2-27-2003

Stratospheric influence on the northern North American free troposphere during TOPSE: 7Be as a stratospheric tracer

Jack E. Dibb
University of New Hampshire, jack.dibb@unh.edu

R. Talbot
University of New Hampshire, robert.talbot@unh.edu

Eric Scheuer
University of New Hampshire - Main Campus, Eric.Scheuer@unh.edu

Garry Seid
University of New Hampshire - Main Campus

Linsey J. Debell
University of New Hampshire - Main Campus

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub

Part of the Atmospheric Sciences Commons

Recommended Citation
Stratospheric influence on the northern North American free troposphere during TOPSE: 7Be as a stratospheric tracer

Rights
Copyright 2003 by the American Geophysical Union.

Authors
Jack E. Dibb, R. Talbot, Eric Scheuer, Garry Seid, Linsey J. Debell, Barry Lefer, and Brian Ridley
Stratospheric influence on the northern North American free troposphere during TOPSE: 7Be as a stratospheric tracer

Jack E. Dibb, Robert W. Talbot, Eric Schaeuer, Garry Seid, and Linsey DeBell
Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, USA

Barry Lefer and Brian Ridley
Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA

Received 1 October 2001; revised 27 February 2002; accepted 25 March 2002; published 13 February 2003.

[1] We use 7Be, with HNO$_3$ and O$_3$, to identify air masses sampled from the NCAR C-130 during TOPSE that retained clear evidence of stratospheric influence. A total of 43 such air masses, spread fairly evenly across the February to May sampling period, and 40°N–86°N latitude range, were encountered. South of 55°N, nearly all clear stratospheric influence was restricted to altitudes above 6 km. At higher latitudes stratospherically influenced air masses were encountered as low as 2 km. Approximately 12% of all TOPSE sampling time at altitudes above 2 km was spent in stratospherically impacted air, above 6 km this increased to more than half of the time. Because it is not certain how much of this stratospherically influenced air irreversibly injected mass (and chemical compounds) into the troposphere, we estimate the stratospheric fraction of O$_3$ in high latitude TOPSE samples based on a linear relationship to 7Be and compare it to in situ O$_3$. This analysis indicates that the stratospheric source can account for a dominant fraction (>85%) of in situ O$_3$ throughout TOPSE, but that the stratospheric contribution was nearly constant through the 4 month campaign. In February and March the 7Be based estimates of stratospheric O$_3$ account for 10–15% more O$_3$ than was measured, but by April and May there is up to about 10% more O$_3$ than expected from the stratospheric source. This trend suggests that a seasonal transition from O$_3$ depletion to photochemical production in the high latitude North American troposphere is the major cause of the springtime increase in O$_3$.

INDEX TERMS: 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; 3362 Meteorology and Atmospheric Dynamics: Stratosphere/troposphere interactions; 9315 Information Related to Geographic Region: Arctic region;

KEYWORDS: Beryllium-7, Be-7, 7Be, ozone, stratosphere/troposphere exchange, polar sunrise

1. Introduction

[2] The overall goal of the Tropospheric Ozone Production about the Spring Equinox (TOPSE) airborne experiment was to investigate the chemical and dynamic evolution of the troposphere over northern North America during the winter/spring transition. Particular emphasis was placed on understanding the evolution of the springtime ozone maximum in the middle troposphere. A central issue in this regard was to determine the relative contributions of stratosphere-to-troposphere exchange (STE) and photochemical production of O$_3$ to the spring peak.

