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Abstract. Amazonia contains a vast expanse of contiguous tropical forest and is influential in global car-
bon and hydrological cycles. Whether ancient Amazonia was highly disturbed or modestly impacted, and
how ancient disturbances have shaped current forest ecosystem processes, is still under debate. Amazo-
nian Dark Earths (ADEs), which are anthropic soil types with enriched nutrient levels, are one of the pri-
mary lines of evidence for ancient human presence and landscape modifications in settings that mostly
lack stone structures and which are today covered by vegetation. We assessed the potential of using mod-
erate spatial resolution optical satellite imagery to predict ADEs across the Amazon Basin. Maximum
entropy modeling was used to develop a predictive model using locations of ADEs across the basin and
satellite-derived remotely sensed indices. Amazonian Dark Earth sites were predicted to be primarily along
the main rivers and in eastern Amazonia. Amazonian Dark Earth sites, when compared with randomly
selected forested sites located within 50 km of ADE sites, were less green canopies (lower normalized dif-
ference vegetation index) and had lower canopy water content. This difference was accentuated in two
drought years, 2005 and 2010. This is contrary to our expectation that ADE sites would have nutrient-rich
soils that support trees with greener canopies and forests on ADE soils being more resilient to drought.
Biomass and tree height were lower on ADE sites in comparison with randomly selected adjacent sites.
Our results suggested that ADE-related ancient human impact on the forest is measurable across the
entirety of the 6 million km2 of Amazon Basin using remotely sensed data.

Key words: Amazonia; Amazonian Dark Earths; ancient people; anthrosols; drought; forest structure; maximum
entropy modeling; MODIS; pre-Columbian impact; terra preta; tropical forests.
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INTRODUCTION

The Amazon Basin contains the largest continu-
ous rainforest in the world (~6 million km2) and
now constitutes 40% of this ecotype globally
(Olson et al. 2001, Keller et al. 2004). The long-
term resilience of these forests to climate change is
uncertain (Betts et al. 2004, Malhi et al. 2009), but
it is certain that humans have the capacity through
deforestation to radically alter Amazonia’s biodi-
versity and carbon storage capacity (Nobre et al.
1991, Goulding et al. 1996, Werth and Avissar
2002, Palace et al. 2012, Bustamante et al. 2016,
Poorter et al. 2016). Forest structural heterogeneity
in the physical form of the canopy geometry, tree
heights, and species composition (Salati and Vose
1984, Terborgh 1992, Brown et al. 1995, Chave
et al. 2001, Houghton et al. 2001, Rice et al. 2004)
is matched by both an often-overlooked variability
in habitats and a divergent history of pre-historic
use. A key question for ecologists is to what extent
do the differences in modern forests reflect natural
long-term vegetation dynamics, edaphic processes,
or human activity?

Estimates of the pre-Columbian indigenous
population of the Amazon Basin lowlands are
highly uncertain, widely varying, and have been
the subject to considerable controversy (Brondizio
2003, Meggers 2003, Bush and Silman 2007,
Clement et al. 2015). Estimates of pre-Columbian
populations for the Amazon Basin have ranged
from 500,000 to 10 million (Comas 1951, Moran
1974). Multiple mid-range estimates from 6.8 to 8
million people have been proposed (Denevan
1970, 1992, Clement et al. 2015). One school of
thought suggested that Amazonia was a coun-
terfeit paradise whose lush vegetation hid nutri-
ent-poor soils incapable of supporting large
populations and complex societies (Meggers 1971,
2003). In contrast, others have found indications
of large populations with hierarchical social
organization and intensive agricultural practices
(Roosevelt 1991, Heckenberger et al. 2003a,
Heckenberger 2004, Bal�ee and Erickson 2006)
Though the debate between these two groups was
hotly contested, new evidence indicates a spatially
heterogenic settlement patterns across Amazonia
(Meggers 2003, Heckenberger et al. 2003b,
McMichael et al. 2012a, Clement et al. 2015). One
point of agreement among the proponents of the
extreme points of view, as well as those in

between, is the scarcity of data regarding the pre-
European societies of Amazonia (Denevan 2014).
The European invasion brought depopulation,

exploitation, and slavery to Amazonia. Diseases
such as smallpox, influenza, and measles deci-
mated indigenous populations, by as much as 90%
in some parts of Latin America (Henige 1998,
Denevan 2001). Abandonment of the most accessi-
ble sites was widespread, partly as a direct conse-
quence of population collapse and partly to avoid
further interaction with Europeans (Dobyns 1966,
Crosby 2004, Chambouleyron et al. 2011). The net
effect of site abandonment was that lands that had
been cleared and cultivated became successional
forest (Chambouleyron et al. 2011). By the eigh-
teenth century, when the first naturalists traveled
to the area, they found formerly occupied places
covered by forest and Amerindian societies scat-
tered along the headwaters of the tributaries of the
Amazon. Plant management, including cultivation
of domesticated plants, is known to have been
practiced in lowland Amazonia for thousands of
years before European arrival (Bush et al. 1989,
Brugger et al. 2016, Bush and McMichael 2016).
Along the Amazon River, the flooded forest

