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Abstract
There has been growing evidence that vegetation greenness has been increasing inmany parts of the
northernmiddle and high latitudes includingChina during the last three to four decades. However,
the effects of increasing vegetation greenness particularly afforestation on the hydrological cycle have
been controversial.We used a process-based ecosystemmodel and a satellite-derived leaf area index
(LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration
(ET) andwater yield for China over the period from2000 to 2014. Significant trends in vegetation
greenness were observed in 26.1%ofChina’s land area.We used twomodel simulations drivenwith
original and detrended LAI, respectively, to assess the effects of vegetation ‘greening’ and ‘browning’
on terrestrial ET andwater yield. On a per-pixel basis, vegetation greening increased annual ET and
decreasedwater yield, while vegetation browning reduced ET and increasedwater yield. At the large
river basin and national scales, the greening trends also had positive effects on annual ET and had
negative effects onwater yield. Our results showed that the effects of the changes in vegetation
greenness on the hydrological cycle variedwith spatial scale. Afforestation efforts perhaps should focus
on southernChinawith larger water supply given thewater crisis in northernChina and the negative
effects of vegetation greening onwater yield. Future studies on the effects of the greenness changes on
the hydrological cycle are needed to account for the feedbacks to the climate.

1. Introduction

There has been growing evidence that vegetation
greenness has been increasing in many parts of the
northern middle and high latitudes during the last
three to four decades (Xiao and Moody 2005, de Jong
et al 2011, Zhou et al 2011, Guay et al 2014). The
evidence is mainly from the satellite-derived normal-
ized difference vegetation index (NDVI) or leaf area
index (LAI). The ‘greening’ of the land surface can be

attributed to various factors such as plant growth,
afforestation/reforestation, and improved agricultural
practices. Changes in vegetation greenness can alter
the water balance by regulating matter and energy
cycles (Bonan 2008).

Changes in vegetation cover or productivity influ-
ence the hydrological cycle mainly through modulat-
ing the processes of canopy interception, evaporation
and transpiration (referred to as evapotranspiration or
ET hereafter), and infiltration. The relationship
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between vegetation cover particularly forest cover and
water yield remains hotly contested (Ellison
et al 2012). Some studies showed that afforestation or
reforestation could reduce available water supply
(Zhang et al 2001, Andréassian 2004, Brown et al 2005,
Jackson et al 2005). Increasing tree cover increases
canopy interception and ET and thereby reduces run-
off, leading to declining water availability. These stu-
dies are largely based on small-scale studies including
paired-catchment experiments in small catchments.
By contrast, some other studies showed that increasing
forest cover can facilitate large-scale transport of water
vapor and promote precipitation at regional to global
scales, and therefore forest cover may have positive
impacts on the hydrological cycle (Makarieva
et al 2006, Liu et al 2008b, Sheil and Murdiyarso 2009,
Jiang and Liang 2013, Zhang et al 2015a). Despite the
large number of studies, the effects of vegetation
greening particularly afforestation on the hydrological
cycle have been controversial.

Trends of vegetation greening have been observed
in many areas of China (Xiao and Moody 2004, Park
and Sohn 2010, Li et al 2012, Chen et al 2014,
Xiao 2014). China has the largest area of forest planta-
tions in the world. Afforestation and reforestation have
been nationwide efforts in China since the 1950s. To
mitigate environmental degradation, the Chinese gov-
ernment also implemented multiple large-scale ecosys-
tem restoration programs, including the ‘Three-North
Forest Shelterbelt Program’, and the ‘Natural Forest
Conservation Program’, and the ‘Grain for Green Pro-
gram’. These efforts substantially increased the national
forest area (Gao et al 2014, Chen et al 2015, Zhang
et al 2015b). Improved agricultural practices including
the use of irrigation and chemical fertilizers and the
substitution of high-yield crops for low-yield corps led
to the increase of agricultural productivity (Xiao and
Moody 2004, Xiao et al 2015). Global change factors
including climatic warming, rising atmospheric carbon
dioxide (CO2) concentrations, and nitrogen deposition
enhanced plant growth (Tian et al 2011, Xiao
et al 2015). In the meanwhile, natural vegetation
decreased because of ecosystem degradation and rapid
urbanization (Wang et al 2012, Liu et al 2012a), leading
to decreases in vegetation cover or productivity
(‘browning’) in some parts of the country. The changes
in vegetation greenness could alter the regional carbon
andwater cycles and the local surface climate.

