5-26-2016

Draft Genome Sequence of Frankia Strain G2, a Nitrogen-Fixing Actinobacterium Isolated from Casuarina equisetifolia and Able To Nodulate Actinorhizal Plants of the Order Rhamnales

Imen Nouioui

Université de Tunis El-Mana

Maher Gtari

Université de Tunis Elmanar

Markus Goker

Leibniz Institute

Faten Ghodhbane-Gtari

Université de Tunis El-Mana

Louis S. Tisa

University of New Hampshire, Durham, louis.tisa@unh.edu

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/mcbs_facpub

Recommended Citation

This Article is brought to you for free and open access by the Molecular, Cellular and Biomedical Sciences at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Molecular, Cellular and Biomedical Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact Scholarly.Communication@unh.edu.
Draft Genome Sequence of Frankia Strain G2, a Nitrogen-Fixing Actinobacterium Isolated from Casuarina equisetifolia and Able To Nodulate Actinorhizal Plants of the Order Rhamnales

Imen Nouioui,a,† Maher Gtari,b Markus Göker,c Faten Ghodhbane-Gtari,b Louis S. Tisa,d Maria P. Fernandez,e Philippe Normand,e Marcel Huntemann,f Alicia Clum,g Manoj Pillay,g Neha Varghese,g T. B. K. Reddy,g Natalie Ivanova,g Tanja Woyke,g Nikos C. Kyrpides,f Hans-Peter Klenke

School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom;° University of Tunis El Manar, Tunis, Tunisia; Leibniz Institute-DSMZ, Braunschweig, Germany; University of New Hampshire, Durham, New Hampshire, USA; Université de Lyon, CNRS, Ecologie Microbienne, INRA, UMR1418, Villeurbanne, France; DOE Joint Genome Institute, Walnut Creek, California, USA

Frankia sp. strain G2 was originally isolated from Casuarina equisetifolia and is characterized by its ability to nodulate actinorhizal plants of the Rhamnales order, but not its original host. It represents one of the largest Frankia genomes so far sequenced (9.5 Mbp).

Received 9 April 2016 Accepted 13 April 2016 Published 26 May 2016

T
he

genus

Frankia
contains
actinobacteria
known
for
their
ability
to
fix
nitrogen
and
to
infect
the
roots
of
eight
actinorhizal
plant
families
(1–3). Phylogenetic studies of Frankia strains based on 16S rRNA (4), gyr B (5), gln II (5, 6) genes and 16S-23S rRNA Intergenic Spacer Region (7) indicate four groups. Group 1 forms nodules on Betulaceae, Myricaceae, and Casuarinaceae. Group 2 contains microsymbionts of Coriariaceae, Datiscaeae, Dryadoideae (Rosaceae), and Ceanothus (Rhamnaceae). Group 3 includes strains associated with Morella (Myricaceae), Colletieta (Rhamnaceae), Elaeagnaceae, and Gymnostoma (Casuarinaceae). Group 4 includes atypical, non-infective (Nod-) and/or ineffective (Fix-) Frankia strains. Our knowledge about the biology of this genus has been well improved due to the information provided by sequenced Frankia genomes (8–21). Group 3 has a broad host range, considerable genetic diversity between the strains (5, 7), high potential for a saprophytic lifestyle (7–22), and a variable genome size ranging from 7.5 to 10.45 Mbp. Strain G2 (=DSM45899 =CECT9038) was selected for genome sequencing within the Genomic Encyclopedia of Type Strains, Phase II: From Individual Species to Whole Genera (23), the second production phase of the Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains Initiative (24). The candidate type strain G2 for a novel Frankia species, selected to enrich the diversity of group 3, was isolated from Casuarina equisetifolia nodules collected in the INRA Research Station, Saint-François, Grande Terre, Guadeloupe (25). It has the potential to produce natural products such as the red-pigmented antibiotics (benzo[a]naphthacenequinones) (26). It is infective on members of the actinorhizal Rhamnales, but not on its original host plant C. equisetifolia (25). The draft genome of strain G2 was sequenced using Illumina technology (27) with a 300 bp insert standard shotgun library on an Illumina HiSeq-2500 1-TB platform, which generated 6,201,478 reads totaling 936.4 Mbp, at the Joint Genome Institute (JGI) (28). The assembly was realized using Velvet (version 1.2.07) (29) and Allpaths-LG (version r46652) (30). Annotation was performed using the JGI annotation pipeline (31) and the data are available from the IMG data management system (32). The final draft assembly contained 90 contigs in 83 scaffolds, totaling 9,537,992 bp in size based on 856.6 Mbp of data with 171.3× input read coverage. The genome draft encodes 7,790 protein genes, 47 tRNAs, and 2 rRNA regions, with an overall G+C content of 70.9%. Genome annotation was performed as described by Tisa et al. (21). As expected, since Frankia is a nitrogen fixing actinobacterium, six nitrogenase genes, nifH, nifE, nifD, nifK, nifW, and nifN, have been detected.

Project information is available in the Genomes Online Database (33) and DNA from the DNA Bank Network (34).

Nucleotide sequence accession number. This whole-genome shotgun project has been deposited in DDBJ/EMBL/GenBank under the accession no. FAOZ00000000. The version described in this paper is the first version.

ACKNOWLEDGMENTS

This work was conducted under the auspices of U.S. Department of Energy Office of Science, Biological and Environmental Research Program and the University of California, Lawrence Berkeley National Laboratory (under contract DE-AC02-05CH11231). We are grateful to Marlen Jando and Meike Döppner (both at DSMZ) for their contribution to culturing Frankia strains and for DNA extractions and quality control.

FUNDING INFORMATION

This work, including the efforts of Nikos C. Kyrpides, was funded by U.S. Department of Energy (DOE) (DE-AC02-05CH11231).

REFERENCES

© 2016 Nouioui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Hans-Peter Klenk, hans-peter.klenk@ncl.ac.uk.

