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and Enology, University of California, Davis, CA, USA, 4Department of Environmental Systems Science, Swiss Federal
Institute of Technology, ETH Zürich, Zürich, Switzerland, 5Research Division, California Air Resources Board, Sacramento, CA,
USA, 6Applied GeoSolutions, LLC, Durham, NH, USA

Abstract Croplands are important sources of nitrous oxide (N2O) emissions. The lack of both long-term
field measurements and reliable methods for extrapolating these measurements has resulted in a large
uncertainty in quantifying and mitigating N2O emissions from croplands. This is especially relevant in
regions where cropping systems and farming management practices (FMPs) are diverse. In this study, a
process-based biogeochemical model, DeNitrification-DeComposition (DNDC), was tested against N2O
measurements from five cropping systems (alfalfa, wheat, lettuce, vineyards, and almond orchards)
representing diverse environmental conditions and FMPs. The model tests indicated that DNDC was capable
of predicting seasonal and annual total N2O emissions from these cropping systems, and the model’s
performance was better than the Intergovernmental Panel on Climate Change emission factor approach.
DNDC also captured the impacts on N2O emissions of nitrogen fertilization for wheat and lettuce, of stand
age for alfalfa, as well as the spatial variability of N2O fluxes in vineyards and orchards. DNDC overestimated
N2O fluxes following some heavy rainfall events. To reduce the biases of simulating N2O fluxes following
heavy rainfall, studies should focus on clarifying mechanisms controlling impacts of environmental factors on
denitrification. DNDC was then applied to assess the impacts on N2O emissions of FMPs, including tillage,
fertilization, irrigation, and management of cover crops. The practices that can mitigate N2O emissions
include reduced or no tillage, reduced N application rates, low-volume irrigation, and cultivation of
nonleguminous cover crops. This study demonstrates the necessity and potential of utilizing process-based
models to quantify N2O emissions from regions with highly diverse cropping systems.

1. Introduction

Intensive applications of nitrogen (N) fertilizers, here defined as single application or split applications of high
N concentration, are commonly used in cropping systems to increase crop yields. However, high rates of N
application often have low N use efficiency (defined as efficiency of crop N uptake) and result in a significant
portion of reactive N being released into the environment, leading to air and water pollution (Cassman et al.,
2002; Galloway et al., 2003). The greenhouse gas (GHG) nitrous oxide (N2O) is an important component of
the N cycle, contributing significantly to global warming due to its high global warming potential
(Intergovernmental Panel on Climate Change (IPCC), 2013). In addition, N2O is a dominant anthropogenic,
ozone-depleting substance, responsible for the destruction of stratospheric ozone (Ravishankara et al.,
2009). The atmospheric concentration of N2O was 323 ppb in 2009, increasing at a rate of 0.73 ppb/year
during the past three decades (IPCC, 2013). Globally, N2O released from agriculture is approximately 4.1 Tg
(1012 g) N year�1 (IPCC, 2013; Syakila & Kroeze, 2011), which is primarily attributed to the use of synthetic
fertilizers and organic manure (Davidson, 2009).

There is an urgent need for quantifying N2O emissions and assessing mitigation potential from croplands
(e.g., Bouwman et al., 2002; Decock et al., 2015; Smith et al., 2008; Venterea et al., 2012). However, complex
mechanisms underlying the high variability observed in N2O emissions make this quantification difficult.
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Nitrous oxide emissions from soils are primarily produced through microbial-mediated nitrification and
denitrification and are subject to controls involving interactions of environmental factors, such as concentra-
tions of mineral N, availability of dissolvable organic carbon (DOC), soil water content, redox potential, and
temperature (e.g., Butterbach-Bahl et al., 2013; Robertson & Groffman, 2007). The temporal and spatial varia-
bility of these controlling factors results in enormous heterogeneity in N2O fluxes (e.g., Bouwman et al.,
2002; Groffman et al., 2009). Therefore, it is impractical to quantify N2O emissions from regional or global
croplands based on field measurements alone. To extrapolate the measurements taken at specific sites
and during specific periods to large regions or over extended time spans, a variety of approaches have
been developed, ranging from simple regressions to complex process-based models. Simple regression
approaches, such as emission factor (EF) methods (Bouwman, 1996), are useful tools to estimate N2O emis-
sions at regional or global scales (e.g., Stehfest & Bouwman, 2006; Syakila & Kroeze, 2011). However, such
approaches generally become less accurate at finer temporal and spatial scale because they usually ignore
some natural or management factors that are critical controls on N2O emission (Butterbach-Bahl et al., 2013;
Chen et al., 2008). By neglecting specifics of farming management practices (FMPs), empirical methods may
not be suitable for identifying mitigation opportunities for N2O emission (Butterbach-Bahl et al., 2013;
Giltrap et al., 2010). Process-based models, such as the DeNitrification-DeComposition (DNDC) model, have
taken into account important regulating factors to support the quantification of N2O emissions and thus
have been recognized as useful tools to evaluate effects of management practices on N2O emissions from
agricultural ecosystems (e.g., Butterbach-Bahl et al., 2013; Chen et al., 2008; De Gryze et al., 2011; Giltrap
et al., 2010). However, large uncertainty still exists in applying process-based models to estimate N2O emis-
sions from regions with diverse agriculture. Models have been usually tested and applied for a single or lim-
ited type cropping system (mostly field crops; e.g., Chen et al., 2008; Giltrap et al., 2010). For example, we are
not aware of testing or application of process-based models for quantifying N2O emissions from orchard or
vineyard systems. Considering that characteristics of N2O emission and its controlling factors are often vari-
able across different cropping systems and that model testing or application has been limited for multitype
cropping systems, it has been especially challenging to reliably quantify N2O emission and its mitigation
potential for areas with diverse agriculture.