Several studies showed that increasing vegetation
cover resulting from afforestation and ecosystem
restoration in China reduced streamflow (Huang
et al 2003, Bao et al 2012, Li et al 2014, Liu et al 2015a).
For example, the simulations of a hydrological model
indicated that forestation may reduce average water
yield by 50% in the semi-arid Loess Plateau region in
northern China and 30% in the tropical southern
region (Sun et al 2006). By contrast, Xie et al (2015)
indicated that afforestation practices had negligible
effects on the hydrological cycle over the Three-North

region of China. Moreover, the results based on an
ecosystem model indicated that deforestation across
China increased ET and decreased water yield while
reforestation dcecreased ET (Liu et al 2008a). Previous
studies therefore are inconsistent regarding the effects
of afforestation/reforestation on the hydrological
cycle. A recent study showed that the increase in urban
areas and the reduction of rice paddy fields reduced ET
by 23% and increased streamflow by 58% in the Qin-
huai River basin in southern China (Hao et al 2015b).
Better understanding how the changes in vegetation
greenness affect ET and water yield has ecohy-
drological implications and can inform regional and
national afforestation/reforestation policies.

In this study, we used a process-based ecosystem
model and a satellite-derived LAI dataset to examine
the effects of vegetation greening and browning on
annual ET and water yield for China over the period
from 2000 to 2014. First, the LAI dataset was used to
assess the linear trends of vegetation greenness. Sec-
ond, the ‘greening’ or ‘browning’ trend was removed
on a per-pixel basis by detrending LAI. Third, we used
a process-based ecosystem model—Boreal ecosystem
production simulator (BEPS) along with the original
and detrended LAI datasets to conduct two model
simulations: one with original LAI (i.e., with trends of
vegetation greening and browning) and one with
detrended LAI (i.e., with no trends of vegetation
greening or browning). Finally, the twomodel simula-
tions were used to assess the effects of vegetation
greening and browning on terrestrial ET and water
yield.

2.Data andmethods

2.1.Model description
We used the process-based ecosystem model—BEPS
(Liu et al 1997) to assess how the trends in vegetation
greenness affect annual ET and water yield in China.
The BEPS model is run at half-hourly to daily time
step, and is driven by meteorological variables (temp-
erature, precipitation, incoming solar radiation, and
relative humidity), remotely sensed LAI, land cover
type, atmospheric CO2 concentrations, and soil prop-
erties data. The BEPS model consists of hydrology,
photosynthesis, energy balance, and soil biogeochem-
istry modules (Ju et al 2010b). This model stratifies a
canopy into sunlit and shaded leaves, for which daily
carbon fixation and transpiration are separately calcu-
lated (Chen et al 1999). ET of an ecosystem is
calculated as the sum of canopy transpiration from
sunlit and shaded leaves, and evaporation from soil
surface and intercepted water by leaf surface. Both
transpiration and evaporation are calculated using the
Penman–Monteith equation (Chen et al 2005). The
BEPS model has been continuously improved and has
been applied to simulate hydrological processes for a
wide variety of terrestrial ecosystems (Ju et al 2010a,
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Zhang et al 2013, Liu et al 2013b, 2015b). More details
about this model can be found elsewhere (Liu
et al 1997, 2003, 2013b, Chen et al 1999, 2005, Ju
et al 2006).

2.2.Driving datasets
In this study, vegetation greenness in China was
characterized using a gridded LAI dataset derived from
the moderate resolution imaging spectroradiometer
(MODIS) (Liu et al 2015b). This LAI dataset consists of
8 day LAI composites with 500 m spatial resolution
from 2000 to 2014. The LAI data were retrieved from
the 8 day MODIS reflectance product (MOD09A1
V05) (Vermote and Vermeulen 1999) and the yearly
MODIS land cover datasets (MCD12Q1 V051) (Friedl
et al 2010) using a 4-scale geometric optical model
(Deng et al 2006, Liu et al 2012b). Previous studies
indicated that the 4-scale geometric optical model was
superior to the algorithm used to produce the MODIS
LAI product (Pisek et al 2007, Garrigues et al 2008).
We used the 500 m resolution LAI dataset to examine
the trends of vegetation greenness and to prescribe LAI
for the BEPSmodel simulations.

