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ABSTRACT

PATTERNS AND PROCESSES OF SOIL CARBON DYNAMICS IN A 

NORTHEASTERN UNITED STATES FOREST

by

Sarah K. Silverberg 

University of New Hampshire, September, 2006

Forest soils represent a substantial component of the terrestrial carbon cycle and 

are an important research area for a number of carbon cycle science initiatives.

Whereas patterns of aboveground productivity have been relatively well measured and 

are increasingly included in regional-scale model analyses, belowground estimates are 

still highly uncertain and progress has been hampered by methodological difficulties.

The lack of data poses a problem because belowground measurements are needed to 

create complete carbon budgets for terrestrial ecosystems at local, regional and global 

scales. Ecosystem carbon balances will help identify how and where carbon is being 

stored, as well as how carbon storage may change as forests recover from past 

disturbance or transition into different forest types as a result of climate changes.

In this study, I examined patterns of soil respiration and belowground carbon 

allocation at the Bartlett Experimental Forest, a north temperate forest landscape located 

in New Hampshire, USA. Soil respiration was measured at a total of 24 plots spanning a 

range of site and vegetation conditions. Total belowground carbon allocation (TBCA)

xi
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was estimated using a mass balance approach as the difference between soil respiration 

and aboveground litterfall. Soil respiration and TBCA were compared with 

measurements of nitrogen mineralization, leaf chemistry and various site characteristics 

in order to explain spatial and temporal variation and to extend discrete daily 

measurements to annual fluxes.

Across sites, instantaneous measurements of soil respiration were significantly 

correlated with soil temperature, N mineralization, foliar nitrogen and the foliar 

lignin:nitrogen ratio, although the majority of the observed variation was explained by soil 

temperature alone. Across all sites, the soil temperature response was best fit with a 

Lloyd and Taylor function, which was used to extrapolate measurements to annual soil 

respiration fluxes. Annual soil respiration was inversely related to N mineralization and 

positively correlated to LAI across sites. Estimated total belowground carbon allocation 

ranged from 505 g C m'2yr"1 to 711 g C m ' 2 yr'1 and was inversely related to 

aboveground litter inputs. Belowground carbon allocation was also related to foliar 

lignin, cellulose, and lignin:nitrogen ratios. These results have increased our 

understanding of soil carbon dynamics at Bartlett, and some relationships may prove 

useful in extending plot relationships over the landscape through remote sensing 

techniques.

XII
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CHAPTER I

INTRODUCTION

Background

Carbon dioxide concentrations in the Earth's atmosphere have increased 

substantially since the onset of the industrial revolution, from 280ppm before the 

industrial revolution to 367ppm in 1999 (IPCC 2001). It is also well documented that 

current C 02 levels are well outside the realm of natural variability as seen in ice core 

records of the past 420,000 years and most likely the past 20 million years (Figure 1; 

IPCC 2001). Increases of C 02 in the atmosphere is a direct result of increased 

emissions from fossil fuel burning and land use change, primarily deforestation (CCSP 

2004-2005).
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Figure 1. Changing C 02 concentrations in the atmosphere over the last 1,200 years as estimated from ice 
core data and the Mauna Loa Curve (red line) (IPCC 2001).

Recent estimates indicate that C 02 emissions equal 6300 Pg C yr"1 (CCSP 2004-

2005), with only 760 Pg C being stored in the atmosphere, the remainder of which is 

sequestered by either Earth’s oceans or terrestrial ecosystems (Kump et al. 2004). The
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flux of C from the atmosphere to the biosphere is estimated at -1.4±0.7 Pg C y~1 (IPCC 

2001). This estimate, however, does include fluxes from the biosphere back to the 

atmosphere due to changes in land use, thus reducing overall carbon sink strength 

(IPCC 2001).

Since the release of the 2001 IPCC report, there has been growing recognition 

that reductions of C 02 and other greenhouse gases in the atmosphere are essential to 

mitigating future climate changes. These reductions could come from either (1) 

reduction of carbon emissions at their source and/or (2) increasing the rate of carbon 

sequestration through biological or engineering solutions. The latter is the focus of 

current U.S. policy (CCSP 2004-2005). Ultimately:

“Successful carbon management strategies will require solid scientific information 

about the processes of the carbon cycle and an understanding of its longer-term 

interactions with other components of the Earth system, such as climate and the 

water and nitrogen cycles” (CCSP 2004-2005).

The necessity for further scientific knowledge and a better understanding of the carbon 

cycle has led to numerous plans, programs and committees dedicated to this task. The 

North American Carbon Program was designed specifically under these goals.

North American Carbon Program (NACP)

The North American Carbon Program (NACP) outlines the implementation of a 

principal recommendation made by the U.S. Carbon Cycle Science Plan (Sarmiento and 

Wofsy, 1999). The focus of the NACP is on carbon-containing gases and carbon stocks 

in North America and adjacent ocean basins in order to address societal concerns and 

provide a complete and accurate scientific assessment to inform policy and 

management decisions (Wofsy and Harriss 2002). The NACP has three major research 

goals:

2
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• Develop quantitative scientific knowledge, robust observations, and models to 

determine the emissions and uptake of C 02, CH4, and CO, the changes in 

carbon stocks, and the factors regulating these processes for North America and 

adjacent ocean basins.

• Develop the scientific basis to implement full carbon accounting on regional and 

continental scales. This is the knowledge base needed to design monitoring 

programs for natural and managed C02 sinks and emission of CH4.

• Support long-term quantitative measurements of sources and sinks of 

atmospheric C02 and CH4, and develop forecasts for future trends.

The NACP has three components geared toward reaching these goals: atmospheric 

monitoring, observations to delineate land and ocean based sinks and sources, and data 

synthesis and integration into newly developed models. The land measurement 

scheme, of which the present study is a part, aims to use high frequency, small-scale 

measurements such as those from eddy covariance flux towers (Tier 1) in conjunction 

with lower intensity plot-level observations and remote sensing across landscapes (Tier 

2 & 3, 4) (Table 1; Denning 2005; Wofsy and Harriss 2002).

Table 1. Multi-tiered approach of the NACP terrestrial measurements focused on full carbon accounting 
(Denning 2005; Wofsy and Harriss 2002).

4m Tier
Mapping and 
Remote Sensing

3™ Tier
Extensive Inventory 
(FIA and NRI)

2na Tier
Medium-lntensity
Sample

1st Tier
Intensive sites 
(e.g., Ameriflux)

# of sites >10' 10b 10J 10^
Frequency 10days-annual 5-10 years Annual Continuous

Example Data 
Elements
Land cover class X X X X
Leaf area index X X X X
Live biomass X X X X
Land cover change X X X
Wildfire disturbance X X X
Climate variability X X
Soil CO2 flux X X
Methane flux X X
Dissolved organic C X
Ecosystem CO2 flux X

3
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In addition to the NACP, parallel programs exist in Europe, Australia and Japan. All 

programs are designed to gain the best scientific understanding of the carbon cycle and 

ultimately climate change.

Soils and the Carbon Cycle

Terrestrial soils represent a critical component of the global carbon cycle and 

are the largest flux of carbon in terrestrial ecosystems, after gross primary production 

(GPP) (Janssens et al. 2001). On a global scale soils store 1500-1600 Pg C, nearly 

three-quarters of total terrestrial carbon (C) stock, and are second only to the deep 

ocean as long-term C reservoirs (Bowden et al. 2004; Johnston et al. 2004). Given their 

importance, understanding soil carbon fluxes and how they change spatially and 

temporally along ecosystem gradients is essential to assessing interactions between 

terrestrial systems and the atmosphere.

Although uncertainties remain, aboveground components of the terrestrial carbon 

cycle have been relatively well studied and patterns of aboveground net primary 

productivity (ANPP) are predicted with increasing accuracy by models. ANPP for forests 

globally, ranges from 500 g m'2 y"1 to 2000 g m'2 y"1 and estimates continue to improve 

as a combination of methods including field campaigns, modeling and remote sensing 

are employed (Jang et al. 1996; Raich 1998; Fehse et al. 2002; Ollinger et al. 2002a; 

Ollinger & Smith 2005). By contrast, our understanding of belowground carbon cycling 

has lagged far behind. Although the number of studies measuring total C 02 flux from 

the soil has recently increased, individual components of the belowground carbon cycle 

remain poorly understood.

Total soil respiration is most often defined as the sum of heterotrophic and 

autotrophic respiration, derived from three sources: respiration by living roots and their 

associated mycorrhizal fungi, microbial respiration produced by decomposing

4
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aboveground litter, and microbial respiration of belowground litter (Sulzman et al. 2005). 

Two of these sources—respiration of live tissues and decay of belowground litter—result 

from belowground carbon allocation by plants. As a result, total belowground carbon 

allocation (TBCA) can often be estimated as the difference between total soil respiration 

and carbon inputs from aboveground litter (Raich & Nadelhoffer 1989; Ryan 1991; 

Davidson et al. 2002a; Giardina & Ryan 2002). TBCA estimation uses a carbon balance 

approach based on the conservation of mass, which requires soil C pools to be at or 

near steady state. The allocation of C belowground for use by plant structures is an 

extremely important component of the total carbon cycle in terrestrial ecosystems 

(McDowell et al. 2001), and together with soil respiration represents a major portion of 

ecosystem carbon budgets.

