Simultaneous measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations

C Anderson
GEI Consultants

Jack E. Dibb
University of New Hampshire, jack.dibb@unh.edu

Robert J. Griffin
University of New Hampshire - Main Campus

M Bergin
Georgia Institute of Technology - Main Campus

Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub

Part of the Atmospheric Sciences Commons

Recommended Citation
Simultaneous measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations
Simultaneous measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations

C. Anderson, J. E. Dibb, R. J. Griffin, and M. H. Bergin

Received 21 March 2008; revised 6 May 2008; accepted 28 May 2008; published 9 July 2008.

[1] The sources, sinks, and overall importance of water-soluble organic carbon (WSOC) in the atmosphere are not well understood. Although the primary historical focus has been on particulate WSOC (WSOC$_p$), here we also present results obtained using a newly developed technique that additionally measures gas-phase water-soluble organic carbon (WSOC$_g$). These first-of-their-kind measurements show that WSOC$_g$ can often be more than ten times larger than WSOC$_p$ at both urban and remote locations. The average fraction of WSOC residing in the gas phase ($f_g = \text{WSOC}_g / (\text{WSOC}_g + \text{WSOC}_p)$) at five various field sites ranged from 0.64 to 0.93, implying significant differences in WSOC phase partitioning between locations. At Houston, TX, and Summit, Greenland, a repeatable diurnal pattern was observed, with minimum values for $f_g$ occurring at night. These trends likely are due, at least in part, to temperature and/or relative humidity related gas-to-particle partitioning. These coincident measurements of WSOC in both the gas and particle phases indicate that a relatively large reservoir of water-soluble organic mass is not taken into account by measurements focused only on WSOC$_p$. In addition, a significant amount of WSOC$_g$ is available to form WSOC$_p$ or enter cloud droplets depending on the chemical and physical properties of the droplets and/or aerosols present. Citation: Anderson, C., J. E. Dibb, R. J. Griffin, and M. H. Bergin (2008), Simultaneous measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations, Geophys. Res. Lett., 35, L13706, doi:10.1029/2008GL033966.

1. Introduction

[2] Organic compounds are emitted by a wide variety of processes, both natural and anthropogenic, and include hundreds to thousands of different types of molecules existing in both the gas and particle phases [Kanakidou et al., 2005]. Of particular importance is the fraction of organic carbon (OC) that is water soluble (WSOC). Water-soluble aerosols, including those dominated by organics, influence cloud formation and lifetime [Intergovernmental Panel on Climate Change, 2001]. Depending on location and time of year, aerosol-phase WSOC (WSOC$_p$) can account for between 20 and 80% of the total OC aerosol mass [Saxena and Hildemann, 1996; Jaffrezo et al., 2005; Sullivan and Weber, 2006; Kondo et al., 2007]. In addition, a significant component of WSOC$_p$ is thought to be secondary organic aerosol (SOA) [Sullivan et al., 2006], which is formed from the gas-to-particle transfer of the oxidation products of volatile organic compounds [Pankow, 1994]. SOA production is not well characterized on a global scale, but is thought to represent a large fraction of organic mass missing from global chemical transport models of the free troposphere [Heald et al., 2005]. Some water-soluble organic gases (WSOC$_g$) can also affect droplet acidity, surface tension, and cloud condensation nuclei activation [Keene and Galloway, 1988; Facchini et al., 1999; Limbeck et al., 2003].

[3] Because of the large number of organic species in the atmosphere, some of which reside in multiple phases, a measurement of WSOC that is comprehensive, phase-specific, and speciated is difficult. Pre-baked quartz filters are commonly used to collect aerosol OC. After sampling, the water-soluble fraction is extracted manually and analyzed by a variety of methods. Attempts to measure individual compounds on a molecular basis typically result in less than 15% of the total organic aerosol mass being identified [Decesari et al., 2006; Fisheha et al., 2006]. Total organic carbon (TOC) analysis allows the total WSOC concentration to be quantified but yields no information about the types of compounds that collectively constitute WSOC. The filter sampling times of several hours to days that are employed commonly also limit the ability to provide details at finer temporal resolution. One method that is able to make real-time measurements of WSOC$_p$ is the Particle-into-Liquid (PILS) total organic carbon (TOC) system [Sullivan et al., 2006]. By making measurements on a short timescale (approximately several minutes), this technique is able to provide important information about the sources, transport, and processing of particulate WSOC.

[4] To our knowledge, no measurements of WSOC$_g$ have been made, despite the fact that some water-soluble compounds, such as certain carboxylic acids, are semi-volatile and partition between the aerosol and gas phases [Chebbi and Cartier, 1996]. There have been measurements of gas-phase and particulate organic acids, suggesting that gas-phase material is a substantial fraction of the total ambient WSOC budget [Dibb et al., 1994]. In order to gain a better understanding of the partitioning of bulk WSOC between the gas and particle phases, measurements of WSOC$_g$ and WSOC$_p$ were made at a variety of locations including remote (Summit, Greenland; Niwot Ridge, Colorado), urban

Copyright 2008 by the American Geophysical Union.