Weused gridded daily precipitation,maximumand
minimum air temperatures, incoming solar radiation,
and relative humidity from a gridded meteorological
dataset with 500m spatial resolution. This dataset was
interpolated from observations from 753 weather sta-
tions across China using the inverse distance weight
method (Liu et al 2015b). The accuracy of the daily grid-
dedmeteorological datasetwas evaluated at the site level
using daily temperature, precipitation, and radiation
measurements from 8 eddy covariance (EC) flux sites
(http://chinaflux.org). The comparison showed that
the daily radiation and temperature exhibited excellent
agreement between the gridded dataset and the tower
observations with R2 values ranging from 0.77 to 0.92
for daily radiation and 0.90 to 0.99 for daily temper-
ature, respectively (figures S1 and S2). The consistence
was lower for daily precipitation (figure S3) because of
the complexity of precipitation dynamics and themiss-
ing data of the EC sites. We also evaluated the gridded
meteorological dataset usingmonthly 0.5°precipitation
and temperature data in 2000 obtained from China
Meteorological Administration (http://cdc.cma.gov.
cn). Both annual precipitation and annual mean temp-
erature showed high consistency between the two data-
sets (figure S4).

Soil data used here include volumetric fractions of
clay, sand, and silt data. This soil dataset was devel-
oped based on 8595 soil profile records compiled from
the second national soil survey dataset and the 1:
1000 000 scale soil map of China (Shangguan
et al 2012).

Atmospheric CO2 concentration values were
based on the annual mean CO2 measurements at
Mauna Loa Observatory, Hawaii (Keeling et al 1976).
The CO2 time series was obtained from the National

Oceanic and Atmospheric Administration’s Earth Sys-
tem Research Laboratory (http://esrl.noaa.gov/gmd/
ccgg/trends/).

2.3. Trends anddetrending analyses of LAI
We assessed the trends of vegetation greenness for the
period 2000–2014 using the gridded LAI dataset. For
each pixel, we calculated the annual mean LAI for each
year by averaging the 8 day LAI values throughout the
year.We then examined the linear trend of annual LAI
over the 15 year period by regressing LAI as a function
of time on a per-pixel basis. The following linear
regression model was used to quantify the linear trend
of annualmean LAI:

= + ( )y a bt, 1

where y is LAI, t is time (year), and a and b are the
intercept and slope, respectively. The significance level
(α) of 0.05 was used for the trend analysis. Increasing
LAI indicates a greening trend, while decreasing LAI
indicates a browning trend.

To quantitatively assess the effects of greening and
browning on annual ET and water yield, we detrended
the LAI time series on a per-pixel basis, following pre-
vious studies (Wang and You 2004, Xiao et al 2015).
For each pixel, we determined the linear fit between
annual mean LAI and time and then removed the lin-
earfit from the variable:

= - ˆ ( )y y y , 2r

where yr is the detrended LAI, y is the original LAI,
and ŷ is the fitted LAI derived from equation (1). The
detrended time series— yr is essentially the residuals
from the linear fit. For each pixel, we then generated
the newLAI time series:

= + ( )y y y , 3n 2000 r

where yn is the new annual mean LAI time series, and
y2000 is the annual mean LAI value in 2000. The new
annual mean LAI time series ( )yn maintains the
interannual variations but has no linear trends. The
residuals yr of each year were assigned to every 8 day
composite based on the proportion the 8 day LAI
values to the annualmean LAI values. The original and
detrended 8 day LAI time series were used to drive the
BEPSmodel, respectively.

2.4. Effects of greenness changes onET andwater
yield
We conducted two model simulations on ET for
China’s terrestrial ecosystems over the period
2000–2014 using BEPS. The BEPS model was run at
daily time step and was driven by meteorological data
(temperature, precipitation, incoming solar radiation,
and relative humidity), land cover type, atmospheric
CO2 concentrations, and soil properties data as
described above. The original and detrended 8 day LAI
time series were used to prescribe LAI for each pixel
for the two simulations, and all other driving factors
were exactly the same for these simulations.
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For each pixel, we calculated annual ET based on
the simulated daily ET values for each simulation.
Water yield (mmyr−1)was estimated as follows:

= - ( )WY P ET, 4

whereWY, P, and ET are water yield, annual precipita-
tion, and annual ET, respectively. This surface water
balance approach assumes that the change in soil water
and groundwater storage of catchment is negligible
(Hare 1980, Sun et al 2006, Donohue et al 2007, Troy
et al 2011). Many previous studies used this approach
to estimatewater yield atmesoscale or large scales (Sun
et al 2005, Liu et al 2008a, Zhang et al 2009, Vinukollu
et al 2011, Lu et al 2013).