(v�arzea) pre-Columbian population density was cal-
culated to have been 14.6 persons per km2, while
the upland (terra firme) has an estimate of 0.2 per-
sons per km2 (Denevan 1970). There are indications
that populations were clustered, indicating spatial
heterogeneity across the landscape (Meggers 1971,
Roosevelt 1991, Heckenberger et al. 2003b). The
upland areas may also have contained numerous
large population centers interconnected by road-
ways (Heckenberger et al. 2003b). Estimates of the
area of forest altered by pre-Columbian humans
span a wide range. It has been estimated that 50%
of forest area has been altered in upland areas adja-
cent to the major rivers, while others suggest 11.8%
has been impacted in all of the non-flooded areas
(Bal�ee 1989). These estimates rely heavily on the
type of agricultural practices assumed to be used
to support the resident population (Meggers 1954,
Roosevelt 1991, Neves 1999).
The uncertainty over initial human population

size and how these populations impact the tropical
forest structure and processes also translates into
disparate opinions on their legacy effects. If aban-
donment took place ~1600, there have been only
one to three tree generations, and so successional
signatures might well still be apparent. One path
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taken to identify legacy impacts of past human
disturbance on forest composition is to document
useful tree species, and where an elevated occur-
rence of useful species suggests a legacy of prior
disturbance (Piperno et al. 2015). Such classifica-
tion of useful species is highly subjective. It is also
not known whether such an elevated density of
useful species was the result of pre-Columbian
activity or more recent, for example, rubber boom,
impacts (ter Steege et al. 2013) or merely the result
of natural processes or a combination of natural
and anthropogenic factors. Recent work has indi-
cated that regions around archaeological sites have
different tree species composition than that of
nearby forests (Levis et al. 2017).

The typically poor soils of Amazonia, which are
mostly severely weathered and nutrient-poor ulti-
sols or oxisols (Quesada et al. 2011), were seen to
be a major impediment to the establishment of
large, dense, and sedentary populations (Meggers
1971). The realization that highly productive and
stable anthropic soils were produced by ancient
indigenous populations changed the debate over
the Amazonian past (Woods and McCann 1999,
Glaser et al. 2001, Petersen et al. 2001). Amazonian
Dark Earths (ADEs) or in Portuguese, terras pretas
(Smith 1980, Petersen et al. 2001), are anthrosols
characterized by high levels of organic matter,
charcoal, and nutrient elements (Woods 2003). Fre-
quently associated with large accumulations of
potsherds, lithics, and features such as mounds or
ditches (Costa et al. 2004, Glaser et al. 2004), these
soils were formed over a few generations by
sedentary populations with intensive land use and
agroforestry management practices (Heckenberger
et al. 2003a, b, Glaser and Birk 2012, Denevan 2014,
Neves et al. 2014). Such anthrosols developed as
the result of trash middens accumulating beside
houses (Medina 1934, Schmidt et al. 2014). Radio-
metric 14C dating suggests that ADE formed in
some locations as long ago as 6000 cal yr BP, but
the majority of them were formed between c. 2500
and 1200 cal yr BP (Neves et al. 2014), that is, prior
to European contact (Woods 2003). Many ADE
sites are found on prominent high bluffs overlook-
ing major rivers such as the Tapajos River near
Santarem, where the earliest European travelers in
the region reported high indigenous population
densities (Denevan 2001, Glaser and Birk 2012).
Although hundreds of ADE sites have been
reported (German 2004, Kern et al. 2004, Neves

and Petersen 2006, WinklerPrins and Aldrich
2010), only recently have comprehensive surveys
attempted to document the frequency of occurrence
of ADE across Amazonia, specifically in upland
forested areas (WinklerPrins and Aldrich 2010,
McMichael et al. 2012b, Urrego et al. 2013). Quan-
tification of the frequency and spatial distribution
of ADE is an important step toward reducing the
uncertainty over the pre-Columbian human popu-
lation and its influence on the evolution of Amazo-
nian forests.
Although many ADE locations are well known,

it has been hypothesized that many more exist
that have yet to be identified. The quest to map
ADE locations has been stymied by the immense
size of Amazonia, remoteness of many areas,
dense forest, and lack of archaeological field sur-
veys. Remote sensing offers a new opportunity to
augment traditional archaeological studies and to
contribute to the mapping of ADE soils (Erickson
1995, McGovern 1995, Palace et al. 2008,
McMichael et al. 2014a). Remote sensing allows
for comparison and analysis of vegetation charac-
teristics across vast areas (Palace et al. 2008, Treu-
haft et al. 2015). Differences in leaf pigment
composition and concentrations can be detectable
via optical remote sensing by analysis of multiple
wavelengths of the electromagnetic spectrum
represented as different reflectance bands (Ustin
et al. 2004, Pellissier et al. 2015).
If ADEs can be detected from space, the ecolog-

