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ABSTRACT
A WAVELET BASED CMAC FOR ENHANCED 

MULTIDIMENSIONAL LEARNING

by

Brian P. Kirk 
University of New Hampshire, December, 2003

The CMAC (Cerebellar Model Articulation Controller) neural network has been success­

fully used in control systems and other applications for many years. The network structure 

is modular and associative, allowing for rapid learning convergence with an ease of im­

plementation in either hardware or software. The rate of convergence of the network is 

determined largely by the choice of the receptive field shape and the generalization parame­

ter. This research contains a rigorous analysis of the rate of convergence with the standard 

CMAC, as well as the rate of convergence of networks using other receptive field shape. The 

effects of decimation from state-space to weight space are examined in detail. This analysis 

shows CMAC to be an adaptive lowpass filter, where the filter dynamics are governed by the 

generalization parameter. A more general CMAC is derived using wavelet-based receptive 

fields and a controllable decimation scheme, that is capable of convergence at any frequency 

within the Nyquist limits. The flexible decimation structure facilitates the optimization of 

computation for complex multidimensional problems. The stability of the wavelet-based 

CMAC is also examined.

xvi
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CHAPTER 1

INTRODUCTION

Artificial Neural Networks (ANN) have continued to increase in prevalence since their in­

ception during the 1950s[l]. The areas of control systems, pattern recognition and other 

types of signal processing are three areas in which ANN are now ingrained. The connec­

tion to these areas can be related to how the human brain performs the same tasks. The 

brain is responsible for the coordinated movement of hundreds of muscles with real-time 

processing of feedback information from the inner ear and other sensory inputs. In parallel, 

the brain continually processes images through the eyes and sounds through the ears. The 

computational power of the brain is astonishing. The brain can perform complex percep­

tual recognition tasks (e.g., recognizing a familiar face in an unfamiliar scene) in a time 

period on the order of 100 milliseconds. Tasks of a much simpler complexity take days to 

complete on a huge conventional computer [2]. This human computation is performed with 

neurons that are only capable of responding in the millisecond range, while computers have 

transistors that respond in the picosecond range [3]. The speed disadvantage of neurons is 

minimized by the massively parallel, complex interconnections that link billions of these 

nonlinear processing elements together. It is no wonder the human brain is continually 

modeled for its computation and control abilities.

The ability to adaptively learn linear and nonlinear systems has given rise to ANN 

in control systems. There are two major components that limit classical control systems: 

nonlinear effects and the ability to correctly model the system to be controlled. Neural net­

works have the ability to overcome both of these limitations. A wide range of ANN has been

1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2

adopted for control applications. The focus of this research is one such network, the CMAC 

(Cerebellar Model Articulation Controller or Cerebellar Model Arithmetic Computer) neu­

ral network, which has been successfully implemented in a range of applications around 

the world with a concentration of work at the University of New Hampshire in robotics, 

vibration control and pattern recognition. The CMAC concept is a relatively simple and 

elegant structure that is comparatively easy to implement and has a low computational cost 

as contrasted with traditional multi-layer perceptron-based neural networks. In addition 

to the reduced computation, CMAC converges at a much higher rate. In fact, it typically 

converges orders of magnitude faster than a multi-layer perceptron trained with the back- 

propagation algorithm. These properties have made CMAC a popular choice for real-time 

applications in both control systems and pattern recognition.

In this dissertation, the rate of convergence of the CMAC neural network is rigorously 

examined for a broad class of functions. The initial research demonstrates the strong cou­

pling between the choice of generalization parameter and the effective frequency range of 

the model. Due to this effect, the current CMAC implementations only allow low frequency 

information to be widely generalized and have severe limitations in the upper half band of 

the frequency spectrum. A new wavelet-based CMAC (WCMAC) is formulated that has 

the capability to learn bandlimited signals anywhere in the frequency range supported by 

the target function. A proof of stability and the convergence rates comparing the WCMAC 

to traditional CMAC models are also presented.

Neural Networks are typically divided into two categories: globally generalizing or lo­

cally generalizing. The CMAC concept is an associative neural network that only considers 

a small number of related weights to compute an output and learn a function. It is there­

fore a locally generalizing network. This local generalization helps CMAC converge faster 

and reduces the computational load. However, it also has a set of disadvantages. Since 

the network does not consider each training sample on a global basis, large regions of un­

trained state-space can exist. An input that excites this untrained region will produce an
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uncorrelated or unpredictable output. Furthermore, the CMAC output is not necessarily a 

continuous function of the input, since the training sets may be sparsely spaced. This can 

produce abrupt changes of the output near the edges of training set clusters.

Another feature of CMAC, which enables the high rate of convergence and low com­

putational load, is the static and sparse nature of the receptive field structure. The static 

nature allows very fast weight searching algorithms and removes the variability associated 

with adjustable receptive field centers. The sparse structure reduces the memory require­

ments on the weight-space and spreads the function approximation across a larger region 

of the input space. Again, this is offset by some disadvantages; since the weight-space is, 

in essence, a decimated state-space, there exists a set of functions that is orthogonal to the 

basis function defined by the receptive field function and weight-space. These functions 

can therefore never be learned by CMAC. As the generalization increases, the sparsity of 

the weights in the input-space increases and the number of unleamable functions increases 

simultaneously. However, the sparse weight-space has another major advantage, besides the 

reduced memory requirements. It reduces the computational requirements and facilitates 

the processing of large multi-dimensional problems. The one-dimensional CMAC is a spe­

cial case in that a weight exists for every input, or state value. Its learning ability is limited 

by the frequency response of the receptive field, rather than the decimation effects.

All current implementations use averaging techniques which effectively lowpass filter the 

output, making higher frequencies bands orthogonal and unable to be learned. The rate of 

convergence also has a dependency on frequency, in that the higher the frequency of the 

target function, the slower the convergence rate of the network. Another artifact of the 

structure is that sharpness-or filter order-is tied directly to the generalization parameter 

and is not up to the control of the user.

Although many of the filtering properties of CMAC are easily identifiable through simu­

lation and are qualitatively recognized, there lacks a formality in documenting these effects. 

Furthermore, these filtering effects are highly coupled to the rate of convergence of the net­
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work and these properties lack any documentation beyond the stability range of the learning 

coefficient, which is well documented as existing between 0 and 2. An entire chapter of this 

dissertation is dedicated to analyzing the rate of convergence of CMAC, considering multiple 

receptive field shapes and different weight structures.

Based on the convergence analysis represented here, and in keeping with the advantages 

of CMAC (low computational load and rapid convergence), a new CMAC structure called 

the Wavelet-based CMAC (WCMAC) is proposed that is capable of learning a larger range 

of frequencies, that are not limited to the lowpass frequency band. Furthermore, the gen­

eralization parameter only controls the coverage of the state-space, while the decimation is 

controlled by a separate quantization step. This allows the user to optimize the amount of 

computation versus the necessary weight storage. The receptive fields are based on wavelets, 

which allow the effective frequency band of the network to be adjusted. CMAC has been 

represented as analogous to a filter bank. Wavelet research arose from multi-resolution anal­

ysis and filter bank theory. Therefore, the wavelet and CMAC concepts merge naturally.

The second chapter presents pertinent literature that is essential to the formulation of 

the research throughout this dissertation. This includes the following: a historical per­

spective of neural networks and CMAC with an emphasis on convergence and learning 

capabilities, an assortment of applications of CMAC, some relevant papers on multiresolu­

tion analysis, filter banks and wavelets. The third chapter is a detailed discussion of the 

CMAC neural network and its significant properties. The advances in learning algorithms 

and design of receptive fields that have occurred since Albus’s original work are also in­

cluded in this chapter. Chapter 4 is a Fourier type analysis of CMAC for multidimensional 

problems employing different receptive field shapes and weight placements. This chapter 

focuses on the bandwidth of different CMAC implementations. From the basic properties 

illustrated in the previous chapter, the fifth chapter formulates the WCMAC and illustrates 

its advantages across a range of problems. An additional chapter is dedicated to extending 

the WCMAC model to include features associated with the Generalized CMAC model and
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the coupling of multiple WCMAC models into a single system. The question of stability and 

some computational improvements are examined in the seventh chapter. The final chapter 

summarizes the results and presents a framework for future research.
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CHAPTER 2

BACKGROUND

2.1 Neural Networks

One definition for a neural network is the following [4]:

A neural network is a massively parallel distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for use. It 

resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to 

store the knowledge.

The human brain is the essential neural network and the driving force behind the dis­

cipline of artificial neural networks. Given the brain’s ability to learn complex tasks, store 

that information for use at a later time, complete multiple tasks simultaneously and do all 

of this at speeds greater than the world’s fastest supercomputers, it is no wonder researchers 

try to mimic its abilities.

There are at least two different disciplines studying the computational and decision 

making power of the brain: Artificial Intelligence and Neural Networks. Although there 

is no strict boundary between these areas, they can be classified with the following con­

cepts. Artificial Intelligence (AI) is focused on the high-level decision making and reasoning 

capabilities of the human brain [5]. These high-level tasks include but are not limited to:

6
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Figure 2 - 1 : McCulloch-Pitts Neuron

perception, language, and problem solving[3]. The low-level tasks, such as muscle control 

and pattern recognition, are the concern of Artificial Neural Networks (ANN) researchers. 

Typically, ANN are built from simple elementary models, neurons, that can be assem­

bled into a complex system, a neural network. Haykin describes artificial intelligence as 

algorithms and data representation in a top-down fashion, while ANN work as parallel dis­

tributed processors in a bottom-up fashion[3]. This dissertation is solely concerned with 

ANN and, in particular, the CMAC neural network.

2.2 A Brief History of Neural Networks

The foundation for the study of neural networks was laid by the work of McCulloeh and 

Pitts in 1943 [6], They developed the first mathematical model of the biological process of 

the neuron, including inhibitory and excitatory connections, and threshold-based activation 

(figure 2-1). The next major step was the introduction of a learning rule by Hebb based on 

synaptic adjustments and has been deemed the Hebbian Learning Rule[7].

The study of neural networks gained great momentum with the introduction of the 

perceptron by Rosenblatt in 1958[8]. He followed up his initial publication with the ”Prin­

L— W ^
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ciples of Neurodynamics” in 1962 [9]. This publication included the perception convergence 

theorem, which was the first well-developed theoretical model of a neuron and its lin­

ear separation capabilities. In the late 1950’s, Widrow began his research into ’’Adaptive 

Sampled-Data Systems” which led to the introduction of the adaptive linear element, known 

as ADALINE[10]. In the early 1960’s, Widrow and Hoff introduced a least squares gradient 

learning algorithm for the AD ALINE model[ll]. The natural extension to this single neuron 

was MAD ALINE, which had multiple interconnected models [12].

As the capabilities of neural networks expanded and the theoretical work appeared to 

back it up, the field looked to grow with unbounded interest. Unfortunately, in 1969, Minsky 

and Papert published a book on perceptrons that mathematically explained the fundamental 

limits of the single layer perceptron and its inability to learn certain functions [13]. Without 

an effective learning algorithm for multi-layer networks, neural networks seemed to have 

reached their limit. Consequently, research and interest died off quickly.

Although interest had waned, some Important work progressed during the 1970’s. The 

work of Kohonen on self-organizing maps was first published during this decade[14]. Un­

fortunately, some very important work was overlooked, including a learning algorithm 

for the multilayer perceptrons, which could overcome the limitations of the single-layer 

model. Werbos developed the learning algorithm in 1974[15], but it went unnoticed until 

1986 when Rumelhart, Hinton and Williams published their work on the back-propagation 

algorithm[16].

In the 1980’s, Grossberg formulated his adaptive resonance theory (ART) from his earlier 

work[17] and Hopfield published his work on recurrent neural networks, which are known 

now as HopGeld Networks[18]. The single layer neural network based on the radial basis 

function was proposed as an alternative to the multilayer perceptron[19].
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2.3 CMAC

Another major development in neural networks that occurred in the 1970’s and was over­

looked for more than 10 years was the Cerebellar Model Arithmetic Computer (CMAC), 

also called the Cerebellar Model Articulation Controller. The CMAC idea was developed 

by Albus to model the functionality of the cerebellum, and he continued to publish on the 

subject from 1972 through 1981 [20, 21, 22, 23, 24, 25, 26, 27]. The cerebellum controls 

neuromuscular and coordinated movements throughout the body. The CMAC concept was 

initially planned as a controller for artificial limbs and has been highly adopted in the areas 

of control and robotics. The CMAC idea uses associative memory structures that mimic the 

functionality of the cerebellum. The concept does not directly fit the connectionist model 

of weighted interconnects typical to ANN systems. It is conspicuously absent from many 

neural network texts, possibly for this reason. However, many texts also include radial basis 

function neural networks that represent a similar structure.

The CMAC model was adopted by Miller at the University of New Hampshire for 

adaptive control in robotic application [28]. This was followed by papers that outlined 

the different properties of CMAC including an evaluation of CMAC as an alternative 

to traditional backpropagated multilayer neural networks [29], comparisons to other con­

trol techniques[30, 31, 32], hardware implementations[33, 34, 35, 36], the effective fault- 

tolerance of the network[37], slow learning convergence at selected frequencies [38] and gen­

eral overviews of the network [39]. With an increase in theory and understanding of the 

network, the applications of the network started to grow.

2 .3 .1  A p p lica tion s

There are a few major properties that have led to widespread implementation of CMAC. 

They are the ability to compute the network response in real-time for many control system 

applications, the relative ease of implementation in terms of complexity, and the ability to

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



10

use standard digital systems (either low-level hardware or standard personal computers) for 

the implementation.

The following citations represent some of the implementations, research articles and 

applications of CMAC at the University of New Hampshire:

1. Robotics [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]

2. Digital filtering [51, 52]

3. Shape recognition [39, 53]

4. Vibration control [54, 55, 56]

Obviously, there have been other significant applications of CMAC outside of the Uni­

versity of New Hampshire. A small subset of papers which are commonly referenced and 

some recent applications are listed below:

1. Robotics [57, 58]

2. Image processing [59, 60]

3. Motor control [61]

4. Fuel injection systems [62]

5. Wheel chair control [63]

This list represents a very small portion of the CMAC applications to date and represents 

areas that are of particular interest to the author of this dissertation.

2 .3 .2  E xten sion s to  th e  O riginal C M A C

As further understanding of the exact modeling properties of CMAC advanced and informar 

tion was gained through actual implementations, some limitations became apparent. The
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original CMAC used a binary weight activation function, which either includes or excludes 

a weight from the output formulation. This abrupt change caused a staircase-shaped out­

put, which induced a host of limitations. Alternative weight activation functions (which 

are also referred to as receptive field shapes) have been explored[64, 65, 66, 67], Techniques 

to improve the derivative of the output, which was typically lost by the binary activation 

function, have also been explored [5, 54, 68]. Another algorithm that has been used at the 

University of New Hampshire since the mid 1990’s is weight normalization, effectively bind­

ing values of the weights to the function directly and eliminating their possible unbounded 

growth. This technique was published independently in 2002 under the topic of improved 

generalization properties [69]. Similar methods for controlling the growth of weights has 

been explored for other artificial neural networks under the context of learning with weight 

constraints and regularization theory [70].

A major feature of CMAC is the ability to reduce the total number possible inputs to 

a manageable number of storage elements or weights. The original algorithm placed the 

weights along the hyperdiagonal, which was not always the optimal structure. New static 

placement techniques for the weights were explored [65, 71, 72]. Recently, CMAC has also 

been coupled with genetic algorithms to produce an adaptive approach to the problem of 

receptive field placement[73], although this method is computationally intensive. Recent 

applications have adopted the method of using different degrees of generalization for each 

input coordinate [74]. This model is known as the Generalized CMAC (GCMAC).

Recent research on the structure of CMAC uses hierarchic models, i.e. multiple CMACs 

linked together, just as multiple perceptrons are linked together, in an attempt to solve 

higher-order problems with a simple base structure. Typically, a one dimensional CMAC[75, 

76] is used as the basic building block. The concept of a hierarchic CMAC is effectively 

another approach to adaptive receptive field placement [77].
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2.4 Convergence

Theoretical work on the proof of learning convergence started to be published in the late 

1980s and continues through the time of publication for this dissertation. The convergence 

proofs are discussed in two different contexts: open-loop and closed-loop. Since CMAC is 

a supervised-leaming system where the error in the output is fed back to the weight-space 

during the adjustment process, this essentially makes it a closed loop system. However, to 

comply with existing research the following definitions axe used:

1. Open-loop -  connecting and training the CMAC in parallel with the system model.

2. Closed-loop -  CMAC is placed in the feedback loop. The input to CMAC is the 

system output and the control object is to drive the system response to zero.

The first open-loop paper was published by Ellison in 1988 that proved CMAC could 

find the optimal solution for a set of one dimensional linear equations [78]. Parks and 

Militzer published their first CMAC convergence proof in 1989[79]. This paper proved two 

major results on CMAC learning convergence. First, if the weight space is large enough, 

the CMAC will converge to a unique weight vector and this is proven with a Lyapunov 

approach. The second case considered was the convergence to a limit cycle, if the physical 

memory size was effectively smaller than the number of weights that need to be stored. 

This proof examined the eigenvalues of the weight trajectory to see if they were either on 

or inside the unit circle, thus proving stability in the discrete time domain. The authors 

limited the CMAC learning coefficient, used in updating the weights, to unity in this initial 

paper. Parks and Militzer followed up this paper with an investigation into the properties 

of five different learning algorithms [80]. Proofs of convergence were not developed.

Ellison extended his one dimensional proof to the multi-dimensional case in 1991 [81]. 

Wong and Sideris formulated a matrix of the activated weights for corresponding inputs, 

thus creating a set of linear equations or a linear system[82]. A Gauss-Seidel iterative
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scheme was used to prove convergence, and it was claimed the CMAC always converged to 

an arbitrarily small error when hashing is not present. They included comments about the 

effects of hashing, but gave no proof or simulation results. This detailed proof was only 

constructed for the one-dimensional CMAC. They claimed the results could be directly 

extrapolated to the multi-dimensional case, but this assertion was refuted by Brown and 

Harris [83] [84]. Brown and Harris showed that the reduction of the weight-space from the 

address-space introduces a set of possible orthogonal functions that cannot map onto the 

weight-space and can never be learned[85] [86]. In fact, it will be shown in chapter 4 of this 

document that the choice of receptive field shape also limits the number of unique functions 

that can be learned.

Wong continued his work in one dimension and intentified the generalization parameter 

as the single most important factor in the rate of convergence [87]. As will be detailed later, 

the one-dimensional case has significantly different properties than the multi-dimensional 

cases. Similar results including multi-dimensional problems were demonstrated in simula­

tion by An [65]. Serrano et al discussed the Fourier components and the Nyquist sampling 

effects when designing a Generalized CMAC (GCMAC) [88]. These spectral properties of 

CMAC are explored in depth in the fourth chapter of this document.

Campagna and Kraft [5] used an extension of the Parks and Militzer analysis [79] to 

show that CMAC converges in a Lyapunov sense if the learning rate is between 0 and 2, as 

long as it can be postulated that a target set of weights exists. Lin and Chaing, in 1997, 

extended the original eigenvalue analysis to show that the learning is stable under the same 

condition [89].

Finally, Kraft and K. Liu proved the stability of CMAC in a closed-looped solution 

for vibration control with a variable time delay [90]. H. Liu proved the convergence of a 

closed-looped CMAC for a class of nonlinear dynamic systems [91].
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2.5 Wavelets, Filter Banks and CMAC

In a recent publication, Horvath and Szabo[69] made the following assertion about CMAC:

The binary CMAC can be regarded as a complex piecewise linear filter, where 

the elementary filters are arranged in two layers. While the first layer contains 

one filter, the second layer consists of a filter bank.

Vetterli stated that there is a strong link between filter banks and wavelets [92]. He used 

the examples that filter banks can be used to generate wavelet bases [93], and filter banks 

can be used to calculate a wavelet series[94]. With CMAC essentially a bank of filters, one 

could postulate that CMAC and wavelets could be strongly linked. In fact, a new CMAC 

is derived from basic wavelet and filter bank theory that will extend the operational range 

of CMAC.

Wavelets have been used primarily for multi-resolution analysis, where the frequency 

spectrum at different times can be extracted. This methodology is widely taught in image 

processing to compress images and handle multiple focal points [95]. In chapter 4 it is shown 

that the CMAC network only has a limited bandwidth due to the structure and decimation 

from state-space to weight-space. All previous CMAC implementations only considered the 

low-pass component of the spectrum. Using basic wavelet structures defined in [96], a new 

CMAC is developed with far more flexibility in the effective spectrum of the model.
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CHAPTER 3

OVERVIEW OF CMAC

3.1 Introduction

The purpose of this chapter is to construct the principles of CMAC which axe referred to 

in all future chapters. This chapter introduces CMAC from a conceptual and functional 

point of view. The mathematical or computational model that implements the original 

CMAC is then introduced. A large amount of research has already gone into improving 

and understanding CMAC under a variety of conditions. The relevant and important works 

that advanced the CMAC architecture are also included in this chapter.