It has long been understood that the quantity of C released through soil 

respiration is influenced by a number of factors including soil temperature and moisture, 

soil substrate, inputs to the soil through litterfall, and activities within the soil including 

root and microbial biomass, production and respiration (Singh & Gupta 1977). However, 

models of soil respiration have traditionally only included soil temperature-dependent 

relationships, although many studies have suggested the importance of soil moisture 

(Davidson et al. 1998; Sato & Seto 1999; Savage & Davidson 2001; Subke et al. 2003; 

Tang & Baldocchi 2005). A variety of temperature response functions have been 

developed, including exponential Q10 and Arrehnius-like models such as Lloyd and 

Taylor (1994), but none have been able to capture all of the variation within and between 

sites on interannual time scales (Buchmann 2000; Hibbard et al. 2005; Davidson et al.

2006). Recently, several studies have tried to evaluate relationships between soil 

respiration and a variety of ecosystem parameters in order to better understand 

belowground carbon allocation and to allow construction of models that will come closer 

to accurately predicting total ecosystem carbon budgets (Giardina et al. 2003; Campbell

5
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et al. 2004; Litton et al. 2004a; Davidson et al. 2006). However, a number of these 

studies have reached contradictory conclusions, prompting the need for additional 

research.

In one study, soil respiration was found to be, on average, 10% lower in 

coniferous forests than broad-leaved deciduous forests (Raich and Tufekcioglu 2000). 

Vegetation type also explained 35% of the variation in soil respiration at an experimental 

site in Poland (Laskowski et al. 2003). However, these results were in contrast to an 

earlier study where no significant differences were found between forest types (Raich & 

Potter 1995). Similarly, many studies have found a strong association between soil 

respiration and litterfall across mature forest ecosystems globally (Raich & Nadelhoffer 

1989; Nadelhoffer & Raich 1992; Raich & Tufekcioglu 2000; Davidson et al. 2002a), 

although this trend is not always observed at local scales where the range of variation is 

narrower (Davidson et al. 2002a; Giardina & Ryan 2002). Although Giardina and Ryan 

(2002) found that the globally derived equations for estimating TBCA by Raich and 

Nadelhoffer (1989) yielded generally poor predictions for a tropical forest plantation, the 

authors noted that predictions improved as the stands matured. Aboveground biomass 

has been correlated to annual soil respiration in at least one study (Campbell et al.

2004), but is generally considered to be a poor predictor of flux and partitioning in forests 

because most of the carbon stored in biomass pools (e.g. tree boles) is biologically inert 

(Litton et al. In Review). LAI has also been correlated with total belowground carbon 

allocation and has been suggested as a possible surrogate for other forest variables 

(Litton et al. 2004; Martin & Bolstad 2005; Reichstein et al. 2003).

Several studies have also examined a variety of belowground factors that can 

influence soil respiration such as soil texture and aeration, substrate quantity and quality 

(organic C availability), root and mycorrhizal biomass, production and respiration, and 

nutrient availability. Davidson et al. (2006) recently suggested that substrate availability

6
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to microbes involved in soil respiration might be the largest overlooked factor in 

accurately estimating soil respiration on greater spatial and temporal scales. Nutrient 

availability has also been shown to be important in the few studies where it has been 

considered. Allocation theory was described by Giardina et al. (2003) and suggests that 

the alleviation of nutrient limitations to plant growth allows a shift of carbon allocation 

away from roots and mycorrhizae to leaves and stems. Fertilization experiments have 

shown an overall decrease in TBCA on plots with greater nitrogen (N) availability, likely 

due to greater aboveground allocation, resulting in greater litter inputs (Naynes & Gower 

1995; Giardina et al. 2003), but soil respiration responses differed between the two sites. 

A post fire lodge-pole pine site showed that C allocation patterns were independent of 

gradients in N availability (Litton et al. 2004), while allocation to belowground production 

increased with N across nine temperate forests (Nadelhoffer et al. 1985). A review study 

also found that greater nutrient availability increased partitioning to aboveground 

components while decreasing partitioning to belowground ecosystem components 

(Litton et al. In Review).

Although the studies mentioned above include a wide variety of factors, there is 

considerable variability in factors of importance at both local and regional levels. Further 

investigation into ecosystem variables mentioned here, and their influence on 

belowground carbon cycling, is necessary to complete carbon budgets and improve 

models.

The purpose of the present study was to examine the patterns and processes of 

soil carbon dynamics across a diverse temperate forest landscape. The NACP land 

based objective guiding this research is: “[To] provide the information on plant and soil 

components of ecosystem carbon fluxes necessary to understand and interpret larger 

scale regional and continental fluxes” (Wofsy and Harriss 2002). This study was 

conducted at the Bartlett Experimental Forest in north-central New Hampshire, a mixed-

7
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temperate forest landscape that spans a variety of forest types and site conditions. The 

primary objectives were 1) to quantify and understand soil carbon fluxes, including soil 

respiration and belowground C allocation, across a range of site types, and 2) to 

examine how these soil carbon components are linked to other ecosystem parameters 

such as soil nitrogen transformations, foliar chemistry and climatic variables.

8
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CHAPTER II

METHODS 

Study Area

The Bartlett Experimental Forest (BEF) was established in 1931 as a long-term 

research site managed by the USDA Forest Service. It is located (N 44.05, W -71.29) 

within the White Mountain National Forest in north central New Hampshire, USA (Figure 

2a & 2b). BEF is 1052 ha of secondary successional deciduous and coniferous forest 

including forest types representative of the larger White Mountain National Forest and 

northeast region: northern hardwood [sugar maple {Acer saccharum Marsh), beech 

{Fagus grandifolia Ehrh.), yellow birch (Betula alleghaniensis Britton)], red spruce- 

balsam fir (Picea rubens Sarg. -  Abies balsamea (L.) Carr.), and red oak-white pine 

(Quercus rubra L. -  Pinus strobus L.) (Smith & Martin 2001). Topography is varied, 

ranging in elevation from 210 m-915 m with a northeasterly aspect. Soils are coarse- 

textured inceptisols and spodosols, being typically moist and well drained. They are 

derived from granitic drift, and range from shallow bedrock and sandy sediments to 

washed ablational tills and basal tills (Leak 1982). Climate in this region is characterized 

by warm summers, a short growing season, and cold winters; temperatures can range 

from -34°C to 32°C in January and July, respectively. Precipitation is evenly distributed 

throughout the year, averaging 120 -  140 cm per year, with about one-third of it in the 

form of snow (Smith & Martin 2001). Snowpack can reach up to 180 cm before spring 

melt occurs.
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At its establishment in 1932 a regular grid of 500 permanent forest inventory 

plots 0.1 ha in size were set up on east-west transects 200 m apart with a plot every 100 

m (Figure 2c). Four full measurements of the inventory plots have been completed to 

date, 1931-1932, 1939-1940, 1991-1992 and 2001-2003 as well as numerous other 

partial grid measurements. These inventories included the measurement of all trees > 2 

in DBH. The entire area has a history of logging, but approximately 45% of the plots 

have remained uncut since 1890. The remaining plots have been subjected to various 

harvest treatments that are typical to those performed throughout the region.

Natural disturbances also play a large role in the current forest structure. On 

record, there was a late 19th century fire, severe wind damage from hurricanes in 1938 

and 1954, ice storm damage in 1998 and beech scale-Nectria complex that has caused 

significant mortality in beech beginning as early as the 1940s. Other pests and invasive 

species such as hemlock wooly adelgid, emerald ash borer and Asian long horned 

beetle have the potential to threaten forest integrity in the future.

In addition to full grid measurements, intensive plot measurements on a fifty-plot 

subset were initiated in 1995 in conjunction with the start of hyperspectral remote 

sensing studies geared toward the detection of biogeochemical cycling and ecosystem 

productivity (Ollinger et al. 2002b; Smith et al. 2002). Measurements on this subset 

included foliage height, canopy structure and foliar chemistry. A smaller subset of 18 

plots contained more detailed measures: foliar production, leaf area index, and soil 

nitrogen cycling (nitrification, mineralization, and C:N ratios) (Smith et al. 2003). In 

November 2003 an eddy covariance flux tower to record continuous C 02, water vapor, 

and energy flux was erected as part of the Ameriflux network. Ongoing studies are 

focused on adherence to both the Ameriflux and NACP protocols.

10
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Figure 2. Location of the Bartlett Experimental Forest A) in relation to other northeast experimental 
monitoring sites and B) nested in the White Mountain National Forest of New Hampshire. C) Bartlett 
includes a set of permanent Forest Inventory Plots as well as new plots designed under the NACP 
framework (12 in 1 km2 area around an eddy flux tower -star). Plots span across a range of vegetative 
species and topographic variation, which is representative of the greater White Mountains (12 circled plots).

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



litterfall
basket

10in

10m

6ft
soil
respiratiof
collar br^nchfall trap

 ►
30m

A1T1

A1T2
A1a

A1T3

A1T4

A1b(©;AIT® <•> / '

A1T7 r i - * - ;
/ / A  1cAmy

-̂ StuT

100 m

Figure 3. A) Dispersed plots are the one-tenth hectare permanent inventory plots with a 10 m radius 
subplot. Subplots contain two fine litterfall traps, one coarse litter trap and three soil respiration collars. 
Three additional collars lie outside the subplot to capture plot variability. B) NACP tower plots are 1 ha in 
area with four 10 m radius subplots. Subplots within the NACP plots are identical to those found on 
dispersed plots.