ical characteristics and responses to climate forc-
ing can be evaluated on an unprecedented scale.
Leaf or foliar chemistry is correlated with soil
nutrient concentrations (Martin and Aber 1997),
and this difference is detectable using remotely
sensed image data (Nicotra et al. 2003). Soil nutri-
ent availability directly affects plant physiological
functions, such as photosynthesis, and the devel-
opment of metabolic and structural molecules
(Marschner 1995, Aber and Melillo 2001). Specific
wavelength bands are associated with different
vegetation characteristics and structure (Cham-
bers et al. 2007). This very discrepancy in nutrient
availability in ADE and non-ADE soils lies at the
heart of our remote-sensing analysis.
Here, we examine the potential of using moder-

ate spatial resolution optical satellite imagery to
estimate the spatial extent of ADE across the
entire Amazon Basin. We ask three basic ques-
tions: (1) Can ADE soils be reliably detected using
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remote sensing? (2) What is the spatial distribu-
tion of ADE sites in Amazonia forests? (3) What
are the biometric characteristics of forests on
ADE sites indicating potential impacts of pre-
Columbian populations of the forest?

METHODS

Amazonian Dark Earth sites
Our region of study is the Amazon Basin in

South America, with the inset map covering an
area of high ADE probability (Fig. 1). The loca-
tions of ADE sites were extracted from a compila-
tion of existing online sources, published papers,
and locations provided by E. Tamanaha (personal
communication), E. Neves (personal communication),
and WinklerPrins and Aldrich (2010). Sites were
excluded that were not previously classified as
having high to medium confidence in accuracy
in their geographic coordinates or that lacked
coordinates taken using a global positioning
system device (WinklerPrins and Aldrich 2010,
McMichael et al. 2012a). Some sites in both

western and eastern Amazonia were excluded
due to disturbance, as we were examining intact
forests, not recently impacted by humans.
The ADE locations used in our study are pri-

marily located near rivers and clustered in central
and eastern Amazonia. These areas have been
suggested to be more heavily surveyed by archae-
ological research and present a bias in sampling.
Survey work by archaeologists has attempted to
address this issue with carefully planned surveys
and sampling parameters. Our use of multiple
sources is an effort to include as many potential
sites and sampling schemes in an effort to address
such as bias. In addition, maximum entropy mod-
eling has been suggested to be less sensitive to
sampling location biases than other statistical
methods (McMichael et al. 2014a).
To examine the spectral signatures of forested

ADE sites and relate them to ancient human activ-
ity, we had to further filter out sites that were cur-
rently non-forested. Thus, we generated a forest
filter MODIS 1-km Vegetation Continuous Fields
product (MOD44B), using year 2010. We filtered

Fig. 1. Location of Amazonian Dark Earth sites (blue dots) and the study area of the analyses. Black areas are
regions masked from inclusion in our analysis due low biomass or non-forested areas. The masked area also
includes the main stem of the Amazon and some flooded areas.
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out sites that had <50% tree cover at the MODIS
pixel level. In addition, we used two biomass
maps (Saatchi et al. 2007, 2011) to exclude any
sites with aboveground biomass <100 Mg/ha.
This acted as a further check to increase the likeli-
hood that we were examining only forests not
recovery from recent disturbance. A total of 251
ADE locations were used in our analyses, out of
the total of 917 from McMichael et al. (2014a),
indicating that 72% of known ADE sites are
located on cleared land under cultivation or in
secondary forests. The geographical distribution
of the included 28% of the ADE sites was similar
to the distribution of the sites used by McMichael
et al. (2014a). Amazonian Dark Earth sites have
been shown to be larger than two hectares and at
times greater than fifteen hectares (Costa et al.
2004). Others have suggested that ADE sites may
extend over several square kilometers (Sombroek
et al. 2002). Our effort was to examine whether
the MODIS 500-m spatial resolution (25 ha) was
sufficient for identification of ADE sites. Fifty ran-
dom points were generated within 50 km for each
ADE site. These random points adhered to the
same forest cover and biomass criteria we set for
inclusion of ADE sites in our study and were also
not known to be ADE sites. These random points
were generated for comparison of the spectral dif-
ferences between ADE and randomly selected
sites and are assumed to not contain ADE. A total
of 12,550 random points were used in comparison
with the 251 ADE sites.

Moderate spatial resolution optical satellite
imagery extraction indices

Moderate spatial resolution optical satellite
imagery provides the best available platform to
image tropical forests over large regions, and due
to repeat coverage, issues of cloudiness can be
addressed. Temporal resolution of image capture
ranges from 1 to 8 d, and spatial resolution spans
from 250 to 1000 km. A total of 36 spectral reflec-
tance bands (ranging from 620 nm to 1.385 lm)
are collected by MODIS and are used to develop
data products that include the characterization of
terrestrial vegetation and atmospheric properties
(Justice et al. 1998, Hagen et al. 2002, Braswell
et al. 2003). Leaf pigments from the top of canopy
tend to be reflected in the visible spectrum (400–
700 nm) while the canopy water content is found
to reflect in the near-IR spectrum (700–1300 nm;

