2018

Phosphorus limitation of aboveground production in northern hardwood forests

Shinjini Goswami
Miami University - Oxford

Melany C. Fisk
Miami University - Oxford, fiskmc@miamioh.edu

Matthew A. Vadeboncoeur
University of New Hampshire, Durham, matt.vad@unh.edu

Mariann Garrison-Johnston
SUNY College of Environmental Science and Forestry

Ruth D. Yanai
SUNY College of Environmental Science and Forestry

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/ersc

Part of the Biogeochemistry Commons, Ecology and Evolutionary Biology Commons, Forest Biology Commons, and the Plant Biology Commons

Recommended Citation

This Article is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Earth Systems Research Center by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact Scholarly.Communication@unh.edu.
Running head: Phosphorus limitation in hardwood forests

Title: Phosphorus limitation of aboveground production in northern hardwood forests

Authors: Shinjini Goswami¹, Melany C. Fisk¹*, Matthew A. Vadeboncoeur², Mariann Garrison-Johnston³, Ruth D Yanai⁴ and Timothy J. Fahey⁵

¹Department of Biology, Miami University, Oxford, OH, USA
²Earth Systems Research Center, University of New Hampshire, Durham, NH, USA
³SUNY-ESF Ranger School, 257 Ranger School Road, Wanakena, NY, USA
⁴Department of Forest and Natural Resource Management, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
⁵Department of Natural Resources, Cornell University, Ithaca, NY, USA

*Corresponding author: Melany C. Fisk
Email: fiskmc@miamioh.edu
Phone: (513) 529-3181
Abstract

Forest productivity on glacially derived soils with weatherable phosphorus (P) is expected to be limited by nitrogen (N), according to theories of long-term ecosystem development. However, recent studies and model simulations based on resource optimization theory indicate that productivity can be co-limited by N and P. We conducted a full factorial N x P fertilization experiment in 13 northern hardwood forest stands of three age classes in central New Hampshire, USA, to test the hypothesis that forest productivity is co-limited by N and P. We also asked whether the response of productivity to N and P addition differs among species and whether differential species responses contribute to community-level co-limitation. Plots in each stand were fertilized with 30 kg N ha\(^{-1}\) yr\(^{-1}\), 10 kg P ha\(^{-1}\)yr\(^{-1}\), N+P together, or neither nutrient (control) for four growing seasons. The productivity response to treatments was assessed using per-tree annual relative basal area increment (RBAI) as an index of growth. RBAI responded significantly to P (\(P=0.02\)) but not to N (\(P=0.73\)). However, evidence for P limitation was not uniform among stands. RBAI responded to P fertilization in mid-age (\(P = 0.02\)) and mature (\(P = 0.07\)) stands, each taken as a group, but was greatest in N-fertilized plots of two stands in these age classes, and there was no significant effect of P in the young stands. Both white birch (Betula papyrifera Marsh.) and beech (Fagus grandifolia Ehrh.) responded significantly to P; no species responded significantly to N. We did not find evidence for N and P co-limitation of tree growth. The response to N+P did not differ from that to P alone, and there was no significant N x P interaction (\(P=0.68\)). Our P limitation results support neither the N limitation prediction of ecosystem theory nor the N and P co-limitation prediction of resource optimization theory, but could be a consequence of long-term anthropogenic N deposition in these forests. Inconsistencies
in response to P suggest that successional status and variation in site conditions influence patterns of nutrient limitation and recycling across the northern hardwood forest landscape. **Key words:** Co-limitation, aboveground productivity, nitrogen, phosphorus, nutrient fertilization, northern hardwoods.
Introduction

Availability of mineral nutrients constrains primary productivity in many ecosystems. Because phosphorus is obtained from weathering and nitrogen is fixed by biota, ecosystem theory has suggested that productivity should be limited by N on young soils and P on older soils (Walker and Syers 1976, Vitousek 2004); thus, forest productivity on young, glacially derived soils is expected to be N limited. However, evidence of a greater response to N and P together than to either alone across terrestrial and aquatic ecosystems (Elser et al. 2007) raises questions about controls of ecosystem productivity. Resource optimization theory suggests that plants adjust their physiology to minimize limitation by any single resource, allocating effort to acquire the more limiting resources such that eventually plant growth is co-limited by multiple resources (Bloom et al. 1985, Chapin et al. 1987, 2002). However, there are limits to what plants can do to obtain limiting resources, and even when they are capable of achieving co-limitation, it may take time to adjust the allocation of effort when resource availability changes, as with forest succession or atmospheric deposition.

Some previous fertilization studies conducted in the northeastern US support the idea that productivity in these forests is primarily N limited (Safford 1973, Magill et al. 2000, 2004, Finzi 2009), whereas others indicate P limitation or N and P co-limitation (Lea et al. 1979, Auchmoody 1982, Safford and Czapowskyj 1986). Meta-analyses suggest that productivity in most ecosystems is N and P co-limited (Elser et al. 2007, Harpole et al. 2011), but temperate forests were not well represented (4 out of ~100 terrestrial studies) in those meta-analyses. The Multiple Element Limitation model (MEL) (Rastetter et al. 2013) suggests from a theoretical perspective that N-P co-limitation should eventually prevail as forests develop after large-scale disturbance. A recent meta-analysis for the northeastern US showed evidence for both N and P
limitation (Vadeboncoeur 2010), though few previous studies in this region have had the factorial design necessary to test co-limitation.

Co-limitation can arise from several different mechanisms such as those outlined in the framework by Harpole et al. (2011). Co-limitation by N and P could be “synergistic” when the response to N+P added together is greater than the sum of the responses to each nutrient added alone, “additive” when the response to N+P is equal to the sum of the individual responses, or “sub-additive” when the N+P response is less than the sum of the single nutrient responses. In contrast, when the response to the secondary limiting nutrient occurs only after alleviating limitation by the primary limiting nutrient, “sequential” limitation (Davidson and Howarth 2007, Craine 2009) can also give rise to apparent N-P co-limitation.