Experimental Design

The eddy covariance flux tower was constructed on a relatively flat, vegetatively 

homogenous area in the northeast corner of BEF. This location allowed the 

establishment of 12 NACP Tier 2 plots in a 1 km2 area centered on the tower in June

2004. Plots are 1 ha each and contain four 10 m radius subplots (Figure 3b). Each 

subplot contains three soil respiration chambers (507 cm2), two fine litter collectors (0.23 

m2), and one coarse litter collector (3.35 m2). To capture greater variability within the 

experimental forest 12 additional subplots, identical to those described above were set 

up at the center of existing BEF permanent inventory plots (Figure 3a). Three additional 

respiration collars were also placed within the 0.1 FIA plot, but outside the new subplot 

to capture spatial heterogeneity (Davidson et al. 2002b). These dispersed plots include 

both higher and lower elevations and capture a wider breadth of vegetative composition 

(Figure 2c) (Table 3). Additional variables either measured specifically for this study 

(nitrogen mineralization, foliar chemistry, and aboveground biomass) or measured in 

previous years at BEF (aboveground net primary productivity and leaf area index), as
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described below, were not available across all plots. Although comparable data across 

all plots over the same years would be ideal, their potential to increase the 

understanding of soil carbon dynamics at BEF directed their use in this analysis.

Soil Moisture

Four soil moisture probes set around the eddy flux tower collect data at half-hour 

increments and have been averaged to achieve daily soil moisture totals. Precipitation 

data are recorded by an automated tipping bucket and can be used as a proxy for soil 

moisture. These data have been recorded since January 2004 and were summed to get 

total precipitation for the two days prior to each soil respiration measurement, since 

respiration responds rapidly to large rain events (Lee et al. 2004). Prior to use in 

regression analyses, mean soil moisture and two day precipitation were natural log 

transformed for normality.

Soil Temperature

Temperature was taken at 5 cm depth next to each respiration chamber at the 

time of flux measurements, creating a discrete set of soil temperature throughout the 

year. Daily soil temperatures at each plot were also required for conversion of individual 

soil respiration measurements to annual totals. Because daily soil temperatures for 

individual sites were not available, soil temperatures continuously recorded at the flux 

tower were adjusted to plots using their relationship to tower soil temperature and plot 

elevation through a multiple linear regression.

Soil Respiration

Within each of the established NACP tower subplots, there were three soil 

respiration collars, totaling 144 for the 1 km2 area. Each dispersed plot had six collars;
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three clustered inside the subplot and the remaining three within the 0.1 ha area to 

account for total plot variation. The collars were 506.7 cm2 in area and were made from 

10" diameter PVC pipe inserted into the ground. Four depths from soil surface to collar 

top were used to calculate actual chamber volume. Carbon fluxes were determined by 

placing a top over the collar and measuring the concentration of C 02 build up in the 

chamber headspace with a Li-cor 820 Infrared Gas Analyzer (IRGA). One minute after 

the chamber top was placed over the collar, the C 02 flux rate was determined using 

linear regression and adjusted for air temperature and atmospheric pressure.

Flux measurements were taken every three weeks and were typically measured 

between 7.00 h-17.00 h, to avoid portions of the day when the highest and lowest 

respiration rates have been recorded (Savage and Davidson 2003). The order in which 

fluxes were measured was randomized so that diel variation would not be confounded 

with differences between study sites (Davidson et al. 2002). It should be noted that 

exclusion of nighttime measurements from the sampling rotation could result in a bias 

when instantaneous fluxes are extended to annual estimates, but at the same time, 

responses of soil to increased moisture can obscure typical daily respiration patterns.

Two models based on the empirical relationship between soil temperature and 

soil respiration were compared for their ability to estimate C 02flux. The exponential Q i0 

function is commonly used (Raich & Schlesinger 1992; Davidson et al. 1998; Fahey et al. 

2005), but thought to underestimate respiration at low temperatures and overestimate at 

high temperatures (Lloyd & Taylor 1994). The Q10 function is described by:

Equation 1. R(Tsoil) = R*eq10*f(Tso'l_To)/10]

Equation 2. Q10 = eq1°
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where R(Tsoil) ((jmol m 'V )  is the measured C 02 flux, Tsoil (°C) is the temperature in 

the upper 5 cm of soil, R (pmol m"2s"1) is the flux at To (°C) and To is the initial soil 

temperature, in this case set to equal zero.

An Arrhenius type function developed by Lloyd and Taylor (1994) has been found 

to reduce these errors (Savage & Davidson 2001); (Hibbard et al. 2005):

Equation 3. R(Tsoi,) = R(Tref)*eEa[(1/Tref-ToH1/Tsoi|-To)l 

where Tsoi| (°C) is the soil temperature in the upper 5 cm of soil, R(Tref) (pmol m 'V 1) is

expected respiration at the reference temperature (Tref, °C), T0 (°C) is the soil

temperature where respiration is equal to zero, and Ea (°C"1) is the parameter that

determines temperature sensitivity to changes in C 02 flux. Values for Tref and T0 were

15 and -46.02°C (absolute zero) respectively, as given by Lloyd and Taylor (1994).

Backward stepwise regression was used to determine whether additional climatic 

or site-specific data, from respiration chambers, plots, the eddy flux tower and 

associated tower instruments, might play a significant role in predicting soil respiration 

fluxes. Factors considered in the regression model are shown in Table 2. Before 

regressions were performed, variables were tested for normality and multicollinearity.

Air temperature was removed as a variable because of its strong relationship to soil 

temperature.

Table 2. Factors included in stepwise regression analysis to predict annual soil respiration flux.

Collar Plot Tower
Flux Elevation Air temp
Soil temp Aboveground biomass Precipitation

Aboveground NPP 
Litterfall carbon 
Leaf area index 
Foliar nitrogen 
Foliar lignin 
Foliar cellulose 
Nitrogen mineralization 
Nitrification

Soil moisture
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Litterfall and Aboveground Production

Litterfall

Leaf litter was collected using two 0.23 m2 traps at each subplot for both tower 

and dispersed plots. Litter traps on the tower plots were set out in June 2004 and litter 

collections were made every three weeks from early September until leaf drop was 

complete. Litter traps on dispersed plots were set out in June 2005 and collections were 

made in November. Collections from each subplot were composited into one sample, 

air-dried, and sorted into leaf and non-leaf fine litter (seeds, fruits, twigs and flowers). 

Leaf litter was then sorted by species, oven dried at 70°C for 24 h and weighed.

Although the summer and fall fine litter collections represent the dominant portion of 

annual litterfall, a small amount if litter is also typically produced in the winter and spring. 

Although we did not have data from winter or spring collections, previous annual litterfall 

collections from 1998 and 1999 from plots at BEF and the larger White Mountain area 

(Ollinger & Smith 2005; Smith, unpublished data) allowed us to determine the relative 

proportion of annual litterfall that occurs during these seasons. Mean winter and spring 

litterfall across plots was only 10% of total annual litterfall. We used these values to 

scale our summer-fall collections up to estimated annual totals.

Branch fall can contribute a substantial fraction of total soil carbon inputs on an 

annual basis. To capture this carbon component, one 3.35 m2 tarp was set out at each 

subplot and was allowed to accumulate fallen branches for one year before collection. 

Branchfall litter was collected on NACP plots from 2004-2005, whereas litter 

accumulation on dispersed plot tarps began in June 2005. Samples were collected from 

the tarps, excluding the portions of branches extending beyond the edge, air-dried for 

several months (after which moisture was assumed to be negligible), measured for 

diameter and then weighed. Branches greater than 1 cm and less than or equal to 5 cm 

were weighed to find annual coarse litter values by plot. Branches >5 cm were
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considered part of the coarse woody debris pool and not included in this study. For plots 

where branch fall accumulation has not reached one year, the current mean from the 

NACP tower 2004-2005 collection was used.

Branchfall and leaf litter mass were converted to litterfall carbon assuming a 

tissue carbon content of 50%.

Biomass

Aboveground biomass (AGB) was estimated using allometric equations 

developed for specific species, based on field measurements of diameter at breast 

height (DBH) for all trees greater than 5 cm. DBH was measured on tower plots in 

September 2004 and October 2005, while dispersed plots were measured in July 2005. 

Separate equations were used to calculate each component: foliage, branch, or bole, 

and summed to achieve total biomass. The equations used in this study were those 

directly derived from studies in the Northeast region (Ribe 1973; Whittaker et al. 1974; 

Young et al. 1980; Hocker and Early 1983).

Aboveground Net Primary Production

Aboveground net primary productivity (ANPP) can be calculated as the difference 

between biomass in year 2 and year 1, and divided by the length of time for growth 

between the two measurements. For the tower plots this was one year. ANPP for the 

dispersed plots was taken from previous studies, which calculated change in biomass 

over several years.