[3] Previous investigations in Europe point toward a significant photochemical component in the spring O$_3$ peak [e.g., Penkett and Brice, 1986; Penkett et al., 1993; Solberg et al., 1996; Simmonds et al., 1997]. However, Bazhanov and Rodhe [1997] point out that at Areskutan, Sweden the contribution of stratospheric O$_3$ peaked during the spring tropospheric O$_3$ maximum and was as important as photochemical production to the tropospheric budget. In North America the composition of the high latitude troposphere during spring has not been well constrained to date, though the NASA GTE ABLE 3 (A + B) campaigns extensively characterized the Arctic and sub-Arctic during summer. Stratospheric injection was shown to be a significant source of O$_3$, NO, and 7Be [Browell et al., 1992, 1994; Dibb et al., 1992; Gregory et al., 1992; Sandholm et al., 1992; Wofsy et al., 1992; Anderson et al., 1994; Bachmeier et al., 1994], though photochemistry was also very active. During the ABLE 3B campaign in summer 1990, Mauserall et al. [1996] calculated that photochemical production of O$_3$ was the dominant source term despite clear stratospheric influence.
During winter photochemistry is reduced (or shut down at Arctic latitudes), while stratospheric injections still occur ([Shapiro et al., 1984; Raatz et al., 1985; Oltmans et al., 1989]). Presumably the stratospheric source is dominant in the dark, even if the magnitude of STE is not at its annual peak. Dibb et al. [1994] reported year-round measurements of the 10Be/7Be ratio at Alert that indicate there must be significant stratosphere/troposphere exchange in the high Arctic throughout the year. However, injection of stratospheric Be isotopes into the Arctic troposphere peaked in summer, rather than during the spring peak in tropospheric O_3.

TOPSE was designed to probe the composition and chemical evolution of the North American troposphere between early February and late May, over the latitude range from Boulder (40°N) to 86°N. A series of flights using the NCAR C-130 was conducted at intervals through the winter/spring transition. Atlas et al. [2003] describe the instrument payload and the detailed objectives of each flight conducted on the seven trips. In this paper we identify stratospheric influence on the composition of air masses sampled during TOPSE through simultaneous enhancements in 7Be, HNO$_3$ and O_3. In addition, we attempt to constrain the contribution of stratospheric O_3 to the tropospheric O_3 budget in the high latitude portion of the TOPSE study region by using 7Be as a tracer of stratospheric injections.

Several companion papers in this issue also address the issue of stratospheric versus photochemical sources of tropospheric O_3 in the TOPSE experiment. Browell et al. [2003] use vertical curtains of O_3 and aerosols (from airborne lidar and in situ measurements on the C-130) along TOPSE flight tracks to identify tropospheric air masses influenced by stratospheric injections or pollution plumes from lower latitudes. They also use potential vorticity (PV) curtains to quantitatively estimate stratospheric O_3 within the troposphere. Allen et al. [2003] simulate 7Be using the University of Maryland chemical transport model driven by meteorological fields from the Goddard earth observing system data assimilation system (version 3). The simulations explicitly calculate the tropospheric 7Be budget and allow assessment of stratospheric influence on the O_3 budget. Wang et al. [2003] use a diel steady state box model, constrained by measurements on the C-130, to examine O_3 and HO$_3$ photochemistry during TOPSE.

2. Methods

Beryllium-7 activities were determined by non-destructive gamma spectroscopy in the laboratory at the University of New Hampshire, as described previously [Dibb et al., 1996, 1997]. Aerosol particles were collected onto Whatman GF/A glass fiber filters. We employed the NCAR Small Community Aerosol Inlet (SCAI) which incorporates a curved leading edge nozzle, isoaxially mounted inside a cylindrical shroud. This inlet is much like the inlet system that we have developed for use on the NASA DC-8 [Dibb et al., 1996, 2002]. Our experience has shown that the curved leading edge on the nozzle greatly reduces aerosol losses compared to knife-edged nozzles. The shroud further reduces losses by maintaining isoaxial flowlines into the nozzle over a range of aircraft pitch angles. We fabricated a replacement nozzle for the SCAI with a larger diameter opening in order to achieve higher sampling flow rates while keeping the velocity of air entering the nozzle within 10% of isokinetic rates. We expect that submicron aerosol particles (which carry essentially all 7Be) were transmitted to our filters with high efficiency. Limited comparisons between bulk SO$_2$ collected through the SCAI and fine (<2 micron) SO$_2$ collected with our mist chamber sampler during TOPSE [Scheuer et al., 2003] suggest that the passing efficiency of the SCAI remains relatively high for particles with diameters up to at least 3 microns. Filter samples were collected during all constant altitude flight legs throughout TOPSE, with nominal integration times of 15–20 min. Unanticipated changes in flight altitude resulted in some much shorter samples (minimum 3 min), while problems with our mist chamber sampling system occasionally distracted the operators and lead to longer samples (maximum 52 min), but the average filter exposure interval was 18.6 min (median 17.2 min). In total, 302 samples were collected for 7Be.