One instance of additive co-limitation is “community-level” co-limitation that can occur when some species respond primarily to N and others to P (Arrigo 2005). Species traits can influence ecosystem productivity by altering the availability or use of limiting resources (Chapin and Shaver 1985, Chapin et al. 1986, 1987). Tree species can modify their local environment through particular life history and physiological traits, such as shade tolerance, mycorrhizal associations, litter chemistry, and canopy interception (Augusto et al. 2002, Reich et al. 2005, Lang and Polle 2011). Different species in a forest ecosystem can also be limited by different resources as a consequence of traits influencing nutrient acquisition, conservation, and use efficiency. For example, northern hardwood forests have mixtures of tree species that form either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) associations, and changes in N or P availability may have differential effects on the growth of AM vs ECM trees. Therefore, it is important to determine whether individual species that differ in their life history traits and
resource use respond differently to the addition of N, P and N+P, thereby influencing nutrient co-
limitation at the ecosystem level, when responses of all species are summed.

Understanding the dynamics of nutrient limitation is especially important in managed and
anthropogenically altered ecosystems because nutrient inputs and outputs differ from the
conditions under which these systems developed. Managed forests have been subject to nutrient
removal due to biomass removal and post-disturbance nutrient export (Federer et al. 1989).
Additionally, forest ecosystems in the northeastern US have been exposed to long-term
anthropogenic N deposition, which has altered soil properties and nutrient cycling processes
(Fenn et al. 1998, Aber et al. 2003). Simultaneously, acid deposition has accelerated leaching
promoting soil acidification and possibly altering soil P availability (Fiorentino et al. 2003).
Biomass removal coupled with high NO$_3^-$ leaching and increased potential for soil P
immobilization when total plant nutrient uptake is low during forest regeneration (Fisk and
Fahey 1991, Yanai 1992) can decrease N and P availability in these forests (Bormann and Likens
1979) and disrupt the N:P balance (Rastetter et al. 2013). The MEL model predicted a shift from
N to P limitation as northern hardwood forests recover from harvesting disturbance, until
recycling of N and P become stoichiometrically balanced (Rastetter et al. 2013). Hence, our
understanding of nutrient co-limitation would benefit from the study of nutrient dynamics at
different stages of succession in a managed forest landscape comprised of multiple stand ages.
Furthermore, management effects and changes with succession should be considered in the
broader context of anthropogenic effects. In these forests, it appears that anthropogenic
enrichment of N could lead to transactional limitation by P (Vitousek et al. 2010), wherein the
slow transfer of P from primary mineral form into biotically recycling pools is insufficient to

A conclusive test of whether productivity in northern hardwood forests is limited by a single nutrient or is co-limited by N and P requires a large-scale, long-term ecosystem study evaluating forest response to a full factorial N x P treatment. We initiated a fertilization experiment in 13 northern hardwood forest stands in three sites in central New Hampshire in 2011. Our main goal was to test the hypothesis that northern hardwood forest productivity is co-limited by N and P, in which case we would expect tree growth to increase in response to addition of N and P together more than to either nutrient alone. We asked the following questions:

(i) is tree growth co-limited by N and P or does single nutrient limitation by N or P prevail?

(ii) does the limiting nutrient differ with time since large-scale disturbance (forest harvest)?

(iii) does the growth of different tree species respond to different nutrients?

Methods

We studied 13 northern hardwood forest stands at three different sites located on soils formed in glacial drift in central New Hampshire, USA (Table 1): nine at the Bartlett Experimental Forest (BEF) and two each at Hubbard Brook Experimental Forest (HBEF) and Jeffers Brook (JB). Climate in the study region is humid continental with mean temperatures of -9 °C in January and 19 °C in July (at 450 m elevation). The mean annual precipitation is approximately 140 cm evenly distributed throughout the year. During the study period mean
July-August temperature was approximately 1°C higher than the long-term mean (1901-2000; NOAA) and mean July-August precipitation was 10 cm higher than the long-term mean (1901-2000; NOAA), consistent with long-term climate change in the region (Hamburg et al. 2013). The maximum inter-annual variability in climate during the study duration was 0.8 degrees C in temperature and approximately 6 cm in precipitation. Also, the summers in the years 2012 and 2014 were relatively dry.

Soils are Typic and Aquic Haplorthods overlying glacial drift (deposited approximately 14,000 years ago) originating primarily from granitic rock at BEF, granodiorite and schist at HBEF, and amphibolite at JB. The soils have thick surface organic horizons (~5 cm average depth; Vadeboncoeur et al. 2012a) with low pH, varying from 4.1 – 4.7 (Ratliff and Fisk 2016). More detailed descriptions of soil chemistry from quantitative pits can be found in Vadeboncoeur et al. (2012a, 2014).

These 13 forests stands included three each of young (21-25 yr), mid-age (30-40 yr) and mature (>100 yr) forests at BEF and one mid-age and one mature each in HBEF and JB (Table 1). Forest age is given as the time between clear-cut harvest and the year 2011 when treatments began. Young, mid-age and mature forest ages were chosen to represent different stages of stand development in which nutrient demand might differ (Rastetter et al. 2013). We note that the mature stands are primarily "second growth" whereas the young and mid-age stands are primarily "third-growth" in terms of historical clear-cutting. Forest composition is typical of northern hardwood stands in each age class (Fig. 1). Mature forests were dominated by sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.) and yellow birch (Betula alleghniensis Britton), with occasional white ash (Fraxinus americana L.), white birch (Betula papyrifera Marsh.) and red maple (Acer rubrum L.). Mid-age forests were generally
dominated by white birch, yellow birch and American beech, followed by pin cherry (*Prunus pensylvanica* L.f.), red maple and bigtooth aspen (*Populus grandidentata* Michx.). Pin cherry, white birch and red maple dominated the young forests. Species composition of northern hardwood forests in this region varies owing to differences in native soil fertility associated with mineralogy and texture of glacial tills and variation in hydrology and soil development (Leak 1991), as well as to past management (Vadeboncoeur et al. 2012b). Stand basal areas and stem size distributions show typical successional changes during stand development (Fig. 2).