Leaf Area Index

Estimates of leaf area index (LAI) for dispersed plots were calculated by Smith 

(2000). Values for each plot were calculated as the ratio of total leaf area within a fine 

litter trap and litter trap ground area. To calculate LAI for tower plots this method was 

employed using leaf area from Smith and Martin (2001) and 2004-collected litter.
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Total Belowqround Carbon Allocation

Estimates of belowground carbon allocation were derived using the conservation 

of mass approach, where all carbon inputs to the system must either leave the system or 

increase soil C stocks (Raich & Nadelhoffer 1989; Nadelhoffer et al. 1998). Because 

changes in soil carbon stocks are difficult to measure, this approach is often used under 

the assumption that soil carbon pools are at or near a state of equilibrium, where annual 

changes in carbon storage are minimal in comparison to annual fluxes (Raich & 

Nadelhoffer 1989; Davidson et al. 2002a). Hence, this method cannot be used reliably 

in stands undergoing rapid gains or losses of soil C, through changes in the forest floor, 

prevalent soil erosion or leaching of dissolved organic carbon from soil organic matter, 

such as those that have recently undergone a major disturbance. Plots for this project 

were selected, in part, because no logging or other anthropogenic disturbances have 

recently occurred, increasing the likelihood that the system meets the requirements for a 

steady state assumption.

Methods for estimating total belowground carbon allocation were initially 

described by Raich and Nadelhoffer (1989) and later validated by Davidson et al.

(2002a) using more advanced and likely more accurate measurement techniques of 

individual components (e.g. use of IRGAs for soil respiration instead of the soda lime 

method). The steady state assumption means the inputs from litter production, root 

biomass stocks, and mineral soil layers of organic carbon, are equal to decomposition:

Equation 4. Rh » Pa + Pb

Where Rh = heterotrophic respiration, Pa = aboveground detritus production, and Pb = 

belowground detritus production. By including autotrophic respiration the result is total 

soil respiration:
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Equation 5. Rs = Rh + Rr 

Where Rs = soil respiration and Rr = root respiration:

Equation 6. Rs -  Pa *  Pb + Rr

This final equation indicates that total allocation to roots (Pb + Rr) can be estimated by 

soil respiration (Rs) measurements and aboveground detritus production (Pa). Here Pa 

is estimated using litterfall and excluding coarse woody debris (CWD), branches with 

diameter greater than 5 cm. Coarse woody debris, although it can have higher detritus 

production than fine litterfall, releases most of its C 02 directly to the atmosphere and 

only becomes part of soil organic matter at advanced stages of decay. Because CWD is 

an important part of aboveground detritus production and it is not included as an input, it 

must be expected that estimates of TBCA will be greater than true values by an 

undefined amount. The final equation for belowground allocation was altered slightly by 

Davidson et al. (2002a) to yield:

Equation 7. TBCA = Rs -  litterfallC

Using these equations, Raich and Nadelhoffer (1989) and Davidson et al. (2002b) 

showed that annual soil respiration was approximately three times litterfallC and comes 

close to predicting TBCA on the averaged global scale.

Soil respiration is inherently influenced by both long-term (decades) and short

term (days) factors, such as litter quality and quantity, and soil temperature and moisture 

respectively. Thus interannual variability of soil respiration can be extremely high based 

solely on differences in soil temperature from one year to the next. As a result soil 

temperature is also the strongest driver of TBCA estimates between years, given that 

litterfall amounts stay relatively constant over time in steady state forests. Although an 

average of litter collection and flux measurements across many years would be best for
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calculating TBCA and measurements of litter and flux over the same time period would 

be ideal, complete long-term datasets are rare and were not available for this study. 

Because long-term averages are unavailable and measurements were made across 

different years, we set temporal variability aside to better focus on spatial variability. 

TBCA across all plots is best calculated using 2005 annual respiration rates based on 

2005 soil temperatures and available litter collections, regardless of year.

N Mineralization and Nitrification

Measurements of N mineralization (nmin) and nitrification (nit) were conducted 

using the polyethylene bag technique described by Pastor et al. (1984) with 28 day lab 

incubations. Although in situ incubations are preferable, several studies have found a 

high degree of correlation between field and lab incubations giving us confidence that 

lab incubations would be adequate for characterizing variability among plots (Zak et al. 

1989; Carlyle et al. 1998; Ollinger et al. 2002b). Soil cores for N analysis were collected 

in September 2005. Two pairs of cores were taken next to each soil respiration collar 

across the 12 dispersed plots. Cores were 6 cm in diameter and were taken from the 

top of the organic soil down to 10 cm in the mineral soil unless bedrock or other 

impenetrable materials were encountered. Samples were separated into organic and 

mineral components. All samples were stored at 3°C until processed, not exceeding 

three days.

One core from each pair was put aside to incubate in the dark at 22°C for 28 

days. The other two cores were homogenized and passed through either a 5.6 mm 

sieve (organic) or a 2 mm sieve (mineral). A subsample of 10 g was extracted in 100 mL 

of 1 N KCI for 24 hours. A second subsample was oven-dried at 105°C for 48 hours to 

determine soil moisture content. Extracted samples were then filtered and analyzed for
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ammonium and nitrate using an Astoria2 autoanalyzer (Astoria-Pacific International, 

Clackamas, Oregon, USA). The same procedure was repeated for incubated cores.

Net N mineralization is calculated as the difference between the sum of NH/-N  and 

N03 -N for the incubated samples versus that for the initial samples. Similarly net 

nitrification is the difference between N 03~N for the incubated versus initial samples. 

Mass per area values over the 28-day incubation period were expanded to annual 

values using the field to lab relationships developed in the White Mountains region and 

described by Ollinger et al. (2002b).

Equation 8. N mineralization (annual) = 2.44 * N mineralization (lab) -  5.94

Equation 9. Nitrification (annual) = 2.52 * Nitrification (lab) + 0.60 

Final nitrification values were log transformed to achieve normality.

Foliar Chemistry

Determination of growing season foliar chemistry on each plot required collection 

of leaves from dominant and co-dominant trees at several heights in the canopy. 

Shotguns were used to take down small branches for green leaf collection in mid-July, 

which were then oven-dried at 70°C for 24 h. Leaves were ground using a Wiley mill 

and passed through a 1 mm mesh screen. Samples were re-dried overnight and foliar 

nitrogen, lignin and cellulose were measured using a NIRSystems model 6500 near- 

infrared spectrophotometer (Foss NIRS Systems, Silver Spring Maryland, USA)

(Mclellan et al. 1991a; Mclellan et al. 1991b; Bolster et al. 1996).

Individual species means of foliar chemistry concentrations were weighted by the 

fraction of canopy foliar mass per species to calculate plot-level whole canopy 

concentrations (g per 100 g foliar biomass). Species fractions by plot were gained using 

the camera-point quadrant method, which gives an accurate vertical profile distribution of
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leaf area by height and by species and allows estimation of total canopy chemistry 

(MacArthur & Horn 1969; Aber 1979b, Aber 1979a, Parker et al. 1989, Smith & Martin 

2001 ).
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CHAPTER III

RESULTS

Variability in Instantaneous CO? Efflux

Soil respiration data for all plots and measurement periods are shown in figure 

4a. Respiration rates generally followed the seasonal temperature cycle with the 

exception of several anomalously high measurements in October and November of

2005. October and November 2005 showed unusually variable fluxes (e.g. 8 pmol m'2s' 

1 to 27 pmol m'2s'1) both at the chamber and tower level (Figure 4b), many of which were 

elevated beyond the typical range for temperate forests. Such high fluxes were not 

recorded at BEF in 2004, nor were measured soil respiration rates at Harvard Forest, a 

Long Term Ecological Research Site in Petersham, Massachusetts, found to deviate 

from the expected seasonal pattern during the October-November time period (J.Mohan, 

personal communication, January 12, 2006).

We eliminated instrument malfunction as a potential source of error because 

eddy flux tower measurements collected during the same time period showed a similar 

pattern (Figure 4b). Additionally, the difference between actual flux in 2005 and mean 

flux (2004 and 2005 not including October and November) by day of year showed no 

pattern by subplot. All subplots varied around the mean with a difference of less than 4 

pmol m"2 s"1 until October and November, where respiration differences ranged from 0- 

26 pmol m"2 s'1. Temperature, which is typically the strongest driver of respiration, 

explained only 48% (P < 0.001) of the variation in seasonal flux patterns, suggesting that 

soil temperature alone did not explain high October and November fluxes (Figure 5).
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Figure 4. A) Soil CO2 flux in 2004 and 2005 by day of year as measured at the chamber level using the soil 
respiration unit (IRGA) and B) both chamber values and estimated values from the eddy flux tower (Tower), 
over the period of concern (October-November). IRGA refers to individual chamber measurements in NACP 
tower plots, while IRGA-D values were those collected at dispersed plots. ‘ Day 274 is October 1st.
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We examined the degree to which other factors might help explain these 

anomalous fluxes using a variety of linear and nonlinear regression methods where 

respiration fluxes were regressed against various combinations of the measured 

variables shown in Table 2. From this analysis, only precipitation and soil moisture 

improved the predictability of high soil fluxes, increasing the correlation from 1̂ =0 .48 with 

soil temperature only to r2= 0.59, P < 0.001. Because the anomalous respiration values 

clearly departed from both literature values and from the remainder of observations at 

Bartlett, we decided to exclude these measurements from subsequent analyses aimed 

at deriving response functions to temperature and other environmental variables. 

Although we recognize that excluding these data will likely result in an underestimation 

of soil respiration when extended to annual fluxes, we felt that including them would 

cause an unacceptable bias in the degree to which we could explain variability in the 

remaining data. Hence, we chose to exclude the anomalous values from subsequent 

analyses in the hope that a more satisfying explanation of their origin can be found in the 

future.