3.2 Conceptual Albus Model

3.2.1 S tru ctu re

The CMAC network is an associative neural network that uses only a subset of the network’s 

weights for the determination of any particular output. With only a small number of 

weights activated and used in the accumulation of the output, the network can very quickly 

formulate outputs, a clear advantage over many other networks. The training cycle is also 

extremely fast because only the same small subset of weights needs to be adjusted. The 

number of weights in the subset is always the same. These properties together result in a 

high-speed network that is also deterministic and ideal for control applications.

15
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Figure 3-1: Conceptual View of CMAC

The associative properties of the network create local generalization-similar inputs give 

similar or correlated outputs; while distant inputs produce uncorrelated outputs. This local 

generalization can be seen in the conceptual view of CMAC, Figure 3-1. In general terms, 

the input to a CMAC is a point in a multidimensional space. This point is expanded upon, 

according to the generalization parameter, to force an overlapping in the conceptual memory. 

In the state-space region of figure 3-1, there exists two input states with values that are 

close but not equal. The conceptual memory for each of these points overlaps; consequently, 

these inputs share information and their outputs will have some level of correlation.

The inputs are mapped from the state-space to a region of the CMAC conceptual mem­

ory. Each region of conceptual memory mapped by the input contains a specific and constant 

number of weights that is equal to the generalization parameter. The weights are typically 

stored in a traditional memory structure and a pseudo-random code is used to translate the
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conceptual memory address to the actual or physical memory. The weights associated with 

each input vector are accumulated to form the network output. The mapping structure 

(translation from conceptual memory to actual memory) and the generalization parameter 

are predetermined and held static. Adjusting the values within the weight vector produces 

the adaptive nature of the network.

Figure 3-2 shows how an actual CMAC can be implemented with two inputs. The first 

stage of the network quantizes the input values and then generalizes both inputs over a larger 

area of the state-space by activating the state-space detectors. The state-space detectors 

perform a logical AND function. Each state-space detector has a connection to each input 

dimension. When both of the connections are active, an associated weight is activated. The 

weight is consequently accumulated with other active weights to form the output value. 

The logical AND function forms the binary receptive field, since a weight is either included
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fully or excluded fully. It should be noted that figure 3-2 is an incomplete model, since 

four input states were activated and only two weights are shown accumulating. The actual 

implementation would accumulate four weights for this network. This is a simplification 

made to clarify the figure only.

There are a few other important properties of the translation from conceptual memory 

to actual memory. First, it has already been mentioned that the mapping from the state- 

space detectors to the weights is done in a pseudo-random fashion. The reason is that a 

multidimensional input can map to an extremely large space. For example, a three input 

system with twelve bit resolution will have 32 billion possible inputs. Most applications 

will only use a small subset of these possibilities. The random hashing allows us to map 

the extremely large input state-space to a much smaller memory structure. Since the 

memory system is smaller than the state-space, multiple conceptual memory addresses are 

mapped to the same physical location. This overlapping effect is known as a collision. A 

collision does not typically cause a catastrophic error in the output because the output is 

formed by the accumulation of multiple weights. The effect of the collision is dependent 

on the generalization parameter and the difference from the optimal weight for each unique 

solution.

The second important property in the translation from input space to the weight struc­

ture is the fact that only the number of weights equal to the generalization is activated. In 

figure 3-2, the generalization is four; therefore, each input is spread over four states and 

together they form an area of sixteen states, but only four of these map to weights. The 

placement of these receptive fields is determined by the generalization and a fixed lattice 

structure.

Figure 3-3 shows the organization of the generalization planes. Each distinct input is 

mapped exactly once to each generalization plane, activating one weight (receptive field 

center) per plane. Therefore, the number of generalization planes and weights is defined by 

the generalization parameter. Each of the activated weights is offset along the hyperdiag-
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Figure 3-3: Generalization Planes

onals of the input space. A quantization level offsets each adjacent receptive field. Each 

layer in figure 3-3 is given a color notation to map to the receptive field centers in figure 

3-4.

In simple cases, such as systems with two-dimensional inputs, it is possible to show all

of the receptive field centers. Figure 3-5 shows all of the receptive field centers mapped 

onto the input state-space for a generalization of four. The shaded areas represent different 

inputs mapped onto these receptive fields. It can be seen that exactly four receptive fields 

are included in each shaded area. It is important to notice the reduction from the total 

number of possible inputs to the actual receptive field centers. This not only decreases the 

amount of memory needed, but the amount of computation to perform, since the number 

of weights for accumulation and adjustment has decreased. It also limits the number of 

solutions that can be uniquely modeled.
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In the Albus implementation of CMAC, each receptive field center is equally valued. It 

does not matter if the weight is a great distance from the center of the shaded generalization 

area. For networks with extremely large generalizations, like sixty-four, the weights at the 

fringes of the generalization region may have little correlation with the weights at the center 

of the region. In these cases, it may not be prudent to accumulate weights on an equal basis.

3 .2 .2  Learning

The standard CMAC network’s ability to leam is done through an adjustment of the weight 

vector, which represents all of the receptive field centers. The state-space detectors control 

the weights to be adjusted on each training pair and also control the values to be used in 

the formulation of the output. As previously mentioned, the traditional Albus model uses 

only binary values for the field detectors. This means all weights are equally accumulated 

in the output and adjusted equally during the training cycle.

3 .2 .3  R ecep tive  F ields

The initial Albus CMAC has a set of well-understood limitations. First, the binary weight 

activation scheme, as previously discussed, produces the piecewise or staircase functions. 

These discontinuous functions typically do a reasonable job of modeling the target function. 

However, the derivative of the function is poorly modeled due to the instantaneous changes 

in the output function where one weight is added and another is subtracted. Beyond 

modeling the derivative, the staircase function approximation introduces nonlinearities to 

the problem by generating new frequencies in the system. The result of introducing new 

frequencies in a control system may be unpredictable. An unwanted resonant frequency can 

severely disrupt a system’s response.

Changing the receptive field shape from a rectangular function with binary values to a 

smooth, tapered function-or a Gaussian shape-can eliminate the staircase output. These 

functions are used to control the proportion of a weight’s impact on the final output of
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the network. Weights located close to the input vector are accumulated with the highest 

strength. The distance from the receptive field center can be calculated in variety of dif­

ferent manners. The three most common methods are the Euclidean method, the absolute 

minimum and the Manhattan. The traditional learning algorithm is also modified to adjust 

the weights according to their activation function.

3 .2 .4  L attice  S tru ctu re

As previously mentioned, the network has a reduced number of receptive field centers from 

the actual number of possible state-space values. This decimated receptive field structure 

is a static and defined lattice structure that was shown in figure 3-3. This particular 

lattice structure has limitations due to the uneven spacing of the receptive fields. Since 

the projection of the target function across the weight-space is typically not known, a 

symmetrically sampled weight-space is more desirable. The modular, static and repetitive 

nature of this lattice is important in the quick search of the activated weights, without 

having to analyze all of the weights in the system. Many other networks analyze all weights 

for each training pair; this significantly increases their computation time.

3.3 Computational Albus Model

A set of equations is set forth for each stage of the traditional CMAC. In this case, a vector 

notation is used, as it becomes more useful in the stability analysis.

3.3 .1  S ta te -sp a ce  to  W eight-space M apping

The classic CMAC is activated by an N-dimensional state-space vector,

xs\ xS2 • • - Xsn (Eqn 3.1)

where s is the specific target sample and the different values in the vector represent the 

different dimensions. The number of state-space dimensions is defined as n.
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An important component of the CMAC method is reducing the solution space by quan­

tization and generalization. There exists a quantization parameter for each axis of the

state-space defined as Aj. The quantization parameter reduces the solution space by re­

ducing the number of discrete levels that access weights.

The generalization parameter is defined as the number of simultaneously excited receptive 

fields, C.  The width of each receptive field is equal to CAj  in the state-space and simply 

C in the quantized state-space. The hyperdiagonals which define the receptive field centers 

are also spaced by C  along any axis of the state-space. This also significantly reduces the 

weight-space, by making the state-space to weight-space mapping even more sparse. The 

next step is to develop the weight-space indices for the excited state-space detectors. The 

equation for the address of the ith weight is

modulus operator. Aj represents the location of a single receptive field in the normalized 

input space.

space by the generalization and quantization, there might still exist more weight addresses 

than are physically addressable or available in a computer’s memory system. Therefore the 

hashing method,

(Eqn 3.2)

'7* ‘V '■y*s i  J ' s 2  ■ ■ - x sn (Eqn 3.3)

Aj =

A j  — CJji di2  ■ . . di n (Eqn 3.5)

where the index i references the C parallel layers of the receptive fields and % represents the

Each input vector excites exactly C  receptive fields. Even after the reductions in weight-

A- =  h(Aj), (Eqn 3.6)
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is used to distribute the weights randomly throughout physically memory, where h(-) rep­

resents any number of acceptable hashing techniques, like linear shift registers or psuedo- 

random lookup tables. Finally, the address are translated into the actual weight values

W[A'gl] W[A's3] ... W[AgCj (Eqn 3.7)

where W [•] represents the actual memory system or weight storage.

3 .3 .2  O utput G eneration  and W eight T raining

The output generation of the traditional CMAC is given as

csws
y« c (Eqn 3.8)

It is clearly evident that this equation is simply the accumulation of all the weights divided 

by the number of the weights, or the mean value of the weights. The vector cs is the 

activation function vector

c, = Cs 1 Cs2 . . .  Csc

1 1

(Eqn 3.9) 

(Eqn 3.10)

The Albus CMAC used only binary values, and this model is only accessing the activated

weights through the address scheme given. Therefore, cs is simply a row vector of ones. 

The weight update algorithm for the binary CMAC is given as

A w s =  ~ c  Ts {ys - y s ),

= ^ c ^ (y s - c sws),

(Eqn 3.11) 

(Eqn 3.12)

where a  Is the learning rate, typically set between 0 and 1, and ys is the desired response 

of the network. This weight update method is considered a supervised learning algorithm. 

The weight is simply updated as the original weight plus the updated weight:

w8+i =  w s + Aws. (Eqn 3.13)
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With many years of research since the inception of CMAC. there are some very important 

enhancements to the basic CMAC structure, particularly in terms of receptive fields, lattice 

structures and memory implementations. The learning algorithms associated with each

stability of CMAC, although mostly focused on the traditional CMAC model, has also 

evolved.

For the purpose of this dissertation, the structure of the network is defined as the 

receptive field shape, the lattice structure that identifies the centers of the receptive field, 

and finally, the memory implementation that maps the virtual CMAC weight to the actual 

memory location in the implementation.

3.4.1 L attice  S tru ctu res

The conventional CMAC structure aligned all the receptive fields along the hyperdiago­

nals of the input space, where each input falls within the same number of receptive fields. 

However, this concentration of receptive fields is not ideal, due to the inhomogeneous place­

ment. Therefore, the receptive field placement was modified based on the assignment of 

displacement vector, which defines the location of the next receptive field center. For the 

original reference hypercube center at origin, the receptive field placement is calculated by 

the displacement vector,

of these models has also evolved to accommodate the advances. Theoretical work on the

d — d\ d2 ... dn , (Eqn 3.14)

such that the comer of the ith receptive field in the reference hypercube was

{dxi)%C (d2i)%C ... (dNi)%C) . (Eqn 3.15)

The traditional CMAC would have a displacement of the following form,

d-Albus  —  1 1 . . .  1 (Eqn 3.16)
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Using this lattice structure implementation, a set of heuristic rules was developed by An 

[65] to form a more uniform placement strategy. First, a set of integers is chosen such that 

they fall between 1 and C/2. These integers cannot be a factor of C  or integer products 

of C, although the value of 1 can be used. If there are more than n candidates to choose, 

where n is the number of input dimensions, n are selected. In the case of less than n 

candidates, the generalization can be increased, allowing for a larger set of initial integers. 

Otherwise, a suboptimal solution can be used by repeating one of the values. For example, 

a generalization of 8 has displacement vector candidates of 1 and 3. The addresses are given 

by

A s =

x 's\ -  ( K i  -  dii)%C) x's2 -  ( « 2 -  d2i)%C) . . .  x'sn -  {{x[3n -  idn)%C)

(Eqn 3.17)

« s l  «s2 (Eqn 3.18)

This equation is only valid for positive-referenced receptive field centers, due to the

properties of the modulus operator. An equation for the negative-referenced receptive fields 

can easily be derived. It should also be noted that this methodology of building the lattice

structure from a combination of the displacement vector and generalization parameter can 

be replaced with a sampling matrix, which is defined by the base hypercube. The sampling 

matrix method is used in the evaluation of CMAC in the next chapter.

3.4 .2  R ecep tiv e  F ield  Shape

Many people have examined the concept of a variable or tapered receptive field shape. For 

the general case, the output takes on the form

Ys =  (Eqn 3.19)C5II5
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where us is a column vector of ones and of equal length to the vector cs. The variable 

receptive field is accommodated as

C* =  f ( S s l )  f ( $ s 2 )  . . .  f ( S sc )  '
(Eqn 3.20)

Notice that setting /(<S») to a binary vector of width equal to the generalization factor, the

equation reduces to the standard Albus CMAC output. The receptive field function, /() , 

can take on many forms including linear, Gaussian or a variety of splines. The <5, represents 

distance functions of the input state vector to the activated receptive field center. This 

parameter can be defined in a host of different ways including: Euclidean, Manhattan or 

the shortest projection along any input state to the nearest receptive field center. For 

example, the equation for the Linear receptive field as implemented in the UNH CMAC 

follows

where <5 is the minimum distance to the nearest receptive field center and Ms is a scaling 

factor used for the look-up table implementation. The actual implementation has some 

interesting values for low generalization width receptive fields.

3 .4 .3  L earning A lgorith m s

MS) =  (C/2 -  8) * Ms, (Eqn 3.21)

The learning algorithms have also been modified to handle changes in receptive field shape. 

A few other learning algorithms have also been derived for handling special case problems 

that arise when CMAC is applied.

Steepest D escent W eight U pdating

The most popular learning algorithm for the advanced CMAC implementation is the steep­

est descent learning algorithm. The following equation is the weight update value for this 

algorithm

(Eqn 3.22)
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As will be discussed and analyzed, most of these advanced learning algorithms have not 

been analyzed with respect to their stability boundaries.

Simplified U pdate  M odel

A simplified version of the above equation can also be used in training the CMAC networks 

with higher-order receptive fields.

18ws = a c j(yB - y s) - ,  (Eqn 3.23)

It will be shown that this method has a stability boundary that is easily derived. Prom a 

comparison of the two previous equations, it is clearly evident that this method has less 

complexity and computation, although the weight update may not be optimal. The output 

generation also needs to take the form of

= (Eqn 3.24)

where A is an approximation of csc j. Since the learning rate is typically set less than one, 

it will be shown in chapter 7 that as long as A is a reasonable approximation the system 

will remain stable. This simplified method is helpful in direct hardware implementations 

and in reducing the number of computations to perform.

W eight Normalization

The output formulations for CMAC depend on the weighted average of multiple weights, 

as seen in Eqn 3.8. Therefore, an infinite number of vectors can be used to formulate any 

single output value. Due to the finite precision of the implementation, this is actually not

the case, but there are still a large number of patterns that exist. A problem arises that

weights may continually drift apart, such that their average never changes. Over a period of 

time, these weights can cause a host of problem due to their extreme values. For example, a 

weight might actually reach a saturation boundary and change sign. Additionally, another
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training sample might be added to the series and adjacent weights might not have the 

dynamic range to offset the large drifted values of the other associated weights.

Uneven or sporadic sampling-especially with noise-can also cause problems, since part 

of a weight’s rate of convergence depends on how often the weight is accessed. The learning 

rate is typically very low when noise is present to average out the random process effects. 

Therefore, the weights can have dramatically different values, based on the number of access 

times.

To correct these problems the following learning algorithm is used,

6wSi = a\Lx + a2(y -  wsi) (Eqn 3.25)

where 5wSi is the value used to update each weight accessed at sample s, Lx represents any 

of the previous learning algorithms discussed, i is the range of one to the generalization 

number and wSi are the individual weights accessed during that sample set. As can be seen 

from the equation, each weight is individually targeted to learn the desired output. This 

avoids the drifting weight problem, by not simply relying on the accumulation of weights 

to learn the target function.

Weight Sm oothing

As noted many times, the original binary receptive field caused stair-case outputs which 

have no derivative and introduce a broad spectrum of noise into the output. Beyond this 

basic point, the uneven sampling and sporadic repetition of the samples also causes discon­

tinuous regions of the output. Therefore, a method of binding weights at the edge of the 

generalization region to their current value, and dynamically changing the receptive field 

shape, was developed by Campagna [5]. This method used optimal control theory and min­

imization of a quadratic error function. The concept of a dynamically changing receptive 

field has broad implications in a decimated system; since the bandwidth of the model can 

change instantaneously, the weight structure had to support this concept also. Although
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this dissertation does not focus directly on weight smoothing, it is used multiple times as a 

discussion point.

3 .4 .4  M em ory  H ashing

For systems that have high numbers of inputs with large dynamic ranges, the possible num­

ber of inputs can range from billions to trillions or more, and the amount of generalization 

and quantization can drastically reduce the number of states. However, it is possible to 

still have enough states that it is impractical or impossible to provide memory for each in­

dividual weight. Since many applications only use a limited number of the possible inputs, 

it is typically not necessary to map all of these states. The concept of virtual addressing 

for weights is used to map a larger weight-space to a smaller memory system. This is also 

know as memory hashing or hash coding.

A weight index along any input axis is found, it selects a pseudorandom value and is 

accumulated with the pseudorandom values generated by the other axes or input states. 

Finally, that large random number is truncated by the size of the memory array allocated, 

typically using the modulus operator as in

where % represents the modulus operator, Tj is a psuedorandom vector, Rj  is the size of 

the table Tj and M  is the size of the physical memory the system can access.

Occasionally, the truncation of the random value from one input state maps to the same 

truncated value of another input state. This is known as a collision which is defined as:

The probability that a collision will not occur is dependent on the amount of memory 

already used,

(Eqn 3.26)

An — Am for A n 7̂  Am. (Eqn 3.27)

(Eqn 3.28)
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where Mu is the amount of memory already used and n is the number of input dimensions. 

By implementing a hash tag that is generated separately from a different psuedorandom 

table, the probability of a collision occurring can be significantly reduced,

Pn° =  ( l  -  , (Eqn 3.29)

where k is the dynamic range of the hash tag. The system finds the initial virtual address 

as done in the first method. It then compares the hash tag for a match; if there is no match, 

the next sequential hash tag is compared until it is either blank or there is a match. If the 

system cycles through the entire memory allocation without finding a match or an open 

location, the memory is considered saturated. The system simply takes the next location in 

this case and thus, causes a collision. There are a couple of things to note about the collision- 

free approach. If a system is very sensitive to changes in the deterministic control loop, this 

method can be problematic. The constantly varying number of accesses to memory in order 

to match the hash tag makes the system nondeterministic. Furthermore, if the system uses a 

large amount of the memory over time and continually requires the addition of new weights, 

the memory system will eventually saturate and each weight access will search the entire 

memory system for a open location before it causes the collision. This would severely limit 

the throughput of the system. However, it must also be noted that the memory systems 

have continually grown in an exponential manner and the memory concerns of ten years 

ago are far less prevalent today. Over time memory allocation problems should only effect 

a smaller and smaller number of implementations.

3.5 Stability Issues

There has been some amount of work done in proving the theoretical stability of CMAC[79, 

81, 87, 5]. A common thread in all of this research is that the proofs are based on the 

rate of change of the weights. There have been two common approaches to bounding the 

stability of the traditional CMAC: the Lypanov approach and eigenvalue decomposition.
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Tlxe eigenvalue approach is not as straight forward in bounding the CMAC stability regions, 

although it does provide the same final solution. It is, however, more useful in examining 

the trajectory and rate of convergence of the weights for a variety of different learning 

algorithms. The Lyapunov methods have been used in a variety of different approaches by 

different authors, but never extended beyond the conventional CMAC implementation[79, 

5]. Again, to minimize the repetition of large amounts of information in this dissertation, 

the original method and the some extensions are presented in chapter 6.
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CHAPTER 4

SPECTRAL PROPERTIES OF 

CMAC

4.1 Introduction

The bandwidth, or sensitivity, of CMAC, in the Fourier sense, can be determined by analyz­

ing CMAC’s ability to learn a series of sine waves. The concept of training CMAC to learn 

sine waves was previously used in understanding the effects of using the higher-order linear 

and spline based receptive field shapes [65, 38]. This methodology is quite useful in a single 

dimension. However, the frequency response of the network is also sensitive to quantization 

effects and the decimation that takes place in weight-space mapping. This chapter system­

atically examines the spectral sensitivity of CMAC due to different receptive field shapes, 

quantization effects and higher dimension decimation effects. The three major receptive 

field shapes (Albus, linear and spline) and the lattice structures proposed by Albus and An 

are examined in this chapter [20, 64, 65, 66 , 67]. This analysis of the spectral properties of 

CMAC was initially used as a method to clarify simulations results from a hardware based 

CMAC model. The hardware development project is described in appendix A.