To quantify N2O emissions from regions with diverse agriculture and evaluate mitigate strategies, we applied
DNDC to simulate N2O emissions from various cropping systems in California where agriculture is extremely
diverse consisting of over 400 commodities across a wide range of landscape and geographical conditions
(National Agricultural Statistics Service, 2012). California is a major agricultural producer with the highest crop
cash receipts in the United States (National Agricultural Statistics Service, 2012). It is also the second largest
emitter of GHGs in the United States (U.S. Energy Information Administration, 2018). With the passage of the
Global Warming Solution Act in 2006, which aims to reduce GHGs emissions from California to 1990 levels by
2020, California is at the frontier of quantifying and mitigating GHGs. There are approximately 3.4 × 106 ha of
harvested croplands, 34% of which are orchards and vineyards, 23% are alfalfa and hay, and 14% are devoted
to vegetable crops (University of California Agricultural Issues Center, 2009). Agricultural management prac-
tices, such as tillage, fertilization, and irrigation are highly variable. However, they are generally characterized
as intensive because standard tillage operations, high rates of N fertilizer application, and intensive
furrow irrigation are common in the majority of croplands (Suddick et al., 2010). For example, over 90% of
California vineyards and orchards are irrigated and fertilized using microirrigation systems (Smart et al.,
2011), although many orchard growers often flood following harvest, while field crops are usually flood irri-
gated (Tindula et al., 2013), and fertilized through surface spraying, injection, or broadcast. The wide variation
in the type of cropping systems and FMPs could further exacerbate the temporal and spatial variability of N2O
emissions from croplands, thus making the quantification of N2O emissions a challenging task (De Gryze
et al., 2011).

In this study, we applied the DNDC model to assess impacts of FMPs on N2O emissions from five major crop-
ping systems in California: alfalfa, wheat, lettuce, vineyards, and almond orchards. Our objectives were (1) to
test DNDC against field observations of N2O emissions from these cropping systems, and verify if process-
based models, such as DNDC, can be utilized to quantify N2O emissions from diverse cropping systems;
and (2) to apply the model to assess the impacts of FMPs on N2O emissions and quantify the mitigation
potential of different management strategies.
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2. Materials and Methods
2.1. The Study Sites and Field Data

Field data used to support the model applications were collected during 2009 to 2011 at seven sites located
in five counties in California. The study fields were cultivated with different crops, including alfalfa, winter
wheat, lettuce, grape vine, and almond tree, representative of a range of typical cropping systems in
California, including hay, cereal crops, vegetables, vineyards, and perennial orchards. The study sites gener-
ally experience a Mediterranean climate that consists of hot dry summers and wet cool winters. Table 1 sum-
marizes general characteristics and soil properties of the tested fields.

All field experiments included a treatment representing typical FMPs in the local area. In addition, treatments
of different N fertilization were set in winter wheat and lettuce to investigate the impact on N2O emissions
(Table 1). To quantify the impacts of alfalfa age on N2O emissions, the experiment measured N2O emissions
from 2- and 5-year-old alfalfa fields (Table 1). For the vineyards and almond orchards, N2O fluxes were mea-
sured at two different locations, that is, tree rows and alley, to capture spatial variability within a field (Garland
et al., 2011, 2014; Steenwerth et al., 2010). Additional details regarding the FMPs performed at the sites are
summarized in Tables 1 and 2 and were described by Burger et al. (2016), Burger and Horwath (2012),
Garland et al. (2011, 2014), Smart et al. (2011), Steenwerth et al. (2010), and Zhu-Barker et al. (2015).

The field measurements of N2O fluxes were performed using the vented static chamber method (Hutchinson
& Mosier, 1981). In general, static chambers were sealed onto bottom collars and gas samples were taken
using air-tight polypropylene syringes at regular intervals at sampling time. Nitrous oxide concentrations
were analyzed using similar gas chromatographs across the studies, each equipped with an electron capture
detector. Gas fluxes were calculated from the rate of change of N2O concentration, chamber volume, and soil
surface area (Hutchinson & Mosier, 1981). Nitrous oxide fluxes were usually measured daily or once every
2 days following events such as tillage, fertilization, precipitation, irrigation, or harvest, until the high N2O
fluxes induced by the event receded to background levels. For other periods, the measurements of N2O
fluxes were performed less frequently but more often than once every 2 weeks. Seasonal or annual total
N2O emissions were generally available in these field studies and were calculated by linear interpolation of
the measured daily fluxes (Burger & Horwath, 2012; Garland et al., 2011, 2014). When measuring the N2O
fluxes, the local climate, soil properties, crop yield or aboveground biomass, and FMPs were often recorded
as well. The rich data sets from these field studies therefore provided an opportunity to evaluate the DNDC

Table 1
General Characteristics and Soil Properties of Study Fields Where Measurements of N2O Fluxes Were Used for Model Tests

County Coordinate Perioda Crop type T or Pb Soil texture Clay (%) BDc pH SOCd Referencee

Yolo 38°350N, 121°500W November 2010 to December 2011 Alfalfa 2-year stand Myers clay 34 1.43 7.7 12.6 (1)
Yolo 38°350N, 121°500W November 2010 to December 2011 Alfalfa 5-year stand Myers clay 34 1.43 7.7 12.6 (1)
Solano 38°260N, 121°520W November 2009 to May 2010 Wheat DNF-1f Silty clay loam 25 1.35 7.2 12.8 (1)
Solano 38°260N, 121°520W November 2010 to May 2011 Wheat DNF-2g Silty clay loam 35 1.29 7.4 14.9 (1)
Monterey 36°400N, 121°360W June 2009 to March 2011 Lettuce DNF-3h Loam 17 1.58 7.6 12.7 (1)
Napa 38°260N, 121°520W January 2009 to December 2010 Vineyards Grape row Loam 25 1.24 5.6 23.0 (2)
Napa 38°260N, 121°520W January 2009 to December 2010 Vineyards Alley Loam 25 1.24 5.6 23.0 (2)
Colusa 39°030N, 121°590W March 2009 to March 2011 Vineyards Grape row Silty clay 19 1.3 7.2 12i (3)
Colusa 39°030N, 121°590W March 2009 to March 2011 Vineyards Alley Silty clay 19 1.3 7.2 12i (3)
Solano 38°580N, 122°050W March 2010 to March 2011 Almonds Tree row Sandy loam 13 1.6 7.6 4.4i

Solano 38°580N, 122°050W March 2010 to March 2011 Almonds Alley Sandy loam 13 1.6 7.6 4.4i

aPeriod during which measurements of N2O fluxes were used for model tests. bT or P, treatments included in the field studies or positions of the fields. cBD,
bulk density (g cm�3). dSOC, content of soil organic carbon (g C kg�1 dry soil). e(1) Burger and Horwath (2012); (2) Steenwerth et al. (2010), Smart et al. (2011);
(3) Garland et al. (2011, 2014). fDNF-1, different nitrogen fertilization. Measurements of N2O fluxes under five treatments were used for model tests. The treat-
ments included different practices of nitrogen fertilization, with 254 (NH4

+-N + urea), 203 (anhydrous ammonia + urea), 151 (NH4
+-N + urea), 91 (urea), and