Chambers et al. 2007). We note that MODIS land
optical bands only extend to 2.7 lm, but contain
bands that allow for examination of leaf pigments
and canopy water.
Moderate spatial resolution optical satellite

imagery data were used in both our maximum
entropy modeling and our comparison of ADE
and random forested sites. We used four indices
derived from the MODIS nadir-bidirectional
reflectance distribution function (BRDF) adjusted
reflectance (MCD44A4) product, and four dry
season months for the years 2004, 2005, 2009,
and 2010. These indices are ratios between spec-
tral bands that focus on specific aspects of forest
canopy properties. The normalized difference
vegetation index (NDVI) is a measure of the den-
sity of greenness in a pixel. The land surface
water index (LSWI) provides a measure of the
hydration of both soil and vegetation. The visible
atmospherically resistance index (VARI) is
another metric providing a proxy measure for
greenness. The brightness (BRGT) index is a
proxy for the total albedo of the pixel.
We used the MODIS nadir-BRDF adjusted

reflectance product (MCD43A4). BRDF is defined
as the bidirectional reflectance distribution func-
tion, which examines how light is reflected from
a surface and how such angles and reflections.
Influences on forest canopies on the reflected
light can be considerable (Morton et al. 2014).
The MCD43A4 MODIS product accounts for the
bidirectional influence. We extracted the reflec-
tance values of this product for each of the ADE
and non-ADE sites, including values for four
dry season months (June–September) for the
years 2004, 2005, 2009, and 2010. Strong
droughts occurred in Amazonia in 2005 and
2010. The 2005 drought was stronger west of
66° W and weaker east of 66° W (Frolking et al.
2011, 2017), coinciding with where known ADE
sites are located across the west to east portion
of Amazonia. We included these drought years
because differences in the forest canopy reflec-
tive properties might be enhanced under dry
conditions. In addition, these four months gen-
erally represent the dry season across much of
the basin and have proportionally more cloud-
free and uncontaminated pixels. The resolution
of imagery used was 500 m. The four indices
that we calculated were NDVI, LSWI, VARI,
and BRGT:
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NDVI ¼ nir� red
nirþ red

(1)

LSWI ¼ nir�mir
nirþmir

(2)

VARI ¼ green� redð Þ
greenþ red� blueð Þ (3)

BRGT ¼ 0:3� blueþ 0:3� red
þ 0:3� greenþ 0:1� nir

(4)

where blue is MODIS band 3 (459–479 nm),
green is band 4 (545–565 nm), red is band 1 (620–
670 nm), nir is band 2 (841–876 nm), and mir is
band 6 (1628–1652 nm). Of the four indices,
NDVI is the most widely known and has been
shown to be related to vegetation density,
canopy cover fraction, photosynthesis rates, net
primary productivity, and other aspects of plant
activity, depending on the time and spatial scale
examined (Petorelli et al. 2005). The LSWI is
functionally similar to NDVI but takes advantage
of the relatively stronger scattering of leaf water
in the mid-infrared relative to near infrared
(Chandrasekar et al. 2010, Gamon et al. 2016).
LSWI uses the channel 6 mid-range infrared
(MIR) which has been suggested to be a more
robust option than using channel 7 MIR. The
VARI (Gitelson et al. 2002) is meant to be sensi-
tive specifically to the strength of absorption of
chlorophyll b in the red band relative to the
green band, with an additional adjustment factor
using the blue band to account for atmospheric
effects (Appendix S1: Fig. S1). BRGT is not a veg-
etation index, but simply a proxy for albedo,
with broad MODIS bands weighted to account
for the approximate strength of incoming solar
radiation in the respective bands.

Choosing indices to use in analysis
We generated a total of 64 potential variables

for use in our modeling efforts (four years, four
months, four indices). In an effort to reduce the
large number of potential environmental layers
or variables going into a geospatial model, we
conducted t tests on each index/year/month,
comparing known ADE sites and random sites.
We selected the 10 spatial layers that showed the
greatest contrast (i.e., with lowest P-value from t
tests; Table 1; Appendix S1: Fig. S1) between
ADE sites and randomly selected sites. The top

two selected layers were VARI in September for
2005 and 2009 (Appendix S1: Fig. S1).

Geospatial processing and statistical analysis
Organization of ADE sites, MODIS monthly

averages, and reflective index calculations were
all done in Python 2.7. Extraction of points for
statistical analysis, graphing, and mapping was
performed with QGIS 2.14 Essen. We used Max-
Ent modeling software version 3.3.3 (Philips
et al. 2006) to generate predictive models of ADE
across Amazonia using MODIS values as predic-
tors and ADE locations as occurrence points. We
applied the same forest mask to all MODIS data-
sets for use in our spatial predictive modeling.
Ten covariates were used as environmental or
spatial layers in our modeling effort. We ran our
model with k-fold cross-validations. Iterations
were run using a convergence threshold set at
0.0001 and with a default prevalence of 0.5.
Response curves were generated for each input
variable in our MaxEnt model. Jackknife tests
were run to examine the importance, or relative
contribution, of each variable to the model, both
when the variable was used exclusively to build
the model and when it is excluded from the
model (Howey et al. 2016). Jackknife tests were
done for both training and test datasets. The con-
tribution of a specific variable is estimated based
on the regularized gain observed when the vari-
able is included in the model (Table 1). Response

Table 1. Results indicating the importance of the top
10 variables in the development of a prediction
model indicated by permutation importance and
sorted by lowest P value from t tests.