33
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4.2 One-Dimensional Spectral Model

As discussed in the previous chapter, the single input CM AC is a special case such that 

there exists a weight for every input. This direct mapping is less complex than the mul­

tidimensional weight mapping that is decimation dependent on a fixed lattice structure. 

Therefore, frequency response is first developed in one dimension and correlated to actual 

CMAC data. From this base model, the multidimensional problems are derived with the 

additional necessary detail, particularly around the decimation effects.

4.2 .1  A lb u s R ectan gu lar R ecep tiv e  F ie ld  M od el

The logical place to begin research on the learning convergence of the CMAC techniques 

is the original Albus model in one dimension. There has already been significant research 

in this area, particularly around the bandwidth and stability[78 , 38]. The bandwidth of 

one-dimensional CMAC is re-examined here, as a natural procession to understanding the 

multidimensional and higher-order receptive fields problems. The current functionality and 

limitations of CMAC are explicitly demonstrated using Fourier analysis. The same Fourier 

approach is used in the later chapters to demonstrate the expanded functionality. Therefore, 

this chapter serves as foundation for the entire dissertation.

It is well known that the receptive field shape is a major contributor to learning capabil­

ities of CMAC and the speed at which it converges. The receptive field is fundamentally a 

lowpass filter in all current CMAC implementations. The output formulation of the CMAC 

is the sum of the locally activated weight-space,

C SW S r-rp, ,y* =  —q ~ (Eqn 4.1)

where C is a scalar generalization parameter, cs is the vector of the weight activation 

function, and w s is the weight vector. Both vectors are dependent on the sample time, s.
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This function can be rewritten into the following form,

c - i
y{x\ — ^ 2  c[fejws[a; -  k] (Eqn 4.2)

k=0

where x is the input or state value. The weight activation vector is zero by definition outside 

the generalization region, [ 0 . . .  C  — 1] , so the output formulation can be written as

C - l  (X)

y[x] = ^ 2  c[fc]ws[a: — k] = ^ 2  c[fc]ws[x — k]. (Eqn 4.3)
k~  0 fe~~-oe

It can be seen from the above output formulation that CMAC is simply performing the 

discrete-time convolution sum, which is expressed in the traditional notation below:

y[x] =  c[x] * ws[ 4  (Eqn 4.4)

If the weight structure is held static, i.e. no weight update is applied, and the network is 

excited sequentially across the entire input domain, the output receptive field function is 

essentially filtering the weight-space. It is important to remember the common identities of 

the Discrete Fourier Transform (DFT) that convolution in the time domain is equivalent to 

multiplication in the frequency domain,

w[x] * c[x] DS '  W[ui}C[oj\. (Eqn 4.5)

A weight-space with unity magnitude for all frequencies or

W${uj) =  1 V u  (Eqn 4.6)

is represented in the state-space as

ws[x\ =  <5[x], (Eqn 4.7)

where 6 is the impulse or delta function occurring at x equal to zero. Therefore, by placing 

a delta function in the weight-space, the Impulse response of the network is found.

w$[x] * c\x\ D£ r C[uj\. (Eqn 4.8)
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By taking the Fast Fourier Transform (FFT) of this impulse response, the bandwidth of the 

network is examined and compared to actual training data. This essentially is the inverse 

of the experiment by An [65], where CMAC attempted to the learn the impulse response. 

Using this simple technique, the spectrum of the following receptive fields is generated for 

a one dimensional CMAC.
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(a) S ta te  Domain (b) Frequency Domain

Figure 4-1: Albus Receptive Field (ID)

The traditional Albus receptive field, or to which it is also referred as the rectangular 

receptive field, is displayed in figure 4-1(a). The generalization is represented as (3 in the 

legend of the figure. The generalization value of /? and C are in fact identical. The sum 

of the overlapping receptive fields must be one and thus the scaling of magnitude, by the 

generalization width, can be seen in the plot. The magnitude of corresponding FFT of 

the output stage of the traditional one-dimensional CMAC is shown for the respective 

generalization widths in figure 4-1 (b). The infinite spectrum and narrow passband are due 

to the abrupt change in the edge of the receptive field and is clearly identifiable. These 

components led to the development of many other receptive field models. The different 

bands of the filter are clearly visible and the effective bandwidth, using standard filter
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nomenclature of -3dB, is approximately 0.1?r and 0.257T for generalizations of 4 and 10, 

respectively. Previous literature has referred to a critical frequency at which the network 

convergence becomes slow. Since this a rather qualitative value depending on the definition

effective bandwidth as defined by the -3dB point.

A set of simulations with full CMAC implementations were devised to show that the 

frequency response of the output stage is the dominant effect in the full CMAC implemen­

tation. The CMAC is targeted to learn a series of sine waves. In fact, it is the same series 

of sine waves used as the basis set for the FFT. This allows the direct comparison of the 

nulls, bandwidth and other significant spectral components in the CMAC simulation to the 

FFT analysis of the receptive field shape.

The exact equation for the target function is given as

where F is the integer value of the harmonic. The normalized frequency used in the plots 

is defined as 2-7rF/50. The value of F  is swept from 0 to 24. The input state is x and it 

contains 50 possible levels. With 50 input levels for the state-space and setting F to 24, 

the number of input levels per cycle of the target function is approximately 2. This meets 

the Nyquist sampling criteria of 2 samples per cycle. The input states and target responses 

are presented in a random order. By sweeping the frequency of the target function from 0 

to the Nyquist limit and holding the number of input states to the same values used during 

the FFT analysis of the receptive field, this simulation is effectively performing a Fourier 

analysis on the complete CMAC model. The process of training for a series of sine waves 

was also used by An [65].

The CMAC implementations throughout this research use the traditional integer im­

plementations for all calculations. The experimental simulations scale all target functions 

by a factor of 1024 and then truncate to the nearest signed integer value. The Root Mean

of ’’slow”, it is unclear where this value would be. Therefore, the author will refer to the

(Eqn 4.9)
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Squared (RMS) error is used to determine how closely the target functions are being approx­

imated. The scaling factor of 1024 is removed from the RMS error value before displaying 

the results. The RMS output is displayed on a scale of 0 to 1 for the previous 50 samples 

that cover the full input space.
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Figure ^-2: CMAC Convergence for Different Harmonics (ID, Albus Receptive Field)

Actual CMAC simulations were performed for the one-dimensional Albus CMAC and 

are shown in figures 4-2(a) and 4-2(b) for generalizations of 4 and 10 respectively. The T  

in the legend represents the number of training cycles, and the learning rate, a, which in 

all of the preceding graphs, was set to 0.5.

Figure 4-2 (b) shows the progression of the CMAC from 50 to 550 training samples for 

each harmonic. The rate of convergence for each harmonic can be directly inferred from 

the graph by comparing the reduction in RMS error as the number of samples progresses. 

Figure 4-2(b), the actual simulation of CMAC with a generalization of 10, can be directly 

compared to the FFT spectrum results in figure 4-1 (b) for the same generalization width, 

which is represented as (5 — 10 in the legend.

In figure 4-2 (b), it is quite evident that the rate of convergence at low frequencies is
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significantly higher than the convergence rate at the opposite end of the spectrum. This is 

proportional to the spectrum of the receptive field, shown in figure 4-1 (b). For example, 

if the frequency value of 0.17T and 0.9tt are chosen for examination between figures 4-2(b) 

and 4-1(b) , it is clear that the receptive field spectrum at 0.l7r has a large magnitude. 

This translates into a small RMS error in the actual CMAC simulation. The simulation 

also approaches this small RMS value rapidly and has almost completely converged by 150 

training samples.

The exact opposite set of properties is seen at the frequency value of 0.97T. The receptive 

field shows significantly less magnitude at this frequency. This translates into a high RMS 

error and very slow convergence. At 150 training samples, the frequency value of 0 .97T has 

barely reduced and the RMS error at the 0.17T is almost completely converged after 105 

training cycles. Therefore, it can be stated that the rate of convergence for any particular 

frequency is proportional to the frequency response of the output stage as defined by the 

receptive field shape.

Since there is a unique weight for every input, the system can slowly converge to any 

of the harmonics except the nulls where multiples of the wave length are exactly equal to 

generalization width. Rectangular filters have relatively high-magnitude side lobes, which 

can actually converge on the function, albeit very slowly, if it is not limited by the bit- 

precision of the discrete system.

4 .2 .2  Linear R ecep tiv e  F ie ld  M od el

The rectangular receptive field has some clearly undesirable effects. It has a very narrow 

main lobe and large out-of-band energy. There have been a large number of filters derived 

in digital signal processing to counteract these limitations. Analogously, there have been a 

variety of different receptive field models to perform the same function. The first, and one
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of the most logical, is the linear receptive field defined by the following equation,

cj[a;] — (C/2 -  x) (Eqn 4.10)

where x is the distance of input to the weight and this distance can be calculated in a variety 

of manners, as discussed in the previous chapter. The receptive field value is typically 

scaled by a larger integer value to support integer based CMAC implementations. The 

representation of the linear receptive field and the Fourier response of the network are 

shown in figures 4-3(a) and 4-3(b). The effective bandwidth of the filter is now 0.l7n and 

0.57T for generalizations of 10 and 4, respectively. It can also be seen that the non-zero 

side lobes are suppressed and more spread out than the rectangular receptive field models, 

particularly in the case of the generalization of 10.
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Figure 4-3: Linear Receptive Field (ID)

The actual simulations of CMAC with the linear receptive field once again c o n firm s  

the initial frequency domain model; see figures 4-4(a) and 4~4(b). Some of the side bands 

actually show no ability to converge on the solutions. This can be seen in figure 4-4(b) in the 

frequency range above 0 .47T. It is important to point out that the frequency domain solutions
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were computed from floating point math, while the CMAC uses integer-based operations. 

The result is that sidebands, that have very small values, are actually truncated to zero, 

due to the lack of precision in the integer math.

It can also be seen that the spectrum for generalizations of 2 and 4 have very similar 

results in figure 4-3(b). This is due to the linear receptive field model implementation in 

the UNH CMAC code which aways assigns a 1 to the outer edges of the receptive field 

then indexes a lookup table which is filled from 1 to 128. For a linear receptive field model 

with a generalization of 2, the UNH CMAC calculates the set of receptive field coefficients 

as {1,1}. The set of coefficients for a generalization of 4 are {1,33,33,1}. Both of these 

functions spread the majority of the response across only 2 states and, essentially, have the 

same frequency response when used in the CMAC.
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Figure 4~4: CMAC Convergence for Different Harmonics (ID, Linear Receptive Field)

A comparison of simulation results with the generalization of 10, in figures 4-4(b) and 4- 

3(b), shows the correlation of the receptive field bandwidth to the actual CMAC bandwidth. 

Both plots show that the primary passband, or the sensitivity region of the network, is 

between 0 and 0.4tt. The magnitude of the receptive field frequency response is greatest as
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it approaches the 0 frequency point. If the simulation data is examined at the 50 training 

set line, this rate of convergence to 0 RMS error follows the exact same relationship, with 

the exception of the 0 frequency value. This is due to the fact that the RMS value for a DC 

level is 1, while the RMS value of the sine waves is actually 0.707. Clearly, the dominant 

component to this point with respect to the bandwidth of the network is the receptive field 

shape.

4 .2 .3  Sp line R ecep tiv e  F ie ld  M od el

The spline models for receptive fields were developed to further increase the bandwidth 

and suppress the side bands. The higher generalization splines have derivatives that can be 

used to develop hierarchical CMAC models, using techniques similar to the backpropagation 

methods used in multi-layer perceptrons. The equation for the spline basis function is

r . (3(C/2)x2 -  2x3)
C*M =  (C/Zp   (E(ln 411)

where, again, C is the generalization width and

C
x — — — x (Eqn 4.12)Jt

where x is the distance of input to the weight.

The receptive field models and the corresponding frequency domain response are given in 

figures 4-5(a) and 4-5(b), respectively. The spline-based receptive fields for generalizations 

of 2 and 4 are actually identical to the linear receptive fields of the same generalization. 

The higher generalizations have a slightly broader frequency response and more suppression 

of the side lobes. Once again, the corresponding bandwidth of the CMAC used in the 

simulations has the same bandwidth as the Fourier analysis done for the receptive field 

shape at any give generalization width; see figures 4-5(a) and 4-5(b).
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Figure J -̂5: Spline Receptive Field (ID)
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Figure 4-6: CMAC Convergence for Different Harmonics (ID, Spline Receptive Field)
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4.2.4 Quantization Effects in One-Dimension

Another feature of the traditional CMAC is the quantization levels that can be used to limit 

the number of input states; refer to section 3.3.1 for more detail. The quantization spreads 

the generalization over N  multiple distance of the input space, where N  is the quantization 

value. For example, if a one-dimensional CMAC with a generalization of 10 and an input 

quantization value of 2 is used, the CMAC algorithm maps each two consecutive input 

states to one weight location and the network still generalizing over 10 weights. Since each 

weight now represents two input-states, this CMAC is generalizing over 20 input-states with 

10 weights. Notice, the number of weights is reduced, or decimated, over the input-states 

by a factor of 2 .

This process of weight reduction is somewhat analogous to decimation in signal pro­

cessing terms. For systems with a bandlimited spectrum, the decimation process is an 

effective means of optimizing information storage and minimizing computation. However, if 

the system’s spectrum is not bandlimited, such as in the case of a CMAC with rectangular 

receptive fields, the network now suffers from aliasing problems, or a loss of information.

Using a simple set of formulas from digital signal processing, the effects of weight decima­

tion, during input quantization, can be analyzed. In a digitally sampled system, replication 

of the Fourier spectrum occurs at periods of 27r. In the case of a tradition digital filtering, 

the sampled function

sjn] =  x[MTn\ (Eqn 4.13)

is decimated by the integer factor M  and the sampling period is defined as T. The Fourier 

spectrum of the sampled function is

SV ) =  J 2  X  j j ^ )  (Eqn 4-14)

where X  is the original Fourier spectrum of x before the decimation. Figure 4-7(a) represents 

the spectrum of a sampled bandlimited signal. The base spectrum, the region center around 

0, is contained within the frequencies - 0 . 5 7 T  and + 0 . O 7 T .  The replica spectrum, which exist
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in all sampled systems, are at every interval of 2n. The spectrum shown in figure 4-7(a)

t
|— u, |——■"*■— |—'■ 1 | —j-—i— —►

-2it -n  0 it 2 it

(a ) Original Spectrum

^  t ...
, . . . ---------------------- | ... . '■ y t ■ ! v .....| | | ii

I X I I
- l i t  —71 0 7C 2tc

(b) Spectrum  A fter Decimation

Figure 4-7: Decimation without Aliasing

only occupies half of the total available spectrum. The regions from O.Sw to l.bit and —0.57r 

to —1.5x contain no spectral energy. Therefore, this system can be decimated by a factor 

of 2 without loss of information. Figure 4-7(b) represents the spectrum after decimating by 

a factor of 2. The entire available spectrum is now occupied, but there are no overlapping 

regions of support between the base spectrum and the replica spectrum. Therefore, all of 

the information in this signal can be recovered, by interpolating between the samples and 

filtering.

Figure 4-8(a) represent a signal that is considered critically sampled. A critically sam­

pled signal is a bandlimited signal that has been sampled at the lowest possible frequency, 

such that no spectral information is lost during sampling. By decimating a sampled signal, 

the effective sampling frequency is divided down and in the case of a critically sampled 

signal, it will result in a loss of information. Figure 4-8 (b) shows the spectrum of figure 

4-8(a) after decimation by a factor of 2. This results in the overlapping regions of support 

between the base spectrum and the replica spectra. The overlapping of spectral information
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Figure 4-8: Decimation Causing Aliasing

is the aliasing effect. Since figure 4-8(b) has some amount over overlapping across the entire 

base spectrum, —it to rr, some amount of distortion and loss of information will occur at all 

frequencies. When the amount of aliasing energy equals the amount of base spectral energy 

at the same frequency, there will be a total loss of information.

It is clearly evident from the previous CMAC simulations that the receptive field ban- 

dlimits the frequency response of the network and as previously mentioned, the input quan­

tization is effectively a decimation process. Therefore, CMAC using input quantization 

can be investigated for aliasing problems, by examining the bandwidth of the network in 

conjunction with the amount of weight decimation.

To reiterate, the quantization in CMAC also spreads the generalization by a factor of 

M  by reducing the number of weights, therefore, the base spectrum is also changed. The 

equation above still applies but the base spectrum is found by convolving the receptive field 

over a weight-space that has been reduced by a factor of M. This narrows the bandwidth 

of the filter by generalizing over a greater effective width.

As previously shown, the rectangular receptive field has a very broad spectrum with a 

narrow main band. The spectrum for a one-dimensional CMAC with a generalization width
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of 10 with an input quantization value equal to 2 is shown in figure 4-9.

0.6

0.2

0.4% 0.8tc
N o r m a l i z e d  R a d ia n  F r e q u e n c y  (N =50,C=10,Qg=2)

Figure 4-9: Spectrum of Albus Receptive Field with Quantization

It should be noted that there is significant spectral energy at all frequencies. If the 

spectrum were divided in half around the frequency of 7r and the two halves were expanded 

as done in figures 4-8(a) and 4-8(b), it is clear that severe aliasing will occur. The magnitude 

of the aliasing spectrum to the base spectrum increases as the frequency approaches i t , where 

the aliasing and base spectrum have equal magnitude. The amount of aliasing energy at 

any frequency correlates well to the achievable learning accuracy, figure 4-10(a). At the 

frequency of 0, no aliasing exists and the network can fully converge. The base spectrum and 

aliasing spectrum have equal magnitude at it  when the weights are decimated. Therefore, 

the network cannot converge at this frequency, i t . This result is as also seen in figure 4-10(a).

The CMAC with quantization can only achieve a low RMS error for the extremely low 

frequencies and does not converge at all for the higher frequencies. The CMAC without 

quantization can converge, albeit slowly, at all frequencies as seen in figure 4-10(b).
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Figure 4-10: The Effect of Input Quantization (ID, Albus Receptive Field)

It is important to recognize that these simulations were run for 4000 cycles with only 

25 possible discrete input states and there is clearly no further convergence that is going to 

happen. Therefore, it is quite evident that a broad spectrum of the rectangular receptive 

field is quite detrimental when the input state is quantized.

The spectrum linear receptive field, which has a broader main lobe, or effective band­

width, also has a well-contained spectrum. From figure 4-ll(a), the spectrum of the linear 

receptive field has minimal energy between 0 .47T and 1.6-7r. Therefore, the quantization of 

the input is going to still limit its bandwidth, since the generalization is expanded to cover 

more input-states during quantization. However, the containment of the spectrum and its 

minimal sidebands limits the aliasing. This allows the network to converge without error 

due to aliasing over the bandlimit which is defined by the receptive field shape. Figure 

4-11(b) shows no ill-effects from aliasing. The rectangular receptive field has a variable 

amount of error at all frequencies above zero.
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Figure ^-11: The Effect of Input Quantization (ID, Linear Receptive Field)

4.3 Higher-Dimension Problems

As mentioned in previous sections, the multidimensional CMAC has the added complication 

of decimation from the state-space to the weight-space. This decimation has the advantage 

of reducing the weight storage required for the network, which is especially valuable in very 

high-dimensional problems, and decreasing computation by only computing a subset of the 

weights. Contrary to the benefits, the reduction in storage has an adverse effect on the 

bandwidth of the network. The decimation in the weight-space has some similarities to 

the quantization effects, in particular aliasing, but the generalization is not expanded over 

a larger region of the input space. These effects are systematically demonstrated in the 

following sections. The results in the following section are limited to two-dimensions for 

visual purposes only. The concepts extend to even higher dimensions.

4.3.1 Receptive Field Shape Effects

This section begins, in the same manner as the previous section on one dimensional CMAC 

models, by examining the basic frequency response expected for a given receptive field shape 

and generalization parameter. The process to determine the spectrum of the receptive field
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Figure ^-12: Albus Receptive Field (2D. C=10)

is identical to previous sections except the convolution sum and FFT are extend to two 

dimensions. Figures 4-12(a) and 4-12(b) represent the basic shape of a two-dimensional 

Albus CMAC and the frequency response of the associated receptive field, neglecting the 

decimation effects. The frequency domain plot represents only one quadrant,[0 ... it, 0 ... 7r], 

in the full frequency range, [—7r . . .  7r, —7r . . .  7t]. It can clearly be seen that the generalization 

of 10 plot has a limited main lobe with side lobes rippling out along the axis. The continuous 

spectrum causes problems during decimation, as will be shown in a later section.

