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a b s t r a c t

Understanding and quantitatively evaluating the regional impacts of climate change and variability (e.g.,
droughts) on forest ecosystem functions (i.e., water yield, evapotranspiration, and productivity) and ser-
vices (e.g., fresh water supply and carbon sequestration) is of great importance for developing climate
change adaptation strategies for National Forests and Grasslands (NFs) in the United States. However,
few reliable continental-scale modeling tools are available to account for both water and carbon dynam-
ics. The objective of this study was to test a monthly water and carbon balance model, the Water Supply
Stress Index (WaSSI) model, for potential application in addressing the influences of drought on NFs
ecosystem services across the conterminous United States (CONUS). The performance of the WaSSI model
was comprehensively assessed with measured streamflow (Q) at 72 U.S. Geological Survey (USGS) gaug-
ing stations, and satellite-based estimates of watershed evapotranspiration (ET) and gross primary pro-
ductivity (GPP) for 170 National Forest and Grassland (NFs). Across the 72 USGS watersheds, the WaSSI
model generally captured the spatial variability of multi-year mean annual and monthly Q and annual ET
as evaluated by Correlation Coefficient (R = 0.71–1.0), Nash–Sutcliffe Efficiency (NS = 0.31–1.00), and nor-
malized Root Mean Squared Error (0.06–0.48). The modeled ET and GPP by WaSSI agreed well with the
remote sensing-based estimates for multi-year annual and monthly means for all the NFs. However, there
were systemic discrepancies in GPP between our simulations and the satellite-based estimates on a
yearly and monthly scale, suggesting uncertainties in GPP estimates in all methods (i.e., remote sensing
and modeling). Overall, our assessments suggested that the WaSSI model had the capability to recon-
struct the long-term forest watershed water and carbon balances at a broad scale. This model evaluation
study provides a foundation for model applications in understanding the impacts of climate change and
variability (e.g., droughts) on NFs ecosystem service functions.

Published by Elsevier B.V.

1. Introduction

Forest water yield (Q), evapotranspiration (ET), gross primary
productivity (GPP), and net primary productivity (NPP) are the crit-
ical ecosystem functions (Xiao et al., 2008, 2010; Jung et al., 2010;
Sun et al., 2011a, 2011b) that sustain many ecosystem services,
such as stable and high quality water supply, carbon sequestration,
climate regulation, and biodiversity conservation. For example,

over half of U.S. fresh water supply originates from forests and
grasslands (Brown et al., 2008; Sun et al., 2015a, 2015b). It is esti-
mated that forests and grasslands offset 10–40% of annual carbon
emissions from burning fossil fuels each year of the U.S. (Ryan
et al., 2010; McKinley et al., 2011; Xiao et al., 2011). However, with
a changing climate, the tightly coupled water and carbon cycles are
changing from the leaf to global scales (IPCC, 2014). Consequently,
there are concerns about the diminishing potential for forest
ecosystem services under a changing environment (Zhao and
Running, 2010).

To meet the American publics’ demand for stable and abundant
water, timber supply, recreation, and other ecosystem goods and
services, the U.S. National Forest and Grassland System (NF) was

http://dx.doi.org/10.1016/j.foreco.2015.03.054
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established over a century ago. Now the NF lands cover about
781,000 km2 (193 million acres) or about 8.8% of the total land area
of the U.S. The top priority of the USDA-Forest Service is to sustain
ecosystem health, diversity, and productivity to meet the needs of
present and future generations. However, ongoing climate variabil-
ity and change and related environmental impacts have exerted
serious threats to NFs stability and thus their ability to deliver
ecosystem services (NCA, 2014). A comprehensive quantitative
assessment of global change impacts, particularly for climate
extremes (e.g., droughts), on the ecosystem services of NFs is
urgently needed for land managers and policy makers to develop
sound mitigation and adaptation strategies (Vose et al., 2012;
NCA, 2014).