Index Month Year
Permutation
importance

Visible atmospherically
resistant index (VARI)

September 2009 14.6

VARI September 2010 13.9
Land surface water index
(LSWI)

September 2005 2.9

Normalized difference
vegetation index (NDVI)

August 2009 30.2

LSWI September 2010 2
NDVI September 2009 11.4
VARI August 2009 10.5
VARI September 2005 3
NDVI September 2010 8.3
NDVI September 2005 3.2
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curves were developed for each variable
(Appendix S1: Figs. S2, S3). The area under the
curve (AUC) statistic was used to gauge the pre-
dictive capacity of our model and how well it
performed compared with a null model. Area
under the curve values from a model greater
than 0.75 are considered to predict the test point
distribution accurately (McMichael et al. 2014a).
All statistical analyses were performed in JMP
Pro 12 and graphs were generated using Sigma-
Plot 10 (Systat Software, Inc., San Jose, Califor-
nia, USA). Biometric properties from forested
regions in the Amazon were examined for com-
parison between ADE and random sites. Data
sources used are presented in Table 2.

Impact of ADE on tropical forest structure
Once a probability map was developed of ADE

distribution across the basin, we were interested
in the impact that indigenous people and ADE
sites might have on the tropical forest biometry.
First, we examined the differences between ADE
sites and random sites for biomass, forest height,
percent tree cover, and distance to forest edge. We
used previously generated data products for this
effort, which included biomass (Saatchi et al.
2011, Baccini et al. 2012, Avitabile et al. 2016), for-
est height (Simard et al. 2011), percent tree cover
(Hansen et al. 2013), and our estimate using our
non-forest mask (distance to edge of forest;
Appendix S1: Fig. S4). We developed spatial
impact maps using the average difference in bio-
mass and estimated ADE probability from our
MaxEnt modeling effort. A simple formula repre-
senting biomass reduction was developed:

DB ¼ PMaxEnt � B � dBADE

where DB is the change in aboveground biomass
(Mg/ha), PMaxEnt is the probability of a ADE
site from the MaxEnt model, B is the aboveground

biomass (Mg/ha), and dBADE is the mean above-
ground biomass reduction as a fraction of
total biomass for a pixel. We were interested in
mapping the potential increase or decrease in
aboveground biomass as an extension of anthro-
pogenic past disturbance through the region.

RESULTS

MODIS ADE vs. random site indices
Monthly averages for MODIS indices were dif-

ferent between ADE sites and randomly selected
sites (Fig. 2). In most cases, differences between
years and between ADE and random site data
increased as the dry season progressed (and
water stress probably increased) from June
through September (Fig. 2). Normalized differ-
ence vegetation index values were lower for
ADE sites later in the dry season (August and
September) for both drought years (2005 and
2009) and normal years (2004, 2010) compared
with random sites; however, 2009 and 2010
showed greater variation (Fig. 2). Land surface
water index was lower for both ADE sites and
random sites during the drought years with
greater differences between 2009 and 2010
(Fig. 2). Amazonian Dark Earth sites had lower
VARI values than random sites for all months
and for both 2004 and 2005, though VARI values
were lower for ADE sites in 2005 and 2009 com-
pared with 2004 and 2010, respectively (Fig. 2).
VARI showed little difference between ADE sites
and random sites for all months for 2004 and
2005. For VARI in 2009 and 2010, the differences
between ADE and random sites were greatest in
August and September, with the differences pri-
marily between years and not between ADE and
random sites (Fig. 2). BRGT showed an increase
over the four-month time period for both ADE
sites and random sites.

Table 2. Biometric properties and distance from edge for Amazonian Dark Earth (ADE) and random sites.

Forest biometric properties ADE Random Summary Source

Biomass (Mg/ha) 206.3 � 32.9 211.6 � 33.7 <0.0421 Saatchi et al. (2011)
Biomass (Mg/ha) 227.8 � 92.0 254.0 � 57.2 <0.0001 Baccini et al. (2012)
Biomass (Mg/ha) 210.9 � 65.8 222.7 � 73.7 0.01 Avitabile et al. (2016)
Tree height (m) 27.4 � 6.3 29.4 � 5.4 <0.0001 Simard et al. (2011)
Percent cover 91.6 � 12.3 97.8 � 6.6 <0.0001 Hansen et al. (2013)
Distance from edge (km) 4.8 � 12.1 6.2 � 12.1 N.S. Non-forest mask

Notes: N.S., not significant. Values are mean followed by standard deviation.
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Fig. 2. Four indices used in our analysis for four months in 2004 and 2005 (left) and four months in 2009 and
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Geospatial model
A map of ADE likelihood was generated across

the region using MaxEnt modeling (Fig. 3). We
only used known ADE sites in the maximum
entropy modeling. The average test, or out-of-
sample, AUC value for the replicate runs was
0.791, with a standard deviation of 0.261, which
indicated that the model performed well and was
able to predict the test data accurately.