0 kg N ha�1 applied during the wheat growing season. Details of the fertilization treatments are described by Burger and Horwath (2012). gDNF-2, different
nitrogen fertilization. Measurements of N2O fluxes under five treatments were used for model tests. The treatments included different practices of nitrogen ferti-
lization, with 266 (NH4

+-N + urea), 210 (NH4
+-N + urea), 210 (anhydrous ammonia + urea), 154 (NH4

+-N + urea), and 0 kg N ha�1 applied during the wheat
growing season. Details of the fertilization treatments are described by Burger and Horwath (2012). hDNF-3, different nitrogen fertilization. Measurements of
N2O fluxes under five treatments were used for model tests. The treatments included different practices of nitrogen fertilization, with 336, 252, 168, 84, and
11 kg UAN32-N ha�1 applied during the lettuce growing season. UAN32: (NH2)2CO · NH4NO3. Details of the treatment setting are described by Burger and
Horwath (2012). iEstimated based on typical soil properties at the study fields, as on-site observations were not available.
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model to predict N2O emissions and investigate mitigation options for multitype cropping systems in a
region with diverse agriculture. The technical details regarding the N2O measurements, and the relevant
auxiliary variables are described by Burger et al. (2016), Burger and Horwath (2012), Garland et al. (2011,
2014), Smart et al. (2011), Steenwerth et al. (2010), and Zhu-Barker et al. (2015).

2.2. The DNDC Model

The DNDC model (Li et al., 1992a, 1992b) was developed for quantifying C sequestration and emissions of
GHGs and has been utilized worldwide during the last two decades (e.g., Beheydt et al., 2007; Giltrap et al.,
2010). The model has incorporated a relatively complete suite of biogeochemical processes governing C
and N cycling, including decomposition, fermentation, ammonia volatilization, nitrification, and denitrifica-
tion. DNDC is composed of two components. The first component consists of the soil climate, crop growth,
and decomposition submodels and converts primary drivers, such as climate, soil properties, vegetation,
and anthropogenic activity, into soil environmental factors such as soil temperature and moisture, pH, redox
potential, and substrate concentration. The second component consists of the nitrification, denitrification,
and fermentation submodels and simulates C and N transformations that are mediated by soil microbes. In
DNDC, soil N primarily exists in several pools—organic N, ammonium, ammonia, and nitrate. Dynamics of soil
N in each pool are simulated at an hourly or daily time step through a series of biogeochemical reaction:
decomposition, microbial assimilation, plant uptake, ammonia volatilization, ammonium adsorption, nitrifica-
tion, denitrification, and nitrate leaching. Fluxes of N gases (i.e., NO, N2O, and N2) are predicted as either pro-
ducts or intermediate products by simulating the relevant N transformation processes, primarily nitrification
and denitrification.

DNDC parameterizes FMPs, such as tillage, fertilization, flooding, irrigation, and cultivation of cover crops, as
primary drivers regulating soil environmental conditions and/or substrate concentrations, and thereby simu-
lates the influence of management practices on the rates of C and N biogeochemical reactions. For example,
the application of N fertilizers affects soil N pools based on N application rate, method of application, and
type of fertilizer and influences crop growth, nitrate leaching, and emissions of C and N gases. Flooding
and irrigation directly control soil moisture and redox potential, which influence crop growth and all

Table 2
Farming Management Practices and Simulated Annual Total N2O Emissions Under the Baseline and Alternative Scenarios

Cropping system Scenario Plantinga Harvest Tillageb
N (kg N · ha�1

· year�1)c Irrigationd Cover crop
N2O emission

(kg N · ha�1 · year�1)

Alfalfa Baseline Six times per year NT 8.5 1,290-mm flood None 3.93
Alfalfa A1 Six times per year NT 8.5 711-mm sprinkler None 3.12
Alfalfa A2 Six times per year NT 8.5 508-mm sprinkler None 2.76
Wheat Baseline November June CT 210 150 mm None 1.82
Wheat W1 November June CT 168 150 mm None 1.38
Wheat W2 November June RT 210 150 mm None 1.60
Lettuce Baseline June August CT 252 227-mm drip None 1.59
Lettuce L1 June August CT 202 227-mm drip None 1.08
Lettuce L2 June August CT 252 381-mm sprinkler None 1.62
Lettuce L3 June August RT 252 227-mm drip None 1.47
Vineyards Baseline October CT 5.4 160-mm drip Legume 2.25
Vineyards V1 October CT 5.4 160-mm drip None 1.71
Vineyards V2 October CT 5.4 160-mm drip Nonlegume 0.83
Vineyards V3 October RT 5.4 160-mm drip Legume 1.97
Almonds Baseline September NT 230 965-mm sprinkler None 0.78
Almonds A1 September NT 230 1,300-mm flood None 1.04
Almonds A2 September NT 184 965-mm sprinkler None 0.71
Almonds A3 September CT 230 965-mm sprinkler None 0.79

aNo planting during production years for perennial crops. bCT, conventional tillage. The soil was tilled (20-cm depth) twice on days of planting and harvest
for wheat and lettuce. The soil in alley was tilled twice (30-cm depth) in spring and late fall for vineyards and almonds orchard. RT, reduced tillage. The soil
was tilled (10-cm depth) twice on days of planting and harvest for wheat and lettuce. The soil in alley was tilled twice (5-cm depth) in spring and late
fall for vineyards. NT = no tillage. cFor the alfalfa fields, nitrogen fertilizers were applied one time per 2 years at a rate of 17 kg N ha�1. dIrrigation prac-
tices in each scenario, including water amount (mm) and irrigation method, were determined from either field records or cost and return studies published
by the University of California, Davis (2016).
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biogeochemical reactions in the soil. Further details regarding DNDC
structure, inputs, and outputs, as well as the physical, chemical, and bio-
geochemical processes incorporated into the model’s framework, are
available in Gilhespy et al. (2014), Li (2000), and Li et al. (2012).