Four 50 x 50 m plots were established in each stand (except for two stands, HB-mid and JB-mid, where plots were 30 x 30 m, limited by the extent of the even-aged stand), and randomly assigned to control, N, P, and N+P fertilizer treatments. Fertilizer was applied to the entire 50 x 50 m plot; measurements were made in the inner 30 x 30 m area (20 x 20 m in the smaller plots). Nutrient additions began in spring 2011. N was added at a rate of 30 kg ha\(^{-1}\) year\(^{-1}\) as pelletized \(\text{NH}_4\text{NO}_3\) and P was added at a rate of 10 kg ha\(^{-1}\) year\(^{-1}\) as powdered or granular \(\text{NaH}_2\text{PO}_4\). N and P were applied twice (early June and mid-July) in the first three years and once (early June) annually thereafter. Fertilizer was pre-weighed for 2.5 x 10 m sub-plots and spread evenly by hand.

Fertilization successfully elevated *in-situ* resin-available N and P in 2011, the first year of treatment (Fisk et al. 2014), and we repeated this assay of soil nutrient availability in 2015. We incubated ion-exchange resin strips (2x6 cm) *in situ* during the last two weeks of July, 2015, approximately one month after fertilization, following the same method as Fisk et al. (2014). We used cation exchange resin strips (Ionics CR67-HMR; Maltz Sales) to quantify \(\text{NH}_4^+\) and anion exchange resin strips (Ionics AR-204-SZRA; Maltz Sales) to quantify \(\text{PO}_4^{3-}\) and \(\text{NO}_3^-\). Cation strips and anion strips for \(\text{NO}_3^-\) were prepared by rinsing in HCl and deionized (DI) \(\text{H}_2\text{O}\)
followed by soaking in 1 M NaCl. Anion strips for PO$_4^{3-}$ were prepared by alternating rinses in DI H$_2$O and 0.5 M NaHCO$_3$. All strips were rinsed with DI H$_2$O immediately prior to placement in the field. Eight strips per plot were deployed for each nutrient by inserting under the blade of a knife into the organic horizon at a 30°-45° angle from horizontal. Strips were retrieved after 14 days and rinsed in DI H$_2$O prior to extraction for nutrient analyses. Absorbed NO$_3^-$ and NH$_4^+$ were extracted with 1 M KCl and PO$_4^{3-}$ was extracted with 0.5 M HCl. Concentrations of NO$_3^-$ and NH$_4^+$ in the extracts were quantified using an autoanalyzer (Quikchem 8500, Lachat Instrument). Concentrations of PO$_4^{3-}$ were analyzed with the ammonium-molybdate-ascorbic acid method (Murphy and Riley 1962).

Leaf litterfall mass and nutrient concentrations were quantified in 2012 in all but one young and one mid-age stand and litterfall mass was also quantified in 2014. Leaf litter was collected in five litter traps (each with a collection area of 0.23 m2) per plot, approximately weekly throughout the autumn. Litter mass was quantified after oven-drying to constant mass at 60°C. Litter in 2012 was finely ground, ashed at 470°C, digested in 6M HNO$_3$, and P concentrations were analyzed using ICP-OES. Nitrogen concentrations were analyzed on a Flash 2000 NC soil analyzer (ThermoScientific).

Forest composition and basal area (Table 1) were quantified in all 52 plots in August of 2011 (in the first year of treatment) and in August 2015 four growing seasons later. All trees ≥10 cm diameter at breast height (DBH) were measured in each plot. Stems <10 cm DBH accounted for the majority of total basal area in young stands but the absence of repeated measurements on individually identified trees, combined with mortality during the study period, precluded estimation of growth in young trees belonging to this size class. We calculated the annual relative basal area increment (hereafter, RBAI) of each ≥10.0 cm DBH stem as follows: \[RBAI = \]
\[\left(1 + \left(\frac{(\text{BA}_P - \text{BA}_I)}{\text{BA}_I} \right)^{\frac{1}{n}} \right) - 1 \], where \(\text{BA}_P = 2015 \) stem basal area, \(\text{BA}_I = 2011 \) stem basal area, and \(n = \) number of growing seasons of growth observed (four). We also estimated relative density of our stands with species-specific equations developed by Ducey and Knapp (2010) for northeastern US mixed-species forests. These equations estimated relative density of a stand using stem numbers, diameters, and species-specific wood density, which is a functional trait that can affect tree allometry and biomass accumulation relative to tree volume in mixed species forests (Ducey and Knapp 2010; Woodall et al. 2015). Hence, this estimate of relative density is intended to indicate the potential for further biomass accumulation in a forest stand.

Data analysis

We tested treatment effects on resin-available N and P, litter N and P, average-per-plot RBAI, and individual species RBAI using a linear mixed-effects model (nlme package in R; Pinheiro et al. 2016) with treatment (N or P addition) and forest age as fixed effects and forest site (BEF, HBEF or JB) and stand (nested within forest site) as random effects. Forest plot was used as a unit of replication (\(n = 52 \)). This factorial approach compares response variables in plots with N addition (i.e., N and N+P plots) to those with no N addition (i.e., control and P plots) and plots with P addition to those with no P addition, and also tests the interaction between N and P additions. We used post-hoc Tukey comparisons of least-squares means to test the differences between addition of N+P and either N or P alone. We considered \(P \) values < 0.05 to be significant but also report trends for which \(P \) values were between 0.05-0.10.

Nutrient limitation was inferred if RBAI in treated plots exceeded that in control plots following N and P fertilization. A higher response to N+P added together than to either nutrient alone would indicate N and P co-limitation of aboveground growth. A statistically significant N x P interaction would indicate synergistic co-limitation, whereas a significantly higher response...
to N+P together than to either nutrient alone would indicate additive co-limitation. Additive co-
limitation could be interpreted as sequential if one nutrient, but not the other, elicited a response
when added separately.

The RBAI for individual species was analyzed for species that occurred in more than 60%
of the total 52 study plots, using the same approach as for the average-per-plot RBAI.
Community-level co-limitation would be inferred if co-limitation were detected at the ecosystem
(plot) level and species were limited by different nutrients. Species were also segregated by
mycorrhizal association (AM: maples, cherries and ash or ECM: beech, birches, oak, basswood
and conifers) to test for differences in RBAI between these two groups and in group response to
treatment.