The comparison of the twomodel simulations dri-
venwith original and detrended LAI allows us to assess
how the changes in vegetation greenness affect the
hydrological cycle. We compared the magnitude and
spatial distribution of annual ET and water yield
between the two simulations and then compared the
trends of both annual ET and water yield. We assessed
how the changes in vegetation greenness affected
annual ET and water yield on a per-pixel basis and at
the scale of large river basins (figure 1) so that we could
determine how these effects variedwith spatial scale.

3. Results

3.1. Trends anddetrending of LAI
We examined the trends of vegetation greenness for
China’s terrestrial ecosystems using the annual mean
LAI during the period from 2000 to 2014 (figure 2).

Vegetation greenness as characterized by LAI exhib-
ited statistically significant trends over 26.1% of
China’s land area; pixels with significant increasing
and decreasing trends in LAI accounted for 15.8% and
10.3% of China’s land area, respectively. Vegetation
greening mainly occurred in central and northern
China. LAI significantly increased by>=0.01 m2 m−2

yr−1 in parts of Ningxia, Gansu, Shanxi, Shannxi,
Hebei, Guizhou, Chongqing, Hunan, and Hubei.
Vegetation browning was mainly observed in the

Figure 1.Depiction of the boundaries of provinces and large river basins over China and the distribution of ECflux sites used for the
validation of simulated ET: (a) province boundaries; (b) river basin boundaries and distribution of EC sites. The basemaps are the
reclassifiedMODIS land covermap for (a) and the trends of annual precipitation (mmyr−1) during the period 2000–2014 for (b),
respectively. The land cover types are as follows: evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF), deciduous
needleleaf forests (DNF), deciduous broadleaf forests (DBF), mixed forests (MF), shrublands (SHR), grasslands (GRA), croplands
(CRO), and non-vegetation (NOV). The provinces, autonomous regions, ormunicipalities included in this study are as follows:
Heilongjiang (HLJ), Neimenggu (NM), Xinjiang (XJ), Jilin (JL), Liaoning (LN), Gansu (GS), Hebei (HEB), Beijing (BJ), Shanxi (SX),
Tianjin (TJ), Shaanxi (SAX), Ningxia (NX), Qinghai (QH), Shandong (SD), Xizang (XZ), Henan (HEN), Jiangsu (JS), Anhui (AH),
Sichuan (SC), Hubei (HUB), Shanghai (SH), Zhejiang (ZJ), Hunan (HUN), Jiangxi (JX), Yunnan (YN), Guizhou (GZ), Fujian (FJ),
Guangxi (GX), Guangdong (GD), Hainan (HAIN), andTaiwan (TW). The 10 river basins are as follows: Songhuajiang river basin
(SHRB), Liaohe river basin (LRB), Haihe river basin (HAIRB), Yellow river basin (YERB), Huaihe river basin (HUAIRB), Yangtze river
basin (YZRB), Southeast river basin (SERB), Pearl river basin (PRB), Southwest river basin (SWRB), andNorthwest river basin
(NWRB).

Figure 2.Trends of vegetation greenness as characterized by
annualmean LAI for China’s terrestrial ecosystems during
the period 2000–2014. The units of the trends arem2 m−2

yr−1. Thewhite color indicates non-vegetated areas, and light
gray indicates vegetated areas with insignificant trends in
annualmean LAI (p>0.05).
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Southeast, Southwest, and Northeast. LAI decreased
more than 0.02 m2 m−2 yr−1 in southeastern coastal
provinces (e.g., Jiangsu, Zhejiang, and Fujian) and in
southern Tibet (0.03 m2 m−2 yr−1). Vegetation in
Jiangxi, easternHunan, and parts of theNortheast also
exhibited significant decreases in LAI. The nationally-
averaged LAI time series did not exhibit a significant
trend during the period 2000–2014 (figure 3(a)) likely
because the increases in LAI were offset by the
decreases elsewhere.

