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Combining tower mixing ratio and community model data
to estimate regional‐scale net ecosystem carbon exchange
by boundary layer inversion over four flux towers
in the United States

Xuerui Dang,1,2 Chun‐Ta Lai,2 David Y. Hollinger,3 Andrew J. Schauer,4 Jingfeng Xiao,5

J. William Munger,6 Clenton Owensby,7 and James R. Ehleringer8

Received 22 September 2010; revised 1 June 2011; accepted 10 June 2011; published 20 September 2011.

[1] We evaluated an idealized boundary layer (BL) model with simple parameterizations
using vertical transport information from community model outputs (NCAR/NCEP
Reanalysis and ECMWF Interim Analysis) to estimate regional‐scale net CO2 fluxes from
2002 to 2007 at three forest and one grassland flux sites in the United States. The BL
modeling approach builds on a mixed‐layer model to infer monthly average net CO2 fluxes
using high‐precision mixing ratio measurements taken on flux towers. We compared BL
model net ecosystem exchange (NEE) with estimates from two independent approaches.
First, we compared modeled NEE with tower eddy covariance measurements. The second
approach (EC‐MOD) was a data‐driven method that upscaled EC fluxes from towers to
regions using MODIS data streams. Comparisons between modeled CO2 and tower NEE
fluxes showed that modeled regional CO2 fluxes displayed interannual and intra‐annual
variations similar to the tower NEE fluxes at the Rannells Prairie and Wind River Forest
sites, but model predictions were frequently different from NEE observations at the Harvard
Forest and Howland Forest sites. At the Howland Forest site, modeled CO2 fluxes showed a
lag in the onset of growing season uptake by 2 months behind that of tower measurements.
At the Harvard Forest site, modeled CO2 fluxes agreed with the timing of growing
season uptake but underestimated the magnitude of observed NEE seasonal fluctuation. This
modeling inconsistency among sites can be partially attributed to the likely misrepresentation
of atmospheric transport and/or CO2 gradients between ABL and the free troposphere in
the idealized BL model. EC‐MOD fluxes showed that spatial heterogeneity in land use
and cover very likely explained the majority of the data‐model inconsistency. We show a
site‐dependent atmospheric rectifier effect that appears to have had the largest impact on
ABL CO2 inversion in the North American Great Plains. We conclude that a systematic
BL modeling approach provided new insights when employed in multiyear, cross‐site
synthesis studies. These results can be used to develop diagnostic upscaling tools, improving
our understanding of the seasonal and interannual variability of surface CO2 fluxes.

Citation: Dang, X., C.‐T. Lai, D. Y. Hollinger, A. J. Schauer, J. Xiao, J. W. Munger, C. Owensby, and J. R. Ehleringer (2011),
Combining tower mixing ratio and community model data to estimate regional‐scale net ecosystem carbon exchange by boundary
layer inversion over four flux towers in the United States, J. Geophys. Res., 116, G03036, doi:10.1029/2010JG001554.

1. Introduction

[2] Estimating the net carbon balance of terrestrial eco-
systems requires a strategy that integrates observations and
modeling methods. This is because no single model or mea-
surement approach can sufficiently provide the large amount
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of information required to explain the considerable interan-
nual variation in the capacity of land carbon sinks [Le Quéré
et al., 2009]. The need for a systematic model‐data fusion
approach and error analyses to quantify terrestrial carbon
balance has been previously emphasized [Raupach et al.,
2005; Wang et al., 2009]. Following the model‐data fusion
concept, recent studies have combined statistical/modeling
techniques, remotely sensed data products, and climate data
to upscale tower‐based flux measurements to a region [Chen
et al., 2008; Running et al., 2004; Xiao et al., 2008, 2010,
2011]. However, interpretation of remote sensing‐based
model results remains at times difficult and uncertain because
of their coarse resolution and scale mismatch when compared
to tower eddy covariance fluxes [Dolman et al., 2009;Gamon
et al., 2006a; Mahrt, 1998].
[3] Another commonly used approach related to the

model‐data fusion concept is the atmospheric inversion
technique. Global atmospheric inversion analyses utilize
precise concentration data obtained from flask networks
[Conway et al., 1994; Keeling et al., 1996, 2011; Tans et al.,
1990], combined with a priori knowledge of atmospheric
transport, to infer global distributions of carbon sources and
sinks [Battle et al., 2000; Ciais and Meijer, 1998; Enting
et al., 1995; Fan et al., 1998; Gurney et al., 2002; Keeling
et al., 1996, 2011; Peters et al., 2007; Rayner and O’Brien,
2001]. These global analyses provide top‐down estimates
of land‐ocean uptake partitioning of anthropogenic CO2

emissions, but they do not offer sufficient resolution to
decipher the variability and controls of subgrid‐scale fluxes.
[4] As a result, a great deal of effort has been devoted to

developing reliable methods that are capable of quantifying
regional carbon budgets. CO2 mixing ratios measured by
aircraft [Desjardins et al., 1992; Dolman et al., 2006; Gatti
et al., 2010; Gerbig et al., 2003; Gibert et al., 2007; Gioli
et al., 2004; Stephens et al., 2007; Sun et al., 2010] or on
tall towers [Bakwin et al., 1998; Desai et al., 2010; Gloor
et al., 2001; Helliker et al., 2004; Wang et al., 2007; Yi
et al., 2004] may be used to infer regional surface fluxes on
land. However, applying atmospheric inversion techniques
regionally has been more challenging because conservation
of momentum is rarely met in the model at this spatial scale.
The evolution of the atmospheric boundary layer (ABL)
is influenced by synoptic weather patterns [Hurwitz et al.,
2004] and the complex interaction between entrainment,
subsidence, topography, cloud effects, and horizontal advec-
tion [Stull, 1988]. This complexity means that the momentum
fluxes cannot be easily conserved using simplifications such
as zero divergence on diurnal timescales, in which the day-
time BL is often unstable and nocturnal BL is strongly stable.
Nevertheless, attempts to infer surface fluxes from mixing
ratio data are highly dependent on the atmospheric transport.
ABL studies estimating diurnal CO2 exchange over land
[Chen et al., 2008; Denmead et al., 1996; Gerbig et al.,
2003; Gibert et al., 2007; Gloor et al., 2001; Larson and
Volkmer, 2008; Levy et al., 1999; Lloyd et al., 2001; Moore
and Fitzjarrald, 1993; Styles et al., 2002; Wofsy et al.,
1988] have reported widely variable agreement when
compared to bottom‐up approaches [Desai et al., 2010;
Fitzjarrald, 2004].
[5] Surface CO2 andH2O fluxes and the ABL dynamics are

commonly driven by solar radiation, which leads to strong
covariance between the variations in the ABL depth and net