Because RBAI varied in relation to tree diameter, within a forest age class, we tested for
differences in pretreatment plot-average DBH. We detected no differences in pre-treatment
DBH among treatments within each of the forest age classes. Species also did not differ in their
pre-treatment plot-average DBH or number of individuals per plot between treatments across our
stands, with the exception of white ash, eastern hemlock and yellow birch in the mature stands;
however, these three species did not show any growth response to either N or P. Therefore,
differences in size distributions among plots, overall or within individual species did not bias our
interpretation of tree increment responses to nutrient addition.

Results

Ecosystem-level responses

Treatments successfully elevated nutrient availability. Resin-available N in the organic
soil horizon (forest floor) was higher in plots receiving N compared with those receiving no N
\(P=0.001\) and resin-available P was higher in plots receiving P vs no P \(P=0.02\). There was no
N x P interaction on resin-available N (P=0.29) or P (P=0.88). Litter N concentrations were higher in plots receiving N compared with those receiving no N in 2012, after two years of treatment (P=0.01) and litter P concentrations were higher in plots with P vs no P (P<0.0001). There were no N x P or forest age interactions on litter nutrient concentrations.

Litterfall mass differed by forest age in 2012 (P=0.03) but not in 2014, and did not respond to treatments in either year (P≥0.65 in 2012; P≥0.26 in 2014) (Table 2). There were no N x P or forest age interactions for litter mass.

Across all 13 stands, RBAI of trees ≥10.0 cm DBH responded to P but not to N fertilization (Table 3), with 7% greater RBAI, on average, in plots receiving P vs no P (Table 4). The aboveground growth response to N+P was greater than that to N or P alone in six out of 13 stands, but was lower than that in response to N or P alone in four stands and was similar in the remaining three stands. We did not detect N-P co-limitation. There was not a significant N x P interaction (Table 3), and RBAI in the N+P plots was not greater than that in P plots (P=0.80 for the comparison of least-square means). RBAI was marginally greater in plots receiving N+P compared with those receiving N (P=0.08), consistent with a P effect.

RBAI was highest in young, intermediate in mid-age, and lowest in mature forest stands (Fig. 3), consistent with the pattern of relative density, which averaged 0.27 in young, 0.71 in mid-age, and 0.88 in mature stands. Although there was not a significant interaction between forest age and N or P addition, responses to P differed among forest ages (Fig. 3A). RBAI was higher in plots receiving P vs no P, by 13% in mid-age stands (P=0.02) and by 15% in mature stands (P=0.07), but was not higher in plots receiving P vs no P in young stands (-2%; P=0.53; Table 4). Addition of N did not affect the RBAI of trees in any age class (P≥0.63). In mid-age and mature stands, comparisons of the mean responses at BEF with those including all three sites
indicate a slightly stronger productivity response to P at BEF than at HB or JB, and a stronger productivity response to N at HB and JB compared with BEF (Table 4).

The RBAI response to P addition was not universal and although the response to N was not significant across all stands, there were stands in which N plots had higher RBAI, especially in mature forest (Table 4). The lack of uniform responses within forest age classes (Table 4) suggests variation in the nutrient to which growth responded.

Species-level responses

White birch, which is an ECM species, was the only species for which we detected significant responses to treatment ($P=0.02$ for P and $P=0.91$ for N, Table 3). White birch RBAI was greater, by 13%, in plots receiving P vs no P, but did not respond to N. White birch RBAI differed among forest age classes (Table 3), and the nutrient to which growth responded changed with forest age. The RBAI of white birch was 26% greater in plots receiving P vs no P in mid-age stands (Fig. 4A, $P<0.001$) and was 17% greater in those receiving N vs no N in young stands (Fig. 4B, $P=0.02$), but did not respond significantly to P in young stands.

For beech, another ECM species, we did not detect an RBAI response across all stands to either nutrient ($P=0.14$ for P and $P=0.57$ for N, Table 3). However, the RBAI of beech was lower by 18% in plots receiving P compared to no P in young stands ($P=0.06$), and higher in the mid-age (15%; $P=0.09$), and mature stands (27%, $P=0.03$; Fig. 5A). In contrast, N fertilization did not affect beech RBAI in any forest age class (Fig. 5B). Growth responses to treatments were not detected in any other species. Yellow birch and sugar maple, the two other dominant species in these forests, did not respond to either nutrient (Table 3).

RBAI differed among tree species ($P<0.001$; Table 5), and between arbuscular mycorrhizal and ectomycorrhizal tree species. The RBAI of ECM tree species was slightly but
significantly greater than those of the AM species across all of our stands (7%; \(P < 0.001 \)) and
the pattern of higher RBAI by ECM species was consistent among all three age classes (Table 5).
The RBAI of ECM species was 13% higher in plots receiving P compared to no P \((P=0.06) \), and
4% higher in plots receiving N vs no N \((P=0.08) \) across all stands.