We detrended LAI for each pixel, and the sig-
nificant increasing or decreasing trend was removed.
The detrending of the LAI time series removed the
increasing trends in LAI in areas with greening trends
and also removed the decreasing trends in LAI in areas
with browning trends (figure 3(b)). The mean LAI
value of the browning areas was about 1.0 m2 m−2

higher than that of the greening areas. This is likely
because vegetation browningmainly occurred inmore
productive southern regions that had higher LAI than
less productive northern regions with greening trends.
The nationally-averaged detrended LAI retained the
interannual variations of the nationally-averaged ori-
ginal LAI (figure 3(a)).

3.2. Evaluation of simulated annual ET andwater
yield
The ability of the BEPS model to simulate carbon and
water fluxes of China’s terrestrial ecosystems has been
thoroughly evaluated against different sources of data
(Liu et al 2015b). Here, we collectedmeasured ET from
26 EC flux sites and runoff data from the 10 large river
basins (figure 1) to evaluate the performance of BEPS
in simulating ET and water yield, respectively. The 26
EC sites include 9 forest sites, 3 cropland sites, 12
grassland sites, and 2 wetland sites (Liu et al 2015b).
The comparison between the simulated ET and the
measured ET showed that BEPS estimated ET fairly

well across sites (figure 4(a); y=0.79x+91.2,
R2=0.77, p<0.0001).

We obtained annual runoff data for the 10 river
basins over the period from 2000 to 2014 from the sta-
tistical data of ‘China Water Resources Bulletin’ (The
Ministry of Water Resources of the People’s Republic
of China, http://mwr.gov.cn/zwzc/hygb/szygb/).
According to the basin depiction on the hydrological
yearbook of China, the mainland of China is divided
into 10 major river basins: Songhua river basin
(SHRB), Liaohe river basin (LRB), Haihe river basin
(HAIRB), Yellow river basin (YERB), Huaihe river
basin (HUAIRB), Yangtze river basin (YZRB), South-
east river basin (SERB), Pearl river basin (PRB), South-
west river basin (SWRB), and Northwest river basin
(NWRB) (figure 1). The runoff data were converted to
water yield with the units of mm yr−1 (referred to as
measured water yield) based on the area of each basin.
The simulated water yield showed excellent agreement
with the measured water yield across river basins
(figure 4(b); y=0.81x+58.7, R2=0.81,
p<0.0005). We also compared the simulated and
measured water yield over the period from 2000 to
2014 for each river basin separately (figure S5). The
model estimated water yield fairly well over time for
most of the river basins with R2 value greater than 0.55
for most river basins. Water yield was overestimated
for basins that croplands are widely distributed such as
LRB, HAIRB, YERB, and HUAIRB likely because irri-
gation was not considered in the model and as a result
ET was underestimated for croplands in these basins.
Water yield was underestimated for NWRB likely
because of the errors in precipitation interpolation
resulting from the complex terrain.

We also compared our simulated ET against the
MODIS ET product (Mu et al 2011) and EC-MOD ET
(Xiao et al 2008, 2014). The EC-MOD dataset was
developed fromFLUXNET observations,MODIS data

Figure 3. Spatially-averaged LAI over the period 2000–2014: (a)nationally-averaged original and detrended LAI; (b) original and
detrended LAI for both greening and browning areas.
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streams, and micrometeorological reanalysis data
using a data-driven upscaling approach (Xiao
et al 2008). The magnitude and spatial patterns of
simulated ET were generally consistent with those of
MODIS and EC-MOD ET (figure S6). The dis-
crepancies between simulated and MODIS ET mainly
occurred in southern regions of China. Simulated ET
exhibited strong linear relationships with MODIS ET
(y=1.01x+96.8, R2=0.64, p<0.0001) and EC-
MOD ET (y=0.76x+199.7, R2=0.58,
p<0.0001) on a per-pixel basis (figure S7). MODIS
ET exhibited higher values than simulated ET. Our
lower ET compared to MODIS ET was supported by
EC flux tower measurements. A recent validation
effort showed overestimation of MODIS ET for eight
EC sites across China (Liu et al 2014c).