30

0 5 10 15 20 25
Soil Temperature (dg C)

Figure 5. Soil C 0 2 is typically highly correlated to soil temperature. Here high flux values in October and 
November 2005 distort this relationship.
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Annual Soil Respiration

Although discrete daily respiration measurements from throughout the growing 

season are important, annual soil respiration is required for estimating TBCA. This 

means that individual measurements must be extended throughout the year through a 

statistical model that can be applied using daily environmental data available for the 

entire year. As an initial step towards accomplishing this, stepwise regression was used 

to examine which ecosystem parameters explained variance in instantaneous C 02 

fluxes after excluding the anomalous values discussed in the preceding section. Results 

indicated that the only significant predictors at the P < 0.05 significance level were soil 

temperature, foliar nitrogen, foliar lignin, and the lignin to nitrogen ratio, yielding an r2 = 

0.74. This method, however, did not satisfactorily account for the non-linear relationship 

between soil temperature and respiration.

To better capture the effect of temperature, two well-known, non-linear 

temperature-dependent statistical models were tested; the Q10 and Lloyd and Taylor 

(1994) functions. Both methods produced higher r2 values than the regression results 

mentioned above, although results showed little difference in the degree to which either 

equation could account for temperature-induced variation. Predictions yielded r2 values
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Figure 6. Comparison of Q10 (dark blue) and Lloyd and Taylor (1994) (pink) temperature-dependent models 
for estimating annual soil respiration.

of 0.87 and 0.89 for Q10 and Lloyd and Taylor, respectively (Figure 6). Across all plots 

the average Qi0 value was 3.76. Although the Q i0 model is more simplistic, the potential 

for overestimation of high fluxes, as cited by Lloyd and Taylor (1994), prompted us to 

use annual respiration values produced by the Lloyd and Taylor model for the rest of our 

data analysis.

Using the Lloyd and Taylor function along with daily mean temperatures 

estimated for each plot, calculated annual soil flux values, which ranged from 647 g C m '  

2y'1 to 846 g C m‘2y"1 with a mean of 791 + 62 g C m"2y'1 (Table 3). When tower and 

dispersed plots were considered separately, variance was greater among dispersed 

plots. Additional regression analysis using residuals from the Lloyd and Taylor 

temperature relationship showed that nitrogen mineralization and leaf area index 

explained 29% of the remaining variance. However, because the absolute amount of 

variation these variables explained was small, and because N mineralization was not 

available across the 12 tower plots, we felt that the Lloyd and Taylor model represented 

the best choice for calculating annual soil respiration across the Bartlett landscape.
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Leaf and Branch Litterfall

Whereas the range of soil fluxes within BEF was small in comparison to the 

range observed globally, this was not true of fine litterfall carbon estimates (35 g C m'2y'1 

to 177 g C m‘2y'1), which covered just under half the range of estimates found in several 

global datasets (Raich & Nadelhoffer 1989; Davidson et al. 2002a) (Table 3). Coarse 

litterfall (1 -  5 cm diameter) for the tower plots averaged 24 g C m'2y'1 (Table 3), but was 

extremely variable between plots, sometimes contributing more than half of total litterfall. 

Temporal variability in coarse litterfall is also likely to be high, given the potential for 

infrequent, but large, pulse inputs from disturbances such as windthrow or ice storm 

damage. However, because we have just a single year of measurements that do not 

include any such events, we cannot evaluate their long-term importance to soil carbon 

inputs. Given these caveats, total carbon inputs to the soil, as used in the TBCA 

equation (Equation 7), are equal to the sum of fine litter and available coarse litter input 

values and range from 60 g C m"2y"1 to 217 g C m"2y'1 (Table 3).

Total Belowground Carbon Allocation

Annual respiration values and total litterfall carbon were used in Equation 7 to 

estimate total belowground carbon allocation (Table 3). Across all plots TBCA ranged 

from 505 g C m'2y'1 to 711 g C m"2y"1, a 29% difference between plots with the least 

carbon allocation and those with the greatest.
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Table 3. Site description and characteristics, C cycling, N cycling, and foliar chemistry for plots across the Bartlett Experimental Forest.

Study sites
C cycling 

(g C m-2 yr-1) (g C m-2)
N cycling 

(g N m-2 yr-1)
Foliar chemistry 

(%)

Plot
Plot
Set* Species* Elevation

c o 2
Flux

Leaf
Litter

Branch
Litter

Total
Litter TBCA ANPP AGB LAI Nmin Nit Nitrogen Lignin Cellulose Lignin:N

10T D Red spruce 547 701 35 24 60 641 280 4310 1.80 3.38 0.09 1.10 21.50 36.01 19.52
14Z D S.maple-beech 327 797 102 24 126 671 9685 2.25 0.68 2.14 23.62 41.84 11.04
30AF D Paper birch 226 844 120 24 144 700 8953 -0.38 0.09 1.45 23.03 36.21 15.85
30Y D Beech 260 828 107 24 132 697 603 11041 3.35 0.74 0.16 1.91 23.76 40.89 12.46
32AF D Flemlock 221 846 140 24 165 682 542 7402 3.46 0.67 0.13 1.22 20.48 35.87 16.85
32 P D Flemlock 292 813 89 24 113 699 402 12965 3.09 4.01 0.06 1.43 17.74 34.41 12.44
34K D Hemlock 306 806 93 24 117 688 397 14234 2.78 2.60 0.10 1.34 16.13 33.01 12.06
38Q D Beech 332 792 87 24 111 681 531 11801 3.04 0.76 0.24 1.68 19.32 34.35 11.48
5D D S.maple-beech 593 679 99 24 123 556 14036 8.37 1.97 2.25 20.75 40.33 9.22
6N D Red spruce 676 647 46 24 70 577 224 7146 1.82 6.92 0.26 1.01 25.53 38.36 25.35
7N D Red spruce 651 657 128 24 152 505 287 10958 1.90 7.97 0.06 1.19 24.80 40.08 20.78
9D D S.maple-beech 546 703 155 24 179 524 565 8049 3.52 2.75 0.06 2.43 25.72 45.93 10.60
A1 T Beech 252 832 84 57 126 706 230 10536 4.2 1.65 20.76 37.06 12.60
A2 T Beech 269 823 100 15 113 711 83 7786 4 1.68 21.01 36.88 12.54
A3 T Beech 281 818 152 21 165 652 211 10147 4.9 1.81 20.61 37.40 11.38
B1 T Beech 257 829 108 19 134 695 185 8612 4 1.83 22.14 39.61 12.07
B2 T Red maple 267 824 100 33 127 698 143 12626 5.1 1.72 19.26 35.95 11.20
B3 T Beech 283 817 124 27 150 667 223 10500 3.7 1.91 21.49 38.34 11.23
C1 T Beech 249 833 177 20 217 616 132 11715 4.8 1.68 17.77 36.55 10.56
C2 T Beech 271 822 89 15 115 707 182 10433 4.8 1.74 20.11 36.46 11.53
C3 T Hemlock 288 814 98 39 121 693 183 9878 4.2 1.33 16.59 32.17 12.45
D1 T Red maple 243 835 138 20 182 653 27 8446 4.7 1.63 18.58 35.09 11.41
D2 T Beech 263 826 118 19 147 679 179 7045 4.8 1.94 21.49 39.59 11.10
D3 T Beech 297 805 94 7 127 678 238 10025 4.8 1.88 20.97 38.73 11.13

*D stands for dispersed plots, while T stands for plots centered around the eddy flux tower.
$ S.maDle-beech are stands where Suaar maple and American beech are co-dominant sDecies.



Annual Soil Respiration in Relation to Ecosystem Variables

Annual soil respiration is largely derived from its consistent relationship to soil 

temperature, thus correlations of respiration to other ecosystem variables are largely a 

result of their own relationship to temperature. Elevation is the clearest example of this 

pattern. Where elevation was high (> 500 m) estimated mean C 02 fluxes were low and 

plots with low elevation typically showed high fluxes. Yet, it remains important to 

understand how these variables change across the landscape as they relate to soil 

properties if we are ever to map them at larger than local scales. The following results 

indicate how ecosystem variables changed across all plots, and how they differ between 

dispersed plots/which capture larger site variability, and tower plots, which focus on 

micro-site variability and homogeneity needed for understanding eddy flux tower 

measurements (Table 4).

When all plots were treated together, neither litterfall nor ANPP showed 

significant relationships to annual soil respiration, despite results from previous studies. 

However, when dispersed and tower plots were separated, litterfall remained 

insignificant (Figure 7), but ANPP became significant for both plot sets, albeit following 

different patterns (Figure 8). For dispersed plots, soil respiration was positively related 

to ANPP, whereas tower plots showed only a weak and inverse relationship with ANPP. 

It should be pointed out, however, that ANPP values from the NACP plots were based 

on a single year of measurements, which may be inadequate for accurate ANPP 

estimation. Aboveground biomass (AGB) was not significantly related to soil respiration 

across plots or when plots were grouped by set. However, a negative trend did surface 

when high elevation plots were excluded from analysis (r2 = 0.17, P > 0.05). Soil 

respiration was positively related to LAI across dispersed plots. Across all plots the 

lignin, cellulose, and lignin:nitrogen ratio components of live foliage were found to
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significantly correlate with annual values of soil respiration. The relationship between 

foliar N and soil respiration was non-linear, with respiration increasing from low to mid 

foliar N values and declining towards the high end of the foliar N range (Figure 9). 