To limit the number of cases to study, the generalizations were limited to 4 and 10 for 

this analysis. The Albus CMAC of generalization 4 is shown in figures 4-13(a) and 4-13(b). 

As expected, the smaller generalization has a broader main passband, but major sidebands 

that are not suppressed.

The Linear receptive field for the generalization of 10 is shown in figures 4-14(a) and 

4-14(b). Although the linear receptive field seems somewhat jagged, it was modeled from 

the UNH CMAC implementation that divided up a table of 128 entries, ranging from 1 to 

128, into half as many entries as the generalization number. The value of one is always 

included as the outer edge of the receptive field, since it is an integer based system. The
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Radian Frequency (N  =50)

(a )  S ta te  Domain (b) Frequency Domain

Figure 4~13: Albus Receptive Field (2D, C—4)

figure 4-15(a) shows the receptive field model for the CMAC with a linear receptive field 

and a generalization of 4. The set of numbers included in this field are {1,66,66,1}. One 

might have expected the values to be {1, 2 , 2 , 1}, which would have a different spectral 

representation. It can be seen that the linear models have a larger bandwidth and lower 

sub-bands, as one would expect from the one-dimensional linear receptive field.

The actual simulation data with which to compare is shown in the final section of this 

chapter. As will be seen in the following sections, the decimation effects dominate the 

response of the network, and comparison with the simulation results are presented after 

that discussion.

4 .3 .2  D ec im a tio n  E ffects o f  th e  L attice  S tru ctu re

The concept of decimation in time is commonly used in signal processing to reduce the 

amount of data to the bare essential amount to still reconstruct the output. This is possible 

as long as there is no aliasing in the spectrum after decimation. CMAC uses a multi­

dimensional lattice structure to decimate the number of weight locations from the total 

number of inputs. The amount of decimation is controlled by the generalization parameter.
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Figure 4-15: Linear Receptive Field (2D, C=4)
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As seen in the previous two sections, the generalization parameter, along with the receptive 

field shape, also defines the frequency response of the network. It is important that the 

decimation does not exceed values that cause severe aliasing, or the effective bandwidth of 

the network will be critically diminished. Since CMAC was not initially designed based on 

these principles, an aliasing problem in the network does exist. In this section of the research, 

the bandwidth of a particular CMAC implementation with respect to the output stage is 

first constructed and then the effects of decimation are applied to the frequency response 

of model. This facilitates the investigation of possible aliasing problems. The process used 

in the following sections is derived from research on processing multidimensional sampled 

signals [97] [98].

0 5 10 IS 20

(a ) A lbus Lattice (b ) An L attice

Figure 4^-16: Lattice Structure (Receptive Field Placement)

It is necessary to formulate a decimation analysis based on the different CMAC lattices. 

The Albus and An lattices were defined in a previous chapter as a vector of displacement, 

to coincide with the UNH CMAC implementation. The two different lattices can be seen 

in figures 4-16(a) and 4-16(b). These lattices are now described by sampling matrices that 

can be applied to a base spectrum to examine for aliasing.
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The columns of the sampling matrix are defined by the linearly independent vectors that 

form the sampling lattice. For example, two vectors are drawn on figure 4-16(a). Using 

these vectors, the sampling lattice can be constructed. The longer vector has a length of 

-5 on the horizontal axis and 5 on the vertical axis. These two numbers represent the first 

column of the sampling matrix shown below. The second vector has a magnitude of 1 in 

each direction and this represents the second column of the matrix. Using this process, 

the lattice structure formed by the traditional Albus CMAC in two dimensions can be 

represented by the sampling matrix Ma;&us

-5 1
M a l b u s (Eqn 4.15)

Using the vectors superimposed on figure 4-16(b) as a guide, the lattice structure formed 

by the An CMAC can be represented by the matrix Man.

-3  1
Ma (Eqn 4.16)

The sampling lattices can be check for linear independence between the columns by finding 

the inner product between the columns of the matrix. Both of the above matrices have 

linear independent, or orthogonal, column vectors. The same process can be used to find 

the sampling matrix for higher dimensional CMAC lattices, but the process gets increasingly

difficult as the number of dimensions increases.

The determinant of the sampling matrix is the decimation factor and it is can be seen 

that both lattices produce the same decimation factor of 10.

| det Mau,us\ — j det Man\ — 10 (Eqn 4.17)

The decimation grows as a power of the number of inputs and the determinant of sampling 

matrix can be checked with know decimation factor for CMAC. The decimation factor for 

CMAC Df, in terms of generalization and input states, is given as

Df  = Cn~l (Eqn 4.18)
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where C is the generalization and n is the number of input states. The sampling lattices 

can now be used to compute the spectrum considering the decimation effects. The equation 

is similar to the equation used for the quantization effects in one dimension, except that 

the generalization of the CMAC network is not expanded and the base spectrum is only 

effected by the original receptive field shape. The new spectrum is given as

F M  = d J m )  S  X(M~T(u-2nk) )  (Eqn 4.19)
 ̂ '  k€N(MT)

where N ( M T) is the set of all integer vectors of the form M Tx, x 6 [0, l)n and n is the 

number of dimensions. The total number of vectors k is equal to the determinant of M,

| detMj. The set of vectors k is sometimes referred to as the polyphase shift vectors[99]. 

When k is a null vector, the effects of decimation on the base spectrum can be analyzed. 

All other k vectors produce the aliasing and replica spectrum. The original spectrum X, 

that is used in the analysis, is determined by the receptive field shape.

From this set of equations, the different components of the spectrum are derived. This 

is used to analyze different receptive field, generalization and lattice structure combina­

tions with respect to their effective bandwidth. The initial spectrum without decimation is 

presented for reference. This is followed by the decimated spectrum without any aliasing 

components. The aliasing components are then displayed alone and, finally, the total spec­

trum is constructed. The regions of overlapping support represent the amount of effective 

bandwidth lost to the aliasing components from the primary spectral components.

Figure 4-17 shows spectra that represent the traditional CMAC receptive field and 

lattice structure. The blue regions are low magnitude, while the red regions are the highest 

magnitude. All plots are shown with the same relative magnitude scale, so the amount 

of aliasing to the magnitude of the primary spectrum can be inferred. However, these 

spectral plots do not included all possible aliasing components, but rather a subset of the 

aliasing components to highlight overlapping regions of support. From figure 4-17(a), the 

traditional CMAC has one main lowpass band with a single sideband along each axis. After
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the decimation, figure 4-17(b), the main band is elongated particularly along the vertical 

axis. This is due to the asymmetric sampling matrix, Ma^ .  Although, the lattice is not 

shown, the sampling matrix for an Albus lattice structure with a generalization width of 4 

is

Malbus —
- 2  1

2 1
(Eqn 4.20)

A diagonal sampling matrix, also know as a rectangular sampling lattice, would have 

produced a symmetric growth in the spectral energy, like

2 0
Mrect —

0 2
(Eqn 4.21)

The spectrum is also truncated along this axis, meaning it will overlap with the replica 

spectra above and below it. Since these are discrete sampled systems, there are replica 

spectra at every interval of 2ir. The aliasing effects from these replica spectra are seen in 

figure 4-17(c). It is clearly evident that a large portion of the primary spectral region is 

occupied by aliasing components. The extremely low frequency component and the diagonal 

regions are the only areas without aliasing. Finally, the entire spectrum is shown in figure 

4-17(d). The output of the network interpolates the decimated weight states by using the 

receptive field function. This process attempts to recover figure 4-17(a) from the spectrum 

of figure 4-17(d). The problem is any aliasing that has occurred cannot be corrected for 

and the energy in those regions is diminished by the proportion of aliasing.

This data is correlated with a two-dimensional CMAC of the same parameters attempt­

ing to learn the function

2  =  sin ( ^ ~  (x + y)^j (Eqn 4.22)

where x and y are the input dimensions. Each dimension has 50 possible input values. This 

function is used throughout the remaineder of this chapter. Figures 4-18(a) and 4-18(b) 

show the actual CMAC simulation for an Albus receptive field with a generalization of 4 

and the two different lattice implementations-the Albus and An lattices. The lattice, used
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Figure 4-18: Simulation Data for Albus Receptive Field Shape (2D, C—4)

in the network which produced the simulation results in figure 4-18(b), is not strict to An’s 

definitions and could more appropriately be labeled the off-diagonal lattice. With a general­

ization of 4, there is a relatively small amount of decimation and the lattice change does not 

improve much since it essentially just changes orientation of the aliasing. From figure 4-17, 

it is evident that there is aliasing at all but the lowest frequencies and this correlates with 

the simulation data. It can also be seen that since the unaliased spectrum after decimation 

is effectively the region from 0 to |0 .57r|, then the decimation truncates the spectrum. There 

is a sharp fall-off at this point in the simulation data also. In the one-dimensional case, it 

was seen that the spectral region outside the primary passband continued to converge, al­

beit at a very slow pace. In the multi-dimensional case, the decimation reduces the number 

of possible unique solutions, resulting in the upper-half band not converging at all.

The spectrum of the linear receptive field in two dimensions with the standard Albus 

lattice structure is shown in figure 4-19. From the previous one-dimensional case, it is 

expected that the overall bandwidth would be much greater, and this is clearly seen in the 

figure 4-19(a). However, the bandwidth is so great that plots of the decimation show the 

spectrum spreading beyond the Nyquist region of —n and n. This results in the severe
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aliasing in figures 4-19(c) and 4-19(d). In this case, the advantage of the wider bandwidth 

receptive field turns out to be detrimental, since it is also responsible for the severe aliasing.
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Figure ^-20: Simulation Data for Linear Receptive Field Shape (2D, C—4)

The CMAC simulations corresponding to the generalization of 4 and linear receptive 

field are shown in figures 4-20(a) and 4-20(b). Since both the traditional Albus lattice and 

An lattice, coupled with this receptive field, showed severe aliasing, there is little or no 

improvement between the lattice structures. In fact, both simulations show no region of 

convergence beyond the DC or frequency equal to zero point. The linear receptive field 

in this case is actually so broad that the decimation causes severe aliasing, consequently 

hampering the network from converging at any frequency.

As the generalization increases, the effective bandwidth decreases and decimation in­

creases. The Albus CMAC of generalization of 10 with two input states is shown in the series 

of plots in figure 4-21. In this example, the uneven decimation effect is dramatically shown 

in figure 4-21 (b). The elongated spectrum produces aliasing effects in the same direction, 

while little or no interference is shown in the other directions. The alias spectrum shows 

minimal interference at the origin and therefore, it can be expected that this network would
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converge to an accurate solution over this small window of low-frequency functions. The 

rectangular receptive field, however, has an extremely wide spectrum which, in turn causes 

some amount of aliasing as can be seen in figure 4-21 (c) at almost all other frequencies. 

Clearly, the magnitude of the aliasing is not as great as the aliasing in the cases of general­

ization of 4. Consequently, the aliasing is not the dominate effect in this network’s ability 

to converge, but rather the minimal bandwidth of the original receptive field function.
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Figure 4-22: The Effect of weight-space Decimation (2D, C=10, Albus Receptive field

and An Lattice)
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By using the An placement strategy, the spectrum is evenly decimated as shown by 

the series of plots in figure 4-22. However, the spectrum of the original receptive field 

shape continues on indefinitely and produces some amount of aliasing over almost the 

entire frequency range. Once again, the aliasing is a much smaller magnitude than the 

main passband magnitude. Although there is a slight reduction in the aliasing by more 

symmetrically decimating the weight-space, it does not produce a great improvement in the 

overall convergence of the network, since the width of the main lobe of the receptive field 

is a more dominant effect.
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Figure 4-33: Simulation Data for Albus Receptive Field Shape (2D, C—10)

As expected, there is little difference in the simulation data for the two-dimensional 

CMAC with the Albus receptive field across the two lattice structure implementations, 

figures 4-23(a) and 4-23(b). The An lattice structure effectively widens the main lobe of 

the frequency response, but only by a small amount.

Figure 4-24 is the linear receptive field implementation with the Albus lattice structure 

for the same two-dimensional network with a generalization of 10. The linear receptive field 

has a broader main pass band, but the uneven sampling of the Albus lattice elongates and
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truncates this pass band. Although the sidebands are small, the aliasing of the elongated 

main passband causes aliasing all the way to the origin. Since this lattice structure does

not support bandwidth of the receptive field, it is expected that the network will have poor 

convergence properties.
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Figure 4~&5: The Effect of weight-space Decimation (2D, C=10, Linear Receptive Field

and An Lattice)

The true learning enhancement gained from the An placement is seen in the series of 

plots in figure 4-25. In this case, the linear receptive field has a broad spectrum, relative
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to the Albus receptive field of the same generalization. The even sampling expands the 

receptive field radially without any significant truncation of the main pass band. This lack 

of truncation, coupled with the lack of side bands, produces a very low amount of aliasing. 

Therefore, the balance between symmetric sampling and suppressed side lobes allows the 

reconstruction of the entire original pass band. This is the best example of CMAC as 

a perfect reconstruction filter with decimation. In other words, the filter bandwidth and 

amount of decimation are well aligned.
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Figure 4-26: Simulation Data for Linear Receptive Field Shape (2D, C=10)

Finally, the actual CMAC demonstrates this effect in figures 4-26(a) and 4-26(b). The 

linear receptive field with the traditional lattice again causes aliasing from the improper 

lattice structure and wider bandwidth with receptive field. For this particular combination, 

all the frequencies have some aliasing and the usable spectrum or region where perfect 

reconstruction could occur is minimal. The An placement minimizes the aliasing of the 

main pass band and significantly broadens the region of convergence of the network, as seen 

in figure 4-26(b).
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4.4 Mapping Functions into CMAC

This chapter has focused on the bandwidth and spectral properties of CMAC. The entire 

analysis was performed with well understood and defined target functions. However, it

is sometimes difficult to understand the spectral properties of the function being mapped 

into CMAC. To illustrate this problem, an example is adapted from research on active 

disturbance cancellation using Time-Delay CMAC models[100]. A simple disturbance source 

is defined as

x[k\ =  25* sin (Eqn 4.23)

where k is the discrete time counter. A plot of this simple function versus time is shown in 

figure 4-27(a) and the expected frequency spectrum is shown in figure 4-27(b). Clearly, this

Time

(a) Tim e Domain
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So.4 -

0 .2 -
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0 0.008k  0.016k 0.024jc 0.032k  0.040k

Frequency

(b) Frequency Domain

Figure J^-21: Sine Wave

is a simple function, but it needs to be mapped onto the CMAC state-space. The discrete 

time counter, k, continues to infinity and therefore, cannot be used as an input dimension. 

A solution to this problem is using a Time-Delay CMAC model, described in figure 4-28. 

The disturbance source can be now described as two-dimensional function
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Figure 4-28: Time-Delay CMAC Model

y\k) — 0.5x[fc] +  0.5x[k -  200] (Eqn 4.24)

where x[k\ is the sampled input signal and y[x\ is the target function. This system maps 

into a two-dimensional CMAC where in the input-states are x{k] and x[k -  200]. This

Input state 1 0 0 Input state 2 Frequency
-0.5jt

Frequency

(a ) State-Space Domain (b) Frequency Domain

Figure 4-29: Time Delayed Sine Wave

two-dimensional function produces a circular function in the state-space, as shown in figure 

4-29(a). The spectrum of the function in figure 4-29(a) is displayed in figure 4-29(b). It is 

clear that this spectrum no longer represents a single one-dimensional sine wave, but rather
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a more complex multidimensional function. Although this dissertation is focused mostly on 

the functional bandwidth of the CMAC, this example demonstrates the need to understand 

both the bandwidth of the network and how a function is mapped onto the network.

4.5 Discussion

This chapter demonstrated two dominant effects on the ability of CMAC to learn a broad 

spectrum of functions in the Fourier sense. First, the frequency response generated by 

a given receptive field shape dominates the rate of convergence, especially in the one- 

dimensional case where there is a full set of weights that can possibly represent any arbitrary 

solution. In the multidimensional case, the weight set is decimated and therefore orthogonal 

patterns will always exist that can never be learned. It was demonstrated that the lattice 

structure, which controls the decimation, plays an important role in the effective bandwidth 

of the network. This decimation, or sub-sampling, coupled with original pass band of the 

receptive field is the dominant effect which controls the network bandwidth. Traditionally, 

there is a limited amount of flexibility in the bandwidth of the receptive field and the 

decimation factor, since they are both controlled by the generalization factor. Consequently, 

there are lattice structure, receptive fields and combinations of the two which severely 

diminish the network’s ability to learn. Finally, it is clearly evident from simulation and 

analysis that CMAC is fundamentally an adaptive low-pass filter.
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CHAPTER 5

THE WAVELET BASED CMAC

5.1 Introduction

Prom the previous chapter, it is clearly evident that the CMAC network is an effective, 

adaptable, multidimensional lowpass filter, which is analogous to the concept of ’’common 

inputs give common outputs,” a phrase which is typically used to describe associative neural 

networks. A lower-frequency target function allows for wider generalization, which produces 

a broad coverage of the state-space. If the target function contains higher frequency com­

ponents, the generalization of the network has to be reduced to maximize the bandwidth 

of the network. Consequently, the distribution of information associated with each target 

pair is also reduced in the state-space, potentially leaving significant untrained areas.

There is no physical limitation that excludes high frequency functions from being widely 

generalized. In fact, the ability to generalize is limited by the bandwidth and not an absolute 

frequency. For example, the Fourier Analysis generalizes widely from the lowest frequency 

to the highest frequency with a series of sine waves that make up its basis set.

The main dilemma in associative networks is the inability to widely generalize higher 

frequency functions. However, if a narrowband function exists, a network should still be able 

to generalize widely, as long as its basis function is closely related to the target frequency. In 

fact, the wavelet transform and other techniques of multiresolution analysis can generalize 

at a variety of widths across the entire frequency range.

70
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This chapter explores a more flexible network architecture inspired by the wavelet trans­

form and multiresolution analysis. First and foremost, the network uses a wavelet basis 

function for the receptive field. This receptive field can be modulated to produce a band­

pass, highpass, or the traditional lowpass filter of the CMAC network. The next important 

feature is a disassociation of the decimation factor of the weight-space from the receptive 

field size. The weight reduction is controlled from a separate level of weight quantization, 

which results in an even distribution of the weights across the state-space. Furthermore, 

this quantization method enables the computational load of the network to be varied and 

potentially optimized.

The resulting network is a more flexible architecture that allows for selective bandwidth 

learning and reduced computation in many cases. This chapter follows the same process 

as the previous chapter, beginning with simple one-dimensional problems and completing 

with complex multidimensional problems involving decimation.

5.2 The Wavelet

The basis of wavelet analysis is to derive frequency content within a localized region of a 

larger surface, thus producing a multiresolutional view, or localized frequency content as a

function of input space. In audio processing, it separates the variation in frequency across 

time, producing resolution simultaneously in both domains, which gave rise to the term

multiresolution analysis. This is done by scaling and translating a base wavelet across the 

input domain, or state-space. This is in essence the same principle as using receptive fields 

in associative neural networks. The neural network uses the receptive field as the localizing 

filter. One essential requirement of the wavelet is compact support such that basis function 

is only nonzero over some finite region less than the input domain size. This finite width in 

an associative neural network is defined by the generalization.

There are other requirements typically associated with wavelets and the wavelet trans­
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forms. One property in particular is orthogonality of the basis functions, which minimizes 

redundant information and also allows perfect reconstruction of the target function. In 

the network design to follow, the wavelets are typically over-complete and non-orthogonal. 

Therefore, some strict definitions of the wavelet analysis are not met. However, the net­

work is based on a compactly supported oscillatory function that is scaled and translated 

in the state-space. It will also be shown that the network uses the principles of decimation 

that make the wavelet transform highly efficient. The network is therefore referred to as 

the Wavelet based CMAC (WCMAC), since it continues to incorporate the general con­

cepts of the original CMAC network, including the associative structure and hashing of the 

weight-space.

The wavelet chosen for this network is the costrap function,

costrap (x, a, b, M ) =  cos (  ~ x  j min I  max —— — . 0[ i b — a '

where a is considered the dilation parameter and b is the translation parameter. The M  

parameter modulates the location of the passband, allowing the construction for a frequency- 

selectable bandpass filter. Consequently, it is referred to as the modulation parameter in 

subsequent sections. The dilation parameter can be set to the width of the receptive field 

or generalization parameter. Since the reference point, or center, of the wavelet will also 

be the position of the weight, the translation parameter can be set to zero. In essence, the 

wavelet function is simply a new receptive field shape. The new shape is implemented using 

a look-up table.