CO2 fluxes (the rectifier effect [Denning et al., 1996]). This is
an interesting phenomenon that has not been adequately
investigated, particularly at the site level near flux towers,
except for a handful of studies conducted at the WLEF flux
site in Wisconsin, United States [Denning et al., 2008;
Yi et al., 2004]. Furthermore, a number of studies applied
the equilibrium BL concept to estimate regional CO2 fluxes
[Bakwin et al., 2004; Desai et al., 2010; Helliker et al.,
2004; Lai et al., 2006a]. Despite the success of this model,
an adequate explanation is still lacking for why monthly
averages from an idealized BL model are able to produce
reasonable agreement when compared to tower NEE mea-
surements. Here we explore these correlations between the
ABL CO2 balance and the boundary layer evolution using
a BL modeling approach.
[6] Our goal is to evaluate an idealized BL model of sim-

ple parameterizations using vertical transport information
from the community models (NCAR/NCEP Reanalysis and
ECMWF Interim Analysis). We estimated regional‐scale
net CO2 fluxes from 2002 to 2007 at three forest and one
grassland flux sites in the United States. The BL modeling
approach builds on a mixed layer model to infer monthly
average net CO2 fluxes using high‐precision mixing ratio
measurements recorded on flux towers. We used CO2

mixing ratios derived from the marine boundary layer
[GLOBALVIEW‐CO2, 2009] as a proxy to represent those
in the free troposphere. This proxy was compared to aircraft
CO2 observations made at the height 2000–3000 m asl over
Harvard Forest where aircraft data were available. We com-
pared BL model NEE with estimates from two independent
approaches. First, we compared modeled NEE with tower
eddy covariance (EC) measurements. The second approach
(EC‐MOD) combines EC flux measurements and remote
sensing products (MODIS), and has been developed to esti-
mate continental‐scale gross primary productivity and net
ecosystem exchange (NEE) of CO2 [Xiao et al., 2010, 2011].
The first objective of the present study is to evaluate the
applicability of a BL model to regions of differing biomes,
land use history and climatic variability by coupling surface
CO2 observations with simple parameterizations that are
readily available from atmospheric databases (i.e., NCAR
Reanalysis, Globalview‐CO2 and ECMWF Analysis). Our
second objective is to contrast regional flux estimates of the
two independent approaches with the tower EC measure-
ments. We performed a suite of sensitivity and error anal-
yses to quantify the uncertainty regarding the BL inversion
approach, and discuss merits and limitations associated with
each method.

2. Materials and Methods

2.1. Boundary Layer Modeling Approach

[7] Assuming a fully mixed convective boundary layer
(CBL), a simple BL budget equation can be written as
[Denmead et al., 1996;McNaughton, 1989; Raupach, 1991]:

dC

dT
¼ Fc

�h
þ CFT þ C

�h

� �
dh

dt
�WFT

� �
ð1Þ

where r is the density of air and assumed constant in the CBL,
h is the CBL depth, and t is time. Fc is the net surface flux of
CO2, C represents the well‐mixed CO2 mixing ratio in the
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CBL, CFT is the CO2 mixing ratio in the free troposphere,
and WFT is the mean vertical velocity at the top of CBL. The
time derivative in equation (1) is a total derivative that, for
the left‐hand side, includes a time rate of change term
(∂C/∂t) and mean advection terms (u∂C/∂x, v∂C/∂y, w∂C/∂z).
Assuming negligible horizontal and vertical advection
[de Arellano et al., 2004], by rearranging equation (1) leads
to:

�h
@C

@t
¼ Fc � � WFT � @h

@t

� �
CFT � Cð Þ ¼ Fc � �W CFT � Cð Þ

ð2Þ
where W ¼ WFT � @h

@t
is the mean entrainment rate, and

the overbar represents time averaging over a month.
[8] The assumption of negligible advection that leads to

equation (2) is likely violated on daily time scales [Styles
et al., 2002]. In this study, we postulate that the mid-
afternoon BL approaches a steady state in which the nonlin-
earity associated with diurnal BL processes are presumably
reduced when integrated over monthly time scales. This
assumption is supported by direct observations of the CBL
CO2 profile by instrumentation on a tall tower in northern
Wisconsin, United States [Yi et al., 2000, 2001]. Yi et al.
[2000, Figure 1] provide evidence suggesting a zero rate of
CO2 change (i.e., ∂C/∂t = 0) in the CBL, and Yi et al. [2001,
Figure 5] lend supports to negligible vertical change (i.e.,
∂h/∂t = 0). Assuming these direct observations of CBL phe-
nomena apply, equation (2) can be further simplified to:

Fc ¼ �W CFT � Cð Þ ð3Þ

The term �W is a flux density (in units of mol air m −2 s−1).
Flux densities were preferred to the use of a true velocity
because flux densities were independent of pressure and
temperature and were more readily comparable across sites.
If velocity were desired, the vertical variation of air density in
the ABL would have to be accounted for [Betts, 2000; Betts
et al., 2004]. We will use flux densities to express mean
entrainment rates of air into the ABL from the free tropo-
sphere throughout this study.
[9] The assumption that a steady state boundary layer exists

when BL processes are integrated over monthly time scales is
critical to our regional flux estimates but unfortunately very
difficult to directly verify. The idea is similar to the concept
of equilibrium ABL budget for water and energy over the
tropical ocean proposed by Betts and Ridgway [1989]. Betts
[2000] extended the theory to propose the idealized equilib-
rium BL concept over land. Briefly stated here, the idealized
equilibrium BL model considers a hypothetical steady state
mixed layer over land where diurnal averages of mass and
energy exchange in the ABL are balanced primarily between
surface fluxes, radiation and subsidence. A number of studies
evaluated the idealized equilibrium BL approach against
scalar measurements, including potential temperature and
humidity in large river basins [Betts, 2000], CO2 (and water
vapor) fluxes in temperature forests [Bakwin et al., 2004;
Betts et al., 2004; Desai et al., 2010; Helliker et al., 2004,
2005] and a tallgrass prairie [Lai et al., 2006a]. For the present
study, we conduct a suite of sensitivity analyses to quantify
errors associated with our simple BL approach.

2.2. Study Sites

[10] Our study uses data from four long‐term flux sites in
the United States, including Harvard Forest, MA (42.538°N,
72.171°W), Howland Forest, ME (45.204°N, 68.74°W),
Wind River Experimental Forest, WA (45.821°N,
121.952°W), and a C4‐dominated tallgrass prairie (Rannells
Flint Hills prairie near Manhattan, KS, 39.083°N,
96.533°W). These four sites were carefully selected, repre-
senting major vegetation types in the AmeriFlux network
with different climatic variability. General site information
including dominant vegetation species and long‐term mean
climatic conditions are summarized in Table 1. At all sites,
NEE was measured by eddy covariance using standard con-
figurations complying with AmeriFlux guidelines [Goulden
et al., 1996; Hollinger et al., 2004; Lai et al., 2006a; Paw
U et al., 2004].
[11] Figure 1 shows land classification maps in the vicinity

of the three forest sites. These maps were provided by NOAA
Coastal Services Center and accessible on its website (http://
www.csc.noaa.gov). The corner coordinates are relative
to center of pixel and the pixel size is 30 m × 30 m, giving
high resolution of land cover. Each map shows a 1° × 1° area
(∼104 km2) centered on a flux tower, a size approximating the
footprint of potential source areas for mixing ratio measure-
ments [Gloor et al., 2001]. The Howland forest flux tower sits
at the ecotone between the deciduous northern hardwood
forest and subboreal coniferous forest (Picea rubens and
Tsuga canadensis). The area is bound by a mosaic landscape
of mixed deciduous and evergreen forests and wetlands. The
Harvard Forest flux tower is located in the midst of a mixed
hardwood forest that resembles the dominant vegetation type
(Quercus rubra and Acer rubrum) in the region. Major land
cover types that potentially contribute to the source areas of
trace gas mixing ratio measurements include eastern decid-
uous forests, developed land areas ranging from medium to
high intensity and a large water body (Quabbin Reservoir)
roughly 20 km southwest of the site. The Wind River flux
tower is located in the midst of a western old growth conif-
erous forest (dominated by Pseudotsuga menziesii) sur-
rounded by relatively uniform vegetation cover but varying
stand age. Differences in the complexity of land cover are
likely to contribute to interannual variability in the atmo-
spheric CO2 mixing ratios and regional fluxes inferred from
the mixing ratio measurements. The Rannells Prairie flux
tower is located in the midst of a managed, ungrazed grass-
land in which productivity is primarily controlled bymoisture
availability and the seasonal dynamics of C3 (Carex sp.
and Vernonia baldwinii) and C4 (Andropogon gerardii and
Sorghastrum nutans) photosynthesis. The effect of spatial
heterogeneity on trace gas mixing ratios, isotopic composi-
tion and flux measurements in Rannells Prairie has been
reported elsewhere [Lai et al., 2003, 2006a, 2006b].