Nitric acid was determined in near real-time onboard the C-130, using the mist chamber sampling technique and ion chromatographic analysis [Talbot et al., 1999]. This system is being continually refined to provide faster sample throughput and lower detection limits. The TOPSE configuration is described by Scheuer et al. [2003]. The system was largely automated and collected a sample every 2.5 min, except when standard additions of HNO$_3$ and SO$_2$ were conducted to monitor passing efficiency of the inlet. Ozone was determined with the NCAR ACD fast chemiluminescence instrument [Ridley et al., 2002]. Data were reported at 1 Hz, but we exclusively use values averaged to the mist chamber, or filter, sampling intervals. All raw data, and a selection of merged products, including the one based on mist chamber sampling times used here, are archived at and available from NCAR ACD (http://topse.acd.ucar.edu). The merge based on filter sampling times was generated at UNH and is available from the first author. This merge only includes measured 7Be and 210Pb activities plus average mixing ratios of HNO$_3$ and O$_3$.

3. Results

TOPSE comprised 42 flights, including 4 instrument test flights in the vicinity of Boulder. The deployment was conducted in 7 trips at approximately biweekly intervals [Atlas et al., 2003]. Each of the experimental trips included 4–7 flights, all included a transect from Boulder to the southern Hudson Bay near Churchill, Manitoba, with five trips extending to Thule, Greenland. Most of the trips that reached Thule included a local flight (returning to Thule) over the Arctic ocean north of Alert (Alert is at 82.5°N). Nearly all instruments were operational for the final test flight, hence the TOPSE data set includes results for flights 4–42.

We were able to quantify 7Be activities on 244 out of the 302 samples collected during TOPSE (the remainder were below detection limits). As expected, highest activities were encountered at the highest altitudes and activities generally decreased toward the surface (Figure 1). Similar altitude trends in the mixing ratios of HNO$_3$ and O_3 (Figure 1) suggest that a common, stratospheric, source made a
significant contribution to the tropospheric burdens of these gases during the TOPSE study period. However, the nature of the TOPSE experiment, with flights extending over almost 4 months and covering approximately 50° of latitude, limits the utility of aggregated overviews like the altitude profiles in Figure 1. In order to identify stratospheric influence during TOPSE we searched each flight for intervals where \(^{7}\text{Be}\), HNO\(_3\) and O\(_3\) increased concurrently.

The most obvious, and longest, example of an encounter with stratospherically influenced air occurred on TOPSE flight 16 (Figure 2). This flight, conducted on 7 March, was mainly over Hudson Bay, originating from, and returning to, Churchill. Between about 14:30 and 16:00 five consecutive filter samples with \(^{7}\text{Be}\) activities >1500 fCi m\(^{-3}\) were collected. Throughout this interval the mixing ratios of HNO\(_3\) and O\(_3\) were elevated compared to the rest of the flight. Considerable correlated structure is apparent in the gas mixing ratios through this interval, at the 2.5-minute resolution of the mist chamber samples (Figure 2). This small-scale spatial heterogeneity was apparently due to alternation of air masses with strong stratospheric influence and less impacted upper tropospheric air masses. For our purposes this high frequency variability is ignored and the entire interval is considered to be stratospherically influenced, since HNO\(_3\) and O\(_3\) remained high relative to the rest of the flight even during the short dips.

Flight 16 also illustrates the subjective nature of our categorization. Immediately prior to the identified interval of stratospheric influence O\(_3\) increased from 60 to 110 ppb, and \(^{7}\text{Be}\) activity was relatively high at 850 fCi m\(^{-3}\) (Figure 2). However, HNO\(_3\) did not consistently mirror the increase in O\(_3\), so this short interval was not classified as being stratospherically influenced. As a result, our compilation of encounters with stratospherically influenced air masses along TOPSE flight tracks should be viewed as conservative, with subtly influenced air masses likely more abundant than the clear intervals we identified.