Among all variables tested, annual nitrogen mineralization showed the most significant 

and strongest relationship to mean soil respiration on an annual basis (Figure 10), 

although mineralization was only measured on dispersed plots for this study.

Table 4. Correlation of ecosystem parameters to annual soil respiration and estimated total belowground 
carbon allocation across all plots and separated into plot set. Non-significant relationships are noted as ns; 
r2 of significant relationships are given with coefficients listed in parentheses. Coefficients shown are the 
change in flux for every one unit change in the listed ecosystem variable.

Soil R espiration
All plotsx Dispersed Tower All plotsx

TB C A
Dispersed Tower

Foliar (mass-based, %)
Nitrogen ns ns ns ns ns ns

Lignin 0.24**
(-12.40)

ns ns 0.21*
(-11.28)

0.26*
(-13.73)

ns

Cellulose 0.12*
(-8.18)

ns ns 0.26**
(-10.56)

0.34*
(-12.22)

ns

Lignin:Nitrogen 0.28**
(-9.04)

ns ns ns ns 0.48**
(31.17)

Overstory
Litterfall C (g C m"2 yr"1) ns ns ns ns ns 0.92***

(-0.87)
ANPP#(g C m'2 yr'1) ns 0.41*

(0.38)
0.26*

(-0.08)
ns ns ns

AGB (g C nT2) ns ns ns ns ns ns

LAI (m2 m"2) ns 0.50*
(80.95)

ns ns ns 0.81***
(-39.89)

Soil (g N m'2 yr"1)
N mineralization® NA 0.70***

(-21.80)
NA NA 0.54**

(-18.92)
NA

Nitrification* NA 0.00 NA NA ns NA

XAII plots, n=24; Each plot set, dispersed and tower, n=12
$nitrogen mineralization and nitrification were only measured on dispersed plots, n=12 
#aboveground net primary productivity and LAI not available for all plots, n=21 
*P < 0.05; **P < 0.01 ;***P < 0.001
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Figure 7. Non-significant relationship between annual soil respiration (g C m'2 yr'1) and total litterfall carbon 
inputs (g C m'2yr'1) across all plots, n=24. y = 0.6569x + 703.31, R2 = 0.13.
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Figure 8. Relationship of soil respiration (g C m'2yr"1) and ANPP (g C m'2yr‘1) as it differs by plot set. Soil 
respiration on dispersed plots ( 0 ) has a positive relationship with ANPP. ANPP values for tower plots (x) 
were much lower than values on dispersed plots and showed a weak inverse relationship to soil respiration. 
Low values and lack of clear trends may indicate that a single of year of ANPP measurement was 
inadequate assessing this relationship.
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Figure 9. Non-linear relationship between soil respiration (g C m'2yr"1) and foliar nitrogen concentration (%). 
y = -324.18x2 + 1109.3x - 117.08, R2 = 0.69.
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Figure 10. Comparison of annual soil respiration (g C m'2 yr"1) and annual net nitrogen mineralization (g N 
m yr"1), for dispersed plots, n=12. y = -2 1 .797x + 832.16, R =0.72.
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Relationships and influences on TBCA

Two high elevation plots, 9D and 7N have much lower estimated TBCA than the 

rest of the dispersed plots, as a result of greater litterfall inputs and low C 02 fluxes.

Their disproportionately low carbon allocation weakens relationships between TBCA and 

most of the measured variables. A regression of belowground allocation against litterfall 

carbon showed a significant negative relationship, with allocation decreasing as litterfall 

production increased across all plots (Table 4). At the plot level, there was an 

interesting pattern of two parallel relationships in TBCA vs. litterfall, where the lower line 

includes plots at higher elevations and the upper line includes all lower elevation plots 

(Figure 11). Also interesting was the ratio of TBCA to litterfall carbon along a gradient of 

increasing litterfall (Figure 12). The only other ecosystem parameter that explained 

significant variance in total belowground carbon allocation was foliar cellulose 

concentrations (Table 4).
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Figure 11. Correlation between total belowground carbon allocation and total litterfall carbon inputs by plot.
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Figure 12. Ratio of predicted total belowground carbon allocation to total litterfall carbon along the litterfall 
carbon gradient found in BEF.

In addition to single variable comparisons analysis of multiple variables showed 

that soil respiration and TBCA were often best explained using a combination of 

ecosystem parameters, and the combination that best captured variance among plots 

changed based on plot grouping (Table 5). Across all plots live foliar components 

explained the greatest variance in soil carbon fluxes, which was also true for soil 

respiration on tower plots. In contrast, LAI, on its own, was the strongest predictor of 

TBCA on tower plots. Given that dispersed plots had the most ecosystem parameters 

available for understanding patterns in soil carbon components, it is not surprising that 

for both C 02 flux and TBCA, more than one combination of variables explained patterns 

across the landscape. Prediction of TBCA on dispersed plots requires N mineralization 

but can be used with either foliar lignin or cellulose concentrations depending on which 

variable is available. Soil respiration on dispersed plots can be estimated by a number 

of ecosystem variables, or by just two, LAI and foliar cellulose.

Multiple Variable Analyses
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Table 5. Multiple linear regressions across all plots, dispersed plots and tower plots for both soil respiration 
and TBCA showed that a combination of ecosystem variables in most cases better predict spatial patterns of 
these soil carbon fluxes than individual variables. All variables included in final equation, P<0.05.

All plotsx
Soil Respiration

Dispersed Dispersed Tower All plots’*
TBCA

Dispersed Dispersed Tower
Foliar (mass-based, %)

Nitrogen X X X

Lignin X X X

Cellulose X X X

Lignin:Nitrogen X X X

Overstory

Litterfall C (g C m'2 yr'1)

ANPP# (g C m'2 y r1)

AGB (g C m'2) X

LAI (m2 m'2) X X X

Soil (g N m'2 yr'1)

N mineralization® X X X

Nitrification®

Adjusted R2 0.68 0.92 0.86 0.29 0.57 0.74 0.71 0.81

XAII plots, n=24; Each plot set, dispersed and tower, n=12
$nitrogen mineralization and nitrification were only measured on dispersed plots, n=12 
#abovearound net Drimarv oroductivitv and LAI not available for all Dlots. n=21
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CHAPTER IV

DISCUSSION

Results of this study provided new estimates of soil respiration and belowground 

carbon allocation for a northern temperate forest ecosystem. Annual soil respiration 

showed a positive relationship with l_AI and negative relationship with N mineralization. 

TBCA at Bartlett ranged from 505 g C m'2yr"1 to 711 g C m'2yr'1 and varied inversely 

with foliar lignin and cellulose. Although these results are interesting, they are not 

without uncertainties. Annual soil respiration, for example, was derived using a 

statistical model based solely on temperature and excluding anomalous measurements 

from two months in 2005. TBCA, although comparable to estimates from similar 

ecosystems, is dependent on litterfall values, which are highly variable due to their 

branchfall component.

Instantaneous CO? Efflux

Instantaneous soil fluxes could be largely accounted for by soil temperature 

alone, with the exception of high fluxes in October and November of 2005. Here an 

additional 12% of variance in soil respiration was explained by soil moisture, and 

precipitation summed over the two days prior to chamber measurements. These factors, 

however, only capture temporal variation in soil C 02 flux and cannot explain the 

difference in the strength of response to wetting between plots because moisture 

measurements were only taken at the tower. It is also possible that the combination of 

high soil moisture content following several unusual rainfall events and increased 

availability of nutrients and labile C from recently fallen leaf litter hyper stimulated
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microbial activity for a brief period of time that coincided with field respiration 

measurements. Measurement of soil moisture and soil C:N ratios in the organic layer 

throughout the year near individual collars, as well as partitioning between autotrophic 

and heterotrophic fluxes would improve our understanding of values that depart from the 

mean.

Although exclusion of the October and November fluxes undoubtedly led to an 

underestimation of soil respiration when extended to annual estimates, these fluxes 

clearly departed from both literature values and from the remainder of observations at 

Bartlett. Including them would, therefore, have caused an unacceptable bias in the 

degree to which we were able to explain variability in the remaining data.

Estimating Annual Soil Respiration

The annual estimate of total soil respiration at Bartlett (791 ± 62 g C m"2y'1) is 

comparable to, but higher than, fluxes at both the Hubbard Brook Experimental Forest 

also located in northern New Hampshire (660 + 54 g C m"2y‘1; Fahey et al. 2005) and 

fluxes for Harvard Forest, Massachusetts (530 g C m'2y'1 to 870 g C m'2y'1; Davidson et 

al. 1998). However, discrete soil CO2 flux values measured at Bartlett, from throughout 

the growing season, are within the range of values found across deciduous, mixed, and 

evergreen forests reported by Hibbard et al. (2005).

Although estimation of annual soil respiration flux was achieved using the Lloyd 

and Taylor (1994) function, the Q10 values we obtained are worthy of some discussion. 

Recent work by Davidson et al. (2006) examined how Q10 values for soil respiration 

varies between seasons, plots, and sites. The authors state that a Q10 greater than 3 

indicates temperature is not the only factor contributing to variation in soil respiration.
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Across all plots at Bartlett Q10 was 3.76, suggesting possible influence by soil moisture, 

substrate availability and/or some other factor.