2.3. Air Sample Collection and Analysis

[12] We measured CO2 mixing ratios in the convective
boundary layer by analyzing air samples collected by an
automated flask sampler [Schauer et al., 2003] at each of
the four study sites following the procedure described by Lai
et al. [2004, 2005, 2006b]. Briefly, dry air samples were
collected at weekly intervals using 100 ml flasks (Kontes
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Glass Co., Vineland, NJ). Each week, two pairs of flasks (i.e.,
four flasks per week) were collected in the midafternoon on
two different days (usually 3 days apart) from an intake 2 m
above the top of the canopy. Sampling at midafternoon
(halfway between solar noon and sunset) takes advantage of
strong convective mixing that minimizes vertical CO2 gra-
dients in the ABL [Bakwin et al., 1998; Yi et al., 2001]. Air
samples were shipped to the Stable Isotope Ratio Facility for
Environmental Research at the University of Utah for labo-
ratory analyses. A GC‐IRMS system was used to analyze
d13C, d18O and mixing ratios of atmospheric CO2 [Schauer
et al., 2005]. The stable isotope data will be reported in a
separate paper. The precision of the CO2 mixing ratios was
0.48 ppm, traceable to the WMO scale based on calibration
performed against five primary standards (cylinder serial
numbers: CC153217, CC153264, CC163396, CC163398
and CC163466) measured by WMO Central Calibration
Laboratory for CO2 in NOAA/GMD, Boulder, CO, USA.
[13] Data screening was carefully performed based on

both measurements of CO2 mixing ratio and carbon‐13 ratio.
Data were excluded if the standard deviation of a flask pair
exceeds more than five times of the instrument precision (i.e.,
> 2.5 ppm and > 0.3‰) [Lai et al., 2006a]. This selec-
tion criterion resulted in almost 13% of the samples being
excluded from further analysis.

2.4. Estimates of Flux Density

[14] Estimates of monthly net CO2 fluxes (i.e.,
equation (3)) depend on a reliable estimate of the rate of
exchange between the free troposphere and the ABL (rWFT).
Several authors have used different methods for estimating
rWFT. Helliker et al. [2004] analyzed water vapor balance
in the ABL to estimate rWFT and applied derived rWFT to
estimate CO2 exchange by assuming a similarity between
CO2 and water vapor transfer. Bakwin et al. [2004] used
NCAR/NCEP Reanalysis model data [Kalnay et al., 1996] to
estimate rWFT . Lai et al. [2006a] compared monthly rWFT

values predicted by the NCEP Reanalysis and European
Center for Medium‐Range Weather Forecasts Reanalysis
(ECMWF ERA‐40). Predicted �WFT values showed very
similar seasonal patterns and their monthly values generally
agreed within 0.1 mol m−2 s−1. This agreement lent support
to using predicted rWFT values from the NCEP Reanalysis.
Bakwin et al. [2004] used monthly means of the absolute
value of daily vertical velocity to represent �WFT in their
model calculation. Their approach increased themagnitude of
monthly averaged rWFT values, but no physical interpreta-
tion was given as to why absolute values of daily rWFT were
used. Lai et al. [2006a] suggested using only negative (sub-
sidence) daily rWFT values from the NCEP Reanalysis model
data. Their rationale was consistent with the equilibrium BL
hypothesis that the ABL dynamics reach a steady state when
averaged over synoptic events [Betts and Ridgway, 1989;
Betts, 2000]. This assumption is more likely to be valid when
a high‐pressure system prevails, in which case entrained air
(negative vertical transport) allows the ABL to grow.Helliker
et al. [2004, 2005] showed that by including only values in
fair weather conditions (when subsidence dominates), the
magnitude of rWFT increased and estimates of regional CO2

fluxes in general had a better agreement with tower fluxes.
This choice of negative daily rWFT values was analogous toT
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the argument of constraining the analysis to fair weather
conditions.
[15] To account for the seasonal rectifier effect, we

obtained monthly average ABL heights from the ECMWF
Interim Analysis for each of the 4 study areas. We then
interpolated rWFT values to the top of the ABL height
following the suggestion by Lai et al. [2006a].

2.5. EC‐MOD Upscaling

[16] Xiao et al. [2008, 2011] used a data‐driven approach to
upscale flux observations from towers to the continental scale
and produced continuous NEE estimates with high spatial
(1 km) and temporal (8 day) resolution for the conterminous
United States over the period 2000–2006. These continuous
flux fields are constrained by EC flux measurements and
MODIS data streams, and are referred to as EC‐MOD here-
after. In this study, we extracted windows (or regions) of
different sizes (100 km2, 101 km2, 102 km2, …, 105 km2)
surrounding each of the four towers (Table 1 and Figure 1)
from the EC‐MOD flux estimates [Xiao et al., 2011]. The
EC‐MOD approach provides estimates of ecosystem carbon
exchange without considering fossil fuel emissions in each

pixel. Therefore, for each flux tower, a change in the
EC‐MOD predicted NEE among the spatial windows (100–
105 km2) most likely reflects changes in land cover, phenol-
ogy, and micrometeorological conditions away from the
tower.

3. Results

3.1. CO2 Mixing Ratios in the Surface Layer and Free
Troposphere

[17] Time series of CO2 mixing ratios in the surface layer
were constructed from 16 to 20 midafternoon air samples
each month. This discrete sampling strategy has been shown
to adequately capture major mass exchange events that are
most likely to impact seasonal patterns of surface photo-
synthesis and respiration [Bakwin et al., 2004; Helliker et al.,
2004; Lai et al., 2006a]. Figure 2 compared seasonal fluc-
tuations of CO2 mixing ratios observed in each of the four
study sites over the 6 years. Superimposed on the measure-
ments were smooth curve fittings of the data using the
approach developed by Thoning et al. [1989]. The curve fit
function consists of a second‐order polynomial and six

Figure 1. Maps of land use classification for the regions surrounding the three forest sites in our study.
Data were provided by NOAA Coastal Services Center (http://www.csc.noaa.gov).
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annual harmonics. Seasonal variations in CO2 mixing ratios
were much more pronounced for observations near the sur-
face than in the troposphere, a result arising primarily from
the strong influence of photosynthesis and respiration by
the underlying vegetation and soil microorganisms, but also
influenced by the atmospheric rectifier effect [Denning et al.,
2003]. Among the four sites, Harvard Forest and Wind River
Forest had the greatest and smallest magnitude in the seasonal
fluctuation respectively, whereas the Rannells Prairie had
the largest interannual variability (represented by 1 SD of

monthly averages; the greatest was 7.0 ppm inAugust) during
the 6 years.
[18] Figure 2 also shows the difference between smooth‐

curve CO2 mixing ratios in the surface layer and those in
the free troposphere over the 4 flux towers. The latter
was approximated by marine boundary layer (MBL) refer-
ence data extracted from the Globalview‐CO2 database
[GLOBALVIEW‐CO2, 2009; Masarie and Tans, 1995].
Aircrafts have been routinely used for measuring tropo-
spheric CO2 mixing ratios over Harvard Forest (data acces-