Flight 21 presents another example of a clear encounter with stratospherically influenced air, as well as intervals with enhancements of one or two, but not all three, of our stratospheric tracers. This flight was conducted out of Thule on 23 March and targeted boundary layer air with depleted O\(_3\) above the ice pack north of Alert [Ridley et al., 2003]. Sharp increases in all three tracers were observed along the short level leg near 7 km during the return to Thule (Figure 3). About one hour later, \(^{7}\text{Be}\) activity more than doubled in the final sample collected near 6 km but the mixing ratios of O\(_3\) and HNO\(_3\) decreased slightly. While it is likely that a large fraction of the \(^{7}\text{Be}\) in this air originated in the stratosphere, the interval is not considered to be stratospherically influenced by our definition, again pointing out that our criteria highlight unambiguous stratospheric influence.

Figure 1. Altitude distributions of \(^{7}\text{Be}\), HNO\(_3\) and O\(_3\) during TOPSE. Nitric acid and O\(_3\) mixing ratios have been averaged over the aerosol collection interval.

Figure 2. Time series of \(^{7}\text{Be}\), HNO\(_3\) and O\(_3\) on TOPSE flight 16 presented to illustrate how increases in all three species during the shaded interval were used to identify air masses with stratospheric influence.
This analysis identified 43 intervals when the C-130 flew through stratospherically influenced air (Figure 4). It should be noted that, while we required elevated 7Be activity to define stratospheric influence, the timing of encounters was based on coincident increases/decreases of O3 and HNO3 at the temporal resolution of the mist chamber sampling. On average, encounters with stratospherically influenced air masses lasted 28.5 min, but ranged from as short as 7 min up to the 80-minute encounter on Flight 16 (Figure 2). Stratospherically influenced air masses were identified on 23 of the 39 TOPSE science flights and occurred with similar frequency at all latitude bands of the study domain (Figure 4, top panel). There is also no obvious seasonal trend, with similar numbers, and duration, of encounters on each of the 7 trips from February through May (Figure 4, mid panel). Most stratospherically influenced parcels were encountered near and above 6 km. In fact, we defined just over half of all flight hours above 6 km to be in stratospherically impacted air (Figure 4, bottom panel). South of 50°N all identified encounters with stratospherically influenced air were above 6 km. At higher latitudes encounters were relatively frequent between 4 and 6 km and two stratospherically influenced air masses were identified below 4 km (Figure 4, top panel).

As an additional check on our identification of stratospheric influence, we examined the fractional contribution of HNO3 to NOy during the intervals with elevated 7Be, HNO3 and O3. During these intervals HNO3 accounted for 50–80% of measured NOy. This was not generally the case during TOPSE, with PAN and PPN usually the dominant N oxides (F. Flocke et al., Measurements of PAN and PPN, and the budget of reactive oxidized nitrogen during TOPSE, manuscript submitted to Journal of Geophysical Research, 2002) but is consistent with the overwhelming dominance of HNO3 in the stratospheric N budget.

4. Discussion

Enhancements in 7Be, HNO3 and O3 clearly reveal that stratospheric influence was frequent during TOPSE, but do not provide much quantitative insight into the impact of stratospheric injections on the tropospheric budgets of reactive compounds. A big problem is that we can not determine, from available data, what fraction of the stratospheric tracers we measured along the flight track were ultimately injected into the troposphere. How much of the apparent stratospheric influence was irreversible STE, as...
opposed to encounters with tropopause folds where much of the stratospheric air would end up returning above the tropopause? [15] If we assume that all

7Be measured during TOPSE originated in the stratosphere, it is possible to obtain semi-quantitative estimates of the stratospheric O$_3$ that would have accompanied the 7Be when it was injected into the troposphere. We will focus on the higher latitudes where our analysis indicates stratospherically impacted air masses were encountered throughout the troposphere (Figure 4). This geographic restriction also helps justify our neglect of 7Be produced in the troposphere, since stratospheric production accounts for 85% of the total above 55°N and 90% above 65°N compared to 70% on a global basis [Lal et al., 1958]. Rather than select an arbitrary latitude boundary, we include all flights except the transits between Boulder and Churchill in our high latitude subset (note that this eliminates 21 flights, since the northbound transits required a refueling stop in Winnipeg). We collected 165 filter samples on the 18 high latitude flights, and were able to quantify 7Be activities in 137 of them.