Over the last decade, numerous tools have been developed to
quantify regional carbon fluxes and stocks including
machine-learning techniques (Xiao et al., 2008, 2010, 2011; Jung
et al., 2009; Zhang et al., 2011), remote sensing-based diagnostic
models (Mu et al., 2007), process-based ecosystem models (Xiao
et al., 2009; Tian et al., 2010), atmospheric inverse modeling
(Deng et al., 2007) and inventory methods (Pacala et al., 2001).
These approaches are typically not designed to simulate water
and carbon fluxes using watersheds as the smallest modeling unit.
In addition, the short temporal span of remote sensing data of land
cover and biophysical parameters needed for model application
(e.g. 10 years) will limit our ability to explore historical drought
impacts on water and carbon cycles. Considering the limitations
of these methods, Sun et al. (2011b) developed a water-centric
monthly scale model (WaSSI) that operates at 2103 Watershed
Boundary Database (WBD) 8-digit Hydrologic Unit Code (HUC)
watersheds across the conterminous U.S. (CONUS). Algorithms
were derived on the basis of empirical water and carbon flux mea-
surements from the FLUXNET network. The WaSSI model has been
used to quantitatively assess the combined or separate effects of
climate change, land cover change, and population dynamics on
past and future water supply stress and ecosystem productivity
over the CONUS, and can be easily implemented because few input
climatic variables are needed and no model calibration is neces-
sary. The model has been applied in Mexico, China and some
African countries (Sun et al., 2008, 2011b; Lockaby et al., 2011;
Caldwell et al., 2012; Averyt et al., 2013; Tavernia et al., 2013;
Liu et al., 2013; Marion et al., 2014; McNulty et al., 2015).

Recently, the WaSSI model was upgraded to a higher spatial
resolution of 12-digit HUC (88,000 watersheds) compared to the
previous 8-digit HUC (2103 watersheds) across the CONUS. The
overall goal of this study was to validate the improved version of
the WaSSI, and to then use the model to examine impacts of
long-term climate variability on Q, ET and GPP, under droughts

in selected NFs. The specific objectives of the study were: (1) to
evaluate model performance by comparing WaSSI estimates to
the measured Q at 72 U.S. Geological Survey (USGS) gauges within
the 170 NFs (1990–2009); (2) to evaluate model performance by
comparing simulated ET (2000–2012) and GPP (2001–2012)
against satellite-based estimates for 170 NFs; and (3) to recon-
struct a long-term Q, ET and GPP time-series (1960–2012) of the
170 NFs over the CONUS.

This paper reports multi-year comprehensive model validation
results. Model application to study the drought impacts on NFs is
found in a follow-up paper in this issue (Sun et al., 2015b).

2. Methods

2.1. Study area

The research area for this modeling study was the NFs over the
CONUS, mainly including 150 National Forest and 20 National
Grasslands. The NFs (see Supplementary materials s1) cover about
approximately 781,000 km2 (193 million acres), or 9% of the
CONUS land area. More than 70% NFs are located in the
Northwest and the Southwest regions (Fig. 1a). Climate, topogra-
phy, and vegetation cover vary dramatically among these 170
NFs. For example, mean annual precipitation varies from
300 mm yr�1 at the Crooked River National Grassland (the Oregon
State) to 3000 mm yr�1 at the Olympic National Forest in the state
of Washington (Fig. 1b). Eighty-five (50%) of the NFs had a
multi-year mean annual precipitation below 1000 mm yr�1 and a
multi-year mean temperature lower than 10 �C. Forty-six (27%)
of the NFs had mean annual precipitation and temperature ranging
from 1000 to 2000 mm yr�1 and from 10 to 20 �C, respectively.
Grasslands were found in the West and Southwest region with
mean precipitation below 600 mm yr�1.

2.2. The WaSSI model

The WaSSI model was originally designed and applied to the
southeastern U.S. at the USGS 8-digit HUC watershed scale to model
water supply and demand on an annual time-step (Sun et al., 2008)
and later it was improved to simulate both water and carbon bal-
ances at a monthly scale for the CONUS (Sun et al., 2011b;
Caldwell et al., 2012). An internet version of model and user guide
is available (http://www.forestthreats.org/research/tools/WaSSI).
The WaSSI model has been updated to operate at a monthly,
12-digit HUC scale. WaSSI is an integrated, process-based model that
describes key ecohydrological processes at a broad scale (Sun et al.,