2.3. Model Application
2.3.1. Model Test
Field data to test DNDC, including measurements of N2O fluxes and soil
properties and FMPs, were acquired from the respective researchers
(Burger & Horwath, 2012; Garland et al., 2011, 2014; Smart et al., 2011;
Stehfest & Bouwman, 2006; Zhu-Barker et al., 2015). Daily meteorologi-
cal data, including maximum and minimum air temperatures, and preci-
pitation were obtained from either on-site measurements or local
meteorological stations. Primary soil input parameters, including soil
texture, clay fraction, bulk density, pH, and soil organic carbon (SOC)
content, were determined using on-site measurements at the alfalfa,
wheat, and lettuce fields, and the vineyard in Napa County. For the vine-
yard in Colusa county and the almond orchard, we used on-site observa-

tions to determine these soil parameters except SOC, which was estimated based on the soil properties of the
local dominant soil types from the SSURGO database (Natural Resources Conservation Service, 2015),
because the on-site observations were not available (Table 1). FMPs (Table 2) applied in each treatment
included planting and harvest dates, tillage, fertilization, irrigation, and cultivation and incorporation of cover
crop and were derived from field records. We set up the input parameters of FMPs by strictly following field
records in order to represent all variations in FMPs in the simulations. The phenological and physiological
parameters related to crop growth (Table 3) were estimated by referring to on-site observations, calibrating
the parameters against the crop yields or using model defaults that were derived from a large collection of
literature values. DNDC was run separately for the 2- and 5-year-old alfalfa fields (Table 1) with the primary
difference being the length of the model simulations (i.e., 2 and 5 years; Burger et al., 2016). For the vineyards
and almond orchard, the model was run for crop rows and alleys separately to account for spatial variation of
N2O fluxes associated with typical FMPs applied to rows and alleys in vineyards or orchards. During the simu-
lations, we did not calibrate any soil biogeochemistry parameters or functions, including those calculating
the processes of N2O production, consumption, and emission. No site-specific modification was performed
if notmentioned above. We used a 1-year model spin-up to initialize the soil climate andmineral N conditions
and then proceeded with the simulations for the DNDC tests. The modeled N2O fluxes were compared
against the measured records. The data set of N2O fluxes used for model tests included a total of 32 unique
site-treatment-year combinations.

We also calculated the seasonal or annual N2O emissions using the EF approach (Tier 1), in which the EF is
defined as the loss rate via N2O emission of nitrogen applied to soils, and is a fixed value of 0.01
(Bouwman, 1996; IPCC, 2006). The EF approach is often used to develop N2O inventories from agricultural soil
management in many regions, including those regions with diverse agriculture (e.g., California Air Resources
Board, 2011, 2014). The EF estimates of N2O emissions were compared to the field measurements and DNDC
simulations to assess if the use of the process-based model, such as DNDC, can improve the N2O emissions
inventory. The EF-based seasonal or annual N2O emissions were calculated as follows:

N2OD ¼ NSF þ NCRð Þ � EF1; (1)

where N2OD is direct N2O emissions (kg N2O-N) from agricultural managed soils, NSF is amount of synthetic
fertilizer N (kg N) applied to soils, NCR is amount of N in crop residues (kg N) returned to soil, and EF1 is EF for
N2O emissions from N inputs (kg N2O-N kg�1 N), which was set as 0.01 by following California Air Resources
Board (2011, 2014). Note that amounts of N from organic fertilizers and managed manure were 0 based on
the field records.

We used zero-intercept linear regression between simulations and observations to evaluate DNDC perfor-
mance. The slope and determination coefficient (R2) of the regression indicate the consistency and

Table 3
DNDC Crop Physiological Parameters

Crops MPa SRFb C/Nc TDDd WRe NFIf

Alfalfa 10000 0.7/0.3 14 5000 200 5.0
Wheat 9000 0.83/0.17 35 2000 200 1.0
Lettuce 1875 0.8/0.2 11 1000 500 1.0
Grapes 3333 0.9/0.1 22 5000 200 1.0
Almonds 3333 0.8/0.2 19 5000 150 1.0

aMP, themaximumproductivity under optimumgrowing conditions (unit:
kg dry matter ha�1). The values were estimated by calibrating against the
observed crop yields. bSRF, the shoot and root fractions cC/N, carbon
to nitrogen ratio of the plant biomass dTDD, the required cumulative
air temperature heat sum (in °C days) above a 0 °C threshold during
the growing period for full crop growth. eWR, amount of water
required by the crop to produce dry matter (in g water g�1 dry
matter). fNFI, index of biological nitrogen fixation. The value of 1.0
indicates no N-fixation, and 5.0 indicates 80% of crop nitrogen demand
is came from N-fixation.
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correlation between simulations and observations, respectively (Moriasi
et al., 2007). The normalized root-mean-square error (RMSE) was
also used for quantitative comparisons between the simulations and
observations.
2.3.2. Scenarios of FMPs
To investigate impacts of FMPs on N2O emissions, we conducted a series
of simulations varying FMPs for each studied cropping system (Table 2).
The simulations under alternative management practice scenarios were
compared to the baseline simulations for alfalfa in Yolo County, wheat in
Solano County, lettuce in Monterey County, vineyard in Napa County,
and an almond orchard in Solano County. The N fertilizer application
rates were 8.5, 210, 252, 5.4, and 230 kg N · ha�1 · year�1, respectively,
for the alfalfa, wheat, lettuce, vineyard, and almond orchard under
the baseline.

Alternative scenarios were set by exclusively changing a single FMPs
from the baseline scenarios. The alternative management practices
tested (Table 2) were generally extracted from Cost and Return Studies
(University of California, Davis, 2016) and reflect specific practices for
each crop type. For alfalfa, because no-till and low rates of N fertilizers
are common, while irrigation practices vary (Tindula et al., 2013), we
ran two alternative irrigation practices using sprinkler irrigation. For
the cropping systems with relatively intensive tillage and nitrogen appli-
cations, including wheat, lettuce, and almond, three or four alternative
scenarios were set by exclusively changing tillage, rate of N applications,
or irrigation (Table 2). For the vineyards, which have diverse cover crop
management and where small amounts of water and N are commonly
applied using drip irrigation systems, we conducted three alternative
scenarios changing either tillage or planting of cover crops (Table 2).

The DNDC model was run for baseline and alternative scenarios. For
each cropping system, a single FMP change was evaluated (i.e., tillage,

fertilization, irrigation, or cover cropping), but other conditions (i.e., climate, soil, crop type, and other prac-
tices) were kept the same under the different scenarios. To consider potential impacts of stand age on
N2O emissions from the alfalfa fields (Burger & Horwath, 2012), we ran DNDC for 5 years from 2007 to
2011 (a full alfalfa growth cycle) using the meteorological data of these years, and the modeled average
annual N2O emissions of the 5 years were used for analysis. For other cropping systems, the DNDC model
was run for 2 years, and the modeled annual N2O emissions for the second year were used for analysis.