Soil temperature and soil moisture have often been identified as the strongest 

drivers of variation in soil C 02 flux (Singh & Gupta 1977; Sato & Seto 1999; Savage & 

Davidson 2001; Subke et al. 2003; Martin & Bolstad 2005). However, Davidson et al. 

(1998), in a study at a temperate mixed hardwood forest in Massachusetts, state most 

seasonal and diel variation in soil respiration can be attributed to soil temperature, which 

is consistent with results we obtained at BEF. In this study, two factors likely account for 

the lack of influence caused by soil moisture on C 02 flux. First, water limitations at BEF 

are thought to be rare on an annual basis. Therefore, fluctuations in precipitation and 

soil moisture over the growing season may play only a small role in affecting annual soil 

respiration values. However, it should be noted that both precipitation and soil moisture 

were measured at a single location, the eddy flux tower. This measurement scheme did 

not allow us to examine micro-site variation in soil moisture, which can play a large role 

in individual chamber fluxes (Lee et al. 2004). Soil moisture measurements at individual 

respiration chambers are planned for the 2006 field season and may shed additional 

light on the role of variability in soil moisture on long-term C 02 fluxes.

Stepwise regression analysis indicated that, in a linear model, the addition of 

foliar nitrogen, lignin and lignin:nitrogen ratios explained more of the variance in soil 

respiration than temperature alone, with lignin:nitrogen ratio having the greatest 

influence. Although lignin:nitrogen ratios are not a direct measure of soil substrate, they 

do provide a commonly used index of litter quality and are related to decomposition 

rates, soil C:N ratios and soil N dynamics through a well-documented series of 

feedbacks (Scott and Binkley 1997; Ollinger et al. 2002b; Satti et al. 2003). Senescent 

foliage with greater lignin:N ratios limits N availability in soils, decreasing microbial 

activity and total soil respiration. In an additional stepwise regression using residuals
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from the Lloyd and Taylor function, which accounts for the non-linearity of soil 

temperature change with soil C 02 efflux, N mineralization, and LAI became significant 

predictors of soil respiration. Together these factors show an inverse relationship 

between instantaneous soil flux and site quality. Results do support findings from other 

studies that conclude substrate quality is important in deriving accurate annual soil 

fluxes (Davidson et al. 2006), but cannot not be used quantitatively until the sample size 

of N mineralization is increased and similar trends are found across all plots.

Litterfall

Although the mean fine litterfall value of 108 g C m'2 y'1 ± 32 was somewhat 

lower than production reported for similar sites in Maine, New Hampshire and 

Massachusetts, which ranged from 158 g C m"2 y"1 to 219 g C m"2 y"1 (Davidson et al. 

2002a; Fahey et al. 2005), the range was complimentary to foliar production measured 

at BEF by Ollinger and Smith (2005). Because Bartlett has a wide variation in species 

composition across its landscape, and dispersed plots were designed to specifically 

capture that variability, lower values are likely a result of the greater number of upper- 

elevation evergreens in the BEF estimates. Although it is estimated that only 10% of 

litter comes down in winter and spring months, obtaining a full year of litter collections 

would increase our confidence in estimating TBCA.

Because coarse litter is often collected either with leaf litter or as part of coarse 

woody debris, few estimates that are comparable to the measurements made for this 

study are available in the literature. Fahey et al. (2005) provided an estimate of 15 g C 

m"2 y"1, but indicated that precision of this estimate is low, based on the twofold 

difference found in values over a six-year collection period. The coarse litter production 

range for tower plots showed equally high variability (7 g C m'2 y'1 to 57 g C m'2 y'1)
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between plots over a one-year collection. Although high spatial and temporal variability 

is an expected characteristic of this carbon flux, it is still a component of total carbon 

input that needs to be considered in TBCA, regardless of its annual uncertainty.

Annual Soil Respiration in Relation to Ecosystem Variables 

Elevation

A correlation between annual soil respiration and elevation as reported here was 

also seen by Fahey et al. (2005) at the Hubbard Brook Experimental Forest. However, 

the authors note that this relationship may not be indicative of a simple pattern. Many 

factors change with increasing elevation including: decreased air and soil temperatures, 

increased precipitation, possible changes in soil type, prevalence of rock fragments and 

ledges, changes in vegetation composition and thus litter quality and nutrient cycling. 

From our results we cannot conclude which variables play the most important role in the 

observed elevational trends.

Nitrogen Mineralization

N mineralization is the conversion of N from organic to inorganic forms, making it 

available for plant uptake, and annual net N mineralization is the largest component of 

belowground nitrogen cycling. N mineralization is of particular interest to this study 

because the coupling of belowground carbon and nitrogen cycling has not previously 

been investigated. Results showed a strong negative correlation of N mineralization to 

annual soil respiration across the dispersed plots at Bartlett, the opposite of what might 

be expected based on other ecosystem factors (Figure 9). Previous studies have shown 

that, N mineralization can decline with increasing elevation, decreasing temperatures, 

and on N-poor sites (determined mainly by specific species litter quality) (Knoepp & 

Swank 1998; Knoepp & Swank 2002). However, Knoepp and Swank (1998) and Bonito 

et al. (2003) found that in the Southern Appalachian Mountains the greatest N
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mineralization rates were at high elevation sites. In both studies, northern hardwoods 

dominated the high elevation plots, and high N cycling rates could be explained by large 

total nitrogen pools. At BEF, N mineralization rates were also high at high elevations 

(Figure 13), but vegetative composition between plots is very different. Differences in 

species composition typically mean differences in nitrogen pool size and thus, N cycling 

rates. Two plots are dominated by sugar maple-beech, which should have large N pools 

based on their high foliar N concentrations and low lignin:N ratios and the three 

additional high elevation plots are comprised mainly of red spruce. Red spruce, have 

low foliar nutrient concentrations which should cause high nutrient use efficiency not 

allowing for much N to accumulate in soils to be cycled (Binkley & Giardina 1998). This 

dichotomy between species type and N pool size prevents a clear understanding of why 

N mineralization increased with elevation at the Bartlett site. In this study, a direct effect 

of temperature could not have contributed to N mineralization patterns because annual 

values were based on laboratory incubations where temperature was held constant.
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Figure 13. Relationship between plot elevation and nitrogen mineralization (g N m-2 yr-1).
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Comparison of N mineralization and lignin:nitrogen ratios typically show a non

linear negative relationship across a range of species (Scott & Binkley 1997; Ollinger et 

al. 2002b). Results in this study show no trend between mineralization and the ratio 

(Figure 14). Lignin:N ratios ranged from 9 to 25 with a mean of 13 + 4 almost identical to 

those found across the White Mountains (Ollinger et al. 2002b). Lignin:nitrogen ratio 

patterns were also typical of what might be expected; high on plots where red spruce is 

the dominant species, and low on plots comprised largely of northern hardwoods. Plots 

where hemlock is dominant or high amounts of white pine are present have intermediate 

lignin:nitrogen values. However, when net N mineralization rates from this study (-4 to 

84 kg N ha'1yr’1) are compared to those previously measured for the greater White 

Mountains region, values reported here only capture the lower half of the range (32 to 

162 kg N ha'1 yr'1) reported by Ollinger et al. (2002b). Overall, N mineralization results 

thus cannot be explained by temperature, elevation, species composition or litter quality 

independently.
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Figure 14. Nitrogen mineralization (g N m-2 yr-1) on a gradient of lignin:nitrogen ratios.
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The absence of clear trends in N mineralization at Bartlett further confounds the 

fact that soil respiration decreases with increases in N mineralization. However, there 

are two major factors that may explain this trend, but only when considered 

simultaneously. First is the dichotomy of respiration and N mineralization rates on high 

litter quality versus low litter quality sites. On high quality sites, organic matter pools are 

small and litter is quickly decomposed leading to high rates of C 02 efflux. Low quality 

sites on the other hand can have a much greater mass of organic matter. As a result, 

although decomposition and N cycling per unit organic matter can be slow, total C and N 

transformation rates per unit area can still be high. The second factor relates to 

allocation theory. When nitrogen mineralization rates are high, a lower investment in 

roots may be required to obtain those nutrients, shifting a greater amount of carbon 

toward aboveground tissues and away from belowground tissues. The significant 

relationship between soil respiration and annual net N mineralization across dispersed 

plots suggests a coupling of belowground C and N cycling at spatial scales greater than 

the individual plot level. Although it is not surprising that belowground nutrient cycles 

appear to be correlated, these relationships have not been previously explored. Further 

validation of these results both at Bartlett and at other sites is required before strong 

conclusions can be reached regarding how soil carbon dynamics change as a function of 

nutrient availability and site quality.

Vegetation Type

Previous analyses of the effect of vegetation type on soil respiration yielded 

inconsistent results. A review by Raich and Tufekcioglu (2000) found significant 

differences in soil respiration between coniferous and broad-leaved forests, while Martin 

and Bolstad (2005) found the influence of vegetation type on soil respiration to be less 

than other site or stand characteristics across a relatively homogeneous set of site

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



conditions. An earlier study by Raich and Potter (1995) showed no difference in soil C 02 

fluxes across a variety of vegetation types.