Fig. 1. (a) Spatial distribution of the National Forest and Grassland System (NFs) over the CONUS and the 72 selected watersheds with streamflow gauges. The CONUS is
divided into nine regions Northwest (NW), West (W), Southwest (SW), West North Central (WNC), East North Central (ENC), Central (C), South (S), Southeast (SE) and
Northeast (NE). (b) Climate (multi-year mean annual precipitation and temperature) space of the NFs showing a large climatic gradient.
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2011a; Caldwell et al., 2012; Sun et al., 2015a, 2015b). It can predict
water and carbon balances, such as ET, soil water storage, Q, GPP and
NEE for each of eight land cover types within a given watershed, and
then aggregates these fluxes to the whole basin using area-weighted
averaging. Three sub-models are integrated within the WaSSI model
framework. The water balance sub-model computes ecosystem
water use (i.e., ET), and Q generated from each watershed. Herein,
Q is the amount of water yield ‘produced’ in each watershed assum-
ing that the water balances within each watershed are in isolation
without any flow contribution from upstream watersheds. The car-
bon balance sub-model simulates monthly carbon gains (GPP) and
losses (i.e., ecosystem respiration) in each watershed as functions
of ET and GPP, respectively (Sun et al., 2011b). The water supply
and demand sub-model routes and accumulates Q through the river
network according to topological relationships between adjacent
watersheds, subtracts consumptive water use by humans from river
flows, and compares water supply to water demand to compute the
water supply stress index. In this study, we focused on the model
performance in predicting Q, ET and GPP, thus only detailed informa-
tion about the sub-models of water and carbon balances is described
below. For a complete description of the WaSSI model, the readers
can refer to the WaSSI User’s Guide (http://www.forestthreats.org/
research/tools/WaSSI/WaSSIUserGuide_english_v1.1.pdf).

2.2.1. Water balance sub-model
The WaSSI model operates at a watershed scale assuming uni-

form climate across the watershed but with mixed land covers.
The model first partitions monthly precipitation into rainfall and
snowfall by watershed. A conceptual snow model (McCabe and
Wolock, 1999; McCabe and Markstrom, 2007) is employed for par-
titioning monthly precipitation based on the mean watershed ele-
vation and the monthly air temperature, estimating snow melt
rates, and calculating mean monthly snow water equivalent
(SWE). Snow accumulation is simulated and reported as one key
output variable. Critical parameters for the snow partitioning and
melting models are derived by model calibration for each USGS
Water Resource Region (WRR) by comparing predicted regional
monthly mean SWE to remotely sensed SWE from the Snow Data
Assimilation System (National Operational Hydrologic Remote
Sensing Center, 2004). Infiltration, surface runoff, soil moisture,
and baseflow processes for each land cover type are simulated by
the Sacramento Soil Moisture Accounting Model (SAC-SMA;
Burnash, 1995). The SAC-SMA model has been used successfully
by the National Oceanic and Atmospheric Administration (NOAA)
National Weather Service (NWS) for river flood forecasting for dec-
ades; and State Soil Geographic Data Base (STATSGO; Natural
Resources Conservation Service, 2012) derived SAC-SMA soil input
parameters to drive the model has been developed, tested, and
made available for the CONUS (Koren et al., 2003, 2005;
Anderson et al., 2006).

Monthly water loss as ET for each land cover type in each
watershed was first approximated as function of potential ET, leaf
area index (LAI), and precipitation (Sun et al., 2011a, 2011b). The
empirical regression model is the core of the water balance
sub-model and was derived from ecosystem-level ET measure-
ments by eddy covariance or sapflow techniques across more than
240 research sites spanning a large climatic gradient (Sun et al.,
2011a, 2011b). In addition to land cover diversity, management
practices also vary widely across these sites. Since ET may be over-
estimated under extreme water-limited conditions, ET calculated
by the regression model is further constrained. Within the WaSSI
model, the two-soil-layer SAC-SMA algorithm is used to compare
ET demand to soil water storage, and then limit ET if soil water
is not sufficient to meet the demand. Soil moisture for ET is with-
drawn sequentially from the upper soil layer tension water storage
(i.e., soil water tension between field capacity and the wilting

point), upper layer free water storage (i.e., soil water tension
between saturation and field capacity), and from the lower layer
tension water storage until the demand is met or until available
soil water has been depleted.

