by centrifugation at 13,000 � g for 10 min and washed 3 times
with sdH2O. The washed cells were resuspended in 200 �l acetone and
incubated with shaking for 2 h at RT. Acetone was separated from the
debris by centrifugation at 13,000 � g for 10 min and transferred to a flat,
transparent 96-well plate. The Congo red concentration was determined
by measuring the A488.

Fourier transform infrared spectroscopy (FTIR). For these experi-
ments, 5-day-old cultures were harvested by centrifugation at 13,000 � g
for 10 min and washed 3 times in sdH2O. The washed cells were frozen at
�80°C and lyophilized for 48 h. FTIR was performed as described previ-
ously (10). Briefly, FTIR spectra were determined from three biological
replicates on a diamond attenuated total reflectance (ATR) Nicolet iS10.

Statistical analysis and reproducibility. Statistical tests were per-
formed using JMP software utilizing analysis of variance (ANOVA), Dun-
nett’s test, or Student’s t test. The significance threshold was set at a P value
of 0.05. Experiments were performed in triplicate with the use of three
biological replicates.

RESULTS AND DISCUSSION
Production of aqueous root exudates and general properties.
Although previous studies on root exudates have used solvent-
extracted samples, aqueous root exudates were chosen for use in
this study (1, 13, 29). Root exudates from plants grown under
nitrogen-deficient and nitrogen-sufficient conditions were col-
lected from both 2-month-old soil-grown plants and 3 week-, 1
month-, and 2-month-old axenically grown plants. The soil- and
axenically grown C. cunninghamiana root exudates contained
similar levels of phenolic (2.0 to 4.9 �g/ml) and flavonoid (9.9 to
18.6 �g/ml) compounds (data not shown). Flavonoid compounds
have been identified from extracts of Alnus glutinosa, Myrica gale,
and Casuarina glauca (1, 29). Although flavonoid compounds
were detected in the C. cunninghamiana root exudates, we did not
want to exclude other possible plant-signaling molecules and used
aqueous extracts throughout this study. Besides phenolic and fla-
vonoid content, the root exudates were analyzed for ammonium
and nitrate content. All of the root exudates collected under
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nitrogen-deficient conditions contained ammonium concentra-
tions below detectable levels and 0.04 to 0.07 mM nitrate concen-
trations, while root exudates collected under nitrogen-sufficient
conditions had ammonium concentrations ranging from 0.14 to
0.45 �g/ml and nitrate content concentrations below detectable
levels. The root exudates were also analyzed for C2 to C8 organic
acids by gas chromatography (GC). For 3-week-old axenic plants,
acetic and propionic acid were found in the root exudates at very
low concentrations (0.25 to 0.9 mM and 0.03 to 0.17 mM for acetic
and propionic acids, respectively). For the older plants (axenic
and soil-grown), the acetic and propionic acid contents of the root
exudates were below the detection limits of the instrument. These
levels may be insufficient to support growth of Frankia. A small
amount of formic acid was identified in 3-week-old axenic root
exudates collected under nitrogen-deficient conditions. Isobu-
tyric, butyric, isovaleric, and valeric acids were not found in the
axenic root exudates.

Effect of root exudates on Frankia CcI3 growth. The effect of
C. cunninghamiana root exudates on Frankia CcI3 cell growth was
tested, and growth yield was determined by total cellular protein

after 14 days (Fig. 1A). In growth medium devoid of a carbon
source, root exudates were unable to support the growth of
Frankia CcI3. Under these conditions, the protein content was
lower and significantly different than that of the inoculum (data
not shown). This protein reduction was proportional to the con-
centration of root exudates, suggesting an inhibitory effect under
these conditions. In the presence of an additional carbon source
(propionate), the addition of root exudates caused an increase in
growth yield. Two-month-old soil-grown C. cunninghamiana
root exudates caused a 1.8-fold increase in protein yield (Fig. 1A).
Similar growth yield results were obtained for all of the root exu-
dates. Supplementing the growth medium with nitrogen did not
reduce Frankia’s growth response to root exudates (data not
shown). This suggests that the nitrogen content of the root exu-
dates was not a significant factor in the enhanced growth. These
results show that Frankia CcI3 was unable to utilize C. cunningha-
miana root exudates as a sole carbon and energy source for
growth, but growth in the presence of an exogenous carbon source
was enhanced when supplemented with root exudates.