0094-8276/08/2008GL033966

L13706 1 of 4
(Houston, TX) and urban influenced (Appledore Island, ME (marine); Thompson Farm, NH (semi-rural)) sites. In this paper, measurements from these sites are presented and compared. In addition, diurnal trends in the partitioning of WSOC at the measurement locations are discussed.

2. Methods

[5] During 2005 and 2006, WSOC measurements were made during field experiments at five locations that represent a diverse set of remote, rural, urban, and marine influenced environments. Niwot Ridge, Colorado (40.05°N, 105.57°W), is a remote location situated at 4000 meters in the Rocky Mountains. Summit, Greenland (72°N, 38°W), is also a remote Arctic location atop 3200 meters of glacial ice and hundreds of kilometers away from the sparsely populated coast. Appledore Island (42.97°N, 70.62°W) is a small, rocky island located 10 km off the coast of the eastern United States along the Maine-New Hampshire border. Thompson Farm (43.11°N, 70.95°W), a semi-rural New England site located 10 km inland from the New Hampshire coast, lies 20 km to the west of Appledore Island. Houston, Texas (29.72°N, 95.34°W), is a large metropolitan area that is also home to a high density of petrochemical plants.

[6] Mist chambers were used to collect WSOC in a small volume, ~30 ml of ultrapure deionized (DI) water. Two measurement channels were used simultaneously, with sample collection times of either 30 or 60 minutes. The longer interval was used when ambient concentrations were expected to be less than roughly 1 mgC m\(^{-3}\). The DI sample water was injected into the mist chambers using programmed syringe pumps. After the allotted sampling time, the sample water was drawn into a syringe pump and injected into a Sievers 800 TOC Analyzer (General Electric, Boulder, CO). The Sievers instrument was run in Turbo mode, with measurements every 3 s averaged over 1.5 minutes for each sample. One measurement was made for each syringe injection. Detection limits are based upon the variability in the TOC signal of the DI water used to collect samples, which was flushed continuously through the system between samples. The concentration of the DI water used to flush the syringe volume was used to estimate the detection limit. Two times the standard deviation of the mean TOC signal in the DI water is used as the detection limit, which corresponds to an ambient concentration of ~50 ng C m\(^{-3}\).

[7] Isolation of WSOC\(_G\) and WSOC\(_P\) was achieved by manipulating the inlet configuration. WSOC\(_G\) was measured by sampling through a Fluoropore Teflon\(^{[6]}\) filter (Pall Life Sciences, East Hills, NY). Two methods were used to estimate WSOC\(_P\). The denuder method, in which an activated carbon denuder was used to remove WSOC\(_G\), allows for direct measurement of WSOC\(_P\). A denuder removal efficiency must be assumed in this method. The denuder method was used during the first two field studies at Appledore, Island and Thompson Farm. The denuder efficiencies were determined in the field several times daily, and the particulate concentrations were estimated using the average of the efficiency values determined prior to and after a specific sample. It is important to point out that the mean denuder efficiencies at Appledore, Island and Thompson Farm were 81% and 43%, respectively [Anderson et al., 2008]. Given the relatively low gas-phase removal efficiencies, a difference method not involving the denuder was used for subsequent sampling. The difference method, where WSOC\(_P\) was calculated as the difference between sample concentrations collected through an unfiltered inlet and a filtered inlet, provided an indirect measurement. In this paper, efforts to measure WSOC\(_P\) by both methods are reported. More details on the sampling technique are given by Anderson et al. [2008].

3. Results and Discussion

3.1. Water-Soluble Gas-Phase and Particulate Measurements at Several Sites

[8] Concentrations of WSOC varied significantly between locations (Table 1). The remote settings of Summit, Greenland, and Niwot Ridge, Colorado showed similar mean concentrations for both WSOC\(_G\) (0.67 mg C m\(^{-3}\) and 0.46 mg C m\(^{-3}\), respectively) and WSOC\(_P\) (0.19 mg C m\(^{-3}\) and 0.24 mg C m\(^{-3}\), respectively), as shown in Table 1. The relatively low values for WSOC\(_P\) are within the range of values measured from aircraft in the free troposphere over northeastern North America [Sullivan et al., 2006]. Samples were collected at Niwot Ridge during a short winter campaign that was dominated by strong, westerly flow. In this type of synoptic pattern, air from the free troposphere descends to the sampling site [Greenland, 1989]. A similar degree of isolation from emission sources is found at Summit during the summer season [Kahl et al., 1997; Stohl, 2006].