Discussion

Ecosystem-level responses

We found evidence for P limitation of forest growth across a suite of northern hardwood
forest stands in central NH, USA. In contrast, limitation by N was not detected, and the response
to N+P addition together was not consistently greater than that to the single most limiting
nutrient. Phosphorus limitation of growth on these relatively young, glacially derived forest soils
was unexpected given the presence of apatite minerals as a P source in these soils (Blum et al.
2002). The P content of apatite in the B horizon at these sites is typically at least an order of
magnitude greater than that of aboveground biomass P (Vadeboncoeur et al. 2014). In our
forests, historical anthropogenic N enrichment (Likens and Lambert 1998, Driscoll et al. 2003)
may have contributed to P limitation by increasing the supply of N relative to P. Although there
is evidence that adding N can accelerate P cycling by stimulating extracellular phosphatase
enzyme activity (Olander and Vitousek 2000, Treseder and Vitousek 2001, Gress et al. 2007),
inputs to P pools from mineral weathering or from very slowly recycling biotic pools may not be
sufficient to maintain balance with enrichment from previously high N inputs (Richter et al.
2006, Schaller et al. 2010, Vadeboncoeur et al. 2014). Such a nutritional imbalance owing to N
enrichment may have alleviated N limitation of productivity in these ecosystems, inducing a
transactional limitation of productivity by P (Vitousek et al. 2010).
The average response to P after four years of treatment was modest (Fig. 3), even though the relatively low rates of fertilization in our factorial N x P experiment were successful in elevating soil nutrient availability and litterfall nutrient cycling (Table 2). The lack of strong overall response to P was partly a consequence of stand age. Growth in mature forest responded relatively weakly to P, consistent with high relative density (0.88); fully-stocked stands would be expected to be limited more by light than by nutrients. It is possible that fertilization enhanced canopy expansion more than diameter growth, but the lack of response of leaf litter production (Table 2) suggests that any canopy response was small. The most marked increase in RBAI in response to P addition occurred in the mid-age forests, where the lower relative density (0.71) suggests greater potential for growth and, therefore, nutrient limitation. Phosphorus limitation in the mid-age stands at BEF is consistent with higher root growth in response to localized P additions in the same stands (Naples and Fisk 2010).

In young stands, the average RBAI suggested N rather than P limitation of growth, but variation was high and significant effects were not detected. Successional transitions in the young forests included high mortality of both pin cherry and beech, which probably contributed to the high variation in growth among individuals and species. Furthermore, the contrasting nutrient responses by white birch (positive response to N and slightly positive response to P, Fig. 4B) and beech (negative response to both N and P, Fig. 5A) in the young stands complicated the overall response. The relatively low number of stems >10 cm DBH in these young stands also constrained our ability to detect significant treatment effects.

Our results also show that nutrient limitation may vary among forests of this region. In the mid-age and mature forests, broad-scale spatial variation in the response to fertilization contributed to the relatively weak overall effects of P (Table 4). This variation must be
interpreted with caution because of the lack of within-stand replication; however, these results
are consistent with variation in nutrient limitation among stands as assessed by nutrient-amended
root ingrowth cores (Naples and Fisk 2010). Whereas P limitation appears most common across
all but the youngest stands in our study, the variation across stands suggests that these forests are
close to the threshold between P and N limitation, especially in mature forests.

If nutrient limitation in these forests is indeed relatively close to a state of either N or P
limitation, it is surprising that we did not find more obvious evidence of N and P co-limitation of
aboveground productivity. The lack of a significant N x P interaction does not support
synergistic co-limitation, and the lack of a greater response to N+P addition together than to P
alone suggests that there was not additive co-limitation. In the absence of a significant growth
response to N alone, the slightly higher RBAI ($P=0.08$) that was observed when N+P was added
together compared to N alone suggests either a primary effect of P, or weak evidence for
sequential P followed by N limitation. It is possible that alleviation of limitation by one nutrient
induces plant allocation responses, such as changes in fine root growth and mycorrhizal
colonization, that will take time to develop before inducing secondary limitation by the other
nutrient. If so, this sequential co-limitation response should be evident in future divergence of
productivity between fertilization with single nutrients and N+P together.

Species-level responses

Species-level effects are potentially important for interpreting nutrient limitation of
productivity. Within an ecosystem, community composition can be driven by limiting nutrients
(John et al. 2007), and conversely, community composition can influence the availability or use
of limiting nutrients via the traits of individual species (Chapin and Shaver 1985, Chapin et al.
1986, 1987). For example, in some tropical forests, variation in nutrient use and uptake among
tree species can cause the primary limiting nutrient to differ among species, thereby contributing
to community-level co-limitation of productivity by N and P (Gehring et al. 1999, Menge et al.
2008, Baribault et al. 2012, Waring et al. 2015). Northern hardwood forests are moderately
diverse (Lovett et al. 2004), and component species differ in tissue nutrient ratios and nutrient
acquisition and conservation strategies (Schwarz et al. 2003, Bigelow and Canham 2007, See et
al. 2015), and are segregated along axes of soil nutrient availability (Finzi et al. 1998). We did
not find that differences in life history traits associated with successional status corresponded
with differences in limiting nutrients, as both white birch (early successional, rapid growth) and
beech (late successional, slow growth), responded to P. However, mycorrhizal type may have
mediated nutrient responses, as both of the species that responded to P are ECM. RBAI was
high for all ECM species, but varied more among AM species (Table 3). RBAI of ECM species
were 13% higher in plots receiving P compared to no P ($P=0.06$), and 4% higher in plots
receiving N vs no N ($P=0.08$) across all stands. ECM fungi tend to specialize in N acquisition
(Smith and Read 2008), with substantial C cost to the host plant (Hobbie 2006), whereas AM
fungi, which lack extracellular enzyme production for decomposition, are associated with
conditions of higher soil NO$_3^-$ availability (Phillips et al. 2013), and may be more essential for P
acquisition. Hence, if ECM species more effectively acquire N when P availability is enhanced,
then AM species may be more prone to secondary N limitation under these conditions.
Alleviating N limitation is known to shift fungal functional groups (Lilleskov et al. 2012), and
can reduce ECM colonization, although responses vary among ecosystems (Treseder 2004).
Fertilizer-induced declines in mycorrhizal C costs are likely to allow re-allocation to
aboveground growth more for ECM than for AM tree species, but less is known about
colonization or functional group responses to P availability in forest systems. Our results
indicate the need to evaluate ECM species responses under P-limiting conditions, and also to examine species-level nutritional responses to better evaluate these mechanisms.

One exception to the greater growth response to P was the response of white birch to N in the youngest stands (Fig. 4B). Enhanced growth by this species in response to N contributed to the slightly higher average RBAI response to N for all species combined in the young forests (Fig. 3B). Increased RBAI in response to N addition were consistent with pre-treatment observations of high N resorption by white birch foliage in young stands (See et al. 2015). Thus, white birch appeared to be limited primarily by N at age 20-25 yr and by P at age 30-40 yr, suggesting the possibility of a shift in nutrient limitation early in succession, which provides tentative support for predictions of the MEL model of N limitation in early stages of recovery post-harvest (Rastetter et al. 2013). The competition for canopy dominance in young forests promotes aboveground allocation in early successional, shade-intolerant species such as white birch and pin cherry (Fahey et al. 1998). Our results also suggest a shift from belowground allocation for acquisition of N vs P, with a relatively high demand for N to support aboveground growth during early succession, to an increase in P limitation as early successional species decline and forests transition to middle age with higher relative density and higher relative importance of slower-growing species such as beech and maple.