2.2.2. Carbon balance sub-model
Previous studies have suggested that ecosystem ET and GPP are

closely coupled at a monthly scale, and this simple linear relation-
ship has been found in a number of forest ecosystems (Law et al.,
2002; Xie et al., 2013). Sun et al. (2011b) developed a set of rela-
tionships between ET and GPP for 11 ecosystem types by synthe-
sizing global eddy flux data (e.g., FLUXNET LaThuie dataset;
http://www.fluxdata.org). These relationships allow for dynamic
modeling of ET and GPP, and linking climate, water, and carbon
balances at a broad scale. Although the model does not simulate
the detailed processes of carbon cycling, it does account for the
major control of carbon balances (i.e., soil moisture availability
and energy availability).

2.2.3. Model parameterization
To run the WaSSI model, the necessary inputs include monthly

precipitation, monthly mean air temperature, monthly LAI by land
cover, land cover composition within each watershed, and 11
SAC-SMA soil parameters. All the input data were re-scaled to the
12-digit HUC watershed scale from gridded data with different spa-
tial resolutions. The historical climate dataset (4 � 4 km resolution)
during 1961–2012 was derived from the Precipitation Elevation
Regression on Independent Slopes Model (Daly et al., 1994;
PRISM Climate Group, 2013). The land cover distribution was based
on the 2006 National Land Cover Dataset (30 � 30 m resolution;
http://www.mrlc.gov/nlcd06_data.php) with 17 land cover classes
(Fry et al., 2011) aggregated into ten classes: crop, deciduous forest,
evergreen forest, mixed forest, grassland, shrubland, wetland,
water, urban and barren. Monthly LAI data were derived from the
MODIS-MOD15A2 FPAR/LAI 8-day product (Myneni et al., 2002).
Within each watershed, the multi-year mean monthly LAI database
for each land cover type was individually constructed. The State Soil
Geographic Data Base (STATSGO)-based SAC-SMA soil parameter
dataset (1 � 1 km resolution) was provided by the National
Oceanic and Atmospheric Administration-National Weather
Service (NOAA–NWS) Hydrology Laboratory, Office of Hydrologic
Development.

2.3. Model evaluation

To evaluate the WaSSI model performance in simulating the
water balance and carbon cycles in NFs, the simulated Q, ET and
GPP were compared against the streamflow measured at 72
USGS gauges and MODIS remote sensing products for ET (2000–
2012) and GPP (2001–2012), respectively. The annual
watershed-scale ET (1961–2009) estimated by the watershed bal-
ances, P minus Q, for 72 gaged watersheds was also used to evalu-
ate WaSSI performance in simulating long-term ET, a major control
on Q. The watershed water balance method assumed that the
change in soil water storage was negligible over a long term
(Brown et al., 2008; Sun et al., 2011b).

The observed monthly streamflow data between 1990 and 2009
were acquired from the USGS reference stations that have not been
subject to human disturbances (http://waterdata.usgs.gov/nwis/
rt). For model validation purposes, we used the following three cri-
teria to identify the USGS gauged watersheds that are most compa-
rable to the 12-digit HUC watersheds within the NFs. First, several
12-digit HUC watersheds could be integrated to match the corre-
sponding USGS gauged watersheds to reduce the watershed
boundary mismatch errors. Second, the selected gauged water-
sheds must overlap more than 50% with the NFs. Third, the
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selected gauged watersheds should not receive flow from any
upstream watersheds. The resulting USGS streamflow data were
then directly comparable to the predicted Q by WaSSI. All 72
USGS gauged watersheds met these three criteria and were
selected for model validation.

Satellite-derived ET and carbon flux (e.g., GPP) products were
available for regional model validation purposes (Cleugh et al.,
2007; Mu et al., 2007; Fisher et al., 2008; Zhang et al., 2014).
This is one type of the widely used ET datasets developed by Mu
et al. (2007) based on reanalysis of surface meteorological data
from NASA’s Global Modeling and Assimilation Office with
MODIS land cover, albedo, LAI and the Fraction of Absorbed
Photosynthetically Active Radiation (FPAR) inputs. The MODIS ET
algorithms for regional and global ET mapping and monitoring
have been evaluated with AmeriFlux flux datasets. The new
MODIS ET product (2000–2012) (1 � 1 km grid resolution) (Mu
et al., 2011) was used in the present study. We also used gridded
GPP data from the EC-MOD products (Xiao et al., 2008, 2010,
2011, 2014) that were derived from eddy covariance flux observa-
tions and MODIS data streams for the period 2001–2012. A
data-driven approach (Xiao et al., 2014) was used to upscale
carbon fluxes from eddy covariance flux sites to the
continental-scale and to produce the EC-MOD flux estimates with
1 � 1 km spatial resolution and 8-day time step for the period
2001–2012 (Xiao et al., 2010, 2011, 2014). The MODIS ET and
EC-MOD GPP datasets provided the independent estimates of ET
and ecosystem productivity for evaluating the WaSSI model pre-
dictions. For comparison purposes, these gridded satellite-derived
datasets were aggregated from 8-day to monthly sums, and then
were rescaled to the NFs scale by spatial weighted averaging.
Similarly, the simulated monthly datasets for each NFs was
developed by weighing the area fractions of the 12-digit HUC
within each NFs.