Figure 2. Midday CO2 mixing ratios measured in the atmospheric boundary layer (ABL) and the differ-
ences compared to the free troposphere (FT). Open circles represent samples collected in the canopy surface
layer fitted with a smooth curve (solid line). Values in the free troposphere were represented by the Global-
view MBL reference data (dotted line). Also shown are aircraft measurements above the Harvard forest
(dashed lines).
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sible at http://www.esrl.noaa.gov/gmd/dv/ftpdata.html). We
also compared this independent measure with the MBL ref-
erence data for this site.
[19] We assume that afternoon mixing ratios measured

on flux towers are representative of the ABL when integrated
on a month basis. By this interpretation, a CO2 drawdown
(Cm − CFT < 0) in the ABL can be explained as the seasonal

dominance by photosynthesis whereas a CO2 release (Cm −
CFT > 0) is associated with seasonal dominance by respira-
tion. This assumption was supported by results from tall
tower studies [Yi et al., 2001, 2004]. Figure 2 shows that
among the four sites, Rannells Prairie had the greatest mag-
nitude in the seasonal fluctuation (peak‐to‐peak CO2 draw-
down and release, 19.5 ppm), followed by Harvard Forest

Figure 3. (a) Examples of the virtual potential temperature (°K) profiles from the sounding measurements
near the Harvard Forest and Rannells Prairie sites. Sounding data at 00:00 GMT were extracted from the
Albany, New York (42.70°N, 73.83°W, elevation = 96 m) and Topeka, Kansas stations (39.07°N,
95.62°W, elevation = 270 m), respectively, in the database administered by the Department of Atmospheric
Science, University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html). The horizontal mark
in each profile indicates objectively determined maximum CBL height at that time, roughly equal halfway
between the bottom and the top of the transition layer [Fitzjarrald and Garstang, 1981]. The n value in each
figure shows the number of days when a capping inversion could be identified in each month. (b) Modeled
maximum CBL height for the four study areas from the ECMWF Interim Analysis. Each line represents a
composite estimate of the modeled values averaged over 6 years (2002–2007). For comparison, monthly
averages of the CBL height from the sounding measurements are also shown as symbols for the Harvard
Forest and Rannells Prairie sites.
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(17.6 ppm), Howland Forest (13.9 ppm) and Wind River
Forest (8.7 ppm). A precipitation anomaly in 2004 was
mainly responsible for the large seasonal variability in the
Rannells prairie during the study period [Lai et al., 2006b].
If this single year was excluded, Harvard Forest consistently
showed the greatest seasonal variability in the difference
between CO2 mixing ratios measured near the surface and
those in the free troposphere.
[20] Previous studies have cautioned about inferring

regional terrestrial fluxes from MBL reference data. Gerbig

et al. [2003] compared MBL reference data and aircraft
measurements of flight tracks over the United States and
southern Canada. These authors reported that aircraft CO2

mixing ratios measured 3 km aboveground were consistently
0–3 ppm greater than MBL reference values, leading them
to suggest that significant seasonal biases may occur if
MBL reference data were used to infer regional CO2 fluxes.
To address this potential bias, we compared CO2 differences
between the ABL and free troposphere from the two estimates
(Figure 2). Aircraft measurements taken at 1 km and 3 km
were used to represent average CO2 mixing ratios in the
ABL and the lower free troposphere respectively. The two
methods showed considerable discrepancies in the seasonal
drawdown and release of ABL CO2. In all but one year,
aircraft‐based estimates of summer CO2 drawdown were
smaller (∼5 ppm) than those derived from the flask/MBL
method. These discrepancies contribute proportionally to
the difference in the predicted fluxes by the equilibrium BL
method, as discussed later.

3.2. Boundary Layer Height and Flux Density

[21] At a given site, the height of the ABL varies diurnally
as a result of surface heating and radiative cooling. On sea-
sonal time scales, variations in the BL height have been shown
to covary with surface CO2 exchange, leading to biases in
regional estimates of carbon flux (rectifier effect [Denning
et al., 1996]). On days when the convective boundary layer
is well developed with an inversion cap that can relatively
easily be identified, a BL height can be objectively determined
from sounding profile measurements of potential temperature

Table 2. Modeled NEE Uncertainty Shown as the Difference
Between Each Scenario Relative to Those Generated by a Standard
Model Runa

2004
Month

BL Height
by Sounding

BL Height
at 700mb

BL Height
at 925mb

HV RP HV RP HV RP

1 −0.07 0.09 0.16 −0.44* 0.27 0
2 −0.02 0.11 −0.15 −0.72* 0.35 0
3 0.00 0.26* −0.14 −0.76* 0.24* 0.31*
4 −0.01 0.08 −0.08 −0.29* 0.19 0.3*
5 0.00 −0.03 −0.01 0.27* 0.05 −0.4*
6 0.02 0.03 0.05 0.74* −0.27* −1.38*
7 0.05 0.12 0.04 0.92* −0.5* −1.88*
8 0.06 −0.02 0.07 0.62* −0.4* −1.14*
9 0.03 0.01 0.03 −0.03* −0.08* 0.04
10 0.02 0.49* −0.13 −1.31* 0.12 0.38*
11 −0.02 0.40* −0.33* −2.36* 0.14 0.02
12 0.11 n/a −0.31* −1.71* 0.12 0

aUncertainty larger than 10% of the monthly average was marked with an
asterisk (HV, Harvard Forest; RP, Rannells Prairie).

Figure 4. Seasonal variations in monthly averages of flux density from 2002 to 2007 estimated by the
NCAR/NCEP and ECMWF Reanalysis data.
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and water vapor [Fitzjarrald and Garstang, 1981;Melgarejo
and Deardorff, 1974]. We examined virtual potential tem-
perature (�) profiles near Harvard Forest and Rannells Prairie
day‐by‐day, selecting the days when a capping inversion was
visually identifiable. We then separated these profiles by
months. An example of the � profiles is shown in Figure 3a to
demonstrate the concept. The number of days when a capping
inversionwas visually identifiable in amonth varied from 5 to
17 days near Rannells Prairie, and from 5 to 13 days near the
Harvard Forest. We calculated monthly average BL heights
from these daily sounding profiles for each of the months in

2004, and compared them to those derived from the ECMWF
model. Figure 3b shows this comparison. ECMWF‐modeled
BL depths showed a better agreement for the prairie site than
the Harvard Forest by capturing seasonal variations similar
to those in the sounding data. The ECMWF model over-
predicted the BL depth during summer at the Harvard Forest.
The sounding‐based BL depth showed a seasonal pattern that
was in close agreement with that reported by Freedman et al.
[2001], despite having higher values (1200 m versus 1000 m)
during summer months. Taken together, the standard devia-
tion of the sounding‐based BL depths often exceeded 300 m