Growth yield was also determined by measuring cellular dry

FIG 2 Hyphal curling response of Frankia CcI3 upon exposure to host root exudates. Frankia CcI3 cells incubated for 14 days in propionate-MP medium
containing 1/4 HS(N2) medium (control) (A), soil-grown 2-month-old (nitrogen-sufficient) C. cunninghamiana root exudates (B), or axenic 1-month-old
(nitrogen-deficient) C. cunninghamiana root exudates (C). Cultures were observed under phase-contrast microscopy at a magnification of �400. Bar, 10 �m.
Arrows point to regions showing curling effects.

FIG 1 The effect of C. cunninghamiana root exudates on Frankia CcI3 growth yield. (A) Effect of root exudates from 2-month-old soil-grown C. cunninghamiana
plants on growth yield, as measured by protein content. (B) Effect of one-half-strength root exudates from axenically grown C. cunninghamiana plants on Frankia
CcI3 growth yield, as determined by total cellular dry weight. Root exudates were collected over 1-week time periods for the different ages of plants, as described
in Materials and Methods. Frankia was grown with propionate-MP medium supplemented with root exudates. Control conditions contained 1/4 HS(N2)
medium. After 14 days, cellular protein content or cellular dry weight was determined as described in Materials and Methods and corrected for the inoculum
value. A control Dunnett’s test was used to determine statistical significance. �, P value of less than 0.05.
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weight (Fig. 1B). In the presence of a carbon source, 3-week-old
axenic C. cunninghamiana root exudates caused an 8-fold increase
in the total dry weight yield. One-month-old axenic root exudates
produced a 6-fold increase in growth yield. The overall patterns of
the dry weight results were similar to those of the total protein
results: Frankia growth was enhanced by the addition of C. cun-
ninghamiana root exudates. However, the growth yields for total
mass (dry weight yield) showed a larger fold increase than those
measured for protein yield. These results would suggest that the
root exudates influence Frankia physiology by affecting cellular
components beyond total protein levels. Our results with aqueous
root exudates confirm previous studies on flavonoid effects on the
growth of Frankia with methanol extracts or purchased phenolics
(25, 29, 37). Although aqueous root exudates alone did not sup-
port Frankia growth, plant compounds in the root exudates en-
hanced the growth of Frankia. This effect suggests that C. cunning-

hamiana aqueous root exudates provide a growth nutrient or
plant-signaling compound(s) influencing Frankia physiology.

We tested whether this effect could be mimicked by flavonoids
known to be involved in Rhizobium-legume symbiosis and to af-
fect Rhizobium growth in vitro (7). The addition of 1 �M luteolin,
chrysin, or naringenin to BAP medium did not cause an increase
in Frankia growth yield compared to that of the control culture
without flavonoids (data not shown). Hence, the stimulating ef-
fect of C. cunninghamiana root exudates on Frankia growth was
not due to any of these flavonoid molecules that are known to be
active on rhizobia.

Root exudates cause hyphal curling. Since C. cunninghamiana
root exudates affected growth of Frankia CcI3, their effects on cell
morphology were investigated. Frankia cultures exposed to root
exudates of 2-month-old soil-grown plants (Fig. 2B) or root exu-
dates of 1-month-old axenic plants (Fig. 2C) exhibited a hyphal
curling response. The tips of the hyphae were bent or curled. Con-
trol cells did not exhibit hyphal curling (Fig. 2A). Hyphal curling
was induced by root exudates collected under nitrogen-deficient
and -sufficient conditions. Root exudates collected from the same
plants at different ages also induced the response but did not show
an age-dependent response (data not shown). The curling re-
sponse by Frankia CcI3 was specific for root exudates from its host
plant. Frankia CcI3 did not respond upon exposure to E. angusti-
folia (a nonhost actinorhizal plant) root exudates (data not
shown). The hyphal curling could be an in vitro observation of a
chemotrophic response and/or changes to Frankia surface prop-
erties. Root exudates from legumes are a chemoattractant for mo-
tile Rhizobium bacterium, but Frankia is a nonmotile bacterium
(12, 31). Frankia CcI3 grows in the rhizosphere of C. cunningha-
miana, which suggests that a chemotrophic response is possible,
but it has not yet been studied (20, 36, 37).

Changes in Frankia surface properties. During the analysis of
Frankia growth, we noticed that cells exposed to root exudates
were more difficult to pellet than control cells, suggesting a change
in their surface properties. Dye absorption changes have been
used extensively to investigate bacterial surface property changes
(8, 19, 24). Cell surface changes in mycobacteria are detected by

FIG 3 Effect of exposure to host root exudates on Frankia CcI3 Congo red
binding. Cultures were incubated for 14 days in propionate-MP medium sup-
plemented with axenic (nitrogen-deficient) C. cunninghamiana root exudates
or 1/4 HS(N2) medium (control). Congo red dye was added during the last 3
days of incubation and treated as described in Materials and Methods. A con-
trol Dunnett’s test was used to determine statistical significance. �, P value of
less than 0.05.