5.3 One-Dimensional Wavelet Based CMAC

For simplicity and clarity, the network structure will be derived starting with the one­

dimensional case. The initial step is to use the wavelet function as described before as the 

receptive field. From the previous chapter, it is evident that the frequency response of the 

receptive field defines the CMAC response. Figure 5-1(a) shows a wavelet of generalization

,1 (Eqn 5.1)
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11 with a variety of modulation values. The corresponding frequency response of the network 

with this receptive field is shown in 5-1(b). The exact same process, including the number 

of input states and target functions that was outlined in the previous chapter, is used to 

examine the bandwidth of the WCMAC model.
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(b ) Frequency Domain

Figure 5 - 1 : Wavelet Receptive Field in One-Dimension

To accommodate the new wavelet receptive fields, the learning algorithm is adjusted 

to handle receptive field values with a mean of zero, i.e. no D.C. component. First, the 

output generation is modified to a more general equation that handles the WCMAC and 

the previous receptive fields.

where y8 is the output at sample s, cs is the receptive field vector and ||cs|| is the norm 

of the receptive field vector or ^/cscj. The input-space, in this case a scalar value, xs, 

activates C weights, where C is the generalization parameter. The addresses of the weights
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are

a., = xs — Sr -I- 1 x8 —■ Sr ~t~ 2 . . .  x$ — Sr (J 

asi as2 . . .  asc

(Eqn 5.3) 

(Eqn 5.4)

where 5r is the offset to the edge of the receptive field defined as ((C+l)/2). The distance 

vector ds is the integer value of the distance to each weight.

—Sr +  1 —Sr +  2 -5r + C

dsi  2 . . .  d ,•sC

(Eqn 5.5) 

(Eqn 5.6)

The distance vector in this case is only related to the generalization, which is also the offset 

index to the address vector, as, and is therefore only computed once. The receptive field

vector is a function of the wavelet versus this distance vector

cg = ip{ds) — costrap(dg, a, b, M) (Eqn 5.7)

where is the base wavelet function with translation, dilation and modulation parameters 

fixed. The weight update algorithm for the WCMAC is

Aws = a ~ ~ A y s - y s) (Eqn 5.8)

where y8 is the target output value for an input of xs, ys is the WCMAC output and a is

the learning rate.

Stability of this learning algorithm is analyzed in the following chapter, including a 

discussion on further minimizing the computation time. Using these formulas and the 

costrap receptive field function from figure 5-1 (a), the one-dimensional WCMAC is applied 

to the Fourier test in the previous chapter. The actual simulation results, figures 5-2(a) 

and 5-2(b), verify the predicted frequency response in figure 5-l(b). The CMAC limitation 

as a lowpass filter or network that does not generalize well at higher frequencies has been
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Figure 5-2: WCMAC Convergence for Different Harmonics (ID, C=9)

conquered by wavelet based receptive fields and the corresponding learning algorithm to 

support it.

By extending the generalization, the receptive field shape acts as a higher order filter, 

making the passband narrower. Unlike previous CMAC implementations, this does not 

restrict the ability to learn higher-ffequency content. By increasing the generalization pa­

rameter and the modulation parameter, the network is generalizing high frequency data 

widely across the input space. Figures 5-3(a) and 5-3(b) demonstrate the narrowing of 

the passband, but the ability to still learn a wide range of frequencies. In fact, the WC­

MAC can widely generalize across any frequency range by simply tuning the modulation 

parameter. The WCMAC can learn all the functions originally targeted by CMAC and 

entirely new functions in different frequency ranges. Each simulation uses a network with 

a generalization of 20.

5 .3 .1  Q uantization  Effects in  O n e-D im en sion

As previously noted, the single dimension CMAC has a unique weight for each input state. 

Therefore, it needs to compute an address and value for each weight, even when the band-
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Figure 5-3: WCMAC Convergence for Different Harmonics (ID, C=20)

width only requires a small number of weights to be used. One of the strengths of the wavelet 

transform and also the Fast Fourier Transform(FFT) is the decimation process which re­

duces the computational load to the bare minimum value. The traditional CMAC uses a 

decimation process in multiple dimensions to reduce storage and computation. However, 

the quantization of the input stage in the traditional CMAC causes severe aliasing.

The standard quantization in CMAC reduces the input bit precision and essentially 

averages the target response over the quantized states. Furthermore, the generalization 

region grows by the same factor as the quantization. This further reduces the bandwidth 

of the system. The quantization only reduces the amount of weights stored, when it could 

also reduce the computational load.

As demonstrated, the WCMAC has a well-controlled frequency response and therefore 

quantization will be used to reduce the weight storage and the computational load, instead 

of quantizing the input values, which results in expanding the generalization region. The 

WCMAC quantizes the weight-space. The region of generalization remains constant with 

this type of quantization. For example, a WCMAC network with a generalization of 11 

and a quantization of 4 accesses only 3 weights and covers an input space of 11 states.
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A traditional CMAC with the same generalization and quantization parameters access 11 

weights and covers an input of 44 states.

Q=1

W S ,= 4___

(a) No Quantization

Q~2 S ,= 8

(b) CM A C  with Quantization

Q=2
S ,= 4

(c )  W C M A C  with Quantization

Figure 5-4: Quantization Effects in One-Dimension of CMAC vs. WCMAC

Figure 5-4(a) shows the one-dimensional CMAC implementation for a generalization of 

4 without quantization. The nomenclature is: Q represents the quantization value (the

arrow is referenced to appropriate weight or state-space), W is the number of weights to be 

accessed, S is the number of input states covered by the access. The weight addresses for 

the WCMAC with quantization is

as = int( 1) i n t ( ^  + 2) . . .  i n t ( ^  +  Nw) (Eqn 5.9)

where Nw is the truncated integer value of C/Q. The number of weights to be computed 

is equal to Nw. The distance vector d 3 is the integer value of the distance to each weight
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s  ® s 2 Q  ' ■ ■ ^ s N n: Q (Eqn 5.10)

By quantizing the weight-space, the actual input state information is maintained and can 

be used to reference the weight location; see the above equation for d g . This allows the 

receptive field shape to interpolate between the weight-space and the input-space. If the 

receptive field is band-limited and the quantization is limited to avoid aliasing, the effective 

bandwidth of network is preserved and computational load is decreased by a factor of 

the C/Q. By quantizing the weight-space by 2, the upper half of the frequency band, 

( |/ | > 7r/2), folds on the lower half band, ( |/ | < tt/2). Therefore, the effective bandwidth 

of the network must be strictly limited to one of the half bands. Figure 5-5(a) and 5-5(b)
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Figure 5-5: WCMAC Convergence for Different Quantizations (ID, C—20, M =l.l)

are one-dimensional convergence plots for the WCMAC with the quantization of 1 and 3, 

respectively. Both plots have the same modulation parameter of 1.1. There is no significant 

difference in capabilities of these two networks that can be seen in the plots. However, the 

computational load of figure 5-5(b) is reduced by a factor of 3.33. Since the weight-space is
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quantized by a factor of 3, only 6 of the 20 weights actually exist, therefore, no computation 

is performed on weights removed by the quantization. The necessary weight storage is also 

reduced by a factor of 3. Although the weight storage is relatively insignificant in this 

example, it becomes far more important as the problems increase dimensionally.
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Figure 5- 6 : WCMAC Convergence for Different Quantizations (ID, C—20, M=1.9)

The same principles of quantization work for the highpass filter structures. Figures 5- 

6(a) and 5-6(b) are the same network structure with a generalization of 20 and modulation 

of 1.9. Again, the difference is that figure 5-6(b) has a quantization of 5, reducing the 

computational load and the storage by that factor.

Problems arise when the effective bandwidth of the network overlaps the folding fre­

quency, thus causing aliasing in the spectrum of the decimated weight-space. Figures 5-7(a) 

and 5-7(b) demonstrate this problem. The network configuration has a modulation value 

of 1.9, a generalization of 10 and quantizations of 1 and 2, respectively. The aliased upper 

half band changes the phase of the lower half band and increases the RMS error to a value 

greater than the RMS value of the function itself.

All spectral ranges can be learned and reconstructed in conjunction with decimation by
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Figure 5-7: WCMAC Convergence with Aliasing Problems (ID, C=10, M=1.4)

moving the folding frequencies outside the functional passband of the receptive field. For 

example, if the weight quantization is set to 5, there exists 5 regions were the spectrum can 

be acceptably reconstructed.

[(0... 0.2tr), (0.2tr .. .  OTtt), (0.4... 0.6tt), (0.6... 0.8tt), (0.8 . . . tt)] (Eqn 5.11)

Figure 5-8 shows five different convergence patterns overlaid, one for each region to be 

reconstructed. The generalization is expanded to 25 in order to reduce the width of the 

bandpass. This example demonstrates the ability to generalize widely over any region of the 

spectrum and still achieve the computational gain of quantizing the weights. It is also shown 

in the next chapter that different wavelets can be used together to develop full-bandwidth 

models.

5.4 Multidimensional WCMAC

The major difference between the one-dimensional and multidimensional CMAC implemen­

tation is the decimation that occurs in the weights space. In CMAC, the decimation is 

directly controlled by the generalization parameter and the lattice structure defined by the
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Figure 5-8: WCMAC Convergence Across Entire Spectrum (ID, C—25, Q=5)

displacement vector. The traditional CMAC is band-limited by this decimation. As pre­

viously discussed, there have been multiple research projects focused on the placement of 

the weights after the decimation occurs. The major purpose is to evenly distribute the 

weights and still allow efficient calculation of their location. Another common requirement 

is that an even number of weights is constantly accessed. The general method involves a 

displacement vector and a modulus operation to bound the region.

The decimation limits the possible frequency response of the network and since this is 

tied to the generalization, the network can only widely generalize very low or very high 

frequencies. In the case of the traditional CMAC, the network can only learn the low 

frequency range when it widely generalizes.

The simplest adjustment to increase the bandwidth of the network is to remove the dec­

imation. At the cost of increasing the computation dramatically, the network will compute 

a weight value for every state accessed within the generalization region. For example, a 

traditional two-dimensional network of a generalization of 10 will access 10 weights. In the 

non-decimated WCMAC, the network computes 100 weights. Clearly, this is not a compu­

tational advantage over the traditional network, but it does allow for any frequency band 

to be learned, if that was the required goal. In this base line, the weight-space becomes
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a direct map of the input space. This is also a commonly used approach in Radial Basis 

Function networks, where all unique training pairs are given a receptive field center. It is 

important to notice that there is significant computation, done to compute the receptive 

field centers. In the direct map method, a table can be precomputed that offsets the input 

state to all the selected weights.

The same basic wavelet function from the previous section is employed to learn the mul­

tidimensional function from the previous chapter. Once again, by modulating the wavelet 

function, the network can selectively learn any region of the input function. However, this 

involves a more complex receptive field structure. The traditional CMAC with a variable 

receptive field, use a look-up table that relates the receptive field strength to a distance 

function, like Manhattan, Euclidean, or minimal edge. This receptive field function works 

well for lowpass filters since it is radially distributed around the origin. However, it is diffi­

cult to form receptive field spectra with minimal side lobes using this method for highpass 

filters. The multidimensional wavelet decomposition and the multidimensional FFT handle 

multiple dimensions through separability. For example, the transform is processed on the 

rows and then the columns and the result is the product of the two values. This concept can 

be extended by the separation of each dimension and the wavelet receptive field function

for the case of a three dimensional receptive field. In this chapter, the focus is on symmetric 

receptive fields where

This is not a strict limitation of the network, and non-isotropic or asymmetric WCMAC 

implementations are covered in the next chapter. Once again, the address generation is a 

direct offset of the sample state. The corner of the receptive field is found as

becomes

(Eqn 5.12)

(Eqn 5.13)

(Eqn 5.14)
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The number of offsets to all the weights in a generalization window is Cn where C is the 

generalization number and n is the number of dimensions in the problem. The offset table, 

A g is of size {Cn, n} and a single row is computed as

(Eqn 5.15)i n t ^ ^ ^ C )  int((^r)%C) .. .  in t((^ |=T)%C')

where i — 1. . .  Cn and % represents the modulus operator. The offset table is computed 

once during the initialization of the network since it is static for all inputs. The weight 

address table is identical in size to the offset table and a single row is computed as

(Eqn 5.16)2 * 1  " b  ^ s { * , l }  x s2 ^g{i,2} ■ ■ ■ x sn " b  ^g{i,n}

where i = 1. . .  Cn. At this point, the matrix can be linearized or hashed into a memory as 

is typically done in a CMAC system

ws -  H (AS) (Eqn 5.17)

where H is a pseudorandom lookup table that translates the state address to virtual ad­

dresses and returns the value at each address. The distance vector expands to matrix D s 

with a row for each weight offset,

D (Eqn 5.18)S r + -S r + Ag{ji2} . . . ~6r +  Ag{jjn}

where the number of columns represents the number of input states. Finally, the value at 

any receptive field location is computed.

c si • • • ^ ( I ^ s { i ,n } )  J ] [
J= 1

The entire receptive field is then formulated as

Csl Cs2 Csl

(Eqn 5.19)

(Eqn 5.20)

where I equals Cn. This method, along with the traditional CMAC address hashing, ef­

fectively vectorized any multidimensional problem to a one-dimensional problem that is 

suitable for standard computer architectures.
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Figure 5-9 illustrates an example of a two-dimensional, high-frequency receptive field 

function. Clearly, the receptive field function is not radially symmetric. Therefore, the 

standard distance versus strength function is not appropriate for this receptive field function.

Input States (N =50)

Figure 5-9: Wavelet Receptive Field in Two-Dimensions (C—11, M=1.9)

The network is modified such that the receptive field strength is accessed from a fully- 

dimensioned lookup table. The lookup table is the precomputed kernel function, or total 

receptive field. This does not add any computational load to the calculation of the receptive 

field over the variable receptive field CMAC model. However, it does require an increase in 

the size of the receptive field table. The receptive field can also be implemented as a single 

dimension lookup table or function for symmetric receptive fields, since it is the separation 

of the same function across each dimension. This requires slightly more computation during 

training.
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Figure 5-10: Wavelet Receptive Field Spectrum and Convergence (2D, C = ll, M=1.9)

The corresponding WCMAC network with the receptive field in figure 5-9 produced 

the spectrum and convergence plot in figures 5-10(a) and 5-10(b). This example shows 

the flexibility of the WCMAC to learn multidimensional, high-frequency problems and still 

generalize in the state-space. The WCMAC is essentially a superset of the other low-pass 

CMAC models. Figures 5-ll(a) and 5-11(b) use a modulation of 1 to produce the traditional 

lowpass function.

A variety of bandpass configurations are also easily designed and demonstrated in fig­

ures 5-12(a) and 5-12(b). The convergence plots for the multidimensional WCMAC with 

modulation constants of 1 and 1.4 are shown in figures 5-13(a) and 5-13(a). These WCMAC 

simulations with different receptive fields demonstrates a direct scaling of the non-decimated 

properties in the single dimension case to multiple dimensions.

Although, all of the functions shown are symmetric functions based on the costrap func­

tion, asymmetric and other complex receptive fields can be handled with the modification 

of the receptive field function to a fully dimensioned look-up table. WTCMAC has the ca­

pability to learn functions that other CMAC configurations were not previously capable of 

learning.
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Radiao Frequency (N  *50)Input States (N =50) Input States (N =50) Radian Frequency (N  =50)

(a )  S ta te  Domain (b) Frequency Domain

Figure 5-11: Wavelet Receptive Field in Two-Dimensions (C = ll, M =l)

Input States (N =50) Input States (N =50)
Radian Frequency fN  =50)

(a ) S ta te  Domain (b ) Frequency Domain

Figure 5-12: Wavelet Receptive Field in Two-Dimensions (C = ll, M=1.4)
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Figure 5-13: WCMAC Convergence for Different Harmonics (2D, C—11)

5.4 .1  M u ltid im en sion a l D ecim ation  and L attice  S tru ctu re

The previous section has extended the flexibility seen in the one-dimensional WCMAC to 

the multidimensional WCMAC. However, it has come at a large penalty in computation. 

In the previous examples, the WCMAC had a generalization of 11, which meant it ac­

cessed 121 weights during each training cycle. The traditional CMAC models would access 

only 11 weights, therefore, reducing the computational load by a factor of 11. In many 

cases, the decimation is warranted and when performed properly the decimation reduces 

the computational load without a loss in the bandwidth of the network.

With the decimation of the weight-space controlled by the generalization and the lattice 

structure, there was essentially no flexibility in the original CMAC. An [65] changed this 

by introducing a new lattice structure that more evenly distributed the weights. However, 

it is still difficult to find the proper lattice structure for high-dimensionality problems. 

Furthermore, there was still no implementation that allowed for variation in the decimation 

factor. The fixed decimation factor, Nr, for the traditional CMAC is

Nr = Cn~l (Eqn 5.21)
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where n is the number of input states or dimensions.

A rectangular decimation pattern for a symmetric multidimensional system would re­

move weights based on a diagonal decimation matrix. This would radially expand the 

spectrum in all directions equally. This structure is not conducive to the general theory 

that CMAC has an symmetric distribution of weights in each generalization region. How­

ever, it does produce globally symmetric weight distribution across the entire input space. 

The simplest way to produce a diagonal lattice matrix is to subsample each input state, 

thus removing entire rows and columns in the two-dimensional model.

Figure 5-14 shows the traditional CMAC weight distribution and the quantization effect. 

The lightly shaded blue area of the 4 by 4 weight matrix is the region of generalization for 

this input-state. The nomenclature is the same as figure 5-4(a). The difference between 

figure 5-14(a) and 5-14(b) is the quantization value, Q, of 1 and 2, respectively. The increase 

in quantization to 2 expands the generalization region in the state-space to an 8 by 8 matrix, 

as defined by the S arrows.

(a ) No Quantization (b) Quantization o f  2

Figure 5-14' Quantization Effects in Two-dimension of CMAC
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The original CMAC was designed based on generalization planes and the modulus oper­

ator. The WCMAC is designed to prove the appropriate decimation along any dimension. 

In the WCMAC, the modulus operation and staggered generalization planes are removed. 

A direct mapping of state-space to weight-space which replaces them. This is different from 

input quantization and is therefore called weight quantization.

h #  •  #  •  #  f   #■..

♦  #  #  •# ...

I

f
I

flit O
r
4-

(a) No Quantization (h) Q uantization o f  2

Figure 5-15: Quantization Effects in Two-dimension of WCMAC

Figure 5-15 shows the effective quantization of the weight-space. The plot demonstrates 

that the number of weights is reduced by the decimation factor,

Nr = Qn (Eqn 5.22)

where Q is the same quantization factor used in the one-dimensional case. For variable 

quantization across different axes, Q can be expanded to a vector. The number of activated 

weights in any region is significantly decreased but may not be centered in the generalization 

space. Figure 5-15(b) shows the off-center weights that are left after quantization. It is also 

important to note that coverage of the state-space remains constant. Since this is a direct
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map of the input with decimation, it takes only a few operations to compute. The input of 

the target pair is offset by a predetermined and precomputed table, therefore, the typical 

modulus search operation is no longer necessary.

This method effectively compresses the weight-space versus the state-space. Since the 

WCMAC generalizes in the input-space, rather than the weight-space, the number of weights 

that need to be computed for any target pair has also been reduced by the decimation 

factor. A computational gain exists in both the weight value computation and the weight 

addressing. This direct-weight quantization technique solves the complex problem of finding 

the appropriate lattice structure with no computational overhead versus the original model. 