The model performance in simulating Q, ET and GPP was
evaluated using scatterplots and difference maps (observed minus
predicted), root-mean-square-error (RMSE), mean relative error
(MRE), correlation coefficient (R), and slopes of the linear regres-
sion models. We validated the model against various reference
products of multi-year mean Q, ET and GPP, and annual Q. As an
additional criterion for Q evaluation, the Nash–Sutcliffe Efficiency
statistic (ENS; Nash and Sutcliffe, 1970) was also selected, and this
statistic is expressed as:

ENS ¼ 1�
Pn

i¼1ðVo;i � Vs;iÞ2
Pn

i¼1ðVo;i � VoÞ2
ð4Þ

where n is the number of observations during the evaluation per-
iod; VO,i and VS,i are the observed and simulated values at each point
i, respectively; and VO is the arithmetic mean of observations. An
ENS value of 1.0 represents a perfect model fit.

3. Results

3.1. Model evaluation of water yield (Q) and ET as estimated by P
minus Q for 72 USGS gauged watersheds

The comparisons between model simulated and observed mean
annual Q for the 72 watersheds during 1990–2009 (Fig. 2a and
Table 1) indicated that the WaSSI model performed well over the
long term as judged by model statistics (R = 0.97; mean
slope = 0.86; RMSE = 12 mm yr�1; MRE = 4%). Overall, the model
could match annual Q well for most of the watersheds, but under-
estimated flow for a few watersheds with high flow rates. The
multi-year mean annual modeled Q values were significantly cor-
related to measured Q, and all data samples were clustered around
the 1:1 line, suggesting that this model could capture the spatial

variability as well. Except for the peaks in May and June, simulated
intra-annual fluctuations of Q matched the measured Q reasonably
well when all data for the selected 72 USGS watersheds were
pooled together (Fig. 3a). Monthly Q generally increased from
January to May with a peak of 102 mm yr�1 and 86 mm yr�1 in
May for the observed and simulated values, respectively.
Monthly flows drastically decreased during the summer growing
season and reached the lowest values in August (21 mm yr�1) for
the observed, and September (26 mm yr�1) for the simulated. The
fall season is the groundwater recharge period and streamflow
increased as a result of decreased ET (Fig. 3b).

The simulated and the observed multi-year mean annual Q
exhibited a similar spatial pattern across the selected 72 USGS
watersheds (Fig. 4a). Q was the highest (>900 mm yr�1) in water-
sheds of the west coastal region and the southern Appalachian
Mountains, mainly due to both moderate ET rates and high precip-
itation. Most watersheds of the WNC, SW and ENC regions gener-
ated very little Q (<500 mm yr�1) because of low precipitation
and high evaporative demand. Multi-year mean differences in
annual Q between the USGS observations and the WaSSI simula-
tions showed a complex pattern (Fig. 4c). In the NW and NWC
regions, and the Appalachian Mountains, the model overestimated
Q for most watersheds, especially for the NW coast (discrepancy
Q > 120 mm yr�1). However, for most of the 72 watersheds, the
WaSSI model underestimated Q to different degrees (Fig. 4c).

The spatial distributions of the slopes of the linear regression
models, the normalized RMSE, R and ENS provided a complete pic-
ture of model performance in modeling Q (Fig. 5). Among the 72
watersheds, 44 and 66 watersheds had regression slopes higher
than 0.80 and normalized RMSE values lower than 0.30, respec-
tively, indicating that the WaSSI model simulated the magnitudes
of annual Q well for most watersheds (Fig. 5a and b). Similarly, 55
watersheds had R values higher than 0.90, suggesting that WaSSI
captured the inter-annual fluctuations of Q (Fig. 5c). Except for
few watersheds on the west coast and the Great Plains, 50 water-
sheds had ENS values ranging from 0.60 to 1 (Fig. 5d), implying that
the model accurately predicted annual Q, especially for the humid
SE region.

