HORN POND **2017 SAMPLING HIGHLIGHTS** Station – 1 Deep Acton, ME & Wakefield, NH Station 1 Deep (Figure 7) was used as a reference point to represent the overall Horn Pond water quality. Water quality data displayed in Tables 1 and 2 are surface water measurements with the exception of the dissolved oxygen data that were collected near the lake bottom. Blue = Oligotrophic Yellow = Mesotrophic **Red** = Eutrophic Gray = No Data Figure 1. Horn Pond Water Quality (2017) Table 1. 2017 Horn Pond Seasonal Averages and NH DES Aquatic Life Nutrient Criteria¹ | Parameter | Oligotrophic | Mesotrophic | Eutrophic Horn Pond
Average (range) | | Horn Pond
Classification | |-------------------------------------|--------------|--------------|--|-------------------------------|-----------------------------| | Water Clarity
(meters) | 4.0 – 7.0 | 2.5 - 4.0 | < 2.5 | 7.4 meters (7.0 – 7.9) | Oligotrophic | | Chlorophyll a 1 (ppb) | < 3.3 | > 3.3 – 5.0 | > 5.0 – 11.0 | 1.9 ppb (1.6 – 2.2) | Oligotrophic | | Total Phosphorus ¹ (ppb) | < 8.0 | > 8.0 – 12.0 | > 12.0 – 28.0 | 5.9 ppb (4.9 – 6.8) | Oligotrophic | | Dissolved Oxygen
(mg/L) | 5.0 – 7.0 | 2.0 – 5.0 | <2.0 | 3.2 mg/L (0.6 – 6.0) | Mesotrophic | ^{*} Dissolved oxygen concentrations were measured between 6.5 and 9.0 meters, in the layer of rapidly decreasing temperatures, on August 7, 2017. ### Table 2. 2017 Horn Pond Seasonal Average Accessory Water Quality Measurements | Parameter | Assessment Criteria | | | | | Horn Pond
Average (range) | Horn Pond
Classification | |-------------------------------------|--|--------------------------------------|--|---|-----------------------------|---|---| | Color
(color units) | < 10
uncolored | 10 – 20
slightly
colored | 20 – 40
lightly tea
colored | 40 – 80
tea
colored | > 80
highly
colored | 13.1 color units (range: 9.7 – 16.0) | Slightly colored | | Alkalinity
(mg/L) | < 0.0
acidified | 0.1 – 2.0
extremely
vulnerable | 2.1 – 10
moderately
vulnerable | 10.1 – 25.0
low
vulnerability | > 25.0
not
vulnerable | 9.2 mg/L (range: 9.0 – 9.5) | Moderately vulnerable | | pH
(std units) | < 5.5
suboptimal for successful
growth and reproduction | | 6.5 – 9.0 optimal range for fish growth and reproduction | | | 6.8 standard units (range: 6.5 – 7.0) | Optimal range for fish growth and reproduction | | Specific
Conductivity
(uS/cm) | < 50 uS/cm
Characteristic of minimally
impacted NH lakes | | 50-100 uS/cm
Lakes with
some human
influence | > 100 uS/cm Characteristic of lakes experiencing human disturbances | | 80.2 <i>u</i> S/cm
(range: 78.0 – 81.7) | Characteristic of lakes
with some human
influence | Figure 2 and 3. Seasonal Secchi disk transparency, chlorophyll a concentrations and dissolved color concentrations. Figures 2 and 3 illustrate the interplay among Secchi Disk transparency, chlorophyll a and dissolved color. Shallower water transparency measurements oftentimes correspond to increases in chlorophyll a and/or color concentrations. #### **LONG-TERM TRENDS** WATER CLARITY: The Horn Pond water clarity measurements, measured as Secchi Disk transparency, display a trend of increasing water clarity over the past fifteen years (Figure 4). CHLOROPHYLL: The Horn Pond chlorophyll a concentrations, a measure of microscopic plant life within the lake, display a trend of decreasing concentrations since 2004 (Figure 4). **TOTAL PHOSPHORUS:** The Horn Pond total phosphorus concentrations, the nutrient most responsible for microscopic plant growth, have oscillated among years while the long-term trend is stable (Figure 5). **COLOR**: Color is a result of naturally occurring "tea" color substances from the breakdown of soils and plant materials. Color data display a trend of decreasing concentrations since 2008 (Figure 5). Table 3. Salmon Falls Headwaters Seasonal Average Water Quality Inter-comparison (2017) | Lake | Average
Secchi Disk
Transparency
(meters) | Average
Chlorophyll <i>a</i>
(ppb) | Average
Total
Phosphorus
(ppb) | Average Dissolved Oxygen (ppm) | |-----------------|--|--|---|--------------------------------| | Great East Lake | 11.0 | 0.7 | 4.4 | 8.4 | | Wilson Lake | 6.3 | 2.6 | 6.4 | 0.5 | | Lovell Lake | 6.7 | 2.6 | 8.1 | 3.3 | | Horn Pond | 7.4 | 1.9 | 5.9 | 3.2 | | Lake Ivanhoe | 5.6 | 2.1 | 9.3 | | - Water quality data are reported for a deep reference sampling location in each water body - Dissolved oxygen measurements were collected during the summer months (late July through late August) and from the deepest water layer (metalimnion or hypolimnion) in each lake. - ----- Indicates the site is too shallow to form a bottom water layer (metalimnion or hypolimnion). Figures 4 and 5. Changes in the Horn Pond water clarity (Secchi Disk depth), chlorophyll *a*, dissolved color and total phosphorus concentrations measured between 2003 and 2017. These data illustrate the relationship among plant growth, water color and water clarity. Total phosphorus data are also displayed and are oftentimes correlated with the amount of plant growth. Trendlines are displayed when sufficient data are available. Figure 6. Bi-weekly Horn Pond dissolved oxygen profiles collected between May 31 and August 7, 2017. The vertical red line indicates the oxygen concentration commonly considered the threshold for successful growth and reproduction of warm water fish such as bass and perch. Notice the low oxygen concentrations near the lake bottom between July 10 and August 5, 2017. #### Recommendations Implement Best Management Practices within the Horn Pond watershed to minimize the adverse impacts of polluted runoff and erosion on the lake. Refer to "Landscaping at the Water's Edge: An Ecological Approach" and "New Hampshire Homeowner's Guide to Stormwater Management: Do-It-Yourself Stormwater Solutions for Your Home" for more information on how to reduce nutrient loading caused by overland run-off. The Acton Wakefield Watershed Alliance also offers technical assistance to help design and implement erosion control projects that protect and improve the water quality. - http://extension.unh.edu/resources/files/Resource004159 Rep5940.pdf - http://soaknh.org/wp-content/uploads/2016/04/NH-Homeowner-Guide-2016.pdf - http://awwatersheds.org/healthy-lakes/conservation-practices-for-homeowners/ # Figure 7. Horn Pond Acton, ME & Wakefield, NH 2017 Deep water sampling site and seasonal average water clarity Aerial Orthophoto Source: NH GRANIT Site location GPS coordinates collected by the UNH Center for Freshwater Biology