Figure 5. Comparisons of (left) interannual and (right) seasonal NEE flux estimates by the CBL model,
EC‐MOD approach, and tower eddy covariance. Both modeled and measured CO2 fluxes were presented as
monthly averages. The maximum likely errors in the CBLmodel flux were shown as shaded areas in the left
column. The EC‐MOD model flux shown in the left column includes pixels representing an area on the
order of 104–105 km2 centering on the tower. The shaded areas in the right column represent 1 SD of the
ensemble average over the 6 years (without propagation) for the CBL model in gray, EC‐MOD of
100 km2 in green and EC‐MOD of 104–105 km2 in blue.
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around the monthly average. This uncertainty introduced
relatively small errors in the BL model NEE (Table 2).
[22] Bakwin et al. [2004] selected rWFT values at a fixed

height from NCEP Reanalysis (i.e., without considering the
rectifier effect) to estimate monthly NEE for an entire year in
four flux tower sites that include Harvard Forest. The NCEP
Reanalysis only predicted rWFT at discrete altitudes (e.g.,
700mb, 850mb and 925mb in the current study), unable to
resolve seasonal variations in the rate of vertical exchange
between the free troposphere and the ABL. In the present
study we considered the seasonal rectifier effect by scaling
rWFT to modeled maximum BL heights obtained from the
ECMWF Interim Analysis. Following Lai et al. [2006a], we
used a composite, monthly estimate of the modeled BL
heights to scale rWFT and account for the seasonal variabil-
ity in the depth of the CBL (Figure 3). This approach was
evaluated and shown to produce reasonable estimates of BL
heights that varied over seasons, and as a result, improved the
predicted seasonality of surface CO2 fluxes in the Rannells
Prairie in a previous study [Lai et al., 2006a].
[23] Figure 4 shows modeled seasonal variability in the

flux density. In general, the lowest rWFT (strongest subsi-
dence) occurred in spring. Howland Forest and Harvard
Forest had lower rWFT values than Rannells Prairie andWind
River. Within a site, interannual variability was generally
smaller than seasonal variability. The effect of this variability
on modeled fluxes was examined by a sensitivity analysis
discussed later.

3.3. Comparison of Net CO2 Fluxes

[24] Figure 5 showed the comparison between modeled
and measured monthly NEE. Here, negative fluxes indicate
carbon uptake by an ecosystem. This cross‐site comparison
showed three general patterns between BL modeled and
tower NEE fluxes. First, BL modeled wintertime NEE were
greater than EC‐MOD and tower NEE at all sites in almost all
the study years. Second, modeled andmeasured NEE showed
varying agreement among sites, with closer agreement found
in Rannells Prairie and Wind River Forest. Third, modeled
and measured NEE showed considerable disagreement in
the two northeastern U.S. forests resulting from different
reasons. Modeled summertime uptake, regardless of the
method used to calculate CO2 differences between ABL and
the free troposphere, was consistently smaller than tower
NEE in Harvard Forest. At the Howland Forest, the magni-
tude of modeled summertime uptake was similar to that
observed by the tower. However, modeled CO2 fluxes at this
site showed a lag in the peak of growing season uptake by
2 months behind that of tower measurements (from May to
July). Such a phase shift in the modeled seasonal fluxes was
not apparent in the comparison of the other three sites.
[25] The EC‐MOD fluxes averaged over an area of the

order of 104–105 km2 generally agreed with the results from
the BL model. In particular, both models predicted the same
disagreement compared to the tower NEE at the two north-
eastern U.S. forests. At all sites, modeled summertime NEE
decreased in magnitude as the size of the window surround-
ing the tower increased from 100 km2 to 105 km2 in the
EC‐MOD. The discrepancy between EC‐MOD and tower
NEE became greater as the window size increased. At the
Wind River site, increasing the size of the window drastically

augmented the discrepancy in the predicted seasonal pattern.
At the other three sites, by contrast, changes in the size of
the window did not substantially influence the differences
between EC‐MOD and tower NEE.

4. Discussion

[26] In this study we modeled regional CO2 fluxes by
inferring midday mixing ratios measured in the canopy sur-
face layer at 4 flux stations over 6 years. We applied the
equilibrium boundary layer concept to focus on monthly CO2

balance, using readily available, community model outputs to
provide a systematic, cross‐site evaluation of model perfor-
mance. This simple approach does not allow for investigating
biological controls of surface fluxes over periods that are
shorter than synoptic scales. However, a multiyear compari-
son provides useful information for understanding the influ-
ence of climate forcing on interannual variability of land
surface fluxes. A cross‐site synthesis enables us to further
distinguish uncertainties associated with inherent model
assumptions from representation errors associated with
spatial heterogeneity near a flux tower. To put our interpre-
tation of the model NEE in context, we performed a suite
of uncertainty analyses.

4.1. Sensitivity and Error Analyses

4.1.1. Uncertainty Associated With Smooth Curve
Fitting
[27] To evaluate the effect of smooth curve fitting to the

CO2 time series on the modeled NEE, we reran the model
using flask CO2 mixing ratios (without smooth curve fitting)
and compared the modeled NEE with a standard run (smooth
curve fitted CO2 time series). Using smooth curve CO2 time
series generally resulted in NEE differences < 0.5 mmol m−2

s−1 in the three forest sites, and < 1.0 mmol m−2 s−1 in the
Rannells Prairie. These errors were comparable to other types
of errors (Figure 6, discussed later). Modeled NEE differ-
ences randomly clustered around zero (the largest mean was
−0.04 ± 0.48 mmol m−2 s−1 among the four study sites),
suggesting that there was no systematic bias in the modeled
NEE with respect to smooth curve fitting. Smooth curve fit-
ting also did not influence the seasonal pattern in the model
NEE, consistent with the results shown by Lai et al. [2006a].
4.1.2. Uncertainty Associated With Error Interactions
in the Equilibrium BL Model
[28] The simplified equilibrium BL model predicts fluxes

as the product of two parameters: flux density and the CO2

mixing ratio gradient between the mixed layer and the free
troposphere. This two‐parameter model makes error inter-
action analysis relatively straightforward.We allow the errors
in the two parameters to interact, and consider 4 combinations
of the interaction between errors around the two parameters,
namely, positive × positive, positive × negative, negative ×
positive and negative × negative. For each interaction, we
reran the model and calculated monthly fluxes at each site for
all 6 years. For this analysis, errors associated with mixing
ratios were evaluated by altering measured values by the
instrument precision (±0.5 ppm). Errors associated with flux
density were evaluated by ±1 SD of the ensemble monthly
average for the 6 study years. The largest errors found among
the 4 interaction runs were shown as shaded areas in Figure 5.
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4.1.3. Uncertainty Associated With the Fair Weather
Assumption
[29] We performed a second set of uncertainty analyses to

account for the potential errors in the estimate of BL height
and the fair weather assumption imposed by the equilibrium
BL model. By employing the equilibrium BL concept our
approach assumed that an idealized mixing layer model was
able to produce NEE fluxes representative of a period aver-
aged over synoptic weather events, an assumption that has not
been verified. A major issue with the assumption is deter-
mining when an idealized equilibrium BL exists. de Arellano
et al. [2004] used aircraft measurements and a mixed layer
model to investigate the ABL CO2 budget on the diurnal
scale. Under an idealized condition, these authors found
that surface CO2 fluxes and air entrainment at the top of the
ABL were nearly in balance. The equilibrium BL model

hypothesizes that the ABL reaches a steady state between
surface fluxes, cloud effects on radiation, and subsidence
of the overlying free troposphere when averaged over longer
timescales [Betts and Ridgway, 1989; Betts, 2000]. This
assumption is more likely met only on days of fair weather.
An idealized mixed layer model breaks down outside these
limited boundary layer conditions when the horizontal con-
vection cannot be assumed negligible. Teixeira et al. [2008]
reviewed some general challenges in the parameterization
of the atmospheric boundary layer. To evaluate the model
sensitivity associated with this assumption, we arbitrarily
defined fair weather conditions as days of measurable pre-
cipitation of less than 1 mm, and then removed air samples
collected on days when measured precipitation was > 1 mm.
This resulted in 30% of the samples being excluded from the
complete CO2 data. We reran the model and compared the
results to those generated by a standard model run (all
weather, seasonally variable flux density). Figure 6a shows
the NEE difference from this comparison. Subsampling CO2