[19] Ozone (averaged to filter collection times) was reasonably well correlated with 7Be in the high latitude subset of TOPSE measurements (Figure 5). We tested several additional data filters to restrict the regression analysis to samples with strongest stratospheric influence. Selecting only samples with 7Be activity >500 fCi m$^{-3}$ causes only small changes in the slope and intercept (Figure 5). Similar minor changes result when the regression is restricted to samples collected above 5 or 6 km (not shown), where air masses with obvious enhancements of all three stratospheric tracers were most frequently encountered (Figure 4). Restricting the regression to high latitude samples identified as stratospherically influenced, as described above, also yields a similar relationship (O$_3$ = 57.8 + 0.024 7Be, R = 0.79). Regardless of filtering, linear fits to the TOPSE high latitude data set yields estimates in the narrow range of 22–25 ppb O$_3$/pCi 7Be. This value is only slightly higher than the 15–20 ppb/pCi range in (estimated stratospheric O$_3$) 7Be reaching the surface at Alert in spring 1991 [Dibb et al., 1994]. The TOPSE ratio is also similar to O$_3$/Be relationships we have observed in NASA airborne campaigns on the DC-8 (maximum sampling altitude up to 12 km) over the north Pacific (in spring) and north Atlantic (in fall), but is more than twofold lower than observed over the central US in spring, and in several investigations that penetrated tropopause folds (Table 1).

[20] The linear relationships between O$_3$ and 7Be (Figure 5) were used with measured 7Be to estimate stratospheric O$_3$ for each high latitude filter sample interval. Subtracting this estimate from observed O$_3$ yields a residual O$_3$ term that may provide an indication of O$_3$ produced (or destroyed) in the troposphere. Plotting residual O$_3$ against altitude suggests that most of the air masses sampled below 4 km had less O$_3$ than would be expected on the basis of observed 7Be (Figure 6). At higher altitudes residual O$_3$ is roughly balanced between negative and positive values, mostly bounded by ±20 ppb. Plotting residual O$_3$ as a time series shows a small, but steady, increase over the length of the TOPSE campaign (Figure 7). On the first 3 trips nearly all sample periods had O$_3$ deficits and by the final 2 trips most intervals had higher O$_3$ than was predicted on the basis of 7Be. The switch from an average deficit of about 15 ppb to an apparent excess of about 10 ppb O$_3$ accounts for much of the observed 34 ppb increase in average O$_3$ between the first and last trips (Table 2).

[21] It should also be noted that the average estimated stratospheric O$_3$ ranged only from 61 to 72 ppb (with the exception of trip 3 which included Flight 16 discussed earlier) with little or no trend over the four months. This is equivalent to stating that the average 7Be activity, inferred to reflect STE, varied little over the length of the TOPSE campaign. Browell et al. [2003] and Allen et al. [2003] also point out the lack of seasonal variation in 7Be and argue that the observed increase in O$_3$ thus cannot be due to increased injection of stratospheric O$_3$. The analysis described above is consistent with this view, but it also suggests that throughout TOPSE most of the O$_3$ in the high latitude troposphere could have been derived from the stratosphere. On average, our inferred stratospheric source provided more O$_3$ than was observed through the first 4 trips and even by the last trip the residual (non-stratospheric) O$_3$ only comprises about 15% of the total (Table 2).

[22] The trend in residual O$_3$ (Figure 7) is consistent with a seasonal change from net O$_3$ loss to net production in the Arctic troposphere over the TOPSE study period. Indeed, Wang et al. [2003] find that photochemical production of O$_3$ slowly increases in their 60–80°N bin throughout TOPSE, but only exceeds modeled losses during the month of May. This contrasts the situation for TOPSE sampling between 40–60°N where calculated O$_3$ production generally exceeds losses, with net production peaking in April [Wang et al., 2003]. However, the use of O$_3$/Be to estimate stratospheric O$_3$ entails several major assumptions that may limit the utility of our analysis.