The response by beech differed between young and mid-age forests, in this case from a negative (but non-significant) to a significantly positive effect of P on growth (Fig. 5A). Beech is a relatively slow-growing, shade-tolerant, “resource-conservative” species and could therefore be expected to be less responsive to changes in nutrient availability (Eskilinen et al. 2015). The negative response of beech to P fertilization in young forests could arise from the faster-growing species out-competing beech for light under conditions of higher nutrient availability. In the mid-
age stands, where early successional species are less important (Fig. 1), the trend toward
increased beech growth in response to both N and P additions (Fig. 5) raises the possibility that
this species is co-limited in the mid-age forests. While it may be surprising that a species with
conservative traits such as beech showed the strongest response to P addition in mature forests,
this pattern is consistent with pre-treatment observations of greater P conservation by beech via
foliar resorption compared to other species in mature stands (See et al. 2015).

Conclusions

After four years of fertilizing thirteen northern hardwood stands of varying ages, we
found evidence for P limitation in most mid-age and mature stands but no clear indication of
widespread N limitation or N x P co-limitation. It is possible that P limitation of productivity has
developed as a consequence of the legacy of anthropogenic N deposition in this region,
consistent with the idea of anthropogenically induced transactional P limitation (Vitousek et al.
2010). At the same time, the broad extent of our study reveals important spatial variation in P
vs N limitation, which cautions against generalizing about regional nutrient limitation.

Observing longer-term responses to our treatments will be valuable for assessing whether
sequential co-limitation develops as P limitation is alleviated by treatment and biotic demand for
N increases. Species-specific responses were generally consistent with whole-ecosystem
responses, but highlighted interesting shifts in limitation by N vs P as young forests mature.

Acknowledgements

We are indebted to Steve Hamburg for field site selection and setup. We thank Craig See and
Adam Wild for outstanding work in the field, and two anonymous reviewers for insightful
comments on the manuscript. The Bartlett and Hubbard Brook Experimental Forests are operated and maintained by the USDA Forest Service Northern Research Station, Newtown Square, PA, and Hubbard Brook is part of the Long-Term Ecological Research (LTER) network, which is supported by the National Science Foundation. This work is a product of MELNHE (www.esf.edu/melnhe/), and was supported by grants from the National Science Foundation.
Literature cited

and P. Steudler. 2000. Long-term nitrogen additions and nitrogen saturation in two
temperate forests. Ecosystems 3:238–53.

Magill, A. H., Aber, J. D., Currie, W.S., Nadelhoffer, K.J., Martin, M.E., McDowell, W.H.,
additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and

MELNHE project website http://www.esf.edu/melnhe/

nitrogen fixation and thereby maintain nitrogen limitation. Proceedings of the National
Academy of Sciences USA 105: 1573–1578.

Murphy J and J. P. Riley. 1962. A modified single solution method for determination of

Naples, B. K. and M. C. Fisk. 2010. Belowground insights into nutrient limitation in northern

NOAA National Centers for Environmental information, Climate at a Glance: U.S. Time Series,
Average Temperature, published April 2017, retrieved on April 18, 2017 from
http://www.ncdc.noaa.gov/cag/

Hampshire. USDA Forest Service Research Note NE-182. Northeastern Forest Experiment
Station.

Safford, L.O., and M. M. Czapowskyj. 1986. Fertilizer stimulates growth and mortality in a
young *Populus-Betula* stand: 10-year results. Canadian Journal of Forest Research 16: 807-
813.

Schaller, M., J.D. Blum, S.P. Hamburg, and M.A. Vadeboncoeur. 2010. Spatial variability of
long-term chemical weathering rates in the White Mountains, New Hampshire, USA.
Geoderma 154: 294-301.

2015. Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks

from a Sitka spruce plantation and the effect of fertilisation with phosphorus and

Treseder, K.K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and

Treseder, K. K. and P. M. Vitousek. 2001. Effects of soil nutrient availability on investment in

Table 1. Characteristics of 13 northern hardwood forest stands in central New Hampshire, USA.

<table>
<thead>
<tr>
<th>Stand</th>
<th>Forest age</th>
<th>Year clearcut</th>
<th>Elevation</th>
<th>Aspect</th>
<th>Slope (%)</th>
<th>Pre-treatment (2011) basal area (m²/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEF-C1</td>
<td>Young</td>
<td>1990</td>
<td>570</td>
<td>SE</td>
<td>5-20</td>
<td>25.1</td>
</tr>
<tr>
<td>BEF-C2</td>
<td>Young</td>
<td>1988</td>
<td>340</td>
<td>NE</td>
<td>15-30</td>
<td>23.4</td>
</tr>
<tr>
<td>BEF-C3</td>
<td>Young</td>
<td>1982-1985</td>
<td>590</td>
<td>NNE</td>
<td>8-20</td>
<td>30.4</td>
</tr>
<tr>
<td>BEF-C4</td>
<td>Mid-age</td>
<td>1979</td>
<td>410</td>
<td>NE</td>
<td>20-25</td>
<td>32.4</td>
</tr>
<tr>
<td>BEF-C5</td>
<td>Mid-age</td>
<td>1976</td>
<td>550</td>
<td>NW</td>
<td>20-30</td>
<td>27.2</td>
</tr>
<tr>
<td>BEF-C6</td>
<td>Mid-age</td>
<td>1975</td>
<td>460</td>
<td>NNW</td>
<td>13-20</td>
<td>29.9</td>
</tr>
<tr>
<td>BEF-C7</td>
<td>Mature</td>
<td>1890</td>
<td>440</td>
<td>ENE</td>
<td>5-10</td>
<td>32.1</td>
</tr>
<tr>
<td>BEF-C8</td>
<td>Mature</td>
<td>1883</td>
<td>330</td>
<td>NE</td>
<td>5-35</td>
<td>34.6</td>
</tr>
<tr>
<td>BEF-C9</td>
<td>Mature</td>
<td>1890</td>
<td>440</td>
<td>NE</td>
<td>10-35</td>
<td>32.7</td>
</tr>
<tr>
<td>HB-mid</td>
<td>Mid-age</td>
<td>1970</td>
<td>500</td>
<td>S</td>
<td>10-25</td>
<td>28.9</td>
</tr>
<tr>
<td>HB-mature</td>
<td>Mature</td>
<td>1911</td>
<td>500</td>
<td>S</td>
<td>25-35</td>
<td>33.9</td>
</tr>
<tr>
<td>JB-mid</td>
<td>Mid-age</td>
<td>~1975</td>
<td>730</td>
<td>WNW</td>
<td>25-35</td>
<td>27.9</td>
</tr>
<tr>
<td>JB-mature</td>
<td>Mature</td>
<td>1915</td>
<td>730</td>
<td>WNW</td>
<td>30-40</td>
<td>35.6</td>
</tr>
</tbody>
</table>
Table 2. Resin-available N and P in 2015, litterfall N and P concentrations in 2012, and litterfall mass in 2012 and 2014 (standard errors of the mean are in parentheses; \(n=9 \) stands for resin-available nutrients and \(n=11 \) stands for litterfall).