The results for the jackknife test, using AUC
on test data, to examine the importance of indi-
vidual variables indicated that the variable with
highest gain when used in isolation is VARI in
September 2010 (0.6523 AUC) and thus may be
considered the variable with the most useful
individual information. Visible atmospherically
resistance index in August 2009 (0.7131 AUC) is
the variable that reduces the gain the most when

excluded from the model, thus indicating that
this variable has the most useful unique informa-
tion in comparison with other variables.
The variable with the highest permutation

importance was NDVI August 2009, at 30.2%.
The second highest permutation importance
variable was VARI September 2009. The permu-
tation importance is the value of that variable to
the model contribution when all other variables
are held constant. The response curves for each
individual variable averaged over the runs are
presented in the supplemental material (Appen-
dix S1: Figs. S3, S4).

Biometric properties between ADE vs.
random sites
Using the probability map of ADE sites and an

estimate of the average biomass reduction on ADE

2010 (right), comparing Amazonian Dark Earth (ADE) sites and random sites near each of the ADE sites. Circles
represent non-drought years. Triangles represent drought years. Red colors represent ADE sites. NDVI, normal-
ized difference vegetation index; LSWI, land surface water index; VARI, visible atmospheric resistance index.

(Fig. 2. Continued)

Fig. 3. Prediction of Amazonian Dark Earth across Amazonia using MaxEnt modeling. The black area is a
non-forest mask or was not included in our analysis due to clouds or instrument errors of the satellite platform.
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sites, we provide an estimate of the anthropogenic
forcing of pre-Columbian populations on Amazo-
nian forests. We compared biometric properties
using existing data sources to examine whether
the optical differences in MODIS indices were
correlated with forest structure. These included
biomass (Saatchi et al. 2011, Baccini et al. 2012,
Avitabile et al. 2016), forest height (Simard et al.
2011), percent tree cover (Hansen et al. 2013), and
our estimate using our non-forest mask (distance
to edge of forest; Appendix S1: Fig. S4). We found
that biomass, tree height, and percent tree cover
were all significantly lower at ADE sites compared
to random sites (Table 2). Biomass was 8.2% lower
on ADE sites, using the biomass values from
Baccini et al. (2012). There was a 10% decrease in
the average tree height on ADE sites compared to
random forested sites. Percent tree cover was 9.0%
lower on ADE sites also when compared to ran-
dom forested sites. To test whether ADE sites may
be impacted by degradation or used for extractive
resources, we compared the distance from edge of
cleared land or secondary forest. We found no
difference in the distance from the edge of non-
forested areas and ADE and random sites.

DISCUSSION

Can ADE sites be detected using remote sensing?
Recently, researchers used Spot6 image data

(1.5 m) to examine ADE distribution in agricul-
tural fields tens of kilometers with promising
results (S€oderstr€om et al. 2016). Agricultural
fields vary tremendously based on the recent his-
tory of land use, and applying such a methodol-
ogy with very high-resolution data across larger
regions can be difficult. We used MODIS
(MCD44B) indices generated in the dry seasons
of 2004, 2005, 2009, and 2010, to assess whether
known ADE sites could be predicted across the
Amazonian region for intact forests. Using differ-
ent indices derived from MODIS, our model
robustly predicted the ADE sites in the testing
dataset (AUC of test data = 0.791; Fig. 3). In
addition, our analysis showed that ADE forest
sites differ spectrally from randomly located
forested sites adjacent to known ADE sites.

In general, the dry season in Amazonia is from
June through September, with some northern
areas of Amazonia having a slight temporal shift
due to the movement of the Intertropical

Convergence Zone. During the months from
June through September, BRGT (a proxy for
albedo) from the ADE sites increased more than
that of the non-ADE sites, while NDVI, LWSI,
and VARI (photosynthesis index) decreased. This
finding suggested that the forests of ADE sites
had fewer green leaves, were less photosyntheti-
cally active, and had drier canopies. This result
was not consistent with our initial expectation
that the greater nutrient availability common to
ADE soils would result in more robust drought
resistance. At one forested site in the eastern
Amazon, researchers found that Net Primary
Productivity (NPP) fell dramatically during the
dry season on an ADE site when compared with
a non-ADE site (Doughty et al. 2014). Several dif-
ferent explanations for such differences in spec-
tral indices can be proposed that are not
mutually exclusive or that may apply more in
one location than another. The species composi-
tion on ADE soils may simply be different to that
of non-ADE soils (Junqueira et al. 2011), result-
ing in different reflectance as they become
stressed with progression of the dry season. The
relative resource allocation to root depth on dif-
fering soil types is largely unknown for Amazo-
nian trees and could be an important determinant
of drought resistance (Asner and Vitousek 2005).
Seedling recruitment has been shown to be lower
on ADE sites and was attributed to Ca toxicity
and nutrient imbalances (Quintero-Vallejo et al.
2015), and this could contribute to differences in
species composition. Others have suggested that
ADE abandonment resulted in mineralization of
organic C and nutrient leaching, thus reducing
overall nutrient content and humus in the soil
and potentially influencing forest structure
(Neves et al. 2004). We suggest that differences in
root mats, soil moisture, and seedling recruitment
may also be driving factors.