[23] As noted above, we assume that all of the 7Be originated in the stratosphere. The chemical transport model indicates that 84% of tropospheric 7Be in the TOPSE region was produced in the stratosphere, and that this fraction increased with latitude [Allen et al., 2003]. By pointing out that very little 7Be is produced in the Arctic troposphere, we implicitly assume that large-scale transport of 7Be is mainly vertical (downward from the Arctic stratosphere). Feely et
al. [1988] argue that meridional transport (within the troposphere) of 7Be from midlatitudes may contribute to the springtime peak at Barrow. If this was important during TOPSE we would presumably over estimate stratospheric O_3 by the fraction of 7Be that had been produced in the troposphere further south and was then advected into the study area. The spring peak in surface level 7Be at Barrow (and several other Arctic stations [Dibb et al., 1994]) occurs in March and April, thus our estimates of residual O_3 during trips 3–5 could be artificially low. On the other hand, we saw no evidence for a springtime peak in 7Be above the surface during TOPSE, nor did 7Be peak in spring at 2.5 km altitude on the Greenland ice sheet during the DGASP campaign [Dibb and Jaffrezo, 1993]. High values of the 10Be/7Be ratio throughout the year at Alert demand steady injection of stratospheric air into the Arctic troposphere [Dibb et al., 1994]. It is hard to envision how pronounced seasonality in advection of tropospheric (lower activity) 7Be from midlatitudes could combine with steady injection from the stratosphere to yield nearly constant average activities in the Arctic troposphere over the four months of TOPSE. Allen et al. [2003] report that meridional transport into the high latitudes of the TOPSE domain dominates the 1.6% month$^{-1}$ increase of 7Be in this region calculated by the chemical transport model, but they note that no such increase is apparent in the observations.

Our analysis also implicitly assumes that 7Be injected from the stratosphere is effectively an inert tracer (i.e., we attribute changes in the O_3/7Be ratio to processes changing the abundance of O_3). This is obviously an over-simplification, since radioactive decay and removal by wet deposition will reduce 7Be activities without impacting O_3. Neglecting loss by radioactive decay can be justified on several grounds, most importantly because it does not vary over time, hence would not contribute to the seasonal trend in residual O_3. Seasonal variation in the efficiency of aerosol removal may be a more significant problem.

Extremely long aerosol lifetimes are known to be an important component of the winter/spring Arctic Haze phenomenon, with more efficient scavenging in the pervasive stratus decks a major factor causing very clean air in the Arctic boundary layer during summer [Dibb et al., 1994, and references therein]. An increasing trend in the rate of aerosol (and 7Be) removal through the TOPSE period would cause us to estimate increasing values of residual O_3, since our estimates of stratospheric O_3 would be biased low by an increasing amount. Note that increasing the removal of 7Be could be balanced by an upward trend in its injection from the stratosphere, explaining the nearly constant 7Be activity that we observed across the seven TOPSE trips. We do not believe that seasonality in aerosol removal is seriously impacting our analysis, largely from consideration of the dynamics in the Arctic troposphere. Throughout the TOPSE period the cold surface maintained a very stable atmosphere, suppressing convection and limiting the opportunity for precipitation scavenging to preferentially remove 7Be (relative to O_3). Under these conditions, removal of 7Be would be expected to be most efficient from the lower layers of the atmosphere, implying that we would under estimate stratospheric O_3 (overestimate residual O_3) most seriously close to the surface. Below 4 km our residual O_3 estimates are nearly all negative already (Figure 6), suggesting that any bias due to scavenging of 7Be is not very large.

Our use of a single O_3/7Be relationship to estimate stratospheric O_3 in the troposphere may also be problematic. It is known that O_3 increases in the Arctic lower stratosphere during the spring [A.A. Klonecki, Analysis of the correlation between O_3 and potential vorticity in the lower stratosphere and possible applications, submitted to Journal of Geophysical Research, 2001; Browell et al., 2003],

![Figure 6. Estimated residual O_3 (= measured O_3 – stratospheric O_3) as a function of altitude. The upper panel uses the fit to all data points in Figure 5 to estimate stratospheric O_3 from measured 7Be, the lower panel uses the fit based on high 7Be activity.](image-url)
thus STE processes that maintain a constant fraction of stratospheric ^7Be in the troposphere might be responsible for an increasing stratospheric fraction of O_3. The TOPSE data set is not sufficient to assess seasonality in $O_3/^{7}\text{Be}$ relationships in the stratosphere and we are not aware of any other information that would allow incorporating variable stratospheric $O_3/^{7}\text{Be}$ into our analysis. However, Browell et al. [2003] did account for increasing O_3/PV over time in their analysis and concluded that a small decrease in STE over the TOPSE study period maintained a nearly constant flux of stratospheric O_3 into the high latitude troposphere. On the other hand, Allen et al. [2003] calculated a very small increase in the amount of ^7Be injected into the high latitude troposphere by STE during TOPSE. The above mentioned increase in meridional advection of ^7Be in the model outweighed this trend, resulting in a small decrease in the stratospheric fraction of tropospheric ^7Be (but these two increasing trends created an overall increase in tropospheric ^7Be in the model which was not apparent in the measurements).