The density of the weight structure is left to the control of the user, so it can be optimized 

for the problem at hand. The corner of the receptive field is found as

(Eqn 5.23)

if there is no quantization effect. The number of offsets to all the weights in the generaliza­

tion window is reduced to (Nw)n where Nw is the integer value of C/Q  for the symmetric 

quantization case. The offset table, A g is of size {{Nw)n,n} and is computed as

int(((ivL)0 )%NW) int((pj^r)% Aw) ...  in t((^ -^ Frr)%iVto) (Eqn 5.24)

where i = 1. . .  (Nw)n. The weight address table is identical in size to the offset table and 

a single row is computed as

in t ( ^ )  + in t ( ^ )  + A5{i>2} ••• in t(^ f) + . (Eqn 5.25)

The distance matrix, D s, is computed from each quantized weight address to the location 

of the state-space vector. This is one of the subtle differences between the WCMAC imple­

mentation and the traditional CMAC. The traditional CMAC computes the distance from 

the quantized input state, but WCMAC looks at the input state directly. The single row of
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the distance matrix is

Xsl  —  A.g{i , l }Q  ' c s 2  ~  - ^ - s { j , 2 } Q  • • • 2 - s n  —  - ^ - s { i , n } Q  

=  * s ~  &s{i,l . . .(Nw)}Q,

(Eqn 5.26) 

(Eqn 5.27)

where there are (Nw)n rows. The receptive field strength vector, cs, and the weight vector, 

ws, are now computed from Ds and A s, as they are done in the full non-decimated model.
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Figure 5-16: The Effect of weight-space Decimation (2D, C = ll, Q=4, M—1.0)

Figure 5-16 shows the effect of decimation with this technique on a lowpass, two­
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dimensional receptive field. This receptive field, which is similar to a linear receptive field, 

produces the spectrum in figure 5-16(a). After quantizing each dimension of the weight- 

space by 4, the spectrum expands radially but does not truncate any part of the main 

passband, figure 5-16(b). The spectrum is so well contained by the wavelet receptive field 

that any aliasing components are completely void from figure 5-16(c). Figure 5-16(d) shows 

there is no significant interference from other aliased spectra, and the result matches the 

decimated base spectrum shown in figure 5-16(b). Consequently, the passband of the net­

work remains intact, while the computation is reduced by a factor of 16. This configuration 

has less computation than the variable receptive field CMAC model in both the number of 

weights and addresses to compute. The actual WCMAC simulation results of the quantized 

data versus the unquantized data are essentially the same, figures 5-17(a) and 5-17(b).
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Figure 5-17: WCMAC Convergence for Different Quantization (2D, C—11, M =l)

The highpass network can also be decimated to reduce both computation and storage. A 

WCMAC highpass spectrum is shown in figure 5-18 for a generalization of 11, a modulation 

1.9 and a quantization of 2.

After decimation of a highpass band, the reduced sampling aliases the upper passband
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into the lower passband. Figure 5-18(b) is the expanded spectrum of figure 5-18(a), but 

aliased in to the low frequency region. It can clearly be seen that this quantization factor 

is not optimal, since the spectrum could be further spread without any aliasing. The 

WGMAC results are shown in figures 5-19(a) and 5-19(b). The quantized results show the 

same performance of the network; however, it requires only one quarter of the computation.
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Figure 5-19: WCMAC Convergence for Different Quantization (2D, 0=11, M=1.9)

As seen in the one-dimensional case, the WCMAC can also learn all of the mid-pass

frequencies with decimation. The figure 5.4.1 shows the exact same plot that was used in 

the one-dimensional case, but is actually targeting a two-dimensional function. This plot 

is the overlaid convergence plot of five different CMAC simulations. The legend has been 

removed to show the entire spectrum, but the legend is identical to the legend in figure

5-19(b). This clearly demonstrates how the WCMAC has been expanded to handle any 

band of frequencies and effectively reduce computation and storage.

Through controlled decimation and direct weight mapping, the WCMAC computation 

has been reduced to, or possibly below, the computational level of the variable receptive field 

CMAC. The WCMAC has the ability to adjust the decimation level to optimize bandwidth
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Figure 5-20: WCMAC Convergence Across the Entire Spectrum (2D, C—25, Q=5) 

and computational concerns with the ability to learn any spectral region.

5.5 W CM AC M athem atical M odel

The complete formulation for the WCMAC is given below, although, each equation has 

already been presented. This section is meant as a quick reference of the entire model. The 

input is a state-space vector, x8, of length n. The state-space vector is adjusted to find the 

corner of the generalization region,

x's = XS1 Sr Xs2 ~ 5r . . .  Xs% — 5r (Eqn 5.28)

where 8r — int((C+l)/2). The total number of weights accessed is equal to

Ntw =  wt(C/Q) (Eqn 5.29)
3=1

where Q is the weight quantization value and C is the generalization parameter. The number 

of weights accessed along any input dimensions is

Nw =  int(Cy<3) (Eqn 5.30)
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The offset from x(, to each weight activated is defined by the offset matrix, A fl. One of the 

Ntw rows of the offset matrix is defined as

&g{i,l.~n} —

mt ( ( ^ JS)%NV>) in t ( ( ^ ) % iV w) ... ^ ( (< 3̂ ) % ^ )

A single row of the weight address table is computed as

(Eqn 5.31)

int(Ao-) + Ag{i>1} i n t ( ^ )  +  Ag{i>2} ... i n t ( ^ )  + Aff{ii„} (Eqn 5.32)

where the number of rows is identical to the rows A s . Each address row indexes a single 

weight through

ws =  H (AS) (Eqn 5.33)

where H is a hashing function. The weight vector has exactly Ntw elements. The distance 

of each weight to the original input, D s, is computed from each quantized address location.

The ith row of the distance matrix is

(Eqn 5.34)

where there are again Ntw rows. A receptive field strength value is computed from each 

row of the distance matrix as

csi ~  J |

where the wavelet function, rp, in this case is defined as

ip{x) =  costrap(x, a, b, M),

(Eqn 5.35)

(Eqn 5.36)

and a is considered the dilation parameter, b is the translation parameter and M is the

modulation parameter. The entire receptive field is then formulated as

Cs = CS1 CS2 . . .  Csi (Eqn 5.37)
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and the output is formulated as

ye = ~ ~ .  (Eqn 5.38)
llc s|]

Finally, the weight update algorithm for the WCMAC is

T
Aws = a-— t (ys -  y3) (Eqn 5.39)

II | i

where ys is the desired system response. The WCMAC also scales to multiple outputs for 

a given input in the same manner as the original CMAC.

5.6 Discussion

The traditional CMAC model has well-defined limitations, particularly the inability to 

effectively learn high frequencies and, especially, widely generalize high frequencies. The

WCMAC model, developed in this chapter, uses a flexible wavelet receptive field to allow

functional learning in a larger region of the Nyquist spectra. It also extends easily to 

higher-dimension problems.

Another issue with the traditional CMAC models is the decimation of the weight-space. 

The WCMAC has a configurable decimation routine for the weight-space. The weight-space 

is mapped directly to the state-space and the decimation is controlled through quantization 

or sub-sampling of the weights. The receptive field strength is referenced to the input-space. 

This method forces the weights to evenly distribute on the state-space, which may not be 

true for a particular generalization zone.

Furthermore, this method is analogous to the sub-sampling methods in signal and image 

processing. The direct mapping also simplifies weight address generation, thus reducing 

computation. The computation is also controlled by the quantization and can be used in 

the appropriate situation to increase the efficiency of the WCMAC algorithm. The WCMAC 

model is a more flexible model than the traditional CMAC. It can learn a wider range of 

functions with decreased computation, in many cases.
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CHAPTER 6

EXTENSIONS TO THE WCMAC

6.1 Introduction

The formulation of the WCMAC in the previous chapter demonstrated the ability to learn 

different frequency ranges by modifying the receptive field function and applying it symmet­

rically across all input dimensions. This allows the implementation to use a single lookup 

table for the receptive field function, and single values for both the generalization and dec­

imation factors. This is in-line with the traditional CMAC models and therefore can be 

easily adapted to fit existing CMAC implementations.

In this chapter, each input dimension is designed independently. This requires more 

resources than the traditional CMAC implementations. Consequently, it is discussed sepa­

rately. A similar concept was applied to the original CMAC, called the generalized CMAC 

or GCMAC [74]. The concept allows the standard hypercube generalization to be expanded 

to a hyperparallel-piped structure with varying dimensions along each state-space axis. The 

WCMAC is easily expanded to allow independent generalization values and receptive field 

models along each access. The decimation can also be optimized along each axis. In other 

words, the network is asymmetric or non-isotropic along the input dimensions. This ex­

panded network is referred to as the Asymmetric WCMAC (AWCMAC). The additional 

flexibility allows the AWCMAC to learn any frequency range in the multidimensional case. 

Finally, the different receptive field layers are combined to develop full bandwidth models 

that can learn the entire input frequency range or other wide-band frequency responses.

98
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6.2 Asymmetric W CM AC

In the previous chapter, the receptive field was equal across all the input dimensions of the 

network

ipi(xi) =  ^ 2(ar2) =  • • • = ipn(xn) (Eqn 6.1)

where n is the number of input dimensions in the network. The asymmetric WCMAC allows 

for the case of each input dimension being independent or

■01 (x i )  ±  ^ 2 ( ^ 2 ) A "  ^  ^n {x n) (Eqn 6.2)

with a different wavelet function across each dimension. Since the effective bandwidth and 

center frequency of each input dimension is different, the generalization and decimation 

factor are also specific to the input axis. The generalization is represented in the form

Cl c 2 . . .  c n (Eqn 6.3)

previously, C could be represent as single scalar value. The decimation factor is represented

as

Q1 Q2 • • • Qn

The decimation vector can also be translated into a basic lattice matrix

(Eqn 6.4)

Qi 0 0

M A W C M A C  — 0 Q2 0 , (Eqn 6.5)

0 0 Q3_

which defines the weight locations. This lattice is typically referred to as the rectangular 

sampling lattice. It is commonly used in Image processing and other multidimensional 

signal processing algorithms. There are some advantages to other lattice structures, like 

polar and hexagonal. It has been shown that some problems, for example phased array 

antennas, can be designed with few samples, if a nonrectangular lattice is used[97]. However, 

the rectangular lattice is easy to implement and design, particularly in the case of this
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asymmetric network. The adaptive modeling techniques of neural networks axe typically 

applied to problems that are difficult to model or when there is limited knowledge of the 

function to be learned. Therefore, it can be difficult to design the exact lattice structure for a 

given problem. The rectangular lattice has the lowest computational load and any limitation 

of the lattice could simply be addressed by over-sampling, i.e reducing the decimation of 

weights.

The total number of weights, Ntw, accessed for the AWCMAC is simply the product of 

the number of weights across each dimension or

Ntw
i=i

The number of weights accessed on each dimension is

(Eqn 6 .6)

Nwj  — int (Cj/Qj). (Eqn 6.7)

where j  is the reference to the appropriate input state. As done in the WCMAC implemen­

tation, the state-space vector is adjusted to find the comer of the generalization region,

'r3 (Eqn 6 .8)

where

STj = int((Cj- + l)/2). (Eqn 6.9)

It is important to note that there is a different generalization value, Cj, for each input 

dimension. The offset from x' to each weight activated is again defined by the offset 

matrix, A g. One of the N tw rows of the offset matrix is defined as

int((i)%iVwi) ...

A single row of the weight address table is computed as

(Eqn 6.10)

(Eqn 6.11)
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where the number of rows is identical to the rows A g. The equation for the receptive field 

strength values remains the same as the WCMAC case,

n

Csi =  n  (£ qn 6.12)
j -1

The computation for the output from the receptive field strength is also unchanged

Vs =  y ~ ,  (Eqn 6.13)
llcsll

as well as the weight update algorithm

T
Awg =  a - ~ { y e -  ys). (Eqn 6.14)

llc s l l

The only major difference in the computation is the need to maintain tables for the re­

ceptive field across each input dimension, or to maintain a multidimensional table that is 

precomputed for the entire generalization region.

As seen in the previous chapter, the generalization width and the weight decimation 

need to be designed in concert to effectively maximize bandwidth, while still minimizing 

the computational load. With the AWCMAC model, each input is designed individually 

and put together to form the complete network model. The practice of having various gen­

eralization widths and receptive field functions along different input states is not uncommon 

in controls applications. The inputs, or states, are often controlled by various types of sen­

sors, like accelerometers, pressure sensors or other feedback systems. This was one of the 

driving forces that lead to the development of the GCMAC model, which handles different 

generalization widths across each dimension, but was still limited to the lowpass frequency 

range. The AWCMAC is essentially a wavelet based GCMAC.

The process of treating each dimension separately is also not uncommon in multidimen­

sional signal processing. Image processing techniques, such as the EFT and DWT, compute 

each dimension separately during the transform. This process essentially mirrors the rect­

angular lattice structure. Figure 6-1 demonstrates the filtering and decimation process
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Rows Columns Columns Rows

Figure 6- 1 : Discrete Wavelet Transform Data Flow

done by the Discrete Wavelet Transform for a two-dimensional image. It is clearly evident 

that rows and column are computed separately. The same process is used to design the 

AWCMAC and, in fact, the DWT was the inspiration for the AWCMAC algorithm.

A map of the decomposed spectrum for the DWT data flow is shown in figure 6-2. By 

applying the same wavelet function across each dimension the WCMAC is only capable of 

learning the fa and fa regions. A traditional CMAC model is only capable of learning the 

fa spectral region.

However, the AWCMAC model can effectively model all four regions, fa, fa, fa and 

fa. Figure 6-3 demonstrates the learning regions for the symmetric WCMAC model for the 

Fourier series analysis covered in the previous chapter. This particular wavelet receptive 

field is designed for a. decimation factor of 5 and a generalization of 25 along each input 

dimension. This symmetry forces the supported frequency regions along the diagonals of 

the frequency domain plot. The AWCMAC does not have this limitation and can support
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Radian Frequency (N  =50)
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Figure 6-3: Symmetric WCAMC in the Frequency Domain (2D)
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effective learning regions across the entire spectrum, as shown in figure 6-4. The resulting 

enhancements cover the entire Nyquist or sampled spectrum. This result of the AWCMAC 

further extends the capabilities of the CMAC to learn an even larger set of functions. It 

should also be noted that many of these functions could be learned by a traditional CMAC, 

if they were modulated to the base-band frequency or used a creative input mapping scheme. 

However, the AWCMAC model does not require these additional operations, so it is easier 

to design and has a higher computational efficiency.

_  ^  Radian Frequency (N =50)
Radian Frequency (N  ̂ =50) Q

Figure 6-4: Asymmetric WCAMC in the Frequency Domain (2D)

6.2 .1  In pu t Q u an tization  for W C M A C  m od els

The final component of the traditional CMAC that has not been covered in the WCMAC 

models is the support for different quantization values along each input dimension. This 

is known as input, or state-space quantization in the traditional CMAC models. Input 

quantization in the traditional CMAC increases the generalization by spreading the effective 

region covered by the receptive fields. As seen in the chapter on spectral properties of
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CMAC, this can induce severe aliasing and limit the effectiveness of the model. Furthermore, 

CMAC maps each block of quantized input states to a single weight. As long as the learning

rate is significantly low, the CMAC learns the average target response for the block of 

quantized states. Averaging is a lowpass filtering effect. Therefore, quantizing the inputs 

in this manner, will effect the WCMAC’s ability to learn the higher frequency functions.

Radian Frequency (N  =50)
Radian Frequency (N  =50)

Figure 6-5: Asymmetric WCMAC with Different Generalization Values (2D)

With the AWCMAC model, the same control is applied by directly controlling the 

decimation factor of the weights as well as the receptive field shape and width. A subtle, but 

important difference is that the WCMAC model references the state-space vector directly, 

whenever calculating the receptive field distance function. This allows the network to 

interpolate between the weights with the modulated wavelet functions. This is essential for 

learning frequency bands above the lowpass region. Figure 6-5 shows the frequency response 

of a two-dimensional network with variable generalization widths along the different input 

axes. The different spectral widths call for varied decimation factors across the different 

input dimensions in order to optimize the computation. An example of this type of weight-
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space is shown in figure 6-6.

i,f
1

<*•
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I f .y
W ^*1 a s s

s. i r
Q=3 W St=2

S,=6

Figure 6-6: Asymmetric WCMAC Weight Decimation (2D)

6.3 Wide or Full Bandwidth WCMAC Models

The combination of the previously discussed WCMAC models, including both the symmetric 

and asymmetric versions, have the capability to learn a very large range of functions. The 

weight-space mapping and receptive functions can be further combined into single networks 

to learn full bandwidth functions or more complex spectral patterns built from different 

wavelet functions. Figure 6-7 is repeated from the previous chapter. It is clear from this 

figure that different WCMAC receptive field functions can be designed to learn each spectral 

component of this one-dimensional problem.

The weight-space and output stages can be grouped into a single network, as shown in 

figure 6-8. Some additional computation is required to subtract the effects of each individual
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Figure 6-7: WCMAC Convergence Across Entire Spectrum (ID, C—25, Q=5)
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Figure 6-8: Wide Band Model
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output stage during the learning process. Without this step, each output stage attempts 

to correct for the entire error. This essentially multiplies the learning coeffiecent by the 

number of output stage and can severely effect the stability of the network. Each separate 

weight-space. ŵ v , is updated by the traditional learning function,

N T

Awf  = a  OTii ( y f  ~ Vs) (Eqn 6.15)IIVS II

except the target function, y'^, is the desired response minus the output generation value 

of the other output stages. For example, the desired response for the first weight vector is

y's = y - y 2s -  v l  —  i/f- (Eqn 6.16)

The receptive field activation vector, c^ , used in the update algorithm, is also specific to 

the weight vector being updated, since they are all built from different wavelets.

However, the weight indexing, hashing and receptive field indexing are computed only 

once for all output stages. Depending on the CMAC size and configuration, these com­

putations can be the largest component of the CMAC algorithm. The learning response 

of a concatenated model based on the wavelet-based CMAC models which produced the 

simulation results in figure 6-7 shows the model converges for all spectral components, see 

figure 6-9.

The corresponding learning response for a CMAC network with a linear variable recep­

tive field model is shown in figure 6-10. It is significant to point out that the wide bandwidth 

model and the CMAC with linear receptive fields have essentially the same computation. 

The traditional CMAC computes all the positions and activation functions for 25 weights, 

while the WCMAC model only computes 5 weight positions and simply uses 5 different 

receptive field functions.

The same process can be used to develop multidimensional WCMAC models that learn 

wider or more complex spectral regions. Once again, the same models used in the previous 

chapter are combined to construct the wider bandwidth model. The frequency response of
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Figure 6-9: WCMAC Convergence with Full Bandwidth (ID, C—25, Q=5)
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Figure 6-10: CMAC Convergence with Linear Receptive Field (ID, C=25, Q =l)
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the combined WCMAC model in figure 6-11 produces the learning convergence in figure

6-12. For clarity, the function being learned is once again given as,

The separation between the frequency response of the two WCMAC receptive fields 

is clearly visible in the learning convergence and the frequency domain plot, by the slow 

convergence at the center of the supported learning region. Learning could be improved in 

the region by including the asymmetric receptive field cases, surrounding the two functions 

chosen in this simulation.

6.4 Discussion

This chapter completes the WCMAC model by demonstrating methods to effectively learn 

the entire entire Nyquist spectrum. The WCMAC presented has all the capabilities of the

(Eqn 6.17)

Radian Frequency (N  =50)
Radian Frequency (N^=50)

Figure 6- 11 : Spectrum of WCMAC with Combined Receptive Fields
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Figure 6- 12 :  Convergence of WCMAC with. Combined Receptive Fields

previous CMAC models mentioned, but supersedes its predecessor by including entirely 

new classes of functions that can be learned. Furthermore, by designing each input inde­

pendently, the quantization of weights and generalization widths can be tuned to optimize 

the computational load and learning convergence of the network. Broad bandwidth models 

can be solved by including receptive fields of a variety of frequency ranges into a single 

network. The WCMAC has essentially been expanded to cover problems typically handled 

by wavelet transforms, Fourier transforms and complex filter banks.
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CHAPTER 7

STABILITY AND  

CONVERGENCE PROPERTIES 

OF WCMAC

7.1 Introduction

The previous chapters demonstrated the ability of WCMAC network configurations to model 

different functions that represented a Fourier analysis but only using a single learning rate. 

In this chapter, the stability boundaries with respect to the learning rate are explored. 

The WCMAC learning algorithm is analyzed with the Lyapunov method using a reference 

CMAC. This is the method originally used by Campagna and Kraft to prove the stability 

of the traditional CMAC [5]. There have also been other stability studies done on the 

traditional CMAC. However, the variable strength receptive field models and other advanced 

CMAC models have not been studied. It is also shown that the stability proof for the 

WCMAC is inclusive of the three CMAC models of interest to this dissertation: the Albus or 

binary receptive field CMAC, the variable strength receptive field model and the WCMAC.

A second learning algorithm that is designed to reduce the computational load is intro­

duced and examined through the same stability analysis. This learning algorithm uses a 

scalar to approximate the Euclidean norm, used in the output formulation and weight up­

date algorithm. The stability analysis gives insight to the effect of this simplification. The

112
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reduced computation model and the standard learning rate are compared in terms of the 

learning convergence. Furthermore, the convergence of the WCMAC is directly compared 

to the learning convergence of the traditional CMAC models.

7.2 CMAC Stability

The following Lypanov stability proof was published by Campanga and Kraft [5]. It is 

simply reformulated here to be consistent with the notation of this dissertation. Figure 7-1 

shows the basic configuration used in the open-loop stability analysis. The reference plant is 

typically considered a CMAC that has already been trained. Therefore, the analysis proves 

the stability of CMAC for the class of functions which can be modeled with the reference 

plant. The two systems, CMAC and the reference plant, are assumed to have the same 

weight structure and generalization value. The common state-space vector, xs, essentially 

keeps the systems in lock step. Only the memory in the CMAC is being updated, while the 

reference system is assumed to have static memory. The results of the analysis bound the 

range of stable values for the learning rate.