A comparison between simulated ET by WaSSI and estimated ET
as the differences between precipitation and measured USGS
streamflow provided more confidence in model annual streamflow
(Fig. 2b). The simulated annual ET and estimated ET as P–Q were
highly correlated (R = 0.86) with a moderate RMSE of 106 mm yr�1

and MRE of 16%. Although the modeled ET values matched well
with estimated in the low ET range (<450 mm yr�1), over estima-
tions were obvious for seven watersheds (Fig. 2b).

3.2. Model evaluation by ET for 170 NFs

The scatterplot of the measured (P – Q) vs. the predicted
multi-year mean annual ET (2000–2012) provided evidence for
the model’s capability to simulate ET (Fig. 2b). The predicted ET
across the 170 NFs was significantly correlated to the
satellite-based estimates with R of 0.92. Moreover, the observed
and the simulated multi-year mean ET in most of the NFs were
distributed around the 1:1 line with RMSE of 104 mm yr�1 and
MRE of 16% (Table 1). However, WaSSI both over- and under- pre-
dicted ET compared to satellite-based ET estimates (Fig. 2b). At the
monthly scale, the WaSSI model matched the mean variations of
monthly ET derived from satellite-based MODIS data. Generally,
monthly ET peaked in July, and after that ET began to decline.
During April–June and September, the WaSSI model slightly
underestimated monthly ET, and overestimated ET in the winter
months (>7 mm month�1).

The WaSSI model captured the spatial patterns of NFs ET gener-
ally well when compared to the satellite-based data (Fig. 4d and e).
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The SE region had the highest ET (>700 mm yr�1), particularly for
those near the coast (>900 mm yr�1). For the west coast and the
ENC and NE regions, most NFs had the moderate ET ranging from
500 mm yr�1 to 700 mm yr�1. The NFs in the SW, WNC regions
and the east NW and W exhibited the lower ET (<500 mm yr�1).
Overall, the WaSSI model tended to underestimate ET in the east-
ern U.S. and overestimated ET in the western U.S., especially for
some NFs of the northwestern and southwestern U.S. with model-
ing errors greater than 100 mm yr�1.

3.3. Model evaluation by GPP for 170 NFs

The scatterplot of measured vs. predicted multi-year mean
annual GPP indicated good model performance overall (R = 0.87

and a slope near to 1.0). The RMSE (380 gC m�2 yr�1) and MRE
(28%) values were moderate (Table 1). However, the simulated
multi-year means for most NFs were above the 1:1 line, suggesting
that there might be systemic discrepancies between the WaSSI
modeled and the satellite-based GPP. The WaSSI modeled GPP
had similar seasonal patterns as the satellite-based estimates.
Both WaSSI-modeled and remote sensing-based estimates of
monthly GPP peaked in July, 183 gC m�2 yr�1 and
167 gC m�2 yr�1, respectively. It suggests that systemic discrepan-
cies existed in the multi-year mean monthly GPP (Fig. 3c). WaSSI
overestimated monthly GPP for the whole of 170 NFs, especially
for winter and spring months (>18 gC m�2 month�1) compared to
the satellite-based estimates.

For spatial patterns of multi-year mean annual GPP, the
WaSSI simulations were similar to the satellite-based estimates
(Fig. 4g and 4h). The highest GPP (>1600 gC m�2 yr�1) was
found in the SE region while the moderate GPP values (1000–
1600 gC m�2 yr�1) were mainly located in the west coast and the
ENC and NE regions. However, the western part of the CONUS,
excluding the west coast, had relatively low GPP
(<800 gC m�2 yr�1). Despite the similar spatial patterns for GPP
estimates by the two methods, some spatial differences were noted
(Fig. 4i). The WaSSI model overestimated GPP in the S and SE
regions and the east part of WNC (>300 gC m�2 yr�1) compared
to MODIS-based GPP data. Nevertheless, the NFs in the California
and the NE region with the negative GPP differences suggested that
GPP was underestimated by the WaSSI model.