3. Results
3.1. Model Tests
3.1.1. N2O Fluxes
Figure 1 illustrates seasonal patterns of the measured and simulated daily N2O fluxes from the alfalfa fields.
The measurements showed similar seasonal patterns between the fields with second- and fifth-year alfalfa,
with high N2O peaks occurring on days following each flood irrigation event (Burger et al., 2016; Burger &
Horwath, 2012). In comparison with the measurements, DNDC generally captured the seasonal patterns of
daily N2O fluxes, although the magnitudes of some modeled N2O peaks were not consistent with the field
observations of the fifth-year alfalfa (e.g., late April and early June 2011, Figure 1b). In addition, themodel suc-
cessfully predicted the impact of alfalfa stand age on N2O emissions. Both the DNDC simulations and field
observations indicated higher N2O peaks for the site with fifth-year alfalfa (Figure 1) and therefore produced
a higher rate of annual cumulative N2O emission for this site (Table 4). DNDC predicted higher N2O emission
for the fifth-year alfalfa primarily due to the simulated higher soil N that accumulated over time as a result of
alfalfa N fixation. The modeled annual total N2O emissions were 2.8 and 6.4 kg N2O-N ha�1 for the second-
and fifth-year alfalfa fields. In comparison with the measured data of annual total N2O emissions (2.3 and

Figure 1. Precipitation and simulated and measured daily N2O fluxes from
(a) second-year and (b) fifth-year alfalfa fields. The triangles indicate the
dates of flood irrigation events. The flux measurements are mean values
from Burger and Horwath (2012); the vertical bars indicate standard errors of
replicates (n = 6).
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5.2 kg N2O-N ha�1), the DNDC simulations had an RMSE of 21% and 23%, respectively, for the fields with
second- and fifth-year alfalfa.

In the fertilized wheat fields, peaks of N2O fluxes were often observed on days following heavy rainfall, while
N2O fluxes from the unfertilized wheat fields remained consistently at relatively low levels (Figure 2). As com-
pared with the field measurements, the DNDC model generally captured the peaks of daily N2O flux induced
by heavy precipitation, although discrepancies remained between the magnitude of the modeled N2O peaks
and the corresponding observations. As compared with the field records, the DNDC model also predicted
more frequent N2O peaks after rainfall events during the winter rainy season, which were not always
observed in the field studies (e.g., on late January 2010 and end March 2011, Figure 2). The model indicated,
as was observed in the measurements, that N fertilization treatments exerted substantial impacts on the N2O
emissions from the wheat fields (Table 4). The simulated N2O emissions generally increased along with

Table 4
Comparison Between the Simulated (S) and Observed (O) Seasonal or Annual N2O Emissions

Perioda Cropping system T or Pb Oc SEc S RMSE

December 2010 to November 2011 Alfalfa 2-year stand 2.3 0.26 2.79 21%
December 2010 to November 2011 Alfalfa 5-year stand 5.2 0.79 6.42 23%
November 2009 to June 2010 Wheat 254 N (NH4

+ + urea) 0.5 0.13 0.8 60%
203 N (anhydrous ammonia + urea) 1.31 0.35 1.0 24%
151 N (NH4

+ + urea) 0.57 0.12 0.6 5%
91 N (NH4

+ + urea) 0.31 0.08 0.16 48%
0 N 0.24 0.07 0.14 42%

November 2010 to June 2011 Wheat 266 N (NH4
+ + urea) 2.15 0.23 2.26 5%

210 N (anhydrous ammonia) 2.05 0.17 1.79 13%
210 N (NH4

+ + urea) 1.42 0.1 1.75 23%
154 N (NH4

+ + urea) 0.88 0.18 1.35 53%
0 N 0.72 0.22 0.65 10%

June 2009–may 2011 Lettuce 366 N (UAN32) 1.51 0.27 1.7 13%
252 N (UAN32) 1.09 0.08 1.31 20%
168 N (UAN32) 0.69 0.07 0.84 22%
84 N (UAN32) 0.71 0.07 0.63 11%
11 N (UAN32) 0.58 0.05 0.51 12%

June 2010–may 2011 Lettuce 366 N (UAN32) 1.42 0.22 1.54 8%
252 N (UAN32) 1.14 0.14 1.21 6%
168 N (UAN32) 1.13 0.2 0.82 27%
84 N (UAN32) 0.56 0.03 0.31 45%
11 N (UAN32) 0.59 0.13 0.19 68%

January 2009 to December 2009 Vineyards Grape row 0.22 NA 0.14 36%
January 2010 to December 2010 Grape row 0.17 NA 0.2 18%
January 2009 to December 2009 Vineyards Alley 0.27 NA 0.21 22%
January 2010 to December 2010 Alley 0.37 NA 0.3 19%
Jan uary 2009 to December 2009 Vineyardsd Vineyard 0.26 NA 0.19 25%
January 2010 to December 2010 Vineyard 0.32 NA 0.28 14%
March 2009 to March 2010 Vineyards Grape row 0.48 NA 0.6 25%
March 2010 to March 2011 Grape row 0.6 NA 0.14 77%
March 2009 to March 2010 Vineyards Alley 5.39 NA 3 44%
March 2010 to March 2011 Alley 0.54 NA 0.67 24%
March 2009 to March 2010 Vineyardsd Vineyard 3.92 NA 2.28 42%
March 2010 to March 2011 Vineyard 0.56 NA 0.51 8%
March 2010 to March 2011 Almonds Tree row 0.92 NA 0.84 9%
March 2010 to March 2011 Almonds Alley 0.64 NA 0.52 19%
March 2010 to March 2011 Almondsd Orchard 0.81 NA 0.71 12%

Note. RMSE = root-mean-square error; NA = not available.
aPeriod during whichmeasurements of N2O fluxes were used for model tests. bT or P, treatments included in the field studies or positions of the fields. Details of
the treatment setting were described by Burger and Horwath (2012), Steenwerth et al. (2010), Smart et al. (2011), Garland et al. (2011, 2014), and Zhu-Barker et al.
(2015). cObserved data with standard error (SE) of the field measurements are reported in Burger and Horwath (2012), Steenwerth et al. (2010), Smart et al.
(2011), Garland et al. (2011, 2014), and Zhu-Barker et al. (2015). dAnnual N2O emissions from the whole vineyard or almond orchard were calculated by weight-
ing the N2O emissions with the relative row and alley widths of each location across the vineyard or orchard (Garland et al., 2011, 2014; Smart et al., 2011;
Steenwerth et al., 2010).
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increasing N application rate if fertilizer type was kept the same; this was consistent with the measured data
(Burger & Horwath, 2012; Zhu-Barker et al., 2015). The simulated seasonal N2O emissions for wheat varied
from 0.14 to 2.26 kg N-N2O ha�1, comparable with the observed seasonal N2O emissions that ranged from
0.24 to 2.15 kg N-N2O ha�1 (Table 4), with RMSE values between the modeled and observed seasonal N2O
emissions ranging from 5% to 60%.