3.3. Spatial patterns of annual ET andwater yield
We used the original and detrended LAI data to
prescribe LAI, respectively, in BEPSmodel simulations
and then examined how the changes in vegetation
greenness affected the magnitude and spatial patterns
of annual ET and water yield in China on a per-pixel
basis (figure 5). Vegetation greening generally
increased annual ET (figures 5(a) and (c)). Large
differences in annual ET (∼16%–20%) between the
two simulations (original–detrended) were observed
in regions with significant greening trends including
parts of YERB. Northern HAIRB, LRB, and southern
SHRB also showed large differences in annual ET
(∼12%–16%). The increase in annual ETby vegetation
greening was ∼5% in central YZRB and parts of
HUAIRB. By contrast, vegetation browning generally
decreased annual ET. Negative differences in annual
ET between the two simulations (original–detrended)
were sporadically distributed. Large decreases in ET
(12%–16%) were observed in lower YZRB, northern
SERB, and adjacent areas of upper YZRB and SWRB.

Changes in vegetation greenness also had sig-
nificant effects on water yield on a per-pixel basis
(figures 5(b) and (d)). Vegetation greening sig-
nificantly decreased water yield, and large relative
decreases in water yield (∼16%–20%) between the two
simulations (original–detrended)were observed in the
regions with significant increasing trends in LAI, such
as YERB, northern HAIRB, LRB, and southern SHRB.
By contrast, vegetation browning led to increases in
water yield. Large increases of water yield (∼12%)were
observed in the regionswith decreasing ET. The spatial
patterns of the changes in water yield between the two
simulations were generally similar to those of the
changes in annual ET but with the opposite direction
and slightly largermagnitude (figure 5(d)).

3.4. Trends in annual ET andwater yield
We assessed the trends of annual ET and water yield
during the period 2000–2014 using the two model
simulations prescribed with original LAI and detrended
LAI, respectively (figure 6). Annual ET generally
increased in regions with greening trends and decreased
in regions with browning trends (figure 6(a)). Large
positive trends in annual ET were observed in south-
eastern parts of LRB and eastern parts of YERB
(8–12mm yr−1); moderate increases in annual ET
(6–8mmyr−1)were sporadicallydistributed in southern
river basins; small increases (2–4mm yr−1) were
observed in centralYERB.Comparedwith the simulated
ET with original LAI, the simulated ET with detrended
LAI exhibited weaker increasing trends in annual ET in
many regions with greening trends and decreasing
trends in annual ET in some regions with greening
trends (figure 6(b)). The simulated ET with detrended
LAI still increased in some regionsmainly because of the
increases in annual precipitation (figure 1(b)). Annual
ET exhibited decreasing trends (>8mmyr−1) in regions
of southern SWRB and lower YZRB with vegetation

Figure 4.Evaluation of simulated annual ET andwater yield: (a) simulated ET versusmeasured ET across the 26 EC sites; (b) simulated
water yield versusmeasuredwater yield across the 10 river basins.
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browning and smaller decreasing trends (4–6mm yr−1)
in other areas with decreasing LAI. The detrending of
the LAI weakened the decreasing trends in annual ET in
some regionswith vegetationbrowning trends.

Modeledwater yieldwith original LAI decreased in
some areas with greening trends (figure 6(c)). In many
other areas with greening trends (e.g., southern SHRB,
eastern LRB, southern PRB, upper YZRB, and SERB),
however, water yield increased (8–16 mm yr−1)
(figure 6(c)) because of the large increases in annual
precipitation (figure 1(b)); the detrending of LAI led to
larger increases in water yield in these regions
(figure 6(d)). Our results showed that the greening
trends slowed down the increases of water yield under
the changing climate. For both simulations, water
yield showed large decreases inHUAIRB and southern
SWRB (∼−20 mm yr−1), moderate decreases
(∼−12 mm yr−1) in central parts of YZRB, and small
decreases in NWRB (−4 to −8 mm yr−1) because of
themoderate to large decreases in annual precipitation
in these regions (figure 1(b)).