Fig. 2. Comparisons of simulated multi-year mean annual Q, ET, and GPP by WaSSI against the observed Q and ET estimated as P minus USGS Q at 72 USGS gauges, and ET
estimated by Mu et al. (2011) and GPP estimated from Xiao et al. (2014) based on remote sensing techniques for 170 National Forests and Grassland Systems, respectively.
The symbols with empty circles with labels indicate NFs sites (see Supplementary I for NFs number and associated climate) with large simulation discrepancies. OL = Olympic
National Forest (#140); MB = Mt. Baker National Forest (#143); DC = Deschutes National Forest (#123); SS = Siuslaw National Forest (#124); SK = (#83); and BV = Butte Valley
National Grassland (#82).

Table 1
A summary of WaSSI model performance in simulating Q, ET across the 72 watersheds
(1990–2009), and ET and GPP across the 170 NFs (2000–2012).

Variables compared Multi-year mean ± SD Root mean
square
error

Mean
relative
error (%)

Observed/
Estimated

WaSSI
Simulated

USGS Q (mm yr�1) 716 ± 397 688 ± 342 12 4
ET estimated as P

minus USGS Q
(mm yr�1)

595 ± 195 625 ± 181 106 13

MODIS ET(mm yr�1) 516 ± 232 534 ± 196 104 16
EC-MOD GPP

(gC m�2 yr�1)
1012 ± 528 1254 ± 642 380 28
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4. Discussion

4.1. Outliers of ET and GPP predicted by WaSSI

Our multi-watershed and NFs-wide model evaluation suggested
that the WaSSI model was effective for estimating annual water-
shed water and carbon balances. Our simulations generally agreed
well with watershed observations and gridded MODIS ET (Mu et al.,
2011) and EC-MOD GPP (Xiao et al., 2010, 2014) products. The large
discrepancies between WaSSI simulations and the gridded ET and
GPP products for a few NFs (with the italic characters in
Fig. 2b and c) could be attributed to the fragmentation of NFs and

the mis-match of watershed boundaries. These NFs had irregular
boundaries and land cover compositions. The WaSSI model oper-
ated at the 12-digit HUC watershed level, but the presentation of
simulated results for each NFs was computed through weighted
averages using the area fraction of the 12-digit HUC watershed that
fell within each NFs. Therefore, ET and GPP estimates for each NFs
were influenced by the dominant land cover within each water-
shed, and therefore bias could occur, particularly for the smaller
and more fragmented NFs. Mis-classification of land cover types
was also possible by MODIS products, resulting in erroneous esti-
mates of ET and GPP by either WaSSI or the remote sensing-based
methods.

Fig. 3. Intra-annual fluctuations of Q (1990–2009; a) across the 72 USGS watersheds, and ET (2000–2012; b) and GPP (2001–2012; c) over the 170 NFs of the CONUS. Gray
line and black circle represented multi-year mean monthly values from the WaSSI model and the observations (or the satellite-based estimates), respectively. Differences by
the simulated minus the measured (or the satellite-based estimates) were shown with the gray bars.

Fig. 4. Spatial distributions of multi-year mean annual water and carbon fluxes with their differences (observations or satellite-based estimates minus model simulations).
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4.2. Uncertainties of modeled water balance

Similar to other hydrologic models, simulated Q and ET by the
WaSSI model were subject to uncertainties due to the following
factors: input data issues including potential errors in climate data,
land cover, soil and LAI estimates from remote sensing as well as
from the incomplete representation of the hydrological processes.
A recent study suggests the PRISM data might have overestimated
the magnitude of climatic warming in high elevation mountainous
regions in western U.S. with complex terrains (Oyler et al., 2015).
An over estimating air temperature rise by the PRISM then may
result in over estimating PET, ET, and underestimating Q. The pre-
sent study assumed that the monthly LAI values in the historic per-
iod prior to 2000 were the same as the 2000–2012 period because
MODIS LAI data only became available in 2000. This assumption
might result in LAI errors for some NFs watersheds given that both
climate and atmospheric CO2 concentrations have changed
substantially during the past 50 years, altering forest ecosystem
structure (LAI), tree species compositions, and ecosystem
processes (i.e., ET processes) (Piao and Fang, 2003; Gedney et al.,
2006). In addition, this study did not consider management activ-
ities such as logging, forest thinning, prescribed burning, and other
natural disturbances (i.e., wildfire, insect and disease out breaks,
hurricanes) in NFs. These disturbances have likely affected forest
dynamics and ecosystem processes in some NFs over this time
period (Vose et al., 2012; Masek et al., 2013).