DNDC reproduced similar N2O peaks for lettuce (Figure 3), although the magnitudes of the simulated peaks
were not fully consistent with the observations. DNDC also predicted more frequent N2O pulses following

Figure 2. Precipitation and simulated and measured daily N2O fluxes from winter wheat fields with different nitrogen fertilization rates. N fertilizers were applied at
rates of (a) 254, (b) 203, (c) 151, (d) 91, and (e) 0 kg N ha�1 during the November 2009 to May 2010 growing season and at (f) 266, (g) 210, (h) 210, (i) 154, and
(j) 0 kg N ha�1 during the November 2010 to May 2011 growing season. The arrows indicate the dates of fertilization events. The measured flux data are means from
Burger and Horwath (2012) and Zhu-Barker et al. (2015); the vertical bars indicate standard errors of replicates (n = 3).
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high precipitation during the winter rainy season (Figure 3), which did not always appear in field records
(e.g., on late January 2010). The simulations showed an increasing trend in N2O emission with increasing
N application rate for the lettuce fields; this was consistent with the measurements (Burger & Horwath,
2012; Zhu-Barker et al., 2015). Of the 10 studied treatment-year combinations, the simulated annual
N2O emissions varied from 0.19 to 1.70 kg N2O-N · ha�1 · year�1. The values of RMSE between the
modeled and observed annual cumulative N2O emissions ranged from 6% to 68% across the 10 lettuce
field cases (Table 4).

Figure 4 illustrates seasonal patterns of the measured and simulated daily N2O fluxes from the tested vine-
yards. In the grape rows, high N2O fluxes were detected on days following fertigation or high precipitation
(Figures 4a and 4c), while peaks of N2O fluxes only appeared following heavy precipitation in alleys
(Figures 4b and 4d; Garland et al., 2011, 2014; Steenwerth et al., 2010). DNDC successfully captured the
observed peaks of daily N2O fluxes from both the grape rows and alleys, and themagnitudes of the simulated
N2O pulses were close to the field observations for most occasions (Figure 4). As Figure 4d shows, a significant
N2O peak was observed on mid-October 2009 in the vine alleys in Colusa County following heavy precipita-
tion. This peak may be related to the planting and incorporation of leguminous cover crops in the
alleys (Garland et al., 2014). The DNDC model successfully captured this peak as well. However, the model
overestimated another N2O peak induced by heavy precipitation during mid-January 2010 at this vineyard
(Figure 4d). The observed annual total N2O emissions varied from 0.17 to 0.60 kg N2O-N ha�1 and 0.27 to
5.39 kg N2O-N ha�1, respectively, for the grape rows and alleys (Table 4; Garland et al., 2011, 2014;

Figure 3. Precipitation and simulated and measured daily N2O fluxes from lettuce fields under different nitrogen fertilization rates. N fertilizers were applied at rates
of (a) 336, (b) 252, (c) 168, (d) 84, and (e) 11 kg N ha�1 during each growing season. The arrows indicate the dates of fertigation events. The fields were irrigated
many additional times with small volumes of water by drip irrigation systems, and the dates of these irrigation events are not shown. The flux measurements
are means from Burger and Horwath (2012); the vertical bars indicate standard errors of replicates (n = 4). Note that the vertical axis scales for N2O fluxes in panels
(a) to (c) are different from the scales in panels (d) and (e).
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Steenwerth et al., 2010). The corresponding simulations varied from 0.14 to 0.60 kg N2O-N ha�1 and 0.21 to
2.7 kg N2O-N ha�1, respectively. The RMSE values between the modeled and observed annual total N2O
emissions ranged from 18% to 77% and 19% to 50%, respectively, for the grape rows and alleys.

DNDC simulated different patterns of N2O emissions between almond tree rows and alleys as well. Peak N2O
fluxes were predicted following fertigation, irrigation, or heavy precipitation at the tree rows (Figure 5a). On
the contrary, the simulated N2O fluxes from the alleys were only peaked following heavy precipitation
(Figure 5b). DNDC generally captured the peaks of daily N2O fluxes in comparison with the field measure-
ments. However, DNDC predicted more frequent N2O peaks after heavy rainfall events in both almond rows
and alleys, some of which (e.g., 11 April and late October 2010) were not observed in the field studies. The
predicted emissions (0.85 kg N2O-N for rows and 0.52 kg N2O-N for alleys) were close to the observed cumu-
lative N2O emissions from the tree rows and alleys, which were 0.92 and 0.64 kg N2O-N, respectively. The
RMSE between the observed and predicted emissions was 8% and 19%, respectively, for the tree rows and
alleys (Table 4).
3.1.2. Total N2O Emissions
The measured seasonal or annual total N2O emissions varied between 0.24 (for wheat growing season from
November 2009 to June 2010) and 5.20 kg N2O-N ha�1(for the fifth-year stand alfalfa) across the cropping
system-treatment-year combinations tested (Table 4). The corresponding simulations had a similar range
(minimum: 0.14 kg N2O-N ha�1, for the wheat growing season from November 2009 to June 2010; maximum:
6.42 kg N2O-N ha�1, for the fifth-year stand alfalfa). The RMSE values varied from 5% to 68% (Table 4). These
results indicate a general agreement between the simulated and measured seasonal or annual N2O emis-
sions, although the goodness of fit varied across the test cases.

A zero-intercept linear regression with an R2 of 0.92 (P < 0.001) and a slope of 1.0 could be obtained,
relating DNDC predicted emissions to those measured in the field (Figure 6), indicating that overall the
DNDC model reliably predicted the seasonal and annual N2O emissions without statistical biases. The

Figure 4. Precipitation and simulated and measured daily N2O fluxes from vineyards in the (a and b) Napa and (c and d)
Colusa counties. The data in panels (a) and (c) and (b) and (d) are for vine rows and alleys, respectively. The arrows
indicate the dates of fertigation events. The grape rows were irrigated many additional times with small volumes of
water by drip irrigation, and the dates of these irrigation events are not shown. The measured data are means from
Steenwerth et al. (2010) and Garland et al. (2011, 2014); the vertical bars indicate standard errors of replicates (n = 3 for
a and b and n = 4 for c and d). Note that the vertical axis scale for N2O fluxes in panel (d) is different from the scale in
other panels.
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EF-derived regression showed an R2 of 0.36 (P > 0.1) and a slope of
0.66 (Figure 6). It is clear that DNDC performed better than the EF
approach in estimating seasonal or annual N2O emissions from the
tested cropping systems.