data notably altered the modeled NEE, particularly in months
when the number of data points was significantly reduced in
the model. The errors randomly clustered around zero (the
largest mean was −0.28 ± 0.54 mmol m−2 s−1 among the four
study sites), suggesting that there was no systematic bias in
our modeled CO2 fluxes with respect to the fair weather
assumption. Our analysis suffered from the limited number of
flask air samples; despite high precision and additional
information (stable isotope analysis). In that regard, there is a
real advantage of conducting in situ, high precision CO2

mixing ratio measurements at flux towers [Wang et al.,
2007; Yi et al., 2004].
[30] Because the BL model only considered fair weather

conditions, modeled CO2 fluxes should strictly be compared
to tower NEE measured in the same condition [Lai et al.,
2006a]. However, as Lai et al. [2006a] pointed out, sub-
sampling the fair weather tower NEE only resulted in modest
differences when compared to those including all weather
conditions. In the present study, we recalculated monthly
average tower NEE after excluding days when daily cumu-
lative precipitation was > 1 mm for the three forest sites (Lai
et al. [2006a] performed a similar analysis for the Rannells
Prairie). We found that subsampling the fair weather only
resulted in modest differences (<5%) when compared to all
weather NEE. This small difference likely resulted partially
from the fact that many of the gap‐filling functions were
developed on the basis of fair weather conditions, and the
gap‐filled data only represented a small portion of the com-
plete data. Lai et al. [2005] provide a review of the gap‐filling
methods used in our four study sites.
4.1.4. Uncertainty Associated With the BL Height
[31] A second major issue with respect to the equilibrium

BL assumption is how to obtain a representative estimate of
the BL height, as a well‐developed capping inversion in the
ABL does not exist on a daily basis. Denning et al. [2008]
compared simulated PBL depth with radar profile measure-
ments at the WLEF tower in northern Wisconsin, United
States, observed during 1999. Their results showed a general
trend that underestimates the PBL depth during growing
season. The authors concluded, “it is unlikely many models
can reproduce the rapid changes and strong diurnal and
synoptic variations in the PBL depth.” Determining an

Figure 6. Potential errors in the model CO2 fluxes. Errors in
the BL model were calculated by three scenarios: (a) using
air samples collected only under fair weather conditions,
(b) assuming constant flux density at 700 mb level, and
(c) assuming constant flux density at 925 mb level. Errors
were represented by the NEE difference from the standard
model run (all weather, seasonally variable flux density;
see Figure 5). (d) NEE difference in the EC‐MOD model
between two spatial scales (100 km2 minus 104 km2).
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objective BL height for an averaging time interval over which
the ABL approaches an equilibrium state presents a major
source of uncertainty in our model.
[32] In the present study, we used modeled maximum BL

height from the ECMWF Interim Analysis to represent the
average ABL depth on monthly time scales. The modeled
maximum BL height likely exceeded average BL height at a
given site. For example, Freedman et al. [2001] reported a
seasonal trend of the mixed layer height over the Harvard
Forest. They observed highest mixed layers (∼1350 m)
occurring in the late spring, near the time of maximum
springtime sensible heat flux. The ECMWF composite BL
height showed a seasonal variation ranging from 950 m
during the winter months to 1900 m during the summer.
Holzworth [1972] reported a range of the BL height in
Albany, NY, changing from 900 m during the winter to
1800 m during the summer. The ECMWF composite esti-
mates agreed with those reported by Holzworth [1972], but
were contrary to the seasonal pattern shown by Freedman
et al. [2001]. Freedman et al. [2001] discussed the disparity
in the seasonal pattern of the BL height observed for this site.
According to Freedman et al. [2001], Holzworth’s [1972]
estimates of the BL height assumed a completely adiabatic
mixing, giving a maximum estimate similar to those in the
ECMWF Interim Analysis. This may explain why ECMWF
model BL heights were higher in the summer when com-
pared to the sounding data at this site. By contrast, the com-
posite BL height from the ECMWF Interim Analysis agreed
very well with the sounding observation in the Rannells
Prairie. Monthly variations around the average BL height
often exceeded 300 m in the sounding data. This uncertainty
leads to the need of a careful evaluation for its effect on the
modeled NEE.
[33] We scaled rWFT to the monthly BL height estimated

from the sounding data. We then reran the model for all the
months in 2004. The potential errors of relying on community
model outputs (i.e., scaling rWFT to the modeled BL heights)
were investigated by using the BL depths from the sounding
data for all months in 2004 (the year with most pronounced
seasonal variations in the tower NEE during our study period,
see Figures 5). Table 2 showed the NEE difference calculated
as the modeled NEE subtracted by those generated from
a standard model run. Replacing ECMWF BL heights by
the sounding data generally resulted in NEE differences
of less than ±0.1 mmol m−2 s−1, a less pronounced error
when compared to other sources of uncertainty (Table 2
and Figure 6). Combining sounding measurements wher-
ever available with large‐scale, community model outputs
provide a crosscheck of the BL height estimates in atmo-
spheric inversion analyses.

4.2. Sensitivity of Modeled NEE to the Seasonal
Rectifier Effect

[34] ECMWF model data and sounding measurements
both showed strong seasonal patterns of the ABL depth with
higher values near the summer and lower values during the
winter months. This seasonal covariance between NEE and
the depth of ABL (the rectifier effect) has been shown as a
major source of uncertainty in the atmospheric inversion
analysis [Denning et al., 1995, 1996; Law and Rayner, 1999].
To this end, we conducted two model scenarios to demon-
strate the effect of neglecting seasonal rectifier forcing on the

modeled NEE. We evaluated rWFT outputs at 700mb
and 925mb levels (roughly corresponding to altitudes 2560m
and 720 m asl respectively) from the NCEP Reanalysis to
calculate NEE for an entire year without scaling to seasonal
dynamics of BL depths. That is, we calculated NEE for the
entire year using fixed rWFT values at either maximum
(summer) or minimum (winter) BL heights, and compared the
results to those generated by a standard model run. Figures 6b
and 6c show the results of this comparison, respectively, for
the entire study period. Neglecting seasonal variations in
the BL height generally resulted in a NEE difference in the
range ±0.5 mmol m−2 s−1, except for the Rannells Prairie,
where the largest difference often exceeded 1.0 mmol m−2 s−1

(Table 2). These results suggest it is important to account for
the rectifier effect when applying the BL model in the North
American Great Plains. By contrast, the seasonal rectifier
effect is less pronounced (seasonal variations in the BL height
and NEE are out of phase) in the two northeastern forest
regions. Freedman et al. [2001] showed that in the U.S.
eastern deciduous forests, highest mixed layers occur in
the late spring, just before leaf emergence, months before
maximum carbon uptake andminimumBLCO2. This highest
BL depth corresponds with the maximum springtime sensible
heat flux and the highest Bowen ratio. We postulate that the
ECMWF’s overprediction of summertime BL heights likely
results from a misrepresentation of the deciduous phenology.
Furthermore, neglecting the rectifier effect resulted in sys-
tematic seasonal biases in the model NEE. At all sites,
without considering seasonal variations in the BL height,
the BLmodel tended to overestimate summer net CO2 uptake
and underestimate wintertime fluxes. The stronger the recti-
fier forcing, the more pronounced is the NEE bias in the
model, consistent with the pattern shown in the GCM trans-
port inversion study [Gurney et al., 2003].