<table>
<thead>
<tr>
<th></th>
<th>Resin- N ((\mu g) strip(^{-1}) 14d(^{-1}))</th>
<th>Resin- P ((\mu g) strip(^{-1}) 14d(^{-1}))</th>
<th>Litterfall N (mg/g)</th>
<th>Litterfall P (mg/g)</th>
<th>Litterfall mass (g/m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>84.4 (28.4)</td>
<td>7.2 (1.7)</td>
<td>14.5 (0.6)</td>
<td>0.46 (0.03)</td>
<td>300 (8)</td>
</tr>
<tr>
<td>N</td>
<td>257.6 (70.6)</td>
<td>9.0 (2.7)</td>
<td>15.5 (0.6)</td>
<td>0.48 (0.29)</td>
<td>296 (9)</td>
</tr>
<tr>
<td>P</td>
<td>24.8 (34.1)</td>
<td>14.7 (2.6)</td>
<td>13.9 (0.5)</td>
<td>0.60 (0.03)</td>
<td>287 (10)</td>
</tr>
<tr>
<td>N+P</td>
<td>123.7 (34.1)</td>
<td>17.3 (3.5)</td>
<td>14.7 (0.6)</td>
<td>0.55 (0.03)</td>
<td>294 (13)</td>
</tr>
</tbody>
</table>
Table 3. Ecosystem-level (all species) and individual species-level results (F-values and significance) of mixed effects model showing the main effects of nutrient addition on the annual relative basal area increment (RBAI; %/year) of trees ≥ 10 cm DBH

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Degrees of freedom</th>
<th>F-value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecosystem-level RBAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest age</td>
<td>2, 8</td>
<td>39.83</td>
<td>≤0.001</td>
</tr>
<tr>
<td>N</td>
<td>1, 36</td>
<td>0.23</td>
<td>0.73</td>
</tr>
<tr>
<td>P</td>
<td>1, 36</td>
<td>9.07</td>
<td>0.02</td>
</tr>
<tr>
<td>N x P</td>
<td>1, 36</td>
<td>0.09</td>
<td>0.67</td>
</tr>
<tr>
<td>White birch RBAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest age</td>
<td>1, 4</td>
<td>31.22</td>
<td>≤0.01</td>
</tr>
<tr>
<td>N</td>
<td>1, 21</td>
<td>0.003</td>
<td>0.91</td>
</tr>
<tr>
<td>P</td>
<td>1, 21</td>
<td>8.45</td>
<td>0.02</td>
</tr>
<tr>
<td>N x P</td>
<td>1, 21</td>
<td>0.80</td>
<td>0.28</td>
</tr>
<tr>
<td>Beech RBAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest age</td>
<td>2, 5</td>
<td>23.16</td>
<td>≤0.01</td>
</tr>
<tr>
<td>N</td>
<td>1, 24</td>
<td>0.11</td>
<td>0.57</td>
</tr>
<tr>
<td>P</td>
<td>1, 24</td>
<td>0.23</td>
<td>0.14</td>
</tr>
<tr>
<td>N x P</td>
<td>1, 24</td>
<td>0.09</td>
<td>0.32</td>
</tr>
<tr>
<td>Sugar maple RBAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest age</td>
<td>2, 5</td>
<td>7.10</td>
<td>0.03</td>
</tr>
<tr>
<td>N</td>
<td>1, 27</td>
<td>0.67</td>
<td>0.42</td>
</tr>
<tr>
<td>P</td>
<td>1, 27</td>
<td>0.90</td>
<td>0.35</td>
</tr>
<tr>
<td>N x P</td>
<td>1, 27</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>Yellow birch RBAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest age</td>
<td>2, 6</td>
<td>11.56</td>
<td><0.01</td>
</tr>
<tr>
<td>N</td>
<td>1, 27</td>
<td>0.12</td>
<td>0.73</td>
</tr>
<tr>
<td>P</td>
<td>1, 27</td>
<td>0.19</td>
<td>0.67</td>
</tr>
<tr>
<td>N x P</td>
<td>1, 27</td>
<td>0.35</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Note: Significant P values are indicated in bold
Table 4. Percent differences in annual relative basal area increment (RBAI) between plots receiving and plots not receiving the nutrient (i.e., N vs no N) in each stand, and means in all stands and in the BEF. Standard errors of the mean are in parentheses.