FIG 4 Effect of host root exudates on the FTIR spectra of Frankia CcI3. Cultures were incubated for 5 days in propionate-MP medium containing 2-month-old
soil-grown C. cunninghamiana root exudates (pink) or 1/4 HS(N2) medium (control) (black). After incubation, the cultures were collected and treated as
described in Materials and Methods. FTIR scans of lyophilized cells were taken, and the averaged scans are presented (n � 3). Numbers in the figure represent
areas of change and correspond to specific chemical signatures of fatty acids (1), fatty acids and proteins (2), and cell wall carbohydrates (3). Areas of change were
determined by the variance of individual conditions.
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Congo red dye, which binds to lipids and lipoproteins (3). Congo
red binding was used to identify any broad changes to Frankia
surface properties in response to host root exudates. Exposure of
Frankia CcI3 to axenic C. cunninghamiana root exudates reduced
Congo red binding compared to that of the control cells (Fig. 3).
These results imply that the lipid or lipoprotein content of the
Frankia CcI3 cell surface changed in response to host root exu-
dates.

To further examine surface property changes, FTIR analysis
was used to characterize the general types of molecules present in
microbes based on specific wavenumber areas (21, 39). FTIR spec-
tra were collected for Frankia CcI3 cells exposed to host root ex-
udates and control cells (Fig. 4). Exposure to root exudates caused
several changes in the spectral pattern. Specific changes in the
wavenumber regions of 2,850 to 2,960 cm�1, 1,370 to 1,400 cm�1,
and 906 to 1,170 cm�1 indicate alterations in fatty acids, fatty acids
and proteins, and cell wall carbohydrates, respectively. The bacte-
rial fingerprint region (600 to 900 cm�1) was also altered by root
exudate exposure. However, root exudate exposure did not alter
the spectra in the regions of the protein peaks (1,600 and 1,500
cm�1) and the H2O peak (3,200 cm�1). These spectral changes
were observed for cells grown with root exudates from nitrogen-
deficient plants cultivated in soil or under axenic conditions. The
average spectral changes were conserved in cells grown with root
exudates collected under nitrogen-sufficient conditions, but the
variance was too large to determine if they were statistically signif-
icant.

Altogether, the Congo red and FTIR assay results, as well as the
observed change in the ability of cells to be pelleted, provide sev-
eral lines of evidence to indicate that surface property changes
occurred in response to plant host nutrients and/or signaling
compounds in addition to the observed change in the ability of
cells to be pelleted. Because of the intimate nature of the intracel-
lular infection pathway between Frankia CcI3 and C. cunningha-
miana, surface property changes in Frankia were expected in re-
sponse to infection and nodulation events. The lipid and
carbohydrate surface property changes seen in this study are sim-
ilar to those of other host-microbe recognition systems that were

deemed necessary for many pathogenic and symbiotic infection
pathways (9, 16, 30). Although the specific type of molecules being
produced remains unknown, these changes could be used as tools
to identify the corresponding compound(s) and its structure.

Root exudate exposure influences plant nodulation. Since
surface property changes suggest major modifications in the bac-
terial exterior, we asked whether the changes in Frankia surface
properties in response to root exudates correlated with effects on
plant-microbe interactions. Frankia cultures were preexposed to
axenic C. cunninghamiana root exudates (nitrogen-deficient) or
1/4 HS(N2) medium for 6 days without an additional carbon
source. Figure 5A shows the time course for nodulation. The data
presented are the averaged percentages of plants with nodules
from three independent experiments. Plants inoculated with
Frankia CcI3 cells pretreated with host root exudates produced
their first root nodules 15 days after inoculation, while those in-
oculated with control cells initiated nodule formation at day 19.6
(Fig. 5B). The frequency of nodulation increased over time, reach-
ing 60% and 55% for treated and control cells, respectively. There
was no difference in the number of nodules produced per plant
between the pretreated cultures and the control (data not shown).
Here, we report that preexposure to root exudates allowed Frankia
to nodulate host plants earlier than untreated cells, suggesting that
physiological changes to Frankia from host root exudate exposure
were beneficial to the infection and nodulation process. This re-
sult is in agreement with the observed reduction in nodulation
time by Frankia sp. strain BCU110501 under plant crowding con-
ditions, perhaps due to an increase of the signaling molecule(s) in
root exudates (11). We still do not know what changes in Frankia
physiology allow for symbiosis with the plant, but it is clear that
the observed physiological changes benefit the infection and nod-
ulation process. Future studies will establish what changes are the
most beneficial.
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