What is the spatial distribution of ADE sites
across Amazonia?
Our findings indicate that forests on ADE sites

are more susceptible to drought. Clearing a tropi-
cal forest without metal axes is difficult; indige-
nous people could have used slash and burn,
and/or slash and char, using fire to aid in the
conversion of forest to intensive agroforestry
systems (Arroyo-Kalin 2012). Thus, it seems intu-
itive that ADE sites may have been pre-selected
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to lie in regions that were readily burned due to
the propensity for drought or intensity of dry
seasons. Once ADEs developed, they became
areas of interest for groups and potentially for
further reoccupation.

Our results highlighted the prevalence of
ADE sites along the main rivers in Amazonia,
particularly in the central and eastern regions,
which agrees with a geospatial model that used
the occurrence points with climatic, geological,
and geographical predictors (McMichael et al.
2014a). Both models have predicted high spatial
heterogeneity in ADE sites across the Amazon
and suggest that the overall picture of pre-
Columbian occupation by indigenous people is
complex. Ancient people likely were attracted to
specific environmental parameters often that
have a spatial component (e.g., topography,
distance to rivers, or biome type), to construct
settlements and grow crops. Each of these
modeled predictive maps, our current study and
McMichael et al. (2014a), is independent, and the
locations of ADE sites are essentially the same. In
our current study, we had fewer ADE sites, due

to filtering out sites that lacked a modern intact
forest. To leverage the strength of each of these
datasets, we averaged the two predictive model
maps (Fig. 4). Each of these independently
derived models, within a Bayesian framework,
represents an equally likely prediction and
thus can be combined with equal weights. The
concordance between the two models is striking
along rivers and in the low density of ADE sites
predicted in western Amazonia.
Such a focus on unique environmental vari-

ables has also been shown in other archaeological
studies using predictive modeling (Neves et al.
2004, McMichael et al. 2012a, b, Bovin et al. 2016,
Howey et al. 2016). The specific environmental
preferences and cultural patterns of ancient peo-
ple, however, might have also varied across the
vastness of Amazonia (McMichael et al. 2012a, b).
Within central and eastern Amazonia, our study
documented the preference of ancient people to
enhance soils and live near rivers, where fish
provided the highest resource base in the region
(Prestes-Carneiro et al. 2016). In southwestern
Amazonia, geospatial models have shown that

Fig. 4. Average probability map using moderate spatial resolution optical satellite imagery based MaxEnt
model (Fig. 3) and McMichael et al. (2014a).
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earthwork construction replaced ADE formation
and appears to have been associated with
bamboo-dominated systems (McMichael et al.
2014a, b). Our probability map of ADE sites could
prove useful for the planning of future surveys
and sampling schemes for archaeological and
ecological research.

Are ADE properties a legacy of pre-Columbian
disturbance?

Quantitative assessments of biomass, forest
diversity, species clumping, tree age structure,
and epiphyte load have not been used to make
the case for legacy effects of pre-Columbian activ-
ity, yet all could be argued to be viable signals of
past human actions. Junquira et al. (2011) found
higher palm abundances on ADE sites. Biomass,
tree height, and percent tree cover are all lower at
ADE than random non-ADE sites, which may be
due to differences in tree species, ecosystem pro-
cesses, and other attributes of forest structure. Dif-
ferences between ADE sites and non-ADE site for
tree height and biomass have been shown by
Doughty et al. (2014), but we note that the ADE
plot in that study had also been selectively
logged. There was no difference in distance from
forest edge between ADE and random sites, indi-
cating that any differences are likely not due to
recent forest degradation, logging, or intrusion of
people into these forests based on distance alone.
Three basic explanations could account for the
biometric structural differences between ADE and
non-ADE forests: (1) The ADE sites may be
regrowth forest from sites cleared prior to aban-
donment, with the successional path of these for-
ests following a unique trajectory; (2) these may
be remnant forests that were altered in terms of
composition and structure by human action prior
to European Conquest and have continued to be
used (albeit perhaps differently) in the centuries
since; and (3) as in 2, but that have not been used
throughout the last 400 years.

Antony and van Roy (2002) and Junqueira and
Clement (2011) suggest differences in biodiversity
between ADE sites and surrounding areas.
Because palms were an important resource used
systematically by indigenous people since the
beginning of the Holocene (Morcote-R�ıos and
Bernal 2001), it is possible that palms are more
common on ADE sites than in non-ADE forests
(Neves et al. 2004). Such a propensity of palm

biomass on ADE sites may result in differences in
forest spectral properties, for example, lower bio-
mass, fuller subcanopy, or fewer canopy emer-
gents. Furthermore, Levis et al. (2017) describe an
influence of archaeological sites on the biodiver-
sity. They find that areas adjacent to archaeologi-
cal sites may be anthropogenic forests from past
societies, meaning that these forests are a result of
tree species and structure encouraged for growth
or manipulation to promote extractable forest
resources. The spectral properties from our
MODIS analysis indicate these differences in
forest structure. Our examination of ADE and
random site biometric properties reveals struc-
tural differences between the two (Table 2). The
model appears to key in on forested areas in
which ADEs have different vegetation structure
and possibly species. This finding is contrary to
our initial expectation that relative to non-ADE
settings, ADE sites with nutrient-rich soils would
have healthier trees with higher foliar nutrient
content (Martin and Aber 1997, Pellissier et al.
2015, Lepine et al. 2016). We suggest that the
differences in spectral properties may be due to
differences in both forest structure and tree
species, which indicate long-term impacts from
past human settlement patterns. In essence, these
are anthropogenic forests.
Our results suggest that remotely sensed data