<table>
<thead>
<tr>
<th>Percent difference in RBAI</th>
<th>Plots receiving N vs no N</th>
<th>Plots receiving P vs no P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEF-C1</td>
<td>12.0</td>
<td>-3.7</td>
</tr>
<tr>
<td>BEF-C2</td>
<td>8.2</td>
<td>0.6</td>
</tr>
<tr>
<td>BEF-C3</td>
<td>-3.8</td>
<td>-1.5</td>
</tr>
<tr>
<td>Mid-age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEF-C4</td>
<td>7.7</td>
<td>15.5</td>
</tr>
<tr>
<td>BEF-C5</td>
<td>-10.0</td>
<td>31.4</td>
</tr>
<tr>
<td>BEF-C6</td>
<td>3.8</td>
<td>14.7</td>
</tr>
<tr>
<td>HB-mid</td>
<td>24.5</td>
<td>16.5</td>
</tr>
<tr>
<td>JB-mid</td>
<td>3.2</td>
<td>-3.9</td>
</tr>
<tr>
<td>Mature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEF-C7</td>
<td>-21.5</td>
<td>19.5</td>
</tr>
<tr>
<td>BEF-C8</td>
<td>3.3</td>
<td>8.2</td>
</tr>
<tr>
<td>BEF-C9</td>
<td>20.6</td>
<td>21.9</td>
</tr>
<tr>
<td>HB-mature</td>
<td>4.5</td>
<td>14.9</td>
</tr>
<tr>
<td>JB-mature</td>
<td>39.2</td>
<td>10.2</td>
</tr>
<tr>
<td>All sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All stands</td>
<td>7.1 (4.3)</td>
<td>11.1 (3.0)</td>
</tr>
<tr>
<td>Young (n=3)</td>
<td>5.5 (4.8)</td>
<td>-1.5 (1.2)</td>
</tr>
<tr>
<td>Mid-age (n=5)</td>
<td>5.8 (5.5)</td>
<td>14.8 (5.6)</td>
</tr>
<tr>
<td>Mature (n=5)</td>
<td>9.3 (10.1)</td>
<td>14.9 (2.6)</td>
</tr>
<tr>
<td>BEF site only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All stands</td>
<td>2.3 (4.2)</td>
<td>11.8 (3.9)</td>
</tr>
<tr>
<td>Young (n=3)</td>
<td>5.5 (4.8)</td>
<td>-1.5 (1.2)</td>
</tr>
<tr>
<td>Mid-age (n=3)</td>
<td>0.5 (5.4)</td>
<td>20.5 (5.4)</td>
</tr>
<tr>
<td>Mature (n=3)</td>
<td>0.8 (12.2)</td>
<td>16.5 (4.2)</td>
</tr>
</tbody>
</table>
Table 5. The type of mycorrhizal association and the mean annual relative basal area increment (RBAI) of the major tree species in young, mid-age and mature northern hardwood forest stands after four years of nutrient fertilization.

<table>
<thead>
<tr>
<th>Species</th>
<th>Representation (number of plots out of 52 possible)</th>
<th>RBAI (%/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Young</td>
</tr>
<tr>
<td>Arbuscular-mycorrhizal species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple (Acer saccharum Marsh.)</td>
<td>41</td>
<td>3.9</td>
</tr>
<tr>
<td>Red maple (Acer rubrum L.)</td>
<td>29</td>
<td>6.7</td>
</tr>
<tr>
<td>Pin cherry (Prunus pensylvanica L.f.)</td>
<td>29</td>
<td>3.6</td>
</tr>
<tr>
<td>White Ash (Fraxinus americana L.)</td>
<td>13</td>
<td>11.2</td>
</tr>
<tr>
<td>Striped maple (Acer pennsylvanicum L.)</td>
<td>10</td>
<td>4.1</td>
</tr>
<tr>
<td>Ectomycorrhizal species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American beech (Fagus grandifolia Ehrh.)</td>
<td>44</td>
<td>7.2</td>
</tr>
<tr>
<td>Yellow birch (Betula alleghniensis Britton.)</td>
<td>42</td>
<td>6.6</td>
</tr>
<tr>
<td>White birch (Betula papyrifera Marsh.)</td>
<td>32</td>
<td>8.2</td>
</tr>
<tr>
<td>Eastern hemlock (Tsuga canadensis (L.) Carriere)</td>
<td>13</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Note: Species present in less than 10 out of 52 plots are not presented here.
Figure captions

Fig 1. Basal area of live trees by species in 2011 in young, mid-age and mature forest stands. Species constituting less than 15% of the forest basal area include white ash (*Fraxinus americana*), bigtooth aspen (*Populus grandidentata*), quaking aspen (*Populus tremuloides*), balsam fir (*Abies balsamea*), eastern hemlock (*Tsuga canadensis*), northern red oak (*Quercus rubra*) and red spruce (*Picea rubens*), and have been combined and presented as the category "Other".

Fig 2. Basal area (panel A) and number of stems/ha (panel B) of live trees ≥10 cm DBH by size class in young, mid-age and mature forest stands.

Fig 3. Annual relative basal area increment (per tree) of live ≥10 cm DBH trees in plots receiving P vs no P (panel A) and N vs no N (panel B) in young, mid-age and mature forest stands. Boxes represent the interquartile range and whiskers represent the 5th and 95th percentile, with the horizontal line showing the median and the triangle the mean value.

Fig 4. Annual relative basal area increment (per tree) of live ≥10 cm DBH white birch trees in plots receiving P vs no P (panel A) and N vs no N (panel B) in young and mid-age forest stands. Boxes represent the interquartile range (25-75%) and whiskers represent the 5 and 95%, with the horizontal line as the median and the triangle as the mean.

Fig 5. Annual relative basal area increment (per tree) of live ≥10 cm DBH beech trees in plots receiving P vs no P (panel A) and N vs no N (panel B) in young, mid-age and mature forest stands. Boxes represent the interquartile range (25-75%) and whiskers represent the 5 and 95%, with the horizontal line as the median and the triangle as the mean.
Fig 1.
Fig 2.
Fig 3.
Fig 4.

(A) and (B) show the relative basal area increment (%/yr) for different treatments and forest ages. The plots compare scenarios with and without P or N, respectively.

- **No P** and **P** treatments for (A).
- **No N** and **N** treatments for (B).

The data indicate that nutrient addition (P and N) significantly increases the relative basal area increment, particularly in younger forest age stages.