In the present study, no distinct difference in mean soil respiration rates were 

observed between plots that are dominantly deciduous versus those that are coniferous. 

The hemlock and pine plots of lower elevations have respiration rates similar to beech 

plots at low elevations. Similarly, sugar maple-beech plots at upper elevation sites 

showed patterns similar to the upper elevation red spruce plots. Given that annual soil 

respiration by plot is based on its relationship to soil temperature, within which elevation 

is imbedded, the influence of vegetation on C 02 flux may be obscured.

Foliar Chemistry

Although there appears to be a negative relationship between soil respiration and 

lignin, cellulose and lig:N ratios across all plots, the trend is artificially created due to the 

grouping of high elevation plots at low respiration rates and low elevation plots at high 

respiration rates. Low elevation plots regardless of plot set (e.g. tower or dispersed) 

showed no trend between soil respiration and foliar concentrations of lignin, cellulose or 

lig:N. High elevation plots, which consistently had lower respiration also showed no 

trend in these foliar components. Foliar N also showed no clear trend, but as suggested 

in the results a non-linear relationship with soil respiration seems to be present. Foliar 

chemistry varies expectedly by vegetation type and environmental conditions, so it is our 

lack of understanding about soil respiration by elevation that prevents further 

understanding of the overall pattern at Bartlett. As mentioned earlier additional plots at 

mid-latitudes would allow us to assess if any relationship does between foliar chemical 

components and soil respiration.

Aboveground production

Annual litterfall has been found to be strongly correlated to soil respiration at 

global scales (Nadelhoffer & Raich 1989; Davidson et al. 2002a; Hibbard et al. 2005),
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but the relationship breaks down at local scales where micro-site variability plays a 

larger role in determining respiration rates across the same gradient in annual litterfall 

(Giardina & Ryan 2002; Davidson et al. 2002a). Not surprisingly, the latter was also true 

at Bartlett; across all plots litterfall showed no relationship to soil respiration. Despite a 

lack of trend in litterfall production alone, ANPP had a positive trend with C 02 flux across 

dispersed plots. However, when tower plots were included the relationship was 

obscured because alone, tower plots showed a weak but significant negative trend with 

soil respiration. It is possible that this relationship with ANPP may change as ANPP can 

be averaged across years, as was the case for dispersed plots because growth in one 

year may not be representative of typical growth for a particular plot.

Aboveground biomass

AGB explained some variation in soil respiration, resembling patterns found by 

Campbell et al. (2004), even though biomass is typically a poor predictor of both carbon 

flux and partitioning (Reichstein et al. 2003; Litton et al. In Review). Significant 

relationships between AGB and soil respiration were only seen in plots at low elevations. 

Exclusion of plots at high elevations to achieve such a relationship limits the use of that 

relationship to predict soil respiration over the greater landscape.

Leaf Area Index

LAI, which has been related to patterns of soil respiration across a variety of 

sites in Europe and North America (Reichstein et al. 2003), was strongly correlated with 

soil respiration across dispersed plots at BEF (Table 4). LAI is a common parameter in 

remote sensing, used to predict both net and gross primary productivity. Its relationship 

here to soil respiration suggests the possibility of remote estimation of C02 efflux across 

the broader landscape. However, in at least one other study, LAI was not correlated to 

respiration (Campbell et al. 2004), and, in general, the relationship is not as direct or 

stable as with primary production (Reichstein et al. 2003).
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Multiple Variables

Although it is important to understand how individual ecosystem variables vary 

along a gradient in soil respiration, soil fluxes are undoubtedly influenced by any number 

of variables at the same time. Across all plots foliar N and the lignin:N ratio explain more 

than half of the variance in total soil respiration. Dispersed plots showed that in 

combination, AGB, LAI, N mineralization and foliar N accounted for nearly all of the 

variance in annual soil respiration. As we evaluate how soil respiration really changes at 

the landscape scale knowing which combination of variables explains C 02flux becomes 

indispensable. Some of these variables have been used in hyperspectral remote 

sensing studies (Zagolski et al. 1996; Ollinger et al. 2002b; Ollinger & Smith 2005) and 

others are often included in ecosystem models.

Relationships and influences on TBCA

Our results for TBCA are within the range of values found globally for mature 

forests by Davidson et al. (2002a), but cover a narrower range. Mean TBCA for our site 

was 657 g C m"2yr'1, higher than the mean estimate for Hubbard Brook by Fahey et al. 

(2005). Raich and Nadelhoffer (1989) and Davidson et al. (2002a) generally found that 

TBCA is roughly twice that of C inputs from litterfall, but potentially more if litterfall values 

were low. They also state that, because only fine litter is used for aboveground detritus 

inputs, TBCA is likely to be overestimated by Equation 7. At BEF, belowground 

allocation ranged from 3 to 10 times greater than litterfall even though litterfall included 

both fine and coarse fractions. This indicates the strong role of soil respiration at BEF, 

where estimated C 02 fluxes are proportionately larger for all plots than measured litterfall 

(similar to findings by Litton et al. 2004a) (Table 4).

The decrease of TBCA with an increase in litterfall is contrary to results found at 

the global scale as cited by (Raich and Nadelhoffer 1989). However, studies that
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address allocation theory as it applies to nutrient dynamics (Haynes & Gower 1995; 

Giardina et al. 2003) may offer an explanation for this trend. Regardless of the contrary 

results, as long as the trend in litterfall with TBCA can be explained we have confidence 

that the use of soil respiration and litterfall inputs does lead to a relatively accurate 

estimation of TBCA at regional and local scales.

Raich and Nadelhoffer (1989) found the ratio of TBCA to aboveground litterfall 

along a litterfall gradient declined steeply at low litterfall values, but leveled off as litterfall 

production increased. They also suggested, that because few data were available, 

values at the low end of the litterfall gradient are highly uncertain. BEF showed a similar 

pattern of steep declines in the TBCA:litterfall ratio, and uncertainty is likely at the lowest 

of litterfall values, but TBCA:litterfall ratios did not become constant across the range of 

high litter production even though values were similar to those found globally.

Several factors could contribute to the difference between total belowground 

carbon allocation at Bartlett and that reported in a global study by Raich and Nadelhoffer 

(1989). Raich and Nadelhoffer (1989) state that their equation can only be used in 

forests where steady state assumptions have been met. Although the plots used in this 

study are all over 65 years old and lack significant recent disturbance, it is possible that 

our results differ because the soils are not in steady state, i.e. the forest floor is 

accumulating, soil erosion is prevalent, or leaching of dissolved organic carbon (DOC) 

from soil organic matter (SOM) are significant.

Another possible cause for discrepancy is the use of only 1 year of litterfall 

collections on each set of plots and only 2 seasons of soil respiration measurements. 

Davidson et al. (2002a) state that interannual variation in both soil carbon inputs and 

exports could highly affect estimates of total belowground carbon allocation even if 

ecosystems are at steady state on decadal scales. Year to year differences in foliar 

production due to climate or herbivory and variations in soil respiration based on
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changes to global or local weather patterns (altering soil temperature and moisture) will 

cause root allocation to vary simultaneously. The best way to overcome this is to 

continue data collection so averages can be made over several years, reducing the bias 

of an abnormal year. A third possible reason for differences in TBCA at Bartlett may 

simply be the lack of trend between soil respiration and litterfall as the scale is reduced 

from global to local levels (as discussed by Davidson et al. 2002a). If micro-site 

variability becomes a greater factor in determining soil respiration at finer scales, but 

litterfall production rates remain the same across plots, TBCA values are ultimately 

driven by these micro-site factors.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER V

CONCLUSION

Many variables were considered in this analysis, but only a few were found to 

improve our ability to predict belowground carbon cycling at the Bartlett Experimental 

Forest. The relationship between soil respiration and nitrogen mineralization suggests 

that C and N cycle together in a pattern that extends across plots. It may also be 

possible to predict soil respiration not only across plots, but also across the landscape 

by combining the positive soil respiration-LAI relationship with remote sensing. Another 

important finding was that although the carbon balance approach gave relatively good 

estimates of total belowground carbon allocation, relationships between TBCA and 

litterfall might not follow patterns found at the global scale.

Several more years of litterfall collection will decrease variability in branchfall 

while continued soil respiration measurements will increase certainty about 2005 

October and November anomalies. By accounting for interannual variability in major 

carbon fluxes, estimation of belowground carbon allocation will be substantially improved 

(Davidson et al. 2002a). Linking these components to current knowledge of 

aboveground biomass and productivity (Ollinger & Smith 2005), eddy flux tower 

measurements, and future belowground work on roots and soil carbon stocks will 

provide a comprehensive ecosystem carbon budget as described by the NACP.

While our estimates of individual carbon pools and fluxes were similar to previous 

studies, relationships to other ecosystem characteristics such as ANPP, AGB, litter 

quality, and N cycling, were variable. Additional plots covering gaps in elevation, 

species composition and foliar chemical content will allow greater assessment of trends
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from this study that were either weak or non-existent. Soil respiration and TBCA 

relationships to other ecosystem parameters largely confirm that patterns in flux and 

partitioning at individual sites do not always coincide with those found across sites 

(Litton et al. In Review). However, changes in resources (e.g. LAI, N mineralization, 

foliar chemistry) at the local level may possibly be used in remote sensing studies to 

map soil carbon fluxes over the landscape.
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