4.3. Comparison of Modeled NEE With the EC‐MOD
Approach

[35] We compared the BL model NEE with the EC‐MOD
fluxes at two spatial scales. The results were shown as the
difference (100 km2 minus 104 km2) in Figure 6d. The two
scales were selected to resemble those of the tower and BL
modeled NEE, respectively. NEE differences between the
EC‐MOD scenarios mainly reflect changes in the forest
cover, land use type and environmental forcing that drive the
underlying biotic activity [Xiao et al., 2011]. The discrepancy
between tower NEE and EC‐MOD fluxes generally became
greater as the window included a larger area (Figure 5). At
flux stations located in areas of high heterogeneity (diversity
of plant species, stand age, microclimate, topography, soil
types, land use), such spatial variation might have enhanced
the discrepancy between EC‐MOD NEE. This can explain
the larger variation found in Rannells Prairie, Wind River,
and the Howland Forest (Figure 6d). For the Harvard Forest,
summertime CO2 uptake decreases as the size of the window
increases, consistent with the results predicted by the BL
model. Fossil fuel emission likely contributes to the dis-
crepancy at this site, as has been shown by previous studies
[Bakwin et al., 2004; Lai et al., 2004]. According to the 1 km‐
resolution MODIS land cover map, urban areas account for
5.6% of the region (104 km2) but the percentage drops to
nearly 0 when the footprint is 103 km2 or smaller centered on
the Harvard Forest flux tower. Because EC‐MOD does not
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consider fossil fuel emission, Figure 6d suggests biogenic
factors also contribute to the discrepancy between the tower
and modeled CO2 fluxes.

4.4. Attributes of the Differences Between Modeled
and Tower NEE

[36] The two independent modeling approaches show
remarkable agreement for the regional‐scale estimate of
net CO2 fluxes during the study period (Figure 5). This
multitechnique, cross‐site comparison provides insights into
causes responsible for the observed discrepancy, and sheds
light on the deficiency of each model. We observed two types
of systematic differences between modeled net CO2 fluxes
and tower measured NEE. The first type of systematic dif-
ferences was found in the wintertime fluxes, in which BL
model fluxes were consistently larger than tower NEE at all
but Wind River site. The EC‐MOD approach consistently
predicted wintertime fluxes closer to the tower measure-
ments than the BL model, irrespective of EC‐MOD spatial
scale. This discrepancy of wintertime fluxes at least partially
resulted from the greater anthropogenic (fossil fuel CO2,
domestic heating from biomass burning, etc) influence on
regional mixing ratios than tower fluxes, which has been
demonstrated previously in the Harvard Forest [Bakwin et al.,
2004] and Rannells Prairie [Lai et al., 2006a]. Using carbon
monoxide (CO) mixing ratio measurements and an emission
ratio CO/CO2 = 20:1 (ppb/ppm), these authors estimated
monthly combustion of 0.3–1.0 mmol m−2 s−1 and 0–
0.5 mmol m−2 s−1 at the two sites, respectively. Considering
the contribution of fossil fuel CO2 fluxes helps reconcile the
discrepancy reported here. Wind River Forest appears to be
less susceptible to the direct influence of anthropogenic CO2.
We did not conduct the fossil CO2 analysis for the Howland
Forest. Therefore we can only speculate that fossil fuel CO2

fluxes may also be an important contributor to the modeled
winter fluxes in that region.
[37] The second type of systematic differences results from

the scale mismatch between tower and model footprints.
Inversion models relying on mixing ratio observations have
often reported smaller fluxes when compared to tower‐based
NEE measurements [Chen et al., 2008; Desjardins et al.,
1992]. Gioli et al. [2004] compared tower and aircraft‐
based eddy covariance fluxes in 5 European regions and
found good agreement between the two types of measure-
ments only when flights were at heights comparable to the
tower height over relatively homogeneous stands. Their
findings clearly demonstrate the inherent difference, as a
result of the footprint effect, between tower and inversion
estimates of CO2 fluxes. The EC‐MOD approach, when
evaluated in a wide range of spatial scales, provides an
excellent tool to crosscheck inversion results. In turn, com-
bining tower and BL flux estimates offers constraints at two
distinct spatial scales for remote sensing‐based upscaling
approaches.
[38] Merits and limitations of each approach have been

discussed in depth elsewhere [Baldocchi et al., 2001;Dolman
et al., 2009; Gamon et al., 2006b; Mahrt, 1998; Xiao et al.,
2008, 2011]. Factors that contribute to the uncertainty in
tower eddy CO2 fluxes include but are not limited to:
instrument deficiency (e.g., loss of spectrum energy under
low turbulence), oversimplification in theory (e.g., zero
divergence in complex terrain) and representative errors (e.g.,

tower locations not representative of dominant vegetation
types). Uncertainties associated with the inverse modeling
approach employed here include: errors in the CO2 mixing
ratio measurements (both near the surface and in the free
troposphere), unreliable estimates of boundary layer heights
and vertical transport across the top of the atmospheric
boundary layer, and the assumption of an equilibrium
boundary layer over time periods longer than synoptic scales.
There are several sources of uncertainty associated with
EC‐MOD flux estimates, including uncertainties in the eddy
flux measurements, land cover, model structure, representa-
tiveness of the AmeriFlux site locations [Xiao et al., 2008,
2010], and finally, the exclusion of fossil CO2 fluxes by the
EC‐MOD.
[39] Sensitivity analyses suggested that the discrepancy

between modeled and tower NEE cannot be explained by
considering uncertainties in the modeling approach alone.
The phase shift in the modeled NEE at the Howland Forest
likely reflects contributions from deciduous forests in the
region and to the south. This seasonal signal from the U.S.
northeastern deciduous forests was strongly evident in the
NEE measurements from the Harvard Forest. The location
of flux towers is often selected to minimize anthropogenic
influences on NEE measurements and to be consistent with
micrometeorological requirements. In this way, tower EC
measurements can be used to investigate baseline, bio-
physiological relationships that shed light on ecosystem
response to changes in environmental conditions; however,
they may not be representative of the regional distribution
of vegetation.

4.5. Toward Equilibrium H2O and CO2 Exchange
in the ABL at Monthly Time Scales

[40] The Equilibrium boundary layer concept [Betts, 2000;
Priestley and Taylor, 1972; Raupach, 1991] was first
developed to predict surface evaporation. In the absence of
horizontal convection, CBL moisture roughly reaches a bal-
ance between surface fluxes and entrainment. The basic
assumption allowing the CBL to converge to equilibrium
evaporation is rarely achieved on a diurnal time scale
[Raupach, 2000], requiring averaging integrals over longer
time (several days to weeks). van Heerwaarden et al. [2009]
used model data to examine equilibrium evaporation on
diurnal time scales. These authors showed that evaporation
could approximate equilibrium but only momentarily. The
exact averaging time interval reaching an equilibrium ABL is
uncertain, and is further confounded by the synoptic weather
patterns at selected study sites. The lack of a well‐defined
averaging interval complicates the interpretation of the
modeled NEE.
[41] In this study we performed model calculations of

monthly average NEE on the basis of daily CO2 mixing
ratios; missing data were gap‐filled by linear interpolation
between observed values. Modeled NEE were compared
with tower NEE assuming ABL CO2 exchange approaches
an equilibrium state on the monthly time scale. By doing so
we directly smooth out daily and synoptic variability in the
weather and biotic processes. Here we explore ideas of why
monthly average NEE may be appropriate.
[42] Helliker‐Betts‐Berry applied the equilibrium BL

concept to estimate CO2 fluxes by coupling them with H2O
exchange in the CBL over the WLEF flux tower [Betts et al.,