4.3. Uncertainties of modeled ecosystem productivity

Despite the general agreement that North American ecosystems
have a large capability for carbon sequestration, uncertainties exist
in the size and distribution of ecosystem productivity by existing

estimates by different methods (Goodale et al., 2002; Gurney
et al., 2002; Deng et al., 2007; Xiao et al., 2011, 2014). Similarly,
there were discrepancies between GPP estimated by the WaSSI
model in this study and the estimates based on satellite data
(Xiao et al., 2014). As shown in Fig. 2c, the simulated multi-year
mean GPP by WaSSI were generally higher when compared against
the satellite-based data, indicating that there were large uncertain-
ties in estimating GPP by the two methods. Xiao et al. (2008, 2011,
2014) examine the effects of disturbance (e.g., hurricane, fire, pest
and pathogen), stand age and nitrogen availability on ecosystem
carbon dynamics and conclude that these disturbance factors are
critical for accurately estimating regional GPP. Deng et al. (2013)
and Chapin et al. (2011) stated that disturbance and stand age
are closely related to forest structure and functions, which were
known to impact terrestrial carbon budgets. Similarly, nitrogen
availability was widely recognized as an important control of
canopy photosynthesis and even the whole ecosystem carbon
dynamics (LeBauer and Treseder, 2008). However, these factors
were not accounted for by the WaSSI model due to lack of data
over the CONUS. In addition, selection of the land cover product
was likely another source of this uncertainty. Different land cover
classes correspond to different parameters in the two models, so
the landcover classification uncertainty directly introduces errors
into flux simulations. Finally, the modeling unit of the WaSSI
model is watershed while EC-MOD was run for 1-km grid cell,
and thereby there is a large scale mismatch between these two
datasets. The WaSSI model used a high resolution land cover pro-
duct (i.e., 30 � 30 m NLCD), which may be more accurate for land
cover identification when compared to Xiao’s (1 � 1 km) MODIS
land cover map.

Numerous studies have found that the vegetation activity (e.g.,
plant photosynthesis and LAI) over the regional and global scales

Fig. 5. Spatial distributions of the validation criterion for annual Q (1990–2009) over the selected 72 USGS watersheds. (a) Slope presents the slope coefficient of the linear
regression (Modeled Q = a + b �Measured Q) equation derived from the least squares technique. (b) To compare RMSE across different watersheds, it was normalized by
dividing it with multi-year observed mean, referred as RMSE/Vo. (c) Correlation coefficient between modeled and simulated; and (d) Nash–Sutcliffe Efficiency coefficients
(ENS).
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has increased remarkably (Tucker et al., 2001; Zhou et al., 2001;
Piao and Fang, 2003; Wang et al., 2011). Therefore, not considering
LAI dynamics over the time might lead some uncertainties into our
GPP estimates. In our future work, we would like to parameterize
the longer-term LAI (or normalized difference vegetation index;
NDVI) series or to couple a dynamic module into the WaSSI model
for representing vegetation dynamics. Generally, LUCC could offset
or enhance ecosystem productivity depending on the type of land
cover transformations (Meyer and Turner, 1994; Foley et al., 2005;
Zhang et al., 2014).

In addition to these factors discussed above, climate data as a
major driver to the hydrologic processes have a great influence
on GPP estimates as well. Climate issues in PRISM for the moun-
tainous regions identified by Oyler et al. (2015) might have
resulted in over estimating ET and thus GPP in this study.

5. Conclusions

The latest version of the WaSSI model was validated with both
decades-long hydrology (i.e., Q and MODIS-ET) and ecosystem pro-
ductivity data (i.e., EC-MOD GPP) at a broad scale across the 170
NFs. The WaSSI model generally captured the spatial variability
of multi-year means for annual Q, ET and GPP. The WaSSI model
also performed well in matching annual and monthly water yield
for most of the 72 USGS gauged watersheds. The WaSSI model gen-
erally led to higher GPP estimates than the remote sensing-based
method, especially in the winter season. Overall, our assessments
showed that the WaSSI model had the capability to reconstruct
the long-term forest watershed water and carbon balances at a
broad scale. This model evaluation study provides a foundation
for future model applications in understanding the impacts of cli-
mate variability and change (e.g., extreme droughts) on NFs
ecosystem service and function.
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