Reference Plant

Figure 7-1: Base System for CMAC Stability

The proof is then extended to the WCMAC. In the previous chapter, the cs was the
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receptive field strength of all the nonzero values. For simplicity of the Lyapunov proof, cs 

is now considered equal in length to all the weights in the system, and the weight vector, 

w a, is also the same length.

The error signal at each training point s is defined as

es =  iys -  ys) (Eqn 7.1)

where ys is defined as y& in the figure 7-1. Since both systems are accessed by the state- 

space vector, they have identical receptive field activation vectors. Using this property, the 

error function can be simplified to the difference in the weight vectors,

es = csws -  csws =  cs<5ws. (Eqn 7.2)

The Lyapunov function is selected as,

Vs = <5wf Sws (Eqn 7.3)

with the goal of proving

Us > Us+1 V s. (Eqn 7.4)

The standard CMAC update law is applied to the weight vector, such that

<5ws+i -  Sws = - c j  = - c f  (Eqn 7.5)

substituting in for Vs+1 gives the following simplified result:

Vs+1 =  Vg + (a2 -  2a) £  (Eqn 7.6)

since and C are strictly positive, then if a2 — 2a is less than zero the system converges. 

The conditions for a that meet this criteria are 0 < a < 2. As long as the constraint for 

a is met, all input states are repeatedly visited and the system is also under continuous 

excitation, the learning does not diverge by the second Lyapunov method. Again, the above 

proof is directly lifted from Campanga [5]. It is only presented as the framework for the 

proofs in the following sections on the WCMAC learning convergence.
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7.2.1 W CM A C stab ility

The second method of Lyapunov is now applied to the WCMAC model. The basic frame­

work of a reference plant and training network is once again applied. The output formulation 

for WCMAC is slightly different than the traditional CMAC and is given as

Vs = (Eqn 7.7)

The supporting weight update algorithm for WCMAC is

CT
Aw* =  av-M y* -  Vs) (Eqn 7.8)

(F s ll

where ys is the response of the reference plant. The error function is defined as

( \ csws cBw s c 35w s  , .
e, -  {ys -  ys) =  tt—it -  -ir—if =  w r r r -  (E(in 7-9)

llc s 11 llc s|l llc s ||

The Lyapunov function is again chosen as square of the difference between the weight 

vectors,

Vs =  <5w J5w s (Eqn 7.10)

with same goal of proving

> Es+1 V s, (Eqn 7.11)

which can be expressed directly in terms of the difference in weight vectors between the 

reference plant and the WCMAC network,

dwJS'Wg > <5wf+15wg+i V s. (Eqn 7.12)

The weight update algorithm for WCMAC,

cr
5wg+i =  Sws — ae3-~-r;, (Eqn 7.13)
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is substituted for <5ws+i and solved.

d'wf Sws > <5wJ+1<5ws+i , (Eqn 7.14)

>
c r  - X c  T  '

8 w s -  a e s i r ~ 8 w s -  a e s -- S - r
I M i . I M i .

(Eqn 7.15)

> SwJSw, -  ( « . ^ )  -  ( “ ' ^ )  +  ( “^ f r f )  ' ^  7-16>

> Jw jjw , -  ( 2 ° |g j | )  +  ( ^ j A j i )  . (Eqn 7.17)

P 2
> <5wj5ws — (2a — a 2) TrAy, (Eqn 7.18)

This expression simplifies to

> Es+i -  (2a -  a 2) - f i -  (Eqn 7.19)

where e2 and ||cs |] are both strictly positive. The conditions for a, such that WCMAC does

not diverge by the second method of Lyapunov, are 0 < a < 2 with the same criteria that 

applied to the original CMAC proof. It should also be noted that this solution applies to 

the original CMAC, the variable receptive field strength CMAC and the WCMAC models. 

This property can be proved by simple substitution of the state activation vector, cs, for 

the different network models.

7 .2 .2  R ed uced  C om p u ta tio n  W C M A C  learning

Throughout this dissertation, the concept of minimizing the amount of computation is 

continually stressed. The most significant computation added to the WCMAC over the 

variable strength receptive field CMAC models is the square root function performed in 

finding the norm of the receptive field strength vector, cs. In the case of a WCMAC of any 

dimension without decimation, the norm of the receptive field strength vector is constant. 

When decimation is included, the receptive field strength varies depending on how close the 

input state is to the nearest weight.
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The reduced computational model is derived by simply substituting in a scalar, A  for 

the norm in the output generation equation

V, =  (Eqn 7.20)

and the weight update algorithm

T
Aws =  a ^ { y s ~ Vs)- (Eqn 7.21)

The proof of stability by Lyapunov’s second method is applied again using the same error 

functions, conditions and Lyapunov function. The basic algebraic derivation is show below.

Swj5ws > 5wJ+15ws+i, (Eqn 7.22)

>
CT '

Sws -  aes-j- 
A

T .T1r Cs5ws -  aes - j (Eqn 7.23)

> <5wJ<5ws -  ( a e s - — -}  -  (a e s^ ^ \ + ( a 2e2s^ ^ -  ) , (Eqn 7.24)

> d'wj<5ws -  (2ae2s) + , (Eqn 7.25)

> <5wf<5ws -  ^2a + ^ e2 . (Eqn 7.26)

Finally, the boundary conditions for the learning to maintain the open-loop Lyapunov 

stability are

0 < a  <  m. (Eqn 7.27)cscs

Another interpretation of the above results is that the effective learning rate of the WCMAC 

when using the reduced computation model, will vary inversely with the ratio of the squared 

approximation, A, to the inner product of the receptive field strength vector with itself, or 

the magnitude of cs squared. If the scalar approximation, A, is set near the average of the 

norm of the receptive field strength for all possible excitation patterns, then the effective 

learning rate over a large number of samples will approach the full computation model. 

There is an expected variation on the sample-to-sample basis. This is explored in the 

following convergence section.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



118

7.3 Convergence

7.3.1 Reduced Computational Model vs. WCMAC Model

The reduced computational model was inspired from some previous CMAC implementations 

in hardware done by the author. The traditional CMAC architecture is easily implemented 

in standard electronics components, such as Field Programmable Gate Arrays (FPGA) and 

standard memory devices. If the generalization widths are limited to only powers of two, the 

division operation used during the output generation and weight update algorithm becomes 

a simple bit shift.

The norm of the receptive field state vector is used in the output formulation and the 

weight update algorithm of the WCMAC. The calculation of a norm involves squaring 

individual values, accumulating the squared values and finding the square root of the accu­

mulated sum. Each of these operations, except the accumulation operation, are difficult to 

implement in hardware and are also time consuming operations in software. Some imple­

mentations might trade-off the minimal error and high rate of convergence with a simpler 

implementation that can process more sample sets per second.
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(a) Full Computation (b) Reduced Com putation

Figure 7-2: Pull Computation WCMAC vs. Reduced Computational Model

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



119

Figures 7-2(a) and 7-2(b) compare the region of convergence for the reduced computation 

network and full computational model. This data was gathered from the same experiment 

that was performed in each of the previous chapters. Again, the experiment is essentially a 

Fourier analysis of the network configuration, by attempting to learn a series of harmonics. 

The network was designed to act as a highpass filter, a function that the traditional CMAC 

would not be able to leam. For this simple one-dimensional model, the reduced computa^ 

tion model has a slightly slower rate of convergence and a barely noticeable difference in 

RMS error. Figure 7-3 show the sample-to-sample convergence of the two networks for the 

harmonic at 0 .97T.

Reduced WCMAC 
WCMAC

Number of Training Samples

Figure 7-3: Sample by Sample Convergence

It is quite evident from this plot that the convergence rate and final error value are 

extremely close for both networks. This network simplification highly reduces the com­

putation during both output generation and weight updating and coupling, this result, 

with the previous analysis of the stability, gives an extremely powerful implementation for 

systems with highly strained resources.
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7.3 .2  P rev iou s C M A C  M o d els  vs. W C M A C  M od el

It is difficult to compare the rate of convergence for the WCMAC to previous CMAC models, 

since the WCMAC will learn functions that the other models are not capable of learning. 

The rate of convergence is also related to the bandwidth of the network and the chosen 

generalization values. A brief experiment is designed here to compare the convergence of 

three networks: WCMAC, Albus CMAC and the linear tapered receptive field CMAC. The 

three networks are normalized by the approximate bandwidth of the model and not simply 

the generalization or learning coefficient. In other words, the three networks are limited to 

learning a similar class of functions.

Initially, an Albus CMAC model is designed with a learning coefficient of 0.5 and gen­

eralization of 10 for one-dimension. This network was then applied to the Fourier analysis 

that has already been used many times. The results show a network with its first null at 

0.27T or a passband from 0 to 0.27r. The spectral convergence of this model is shown in 

figure 7-4.

o.

s®-
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C

Figure 7-4: Albus Receptive Field Convergence

The linear tapered receptive field model is then designed to approximate the bandwidth
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of the Albus receptive field network. In order to match the same bandwidth, the general­

ization had to be increased to a width of 18. This performance of this network is shown in 

figure 7-5.

0.2

0 . 2 k

Normalized
0.4s

Normalized Radian Frequency (N =50,0=18)

Figure 7-5: Linear Tapered Receptive Field Convergence

Finally, the WCMAC model is designed with the same criteria and the generalization 

is increased to 34, see figure 7-6. It is clear that the high-order receptive field functions 

can generalize to a wider range and still provide the same bandwidth. This is actually 

a very important property when CMAC is used in real-time problems. Using very small 

generalization values means a smaller number of weights are accessed for each sample. In 

some problems, a few weights may be accessed commonly, while other weights are only 

infrequently accessed. The difference in magnitude of these weights has a tendency to drift 

apart, due to this uneven sampling. The resulting learned function may have nonlinear steps 

or a poor derivative approximation. Weight smoothing or weight normalization can be used 

to minimize this effect. The WCMAC minimizes this effect by using large generalization 

values for the same bandwidth. In the case of this particular problem, the WCMAC accesses 

about 70 percent of the total weights during a training cycle, while the traditional CMAC 

only accesses 20 percent of the weights.
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Figure 7-6: Wavelet Receptive Field Convergence

In terms of convergence rate on a sample-to-sample basis for these three networks, the 

WCMAC is clearly the fastest for this one example, but it should be noted that this is not 

the major advantage of the WCMAC, figure 7-7. The ability to learn frequency ranges that 

were beyond the scope of previous CMAC networks and the ability to widely generalize at 

any frequency are the true advantages of the WCMAC model.
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Figure 7-7: Wavelet Receptive Field Convergence
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7.4 D iscussion

This chapter proved that the open-loop stability of the WCMAC is bound by the same 

range of values for the learning coefficient as the traditional CMAC model. This proof 

also directly applies to the linear taper receptive field models. A new learning algorithm 

that trades off computation time for speed of convergence and accuracy is presented and 

included in the stability proof. This new algorithm is ideal for systems limited by the rate 

at which samples can be computed or have other resource limitations. Finally, some simple 

examples on the rate of convergence were included where the networks are normalized to 

bandwidth and not generalization width.
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CHAPTER 8

CONCLUSIONS AND  

SUGGESTIONS FOR FUTURE 

WORK

8.1 Summary

Through the years of CMAC development and analysis, there has continually been confusion 

about the network’s learning ability or bandwidth, mostly due to the analysis of CMAC 

with a single input dimension. The one-dimensional CMAC model problem is a unique 

case, in that no decimation exists between the state-space and the weight-space. The 

multidimensional case, however, uses decimation that scales as a power of the number 

of input states. Consequently, decimation is the dominant factor in limiting the ability 

to learn multidimensional problems. For one-dimensional problems, the dominant factors 

are the nulls in the frequency response of the receptive field and the overall frequency 

response of the receptive field . A variety of CMAC implementations were examined to 

understand the bandwidth of the traditional Albus CMAC with binary receptive fields, 

linear receptive models and finally, spline-based receptive field networks. By removing 

the decimation component in the weight-space and using a single impulse in the weight- 

space, the frequency response for the output stage of the network is found by sweeping
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the input states and taking the Fourier transform of the output. This was done for both 

one-dimensional and multidimensional cases.

The spectrum of the output is then adjusted to include the decimation factor and sepa­

rated into both primary frequency band components and replica bands, which by definition 

are always present in the sampled systems. The decimation factor is a matrix that defines 

the linearly independent set of vectors used to build the sampling lattice. The primary 

bands and replica bands are compared for overlapping areas of support which cause de­

structive aliasing. The information in the region of overlap is corrupted and cannot be fully 

recovered. This multidimensional Nyquist sampling theory analysis emphasizes the coupling 

of information storage and network bandwidth. In other words, the sampling lattice and 

receptive field shape have to be designed in concert to maximize bandwidth and minimize 

weight computation.

Another outcome of this analysis is the clear demonstration that CMAC is a lowpass-only 

adaptive structure, with minimal or no ability to generalize higher frequency components. 

Furthermore, it is also evident that designing multidimensional lattice structures and the 

supporting receptive fields are extremely difficult above two dimensions. Both of these 

problems have been solved by image processing and multidimensional signal processing 

techniques. The Discrete Fourier Transform and the Discrete Wavelet Transform essentially 

generalize widely across the entire frequency domain. These transforms treat each dimension 

separately which results in a rectangular lattice structure for sampling.

The derivation of the Wavelet based CMAC was developed on the principles of the 

Discrete Wavelet Transform. The wavelet provides the compact support that is necessary 

to bandlimit the response on the network and allow for the decimation, which provides the 

computational advantage. The ability to modulate the frequency responses of the Wavelet 

and move the passband of the network to any frequency range makes the WCMAC an 

adaptive structure that is not limited to only low-frequency content. The ability to widely 

generalize is also not limited to the lowpass region. In fact, the generalization only limits
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the width of the passband, but it can be modulated to any frequency. This is analogous to 

the Fourier transform, which generalizes across the entire input domain with sine waves at 

each frequency point.

The computational advantage is maintained in the network by controlling the decima­

tion in such a manner that the folding frequencies, which are defined by the decimation 

values, are not within a passband of the network’s response. By designing each dimension 

individually and choosing both the wavelet receptive field parameters and decimation val­

ues, such that the passband of the wavelet and the folding frequencies do not intersect, but 

are essentially bound to each other, the computation will be optimized. Each dimension is 

designed separately and placed into the full network using a rectangular lattice structure. 

As long as there does not exist aliasing in the design of any single dimension, the overall 

network will also be void of aliasing.

It should be noted that the rectangular lattice is not the optimal lattice for all problems, 

but the advantages of ease in design and fast computation outweigh its disadvantages. 

Especially when considered in the application of neural networks where the purpose is to 

learn functions that are difficult to model, are unpredictable or where there is minimal 

up-front knowledge. For these problems, designing the optimal static sampling lattice is 

essential impossible. The disadvantages of the rectangular sampling lattice can typically be 

overcome by simply increasing the sampling density, which will increase the computation 

time. The other approach is an adaptive lattice structure, which in many cases severely 

increases computation time by removing the modular, fast-search algorithm for finding the 

receptive field centers. Once again, an increase in the sampling lattice density might be the 

more appropriate choice.

Another advantage to designing a separate receptive field function along each of the 

dimensions is the ability to support different bandwidths, generalization widths and fre­

quency ranges along each input state. This can be helpful when each state is controlled by 

a device with a different dynamic range. It was also demonstrated that sets of networks can
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be combined in a simple algebraic manner to leaxn complex functions and simultaneously 

decompose the spectral content of the function being learned.

The Lyapunov stability proof, that was developed for the Albus CMAC, was reformu­

lated and applied to the WCMAC. The results demonstrated that the WCMAC has the 

same stability boundary, with respect to the learning rate, as the traditional CMAC. This 

simple proof extension also covers many of the variable strength receptive field CMAC mod­

els. A reduced computation learning algorithm is also included and its convergence rate is 

compared with the basic learning algorithm.

8.2 Conclusions

The application of basic information theory, Nyquist sampling theory and multidimensional 

signal processing techniques to the traditional CMAC revealed the primary limitations and 

dynamics of the CMAC model. The insight gained led to the development of the Wavelet 

based CMAC which greatly enhanced the learning capabilities over the traditional CMAC. 

Entire new classes of functions and frequency ranges can now be handled wfith WCMAC. 

The knowledge gained from analyzing the bandwidth of the traditional CMAC clarifies the 

necessary balance that must exist between the bandwidth of the receptive field and the 

weight structure, where the structure involves both placement and decimation values.

There have previously been a variety of lattice structures developed for CMAC with two 

main caveats. In the case of static receptive fields, they become more difficult to design 

as the dimensionality increases. Adaptive lattice structures typically give rise to severe 

increases in computation time. A simple and straight forward approach of using rectan­

gular lattice implementations allows multidimensional problems to be divided into a series 

one-dimensional problems. This simplifies the design process of balancing weight count 

and receptive field bandwidth. It also helps remove the ambiguous relationship between 

generalization and weight decimation.
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The resulting WCMAC model has many properties akin to popular discrete time trans­

forms, including the Fast Fourier Transform and the Discrete Wavelet Transform, in that 

bandwidth and information extraction is balanced by computation. Furthermore, like these 

transforms, the WCMAC is not limited to any particular frequency range. All these en­

hancements were made to the network without compromising the two components that make 

CMAC such a powerful tool: extremely fast computation and rapid learning convergence.

8.3 Suggestions for Future Work

The most common outcome of all research endeavors is the generation of more unanswered 

questions and different directions to explore. This research is no different. The goal of this 

research was to further understand the basic dynamics of CMAC and extend it’s capabilities 

with that knowledge gained. The research was also strongly influenced by the secondary 

objectives of minimizing computation and reducing the complexity of the overall network 

design. However, significant work still exists in the formalization of the WCMAC for the 

balance of optimal computation and bandwidth.

The next obvious undertaking is the development of a formalized approach to the design 

of the receptive fields and the decimation, that would devise orthogonal wavelet functions 

with the appropriate generalization width and decimation factor for a user-defined set of 

parameters, such as a high-pass frequency, a low-pass frequency and the number of input 

states. In other words, automate the process of designing receptive field functions and 

decimation values; this process was visually done during this research. The resulting network 

would have optimal weight storage for the particular a bandwidth, which also gives rise to 

minimal computation. There is also an unlimited number of wavelet functions which might 

be more appropriate.

This dissertation used examples of target functions where most of the frequency com­

ponents were already known, resulting in straightforward designs of WCMAC networks to
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learn the function. Neural networks axe commonly used in situations where limited a priori 

knowledge exists; therefore, an on-line adaptation of the network with respect to its effec­

tive frequency range could also be advantageous. It may also be designed in such a manner 

that it used discrete passbands, such that the folding frequency never entered a significant 

region of the passband. This would facilitate a static lattice structure and minimize the 

computational requirements.

The rectangular lattice structure proposed in this research is recognized as having certain 

limitations, but it facilitates the design of a multidimensional network and has certain 

computational advantages. An investigation into the inappropriate uses of the rectangular 

lattice would be prudent for the WCMAC. This research has already been performed for 

the traditional CMAC. However, the WCMAC is more sensitive to the placement of folding 

frequencies than the traditional CMAC, since it is not limited to the low-pass region. This 

would not be a simple rehash of previous work, but a new investigation that facilitates 

WCMAC network designs with a variety of lattice structures.

Finally, there are a series of Hierarchical CMAC models that where developed to increase 

the class of functions that CMAC is capable of learning. An interesting study would compare 

the Merarchal CMAC capabilities to the WCMAC. This could also be followed by a study 

of the WCMAC capabilities in similar hierarchal configuration.
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APPENDIX A

HARDWARE DEVELOPMENT 

PAPER
The following appendix is the replication of a paper submitted to the IEEE Conference on 
Field Custom Computing Machines in the year 2000. The paper was selected for a short 
presentation and publication, but was withdrawn by the authors, due to their inability to 
attend the conference. It is reproduced here for documentation purposes and a record of 
the accomplished work.
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Abstract

A CMAC neural network has been designed and 
implemented on a reconfigurable computing 
platform. The major motivation behind the work 
is to extend the frequency range o f  ongoing 
vibration control research. A new CMAC 
processor is expected to increase the working 
frequency range by a factor o f 10. The PCI 
Pamette reconfigurable computing platform is 
used as the development platform to minimize 
cost and time o f  the continually changing 
hardware. The network structure and the 
hardware implementation are discussed in 
detail. The performance o f  the new network is 
compared to past hardware and software 
implementations. Finally, the vibration control 
system is simulated to demonstrate the increased 
dynamic range o f  the controller.