[26] Another limitation of our analysis arises from the scatter in the $O_3/^{7}\text{Be}$ regressions (Figure 5). We do not fully understand the sources of this variability, but suspect that variations in $O_3/^{7}\text{Be}$ in the stratospheric source, both over time and with distance above the tropopause (Table 1), make the dominant contributions. We recognize that scatter in the regression introduces uncertainty into the magnitude of residual O_3 that we estimate for any single sample. However, it is unlikely that statistical noise would result in such a clear seasonal trend in the estimated residual O_3 (Figure 7). We therefore conclude that the increasing trend in residual O_3 must largely reflect loss of tropospheric O_3 throughout most of the TOPSE high latitude study region in February and March, changing to net photochemical production during late April and May. This conclusion is entirely consistent with those reached by independent analyses including O_3/PV relationships [Browell et al., 2003], assessing the tropospheric ^7Be budget with a chemical transport model [Allen et al., 2003], and photochemical modeling to assess the O_3 budget [Wang et al., 2003].

5. Conclusions

[27] Stratospheric influence on the composition of the troposphere was frequently evident during TOPSE. Simultaneous enhancements in ^7Be, HNO$_3$ and O_3 can be used to identify air masses with a clear stratospheric component, but may not reveal more diffuse impacts and do not allow quantification of irreversible STE. We presented estimates of the stratospheric contribution to observed O_3 at high latitudes based on linear regression between O_3 and ^7Be. This simple model suggests that most (>85%) of the O_3 observed at these altitudes originated in the stratosphere throughout the February–May TOPSE campaign. However, our estimates of average mixing ratios of stratospherically derived tropospheric O_3 were essentially constant at 65 ppb, while observed average mixing ratios increased from 48 to 82 ppb between early February and late May. Our analysis suggests that this region changes from one of net O_3 loss in February and March to net production in April and May, with this change in photochemical tendency driving the observed seasonal increase in O_3 mixing ratios. Stratospheric injections of O_3 thus appear to be the dominant source of O_3 in the troposphere at high northern latitudes over this time period, but do not cause the springtime peak.

[28] Acknowledgments. UNH participation in TOPSE was supported by a grant from NSF OPP. We thank Elliot Atlas and Brian Ridley for conceiving and organizing TOPSE, and their colleagues at ACD for help in making it a success. The air and ground crews at NCAR’s RAF efforts operating the C-130 under challenging conditions are also deeply appreciated.

Table 2. Summary of the Relationship Between Observed O_3 and Stratospheric O_3 Estimated From Measured ^7Be at High Northern Latitudes During TOPSE

<table>
<thead>
<tr>
<th>Trip</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average O_3 (ppb)</td>
<td>47.6</td>
<td>57.8</td>
<td>85.7</td>
<td>59.0</td>
<td>69.0</td>
<td>78.5</td>
<td>81.9</td>
</tr>
<tr>
<td>Residual O_3 (^{7}Be)</td>
<td>-13.1</td>
<td>-9.3</td>
<td>-9.9</td>
<td>-5.7</td>
<td>3.9</td>
<td>8.0</td>
<td>11.5</td>
</tr>
<tr>
<td>Residual O_3 (Hi ^7Be)</td>
<td>-15.5</td>
<td>-11.2</td>
<td>-9.6</td>
<td>-7.8</td>
<td>1.8</td>
<td>6.3</td>
<td>9.8</td>
</tr>
</tbody>
</table>

*Residual O_3 is simply observed O_3 minus the estimated stratospheric O_3, using the 2 different linear regressions of O_3 on ^7Be shown in Figure 5. This table presents the average difference, by trip, for all points with both ^7Be and O_3 observations.

References