3.2. Impacts of FMPs on N2O Emissions

Table 2 lists the simulated annual total N2O emissions from the five crop-
ping systems under the baseline and alternative scenarios. The baseline
scenario modeled annual N2O emissions were 3.93, 1.82, 1.60, 2.30, and
0.78 kg N ha�1 for the alfalfa, wheat, lettuce, vineyard, and almond
orchard, respectively.

All changes in FMPs under the alternative scenarios affected N2O emis-
sions. Compared to conventional tillage, reduced or no tillage slightly
reduced the N2O emission and the efficiency of reduction varied across
the tested cropping systems (Figure 7). The annual total N2O emissions
were decreased by 12%, 8%, 13%, and 2%, respectively, for the wheat,
lettuce, vineyard, and almond orchard.

Reducing N application would reduce concentrations of soil mineral N
and thus the N2O emissions, especially in cropping systems with inten-
sive N inputs. Compared to the baseline, a decrease of N application by
20% would lower the annual N2O emissions by 24%, 32%, and 8% for
the wheat, lettuce, and almond orchard, respectively (Figure 7).

Irrigation practices affected N2O emissions as well, and the simulated
N2O emissions under low-water irrigation were generally lower than
those receiving high-water irrigation (Figure 7). Compared to the base-
line, reducing the water inputs in furrow-irrigated alfalfa fields
(1,290 mm in the baseline) to sprinkler systems with lower water inputs
(711 mm in A1 and 508 mm in A2, Table 2) decreased the N2O emission
by 21% and 30%, respectively. By contrast, increasing the water input
from 227 to 381 mm in lettuce and from 965 to 1300 mm in almonds
increased the N2O emissions by 2% and 33%, respectively.

Finally, changing cover crop management is another practice that can
influence N2O emissions substantially. N2O emissions can be reduced
by up to 51% in vineyards planted with nonleguminous cover crops rela-
tive to no cover crops and 63% relative to leguminous cover crops, if the
N fertilizer application remains unchanged (Figure 7).

4. Discussion
4.1. DNDC Tests

In this study, we tested a process-based biogeochemical model, DNDC,
against field measurements of N2O emissions from five cropping sys-
tems representing a wide range of soil types and FMPs. The comparisons
between the simulations and field records demonstrated that DNDC
reliably predicted the seasonal and annual N2O emissions from the
cropping systems studied, despite variability in characteristics of N2O
emissions and regulating factors for N2O emissions across these systems
(Figure 6 and Table 4). The observed impacts of N fertilization practices
for wheat and lettuce, and of different age-stand for alfalfa on N2O emis-
sions, and the spatial variability of N2O fluxes in both vineyard and
almond orchard were also generally captured by the model. DNDC
clearly performed better than the EF approach in simulating seasonal

Figure 5. Precipitation and simulated and measured daily N2O fluxes from
almond (a) rows and (b) alleys. The arrows and triangles indicate the dates
of fertigation and irrigation events, respectively. The measurements are the
means and the vertical bars indicate standard errors of replicates (n = 3).

Figure 6. Comparison of DeNitrification-DeComposition (DNDC) simulated
(black) and emission factor calculated (gray) seasonal and annual cumula-
tive N2O emissions against field measurements for all the tested cropping
systems (different symbols). The functions shown describe the zero-intercept
fitted regression lines. The horizontal bars indicate standard errors of
replicate field measurements (n = 3 to 6, depending on the crop system).
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and annual N2O emissions in these systems (Figure 6). The EF-based N2O
emissions were not significantly correlated with the field observations
(P > 0.1), indicating that using a fixed EF value cannot reliably estimate
the N2O emissions from the diverse cropping systems studied.
Furthermore, the EF approach underestimated the N2O emissions from
alfalfa fields and vineyards in Colusa County, where the high N2O emis-
sions may be partially attributable to planting leguminous crops capable
of fixing atmospheric nitrogen gas (N2), or to intensive irrigation, rather
than solely to N fertilizer application (Burger et al., 2016; Burger &
Horwath, 2012; Garland et al., 2014). The capability of DNDC to capture
impacts of factors other than the N fertilizer application on N2O emis-
sions is important for improving inventory estimates, but it is also essen-
tial for identifying and evaluating management options that can reduce
N2O emissions. In addition, the model generally captured the episodic
patterns of daily N2O fluxes (Figures 1–5). These results demonstrate
that process-based models, like DNDC, are better than the EF approach
in quantifying N2O emissions, as well as their mitigation potentials, for
cropping systems with diverse management practices. This conclusion
is consistent with previous studies that also showed DNDC was more
accurate than the IPCC EF methods in predicting N2O emissions from
cropping systems (e.g., Uzoma et al., 2015). We note that the agreement
between the simulations and observations in seasonal and annual N2O
emissions could sometimes have resulted from compensating discre-
pancies between the simulated and observed daily N2O fluxes.

There are discrepancies between the simulated seasonal or annual emissions and field measurements. For
example, DNDC underestimated the N2O emissions from vineyard alleys in Colusa during March 2009 to
March 2010 (3.00 versus 5.39 kg N2O-N ha�1, Table 4) and overpredicted the emissions from the fifth-year
alfalfa fields (6.42 versus 5.20 kg N2O-N ha�1, Table 4). These discrepancies could be partially due to uncer-
tainties in data processing of field records for estimating seasonal or annual N2O emissions. In this study,
all N2O measurements used for model tests were carried out at irregular intervals and were event based.
Errors may occur in calculating seasonal or annual N2O emissions from the discrete flux measurements,
due to extrapolation or interpolation uncertainties (Parkin, 2008). In addition, there are uncertainties in model
inputs. For example, if on-site observations were unavailable, weather data from nearby meteorological
stations and typical soil property values were used as model inputs. Both climate and soil properties have
substantial influence on N2O emissions in DNDC (Li et al., 1992a), and therefore, potential biases in these
inputs could affect the simulated N2O fluxes.