1 linrtroiciucllon

The Cerebellar Model Arithmetic Computer 
(CMAC) was developed by Albus to model the 
functionality o f the cerebellum [1]. The 
cerebellum controls neuromuscular and 
coordinated movements throughout the body. 
CMAC was initially planned as a controller for 
artificial limbs [2]. CMAC has many properties 
making it ideal for real-time modeling, signal 
processing and control problems including rapid 
training, low memory requirements and faster 
cycle times than other neural networks [3][4], 
CMAC has been applied to multiple applications 
of robotic control. Particularly, extensive

research has been conducted in the areas o f biped and 
quadruped walking algorithms with CMAC [5][6]. 
This research has led to the current studies of 
vibration control with CMAC. The initial vibration 
control studies with CMAC have proved successful 
P ] [ 7 ] .

Vibration control is crucial in a vast range of 
applications and environments. Submarine warfare, 
precision milling and earthquake protection are just a 
few examples. Typical methods for vibration control 
are passive systems. Some common devices used in 
these systems are rubber mounts and shock 
absorbers. These devices are simple, reliable, 
inexpensive and require limited maintenance. The 
problem with these devices is the material used in 
their construction limits the dynamic range o f  the 
device. Furthermore, vibrations are dependent on a 
structure’s material and geometry. It becomes 
extremely difficult to match the frequency response 
of a traditional controller or passive device with the 
vibrations o f a particular object. This has led to the 
use o f adaptive or artificial neural network (ANN) 
based control techniques [8][9][10]. These adaptive 
controllers are based on backpropagation networks. 
These networks are computationally intensive and 
typically result in slow cycle times. CMAC has been 
proven a highly effective adaptive controller for real­
time applications that require high-speed [4][5][6].

2 CMAC

2.1 Network Structure

The CMAC network is an associative neural network, 
using only a subset o f the network’s weight structure
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for determination o f the output. With only a 
small number of weights activated and used in 
the accumulation of the output, the network can 
very quickly formulate outputs, a clear advantage 
over many other ANNs. The training cycle is 
also extremely fast because only the same subset 
o f weights needs to be adjusted. Furthermore, 
the number of weights in the subset is always the 
same. These properties together result in a high­
speed network that is also deterministic, ideal for 
controls applications.

The associative properties of the network create 
local generalization—similar inputs give 
correlated outputs; while distant inputs produce 
uncorrelated outputs. This local generalization 
can be seen in the conceptual view of CMAC, 
Figure 1. In general terms, the input to a CMAC 
is a point in a multidimensional space. This 
point is expanded upon, according to the 
generalization parameter (Q , to force an 
overlapping in the conceptual memory. This can 
be seen in the state space (S) o f Figure 1, where 
two o f the input values are close but not equal. 
The conceptual memory (A) for these two points 
overlaps; consequently, these inputs share 
information and their outputs will have some 
level o f correlation.

m
A

Output

A ctual
M em ory

Figure 1. Conceptual View of CMAC

The inputs are mapped from the state space to a 
region o f the CMAC conceptual memory. Each 
region o f conceptual memory mapped by the 
input contains a specific and constant number of 
weights that is equal to the generalization 
parameter. These weights are also referred to as 
receptive field centers. The weights are typically 
stored in a traditional memory structure and a 
pseudo-random code is used to translate the 
conceptual memory address to the actual 
memory. The weights associated with each input 
are accumulated to form the network output. 
The mapping structure (translation from 
conceptual memory to actual memory) and the 
generalization parameter are predetermined and

held static. Adjusting the values within the weight 
vector produces the adaptive nature o f the network. 
This is the only adaptive property in the network.

State Space 
Detectors

: ; \  Hashing

Figure 2. Two-Input CMAC Implementation

Figure 2 shows how an actual CMAC can be 
implemented with two inputs. The first stage o f the 
network quantizes the input values and then 
generalizes both inputs over a larger area o f the state 
space. All o f the state space values included in the 
generalization are activated. These activated state 
spaces drive the state space detectors and the state 
space detectors perform a logical AND function. 
Each state space detector has a connection to each 
input dimension. When both o f the connections are 
active, an associated weight is activated. The weight 
is consequently accumulated with other active 
weights to form the output value.

There are a few other important properties o f the 
translation from conceptual memory to actual 
memory. First, it has already been mentioned that the 
mapping from the state space detectors to the weights 
is done in a pseudo-random fashion. A 
multidimensional input can map to an extremely 
large space. For example, a three input system with 
twelve-bit resolution will have 32 billion possible 
input states. Most applications will only use a very 
small subset o f these possibilities. The random 
hashing allows us to map the extremely large input 
state space to a much smaller memory structure. This 
reduction in memory causes some inputs that are not 
meant to be associated with each other to map to the 
same weight. This phenomenon is known as a 
collision. Collisions do not cause a catastrophic error 
in the output because the output is formed by the 
accumulation o f multiple weights. The collision only 
accounts for an amount that is dependent on the 
generalization parameter.
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The second important property in the translation 
from input space to the weight structure is the 
fact that only the number o f weights equal to the 
generalization is activated. In Figure 3, the 
generalization is four, therefore each input is 
spread over four states and together they form an 
area o f sixteen states, but only four o f these 
states map to receptive field centers, or weights. 
(The receptive field centers are represented by 
the black points in Figure 3.) The placement o f  
these receptive fields is determined by the 
generalization. Each of the activated weights is 
offset along the hyper-diagonals o f the input 
space. Each adjacent receptive field is offset by 
one quantization level.

Figure 3. Receptive Field Centers

The shaded areas, in Figure 3, represent different 
inputs mapped onto these receptive fields. It can 
be seen that exactly four receptive fields are 
included in each shaded area. It is important to 
notice the reduction from the total number of  
possible inputs to the actual receptive field 
centers. This property and the hashing decrease 
the amount of memory needed.

In the original implementation of CMAC, each 
receptive field center is equally valued. It does 
not matter if the weight is a great distance from 
the actual input state. This property is more o f a 
problem for networks with extremely large 
generalizations, like sixty-four. In these cases, it 
may not be prudent to equate weights at the 
fringes o f the generalization area with weights in 
the center.

2.1.1 Learning

140

The standard CMAC network’s ability to learn is 
done through an adjustment o f  the weight vector, 
which represents the receptive field center. The 
following equation is the Least Mean Square learning 
algorithm. It is the most common learning algorithm.

A W =(0/C)( fo - w Txo) xo (1)

where AW = weight adjustment value, w = current 
weight value,/, = desired output, jS = learning 
rate, C = generalization parameter, and x0 = 
field detector vector.

The field detector vector, xm controls the weights to 
be adjusted on each training pair. The traditional 
CMAC uses only binary values for the field 
detectors. This means a weight is either adjusted by 
the value of AW  or 0. This shows the local 
generalization o f the weight vector, which is the main 
reason the CMAC network is so rapid. In common 
practice, the implemented algorithm only addresses 
the weights that are potentially adjusted and the full 
vector xa is never actually used in the calculation.

2.1.2 Rectangular Receptive Fields

Due to the fact that x0 is a binary vector, the output 
function typically takes the form o f a staircase. As 
the input vector changes slightly, the output vector 
adds and subtracts weights without a smooth 
transition, thus forming sharp edges in the output. If 
the field detector vector is implemented as an integer 
value that varies with respect to the receptive field, 
weights can be added in proportion to the distance 
from the input vector, thus producing smoother 
output functions. Changing the receptive field shape 
from a rectangular function with binary values to a 
smooth, tapered function or a Gaussian shape can 
minimize the staircase output. These ideas were 
extensively studied [8][9], The Gaussian receptive 
field is shown in Figure 4.

a>TJ3
.tsca>
CO
2

Distance

Figure 4. Gaussian Shaped Receptive Field
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The distance from the receptive field center can 
be calculated in a variety of different manners. 
The three most common methods are the 
Euclidean method, the absolute minimum and 
the Manhattan. It is difficult to implement the 
square root function required by the Euclidean 
method in hardware. Consequently, the 
Manhattan distance will be used for this 
research. The Manhattan distance is the city 
block method where the distance is the 
accumulation o f the distance along each input 
vector.

Another outcome of using the integer based field 
detectors is more flexibility in the learning 
algorithm. The follow equation explains the 
steepest descent weight updating method.

A W =

(2)

(P)( f0 - w Tx 0)x0

E(*o)2«=1

where AW  = weight adjustment value, w = 
current weight value, j3 = learning rate, f 0 
= desired output, C -  generalization 
parameter, and xa = field detector vector.

If the rectangular receptive field is used in this 
equation, xa is a binary value with only C non­
zero elements, and the equation diverts to the 
previous learning algorithm because the 
summation is simply C. In the case of a new 
receptive field shape, the weights are adjusted 
with respect to their impact on the output.

3 Hardware CMAC Implementation

3.1 Reconfigurable Computing Platform

I

j  PCI  ̂
j Interface

••Downtcea °z 

— DotBPeCT

►> FPGA(Q)* A FPGA(2)

*FPGA<1) *! FPGA{3)|*<
I

I

Figure 5. Pamette Reconfigurable Computing 
Platform

The Pamette board, shown in Figure 5, is the 
platform used during this research project [13].

As seen in the figure, the board consists o f a 2x2 
matrix of FPGAs. The FPGAs are XC4044 
components from Xilinx. A PCI interface, also 
implemented in an FPGA, is used to get data to and 
from the board. It also controls the configuration of  
the user area FPGAs. The board also contains two 
SRAM banks for use as general-purpose memory 
devices. A set o f connections is also available for a 
daughter card. Daughter cards can contain anything 
the developer desires, such as network devices or an 
A/D converter.

3.2 General Network Components

I fW Receptive P)
WCacfte I _ IWeight and

CManee

Weight
Vector *_ At ^Sister

Weight
Adjustment

Weight 
i Vector

Stated)

State{3)

Figure 6. Hardware Block Diagram

The block diagram o f the network is shown in Figure 
6. Currently, the network is designed to handle a 
multiple number of inputs, multiple generalization 
values and different learning rates. There is only a 
single output value for the network, but two networks 
are mapped to the same reconfigurable board. It is 
important to emphasize that this is a reconfigurable 
platform and the current design is just a basis point. 
For example, extra outputs could be easily mapped, 
but they are not currently included because it would 
require dedicated weights and slow the response o f  
the network.

The floor plan of the FPGA that contains the CMAC 
is shown in Figure 7. The weights are stored in a 
connected SRAM bank. A large portion of the FPGA 
is comprised o f dedicated caches. The error 
correction or training components of the network use 
these caches for addresses, weights and receptive
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field distances. This decreases the overall cycle 
time o f the network. The accumulator is used to 
sum together weights and formulate the output. 
The multiplier is used to adjust the influence 
each weight has on the output. The address and 
SRAM control convert the input states to actual 
memory addresses. Finally, the control registers 
are used to set specific parameters of the 
network, like generalization and learning rate.

3.4 Receptive fields

The receptive field distances are formed for each 
input dimension when the weight addresses are 
aligned along the hyper-diagonals of the state space. 
Equation 4 can be seen as the subtrahend of Equation
3.

Rf x = ((Sx ~ Cc) modC) (4)

SHAM  Control

Address Generation

i  ” !  j

Receptive
Field

Distance
Cache

;  ; j  Multiplier for j ;  

; . M Receptive j : 
Contra! i I 1 FMd Strength j  

Registers j  g  l j  i

su e  s is ® !  g \
itttacmnas 3  

<

i  !! Weight Value Weight
Address
CacheCache

Figure 7. FPGA Floor plan

3.3 Address Generation Hashing

The address generation and hashing are 
extremely important in the network’s ability to 
learn. The inputs need to be aligned along the 
hyper-diagonals o f the weight space. This is 
accomplished using the following equation.

Ax —Sx -  ((Sx - C c) mod C) (3)

where Ax = aligned address for input dimension 
x, Sx-  input state, Cc = generalization 
counter and C  = generalization parameter.

Each input state forms its’ own aligned address. 
The bits are then reordered according to a preset 
configuration. Each input dimension uses a 
different bit ordering. These resulting single 
dimension pseudo-random addresses are 
accumulated to form the full multidimensional 
address. The accumulator is limited to the width 
o f the SRAM address (17-bits) and is allowed to 
continually roll over. The generalization counter 
is incremented and the process repeats a number 
of times equal to the generalization. After a 
couple of stages o f pipeline delay, a new 
memory address is produced on every clock tick.

where Rfx -  receptive field distance for input 
dimension x, Sx = input state, Cc -  
generalization counter and C = generalization 
parameter.

Figure 8 . Receptive Field Distances

Each o f these distances is summed. Figure 8 shows 
the three different weight configurations that are 
possible for a network with the generalization o f 4. 
The input vector maps to the upper right hand comer 
of the shaded area and the distances are calculated 
from that point. Tables 1 and 2, below, demonstrate 
how each shaded box has the same total distance to 
all o f its weights.

Table 1. Receptive Field Weights fo r  Area A

1 3 4
2 1 6
J 3 4
4 5 2

Total 12 16
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Table 2. Receptive Field Weights for Area B

__________1____ 1
1 2 5
2 4 3
3 2 5
4 4 3

Total 12 16

The maximum distance any weight can be from 
the input in one dimension is one less than the 
generalization parameter. The overall maximum 
distance is one minus the generalization times 
the number o f input dimensions. This value 
determines the bit width o f the receptive field 
strength and distance. The value used for the 
receptive field strength is the one’s complement 
of the receptive field distance. Table 3 shows all 
the possible distances and strengths for a 
network with two inputs and a generalization of
4.

Table 3. Receptive Field Strength (0 4 )

i i p i *

0 000 7 111
1 001 6 110
2 010 5 101
•"»3 011 4 100
4 100 3 Oil
5 101 2 010
6 110 1 001

An interesting properly arises when this function 
is used for the receptive strength; the sum total 
for the receptive strength is a power o f  two, as 
long as the input vector and generalization 
parameter are also a power o f two. This is 
shown in Tables 1 and 2, where the third column 
sums to 16. The fact that 16 is a power o f two 
simplifies the design. It allows division to be a 
bit shift and the modulus operator to be a simple 
truncation.

Figure 9 is a plot of the receptive field shape. 
Although the plot still appears to be a staircase, 
the function varies with every change o f the least 
significant data bit. This function minimizes the 
jagged output, which is common with CMAC.

R ecep tiv e  F ield  S h a p e

2; -  I- - - - - - - - - - - - - - - - - - - ,  - j

1------ ;
; !

°0 1 2 3 4 5 6 7
D istan ce

Figure 9. Receptive Field Shape

3.5 Caching

There is a well-defined bottleneck in this CMAC 
implementation and all other CMAC 
implementations, the SRAM or weight vector. In 
order to relieve pressure on this interface, all the 
weights that are used to calculate the current output 
value are cached. The actual SRAM address and the 
receptive field distances are also cached. Instead of 
regenerating these addresses and performing a read- 
modify-write on each weight, the address and weight 
are removed from cache. The weight is updated 
according to its’ receptive field strength and written 
to the SRAM.

4 Perforirrianc®

4 .1  Previous Hardware Implementations

There have been two previous implementations of 
CMAC in hardware: a version that used one FPGA 
for address and control, and another FPGA for weight 
accumulation, and a second design that was a replica 
done in VLSI [14] [15]. Both o f these designs had a 
hardwired receptive field size of 512. They could use 
any size for the generalization. This causes a very 
jagged output for networks with a generalization o f  
less than 512. The VLSI version allowed for 
receptive field shape control. However, it is 
important to state that only one o f  the two chips in 
the VLSI design was actually manufactured and the 
authors are unclear how the individual weights would 
have been scaled during the error correction cycle. 
The new design forces the generalization and input 
vector to be powers o f  two. This eliminates any 
difficulties with scaling. The power o f two 
restriction on the number o f inputs can be overcome 
by mapping the same state to multiple inputs on the
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same network and forcing the input to map 
directly onto the hyper-diagonal.

Advances in FPGA technology have allowed the 
authors to double the clock speed of the design. 
Both o f the previous implementations were 
designed to run at 16 MHz. The current 
implementation operates at 33 MHz. Another 
large gain in performance is the result o f the new 
address generation sequence. Addresses for each 
input state are calculated in parallel with a 
couple o f stages of pipeline used to accumulate 
them into the final SRAM address. The previous 
implementations calculated the SRAM address 
by serially processing the input vector. 
Consequently, the new implementation has a 
performance increase equal to twice the number 
of states in the input vector. For example, a 
network with 4 input states operates 8 times 
faster for the output formulation cycle. 
Furthermore, the learning cycle, which 
previously regenerated the address, fetched the 
weight and corrected it, was twice as long as the 
output formulation cycle. The use o f cached 
information has also reduced this cycle time. 
Using the same example, a network with four 
inputs is 16 times faster. The processing times 
for all implementations are still dependent on the 
generalization parameter.

4.2 Learning Ability

Figure 10 shows an individual network learning 
a sinusoid function with a single input state. The 
plot shows three learning passes of the network. 
The network was given one fifth of the 
waveform for training data and then
reconstructed the entire waveform. The learning 
rate was 0.5 and the generalization was 8. It can 
be seen that the network converges on sinusoid 
after each pass.

Figure 11 demonstrates the network’s ability to 
learn multidimensional functions. In this case, 
the CMAC learns a two-dimensional function 
derived from the sinusoids. The plot shows the 
network recreating the entire function after three 
learning passes. Once again, the network was 
given one fifth o f  the waveform for training data 
and then reconstructed the entire waveform. The 
learning rate was 0.5 and the generalization was 
8 .
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Figure 10. Learning Convergence
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Figure 11. 2-D Function 

4.3 Simulated Vibration Control System

The network has been used to simulate the following 
three configurations: a cantilever beam, a floating 
beam and a floating table. The cantilever beam has a 
single sensor and CMAC controller. The floating 
beam has two sensors and two CMAC controllers. 
Finally, the table has four sensors and four 
controllers. The systems are assumed to have one 
source for the disturbance.

Tables 4 and 5 show the runtime for a set o f  
experiments comparing the previous software, which 
was run on a 400 MHz Pentium II, to the same 
system with the new CMAC processor added. The 
experiments used the function in Figure 11 and each 
system made 9 learning passes where they trained 
from 25,000 random samples. Tables 4 and 5 have 
generalizations o f  8 and 16, respectively.
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1
Table 4. Performance Comparison (C=S)

I
1 7.768 s .... L 781s.... 436%
2 15.844 s 1.797 s 881%
4 31.109 s 3.516 s 886%

With just one CMAC, the new implementation is 
over four times faster. If another CMAC is 
added to the system, the inputs to the second 
CMAC can be written, while the first one is still 
calculating the output. By interleaving the 
operation of the two networks, the performance 
is increased by another factor o f two. However, 
the performance is not increased for the four 
CMAC case at this generalization. In this case, 
the CMAC processor is not the limiting case and 
it completes a cycle before the CPU has time to 
deliver new inputs. The pure software solution 
increases linearly in runtime, but more 
processors could be added. Clearly, this would 
help the software solution but synchronizing of 
the CMAC controllers would have to be done 
and the cost of the system could rise 
dramatically. For the software solution to meet 
the results o f  the CMAC processor, the 
microprocessor would have to operate at 1.6 
GHz, which is currently not available.

Table 5. Performance Comparison (C=16)

|
1 15.674 s 3.517 s 445%
2 30.089 s 3.529 s 857%
4 58.907 s 3.569s 1651%

Table 5 shows the same experiment as Table 4 
but the generalization parameter is increased to 
16. With a larger generalization, each processor 
spends more time calculating the output and 
control o f all four CMACs can be interleaved. 
Thus, the CMAC coprocessor produces an even 
larger performance increase as seen in Table 5.

5 Conclision

The CMAC network has been successfully 
implemented on the PCI Pamette board. The 
pipelined design produces dramatic increases in 
performance. The authors are attempting to 
increase the performance of their current PC 
based vibration control system by a factor of 10.

For a single CMAC with a generalization o f 8, the 
authors were using a cycle time o f 10 microseconds 
as the performance goal. The new CMAC 
coprocessor is producing cycle times below 4 
microseconds for the full cycle of output formulation 
followed by the error correction. These performance 
numbers will allow the authors to explore vibration 
control at frequencies significantly greater than 
initially planned.

There is still a large amount o f  work to be completed. 
The network has proven that it can learn functions of 
at least two dimensions. This corresponds to the 
original vibration control using CMAC. The 
hardware now needs to be tested for higher 
dimensionality problems. The CMAC will also be 
adapted to include weight smoothing. The 
discontinuous weight space in CMAC can cause large 
changes in weights and this can be detrimental to 
learning. The addition of weight smoothing and 
more in-depth study o f mapping collisions are 
currently in progress. A study of more complex 
learning algorithms for multiple interconnected 
CMACs is also planned.

With the success of these initial performance 
numbers, the hardware is being applied to real-time 
vibration control. The clock speed o f the CMAC 
implementation is also being increased and, 
eventually, the hardware will also be applied to audio 
noise cancellation.
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