DANG ET AL.: CO2 INVERSE MODELING AND TOWER NEE G03036G03036

13 of 17



2004;Helliker et al., 2004, 2005]. Other studies [e.g., Bakwin
et al., 2004; Desai et al., 2010; Lai et al., 2006a] applied the
equilibrium BL model to estimate NEE at monthly intervals
but they did not adequately provide explanations to justify the
use of monthly averages. One of the reasons that may explain
the agreement between modeled and measured NEE is the
common radiative forcing that drives the variations in surface
CO2 exchange and the ABL dynamics. This is analogous
to the gap‐filling strategy to replace missing data points in
the eddy covariance measurements as a result of inclement
weather. Gap‐filling is desired and an important part of the
standardization to enable annual carbon budget estimates and
facilitate cross‐site comparisons [Baldocchi, 2008; Papale
et al., 2006; Reichstein et al., 2005], and has been shown to
have a modest impact on annual sums of NEE [Moffat et al.,
2007]. The majority of gap‐filling methods use ‘ecophysio-
logically sound’ nonlinear regressions parameterized on the
basis of fair weather conditions (i.e., some variations of light
response function for gross primary production (GPP) and
temperature function for ecosystem respiration (Re), see the

review byMoffat et al. [2007]). Monthly averages of the gap‐
filled data therefore represent a mean ecosystem response
to the energy (radiation and temperature) forcing.
[43] Radiative forcing also drives the BL dynamics, most

pronounced diurnally (surface heating and buoyancy) and
seasonally (rectifier). Denning et al. [2008] analyzed simu-
lated and observed PBL depth at the WLEF tower. These
authors showed that the monthly mean PBL depth, ensemble‐
averaged from daily estimates of mixed‐layer depth by time
of day in 1998, reproduced the diurnal PBL pattern typically
observed only during fair weather conditions. This diurnal
pattern of radiation (or photosynthetic photon flux density)
was shown as a strong forcing that explains a great deal of the
temporal variability in terrestrial CO2 fluxes [Baldocchi et al.,
2001; Katul et al., 2001; Mahecha et al., 2010]. Katul et al.
[2001] used power spectrum analysis to investigate the rela-
tionship between surface H2O exchange and net radiation
(Rn) in a loblolly pine (Pinus taeda L.) plantation at Duke
Forest, North Carolina, United States. They showed that the
relationship between Rn and latent heat fluxes (LE) was poor

Table 3. Relationship of Interannual Variability Between Precipitation and NEE for the Four Study Sitesa

Harvard Forest Howland Forest Wind River Rannells Prairie

Tower NEE Slope = −1.61,
R2 = 0.71, F = 0.04

Slope = −0.16,
R2 = 0.22, F = 0.35

Slope = 0.21,
R2 = 0.68, F = 0.09

Slope = −0.94,
R2 = 0.50, F = 0.11

Modeled NEE Slope = −0.82,
R2 = 0.23, F = 0.34

Slope = −0.02,
R2 = 0.00, F = 0.97

Slope = 0.28,
R2 = 0.55, F = 0.09

Slope = −0.82,
R2 = 0.66, F = 0.05

aSlopes indicate rates of change from a linear regression model NEE = slope × Precipitation + intercept.

Figure 7. Relationship of interannual variability between precipitation and NEE. The precipitation and
NEE values are sums over the growing season at each site (Harvard Forest and Rannells Prairie: May–
September; Howland Forest and Wind River: March–September).
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on half‐hourly time scales, but a strong relationship exists
between monthly LE and monthly Rn. During months of high
Rn (summer), the relationship between LE and Rn was well
described by equilibrium evaporation.Katul et al. [2001] also
found a similar relationship for NEE. Their observations
provide supporting evidence that monthly averages may be
appropriate to aggregate NEE in the context of an ABL
inversion analysis. We postulate that the radiation forcing
acts commonly on the evolution of the ABL and NEE,
enabling a direct comparison with the equilibrium BL esti-
mates when NEE fluxes are aggregated monthly, despite the
limitation that an idealized model is theoretically valid only
in fair weather conditions.

4.6. Relationships Between NEE and Precipitation

[44] From 2002 to 2007, we found that growing season
precipitation was an important factor explaining the inter-
annual variability of NEE in all sites but Howland Forest
(Table 3). Figure 7 and Table 2 show the comparison between
these relationships. It has been well documented that the
productivity of tallgrass prairies is highly sensitive to water
availability [Kim and Verma, 1991; Knapp, 1984]. Urbanski
et al. [2007] investigated the influence of soil moisture on
interannual variability of NEE at the Harvard Forest and
found weak correlations in measurements collected from
1992 to 2004, which contradicts the findings in the present
study. Wind River Forest showed a negative relationship
between the interannual variability of NEE and precipita-
tion when compared to the other three sites. That is, higher
moisture availability resulted in more carbon loss from the
ecosystem. This excess loss of carbon during the growing
season likely resulted from enhanced decomposition of sur-
face litter and dead woody tissues, as summer moisture is
more important to near surface soil microbes than trees in this
ecosystem. For all sites, modeled NEE generally showed
a weaker sensitivity to water availability. These findings
demonstrate the need to carefully consider the effect of
drought in the coupled carbon‐climate models, as the carbon‐
water relationship appears to vary among sites and between
scales. We did not find linear relationships between
EC‐MOD CO2 fluxes and precipitation. Upscaled NEE by
the EC‐MODhad significantly smaller interannual variability
compared to the other two NEE estimates (Figure 5), and did
not appear to covary with the interannual variability in the
growing season precipitation.

5. Conclusions

[45] A reliable regional estimate of carbon exchange is
highly relevant to management and policy decisions. Efforts
to improve our ability to quantify and reduce uncertainties of
regional CO2 budgets should be encouraged. In this paper we
show that the boundary layer inversion approach can provide
an intermediate‐level analysis to complement aircraft or sat-
ellite based integration efforts for estimating the continental
carbon budget. We suggest that the radiation forcing acts
commonly on the evolution of the ABL and NEE, enabling a
direct comparison with the equilibrium BL estimates when
NEE fluxes are aggregated monthly. We demonstrate the
site‐specific importance of the seasonal rectifier effect on the
regional carbon balance estimate using atmospheric inversion

technique. Neglecting the rectifier effect results in systematic
seasonal biases in modeled NEE. At all sites, without con-
sidering seasonal variations in the BL height, the BL model
tends to overestimate summer net CO2 uptake and underes-
timate wintertime fluxes. The stronger the rectifier forcing,
the more pronounced is the NEE bias in the model. Our
results suggest it is important to account for the rectifier effect
when applying the boundary layer model in the Great Plains.
We show that an idealized BL model of simple param-
eterizations, when applied in a systemmanner across multiple
sites, can provide valuable insights to add to the interpretation
of tower flux observations. We suggest that future studies
need to consider a true model fusion approach by combining
multiple upscaling methods, where new insights will likely
be drawn to develop routine, diagnostic tools that contribute
to our understanding of the seasonal and interannual vari-
ability of surface CO2 fluxes.
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