have the capabilities of capturing past distur-
bances, possibly even pre-Columbian disturbances,
on a basin-wide scale. Our results facilitate
incorporation of past disturbances into studies of
modern forest patterns and processes. For exam-
ple, distributions of particular forest species may
be related to the distribution of ancient distur-
bances (Junqueira et al. 2011, McMichael et al.
2012a, b, 2015, 2017, ter Steege et al. 2013, Bush
et al. 2016). Using a minimum value as a cutoff for
both biomass and percent forest cover, we masked
out early-successional forests. Some areas that were
predicted to have high ADE probabilities appear to
be adjacent to some of the modern deforestation in
Par�a, even though the mask was restrictive and dis-
tance from edge is no different between ADE and
random sites. These deforested areas may be ADEs
selected by modern settlers for their enhanced soils.
We also suggest that our use of remote-sensing
data might not just be keying in on ADE sites, but
other forest impacts by pre-Columbian societies
as they manipulated forests. The large urban
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arrangements suggested by Heckenberger et al.
(2008) would have needed fuelwood as a resource.
Such extraction of fuelwood would have expanded
its center of influence outward. Though ADE sites
may be centered on occupation areas, our findings
of reduced biomass and tree height may well be
indicative of degraded forests from past peoples
around high population centers.

Using the probability map of ADE sites and an
average biomass reduction, we provide an estimate
of the anthropogenic forcing of pre-Columbian
populations on Amazonian forests. If we assume a
mean reduction of biomass of 2.0 Mg/ha and
weight the amount based on the probability of the
area being modified by human activity (Fig. 4;
Appendix S1: Table S1), we estimate that contem-
porary forest carbon storage is reduced by 1.2 Pg
across the basin or about 1% of total carbon
stored in vegetation (Tian et al. 2000; Fig. 5). This
is a one-time reduction of biomass. We note that
this estimate of biomass reduction is well within
the error estimate of regional biomass products
(Saatchi et al. 2011, Baccini et al. 2012). What we
point out is that proposed reduction in biomass

may also be a representation of what biomass
would be like at these sites based on other
climatic and biotic controls (Tian et al. 2000).
Estimates of regeneration and carbon sequestra-
tion, though considerable, are much lower than
our estimate of reduced biomass potential due to
pre-Columbian populations on Amazonian forest
(Nevle et al. 2011). We suggest future research
effort to focus on the reduction of error in bio-
mass estimates across Amazonia.
The previously published geospatial models in

Amazonia have robustly documented the likely
distribution of ancient people across the land-
scape (McMichael et al. 2014a, b). These models,
however, are unable to link those distributions
with characteristics observed in the modern for-
est. Our results provide the first empirical data
that links ancient disturbance to modern forest
reflectance values. Whether there has been ongo-
ing disturbance that has intermittently or contin-
uously shaped these forests since the time of
European Conquest remains to be determined.
Our methods could also be used to examine
the legacies of ancient human impacts on the

Fig. 5. Predicted biomass reduction across the region based on the Amazonian Dark Earth site distribution
and lower biomass on these sites.
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landscape across other geographic regions, given
a solid knowledge of the forest structure and
ecology of the modern system.

Our finding suggests that ancient Amazonian
populations left lasting impacts on forest struc-
ture. Such an impact needs to be considered
when interpreting and analyzing modern ecolog-
ical studies. Our study also suggests that the
response of ADE sites to droughts is different
than non-ADE sites, further indicating an ecolog-
ical nuance potentially missed in ecological liter-
ature. The potential for differences in structure,
species composition, and ecological processes
needs to be noted by the ecological community.

CONCLUSIONS

Amazonian Dark Earths are an anthropic soil
with enriched nutrient levels and a prime indica-
tor of past human activity in this region. We used
satellite imagery and geospatial modeling to pre-
dict the ADE probability across the 6 mil-
lion km2 of Amazonia. Our satellite-based efforts
show that ADEs can be detected from space as
the modern forests growing on the anthrosols are
more susceptible to drought than neighboring
non-ADE sites. Our study found that ADE sites
had lower VARI, NDVI, and LSWI values than
random sites. Such differences were more pro-
nounced in the two years that experienced
drought. This finding is contrary to the expecta-
tion that ADE sites with nutrient-rich soils
harbor healthier trees with a higher canopy
hydration state, as expressed by canopy reflec-
tance. We suggest that ADE sites have different
effective water loss due to soil properties, tree
species and structure, and root dynamics of these
trees. We found differences in biomass and tree
height when comparing ADE sites and random
sites. Our findings suggested that pre-Columbian
human activity is measurable in Amazonian
forest across the region using satellite-based
moderate-resolution optical data.
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