We also identified some discrepancies that may result from inaccurate mechanisms or algorithms in the
model. After most but not all heavy rainfall events across all tested cropping systems, the DNDC model pre-
dicted large pulses of N2O fluxes. These simulated pulses were due to enhanced denitrification resulting from
an increase in the soil anaerobic volume under heavy precipitation. However, flux pulses were not always
observed in the field (e.g., late January 2010 and late March 2011 for wheat, Figure 2; late January 2010 for
lettuce, Figure 3; mid April and late October 2010 for almond, Figure 5). Possible explanations for these more
frequent N2O pulses predicted by DNDC include (1) model overestimation of the duration of soil anaerobic
conditions or of the sensitivity of denitrification rate to changes in soil anaerobic conditions, (2) discrepancies
in simulating denitrifier substrates (soil nitrate and DOC) during these occasions, (3) underestimation of the
impact of factors on reducing denitrification (e.g., less favorable soil nitrate content, DOC, and soil tempera-
ture), and/or (4) discrepancies in simulating the loss rate of N2O during denitrification. It should be noted that
the reasons for the model-observation discrepancies may be different across the different cropping systems.
The overpredicted N2O pulses following heavy precipitation probably did not result from overestimations of
soil nitrate for those cropping systems with zero or low N application, since DNDC predicted relatively low soil
mineral N status for them. However, it is hard to identify the reasons for the overpredicted N2O pulses for
other cropping systems, because DNDC was only tested against the N2O flux data in this study. The overall

Figure 7. Changes in N2O emissions as a percentage of the reference treat-
ment, for comparisons between treatments with versus without potential
mitigation options. NT = no tillage; RT = reduced tillage; CT = conventional
tillage; RN = reduced nitrogen application; CN = conventional nitrogen
application; LI = low-volume irrigation; HI = high-volume irrigation;
NLC = cultivation of nonleguminous cover crops; NC = no cover crop;
LC = cultivation of nonleguminous cover crops.
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denitrification rate and N2O production and consumption rates in denitrification are all highly uncertain, and
there is not a thorough understanding of underlyingmechanisms controlling these variations (e.g., Bouwman
et al., 2013; Butterbach-Bahl et al., 2013). To reduce the biases of N2O fluxes after heavy rainfall that may result
from inaccurate mechanisms, further studies should focus on clarifying processes or mechanisms controlling
the impacts of soil anaerobic condition and other factors on denitrification rates and N2O emission.

4.2. Practices Influencing N2O Emission and Potential Mitigation Options

The DNDC simulations demonstrate that tillage, the amount of applied N fertilizers, irrigation, and manage-
ment of cover crops influence N2O emissions. The model predicted lower emission rates under the practices
of reduced or no tillage, reducing the rate of N application, low-volume irrigation, or cultivation of nonlegu-
minous cover crops. However, the efficiencies for N2O mitigation were variable across the studied cropping
systems and practices (Table 2 and Figure 7), suggesting that crop-specific FMPs should be designed for N2O
mitigation in regions with diverse cropping systems.

The simulations also provide information about the mechanisms responsible for the impacts of these FMPs
on N2O emission. Both reduced and no tillage (versus conventional tillage) and reducing the rate of N appli-
cation decreased the content of soil mineral N, either indirectly by reducing mineralization of soil organic
matter (tillage) or directly by reducing synthetic N addition. This resulted in 2% to 32% lower N2O emission
rates (Figure 7). Although reduced or no tillage can enhance N2O emission through increasing soil water
content and denitrification, this did not occur in these Mediterranean agricultural ecosystems, because the
relative dry soil water status was usually lower than the threshold favoring denitrification (Rochette, 2008).

Irrigation practices affected N2O emissions primarily through influencing soil water and oxygen status. The
model simulated higher N2O emissions under flood irrigation, primarily because of transient conditions of
near saturation after each irrigation event. This, in combination with warm summer temperatures and
relatively high soil nitrate generated during periods without irrigation, could lead to optimal conditions for
denitrification and N2O production (Davidson & Verchot, 2000). In contrast, lower N2O emissions simulated
under practices of low-volume irrigation (e.g., drip irrigation) were due to restricted N2O production through
denitrification, because dry soil conditions were not strongly affected by the low amount of water applied
and the limited water distribution in soil profiles (Kallenbach et al., 2010) following the frequent low-volume
irrigation events.

The DNDC simulations also demonstrate that reduced N2O emission in the vineyard with nonleguminous
cover cropping was primarily due to immobilization of soil residual N through N uptake by the cover crop,
which led to a low availability of soil mineral N during winter rainy season. In contrast, planting of a legumi-
nous cover crop in winter added more N into the system and therefore stimulated N2O emissions.

However, it should be noted that we only simulated short-term impacts of the FMPs on N2O emission, and
long-term impacts arising from persistently applying these practices may differ from the predicted short-
term impacts. For example, strategies that can help increase soil C sequestration and decrease short-term
N2O emission (e.g., reduced or no tillage, Figure 7) could also stimulate N2O emission over the long term
due to the slow accumulation of SOC (Li et al., 2005). It should also be noted that the efficiency of the
FMPs on N2Omitigation is highly variable, depending on specific conditions of climate, soil, and crop species.
For example, the model predicted different emission mitigation efficiencies across different cropping sys-
tems for a single practice (Figure 7). Therefore, evaluation of these FMPs by considering long-term impacts
on N2O emission, climate variability, and specific environmental conditions are needed before they can be
recommended for adoption.

5. Conclusions

A process-based biogeochemical model, DNDC, was tested against field measurements of N2O emissions
from five cropping systems representing a range of environmental conditions and FMPs. The results indicate
that DNDC reliably predicted the seasonal or annual N2O emissions from the studied cropping systems with-
out statistical biases. Themodel also captured the impacts of the setting treatments, including different N fer-
tilization and alfalfa age, on N2O emission, and the spatial variability of N2O fluxes in both vineyards and
almond orchards. DNDC clearly performed better than the EF approach in simulating seasonal or annual
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N2O emissions from the cropping systems studied. The model tests also suggest that DNDC overestimated
N2O fluxes following some heavy rainfall events. To reduce the biases of N2O fluxes following heavy rainfall,
further studies should focus on clarifying processes or mechanisms controlling the impacts of soil anaerobic
conditions and other factors on the dynamics of denitrification rates and N2O emission. After testing
against the field measurements, the model was applied to assess impacts on N2O emissions of alternative
management practices, including tillage, fertilization, irrigation, and planting of cover crops. The simulations
demonstrated that N2O emissions could be mitigated by reducing tillage, reducing the N application rate,
using low-volume irrigation, and reducing the period of fallow through cultivation of nonleguminous cover
crops, although the efficiencies for N2O mitigation were variable across the cropping systems and practices.
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