[9] Appledore Island, Thompson Farm, and Houston are much closer to sources of anthropogenic organic compounds. As a consequence, WSOC concentrations are larger by an order of magnitude than those at Summit and Niwot Ridge. The highest WSOC concentrations were measured at

---

**Table 1. Mean and Standard Deviation for WSOC Measurements Made at Five Different Locations**

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Period</th>
<th>Number of Samples</th>
<th>WSOC(_G) (mgC m(^{-3}))</th>
<th>WSOC(_P) (mgC m(^{-3}))</th>
<th>(f_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appledore Is., ME</td>
<td>July, 2005</td>
<td>175</td>
<td>17.8 (16.1)</td>
<td>1.4 (1.3)</td>
<td>0.93*</td>
</tr>
<tr>
<td>Thompson Farm, NH</td>
<td>October, 2005</td>
<td>87</td>
<td>12.2 (11.4)</td>
<td>2.3 (3.1)</td>
<td>0.88 (0.06)</td>
</tr>
<tr>
<td>Niwot Ridge, CO</td>
<td>January, 2006</td>
<td>41</td>
<td>0.46 (0.31)</td>
<td>0.24 (0.18)</td>
<td>0.64 (0.23)</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>August/Sept., 2006</td>
<td>1337</td>
<td>9.29 (7.20)</td>
<td>1.48 (2.30)</td>
<td>0.86 (0.14)</td>
</tr>
<tr>
<td>Summit, Greenland</td>
<td>June, 2006</td>
<td>206</td>
<td>0.67 (0.23)</td>
<td>0.19 (0.17)</td>
<td>0.78 (0.16)</td>
</tr>
</tbody>
</table>

*Mean concentration values given in table with standard deviations in parentheses.

* A standard deviation of \(f_g\) is not available for Appledore Island due to non-simultaneous measurements of WSOC\(_G\) and WSOC\(_P\). The \(f_g\) value presented is simply the average WSOC\(_G\) divided by the sum of the average WSOC\(_G\) and average WSOC\(_P\).
WSOC \(_G\) is always significantly larger than average WSOC \(_G\) in the gas phase (\(f_g\)) are smaller at Summit and given the appropriate conditions. The fractions of total organic material available to partition to the particle phase Summit and Niwot Ridge, indicating a significant pool of

3.2 Diurnal Variability of WSOC\(_G\) and WSOC\(_P\)

The rural sites of Appledore Island (mean values of 17.8 \(\mu g\) C m\(^{-3}\) and 1.4 \(\mu g\) C m\(^{-3}\) for WSOC\(_G\) and WSOC\(_P\), respectively) and Thompson Farm (mean values of 12.2 \(\mu g\) C m\(^{-3}\) and 2.3 \(\mu g\) C m\(^{-3}\) for WSOC\(_G\) and WSOC\(_P\), respectively) with slightly lower, although comparable, values in Houston (mean values of 9.3 \(\mu g\) C m\(^{-3}\) and 1.5 \(\mu g\) C m\(^{-3}\) for WSOC\(_G\) and WSOC\(_P\), respectively). Finding similar concentrations of WSOC at Thompson Farm and Appledore Island compared to Houston may at first seem surprising. However, Thompson Farm and Appledore Island are downwind of large urban areas in the eastern United States and large industrial centers in the Ohio River Valley and prevailing winds transport plumes of pollution to these sites [Fischer et al., 2006, Ziembza et al., 2007]. It should also be noted that these locations may also be impacted by biogenic emissions of organic compounds from plants.

One consistent finding at all locations is that average WSOC\(_G\) is always significantly larger than average WSOC\(_P\). The WSOC\(_G\) concentrations are generally two to five times greater than those observed for WSOC\(_P\) at both Summit and Niwot Ridge, indicating a significant pool of organic material available to partition to the particle phase given the appropriate conditions. The fractions of total WSOC in the gas phase \(f_g\) are smaller at Summit and Niwot Ridge than at the more temperate locations (Table 1). One potential reason for this is the closer proximity of the low altitude locations to anthropogenic sources of volatile organic compounds (WSOC and precursors). In addition, less aged air masses impacting the semi-rural and urban location would have had less time for WSOC\(_G\) to be removed by precipitation scavenging and/or partitioning to the aerosol phase. Lastly, colder temperatures at Summit and Niwot Ridge may result in the partitioning of WSOC to the particle phase.

Figure 1. Thirty-minute average time series of WSOC\(_G\), WSOC\(_P\) and \(f_g\) in Houston, Texas.

Figure 2. Hour-average time series of WSOC\(_G\), WSOC\(_P\), and \(f_g\) at Summit, Greenland.
large part of the diurnal variation in \( f_g \) at Summit reflects temperature and/or relative humidity driven gas to particle exchange. In contrast, Houston is subject to a wide range of local sources of organic gases and particles and much more diverse meteorological conditions. However, it appears gas/particle partitioning of WSOC may still be important in modulating \( f_g \). Overall, this research indicates a relatively diverse meteorological conditions. However, it appears gas/local sources of organic gases and particles and much more temperature and/or relative humidity driven gas to particle conversion.

[14] Acknowledgments. Much of this research was supported by NSF OPP 0425406. Additional funds for UNH were supplied from the NASA Tropospheric Chemistry Program (NNC04GC32G). We thank Barry Lefer at the University of Houston for inviting us to participate in the TRAMP component of TEXAQS2006, and VECO Polar Resources for logistical support of the Summit campaign. Thanks are also owed to UNH AIRMAP for use of their facilities at Thompson Farm and Appledore Island. Our work at Niwot Ridge was made possible by the CU Mountain Research Station.

References