3.5. Effects of greenness trends onET andwater
yield at national and large river basin scales
Nationally-averaged annual ET simulated with origi-
nal LAI exhibited an upward trend over the 15 year
period that was not statistically significant (p=0.12)
(figure 7(a)). With detrended LAI, the simulated
annual ET also showed an insignificant upward trend
(p=0.16). The difference in nationally-averaged
annual ET between the two simulations, however,
exhibited a significant increasing trend
(y=0.12x+2.01, R2=0.88, p<0.0001), indicat-
ing that vegetation greening increased nationally-
averaged ET. Nationally-averaged water yield exhib-
ited no significant trend over the 15 year period for the
both simulations (figure 7(b)). The difference in
nationally-averaged water yield between the two
simulations, however, showed a decreasing trend
(y=−0.12x−2.01, R2=0.88, p<0.0001). Our
results indicated that the changes in vegetation green-
ness slightly increased annual ET and decreased water
yield at the national scale.

Figure 5.Magnitude and spatial distribution ofmean annual ET andwater yield inChina over the period 2000–2014: (a)mean annual
ET (mmyr−1) and (b)mean annual water yield (mmyr−1) simulatedwith original LAI; (c) the relative differences (%) in annual ET
between the twomodel simulations (original–detrended); and (d) the relative differences (%) inwater yield between the twomodel
simulations (original–detrended).
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We further examined how the trends in vegetation
greenness affected annual ET andwater yield for the 10
large river basins (figure 8). The annual mean LAI
averaged at the large river basin scale significantly
increased for LRB (0.004 m2 m−2 yr−1, p<0.05),
YERB (0.004 m2 m−2 yr−1, p<0.01), and HAIRB
(0.006 m2 m−2 yr−1, p<0.01), and significantly
decreased for SERB (−0.01 m2 m−2 yr−1, p<0.01)
and SWRB (−0.004 m2 m−2 yr−1, p<0.001). The
temporal trends of LAI were not significant for other 5
basins (HUAIRB, SHRB, YZRB, PRB, andNWRB).

The annual ET averaged over the river basin from
both simulations significantly increased in SHRB
(3.1 mm yr−1, p<0.01) and YERB (2.0 mm yr−1,
p<0.05). The difference in annual ET between the
two simulations exhibited significant increasing
trends for SHRB (0.45 mm yr−1, R2=0.88,
p<0.0001), LRB (0.76 mm yr−1, R2=0.94,
p<0.0001), HAIRB (0.57 mm yr−1, R2=0.95,
p<0.0001), YERB (0.99 mm yr−1, R2=0.98,
p<0.0001), andHUAIRB (0.25 mmyr−1,R2=0.84,
p<0.001), significant decreasing trends for SERB

(−1.07 mm yr−1, R2=0.97, p<0.0001) and SWRB
(−0.27 mm yr−1, R2=0.93, p<0.0001), and no sig-
nificant trends for YZRB (p=0.97), PRB (p=0.38),
and NWRB (p=0.66). These results showed that at
the scale of large river basins, the greening trends
could lead to increases in annual ET and the browning
trends could reduce annual ET.

The changes in vegetation greenness also influ-
enced water yield at the scale of large river basins
(figure 9). The difference in water yield between the
simulations with original and detrended LAI exhibited
decreasing trends in SHRB (−0.45 mm yr−1,
p<0.0001), LRB (−0.76 mm yr−1, p<0.0001),
HAIRB (−0.57 mm yr−1, p<0.0001), and YERB
(−0.99 mm yr−1, p<0.0001) that showed increasing
trends in the difference of annual ET, increasing
trends in HUAIRB (0.25 mm yr−1, p<0.001), SERB
(1.07 mm yr−1, p<0.0001), and SWRB (0.27 mm
yr−1, p<0.0001) that mostly showed decreasing
trends in the difference of annual ET, and no sig-
nificant trends in YZRB (p=0.97), PRB (p=0.38),
and NWRB (p=0.66) that showed no significant

Figure 6.Trends of annual ET andwater yield in China over the period 2000–2014: (a) simulated annual ETwith original LAI; (b)
simulated annual ETwith detrended LAI; (c) simulatedwater yield with original LAI; and (d) simulatedwater yield with detrended
LAI. The units aremmyr−1.
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trends in the difference in annual ET. The multi-year
mean water yield over the period 2000–2014 between
the two simulations exhibited largest differences for
YERB, HAIRB, and LRB (∼7%), intermediate differ-
ences for NWRB, SHRB (∼3%) and HUAIRB
(∼1.5%), and smallest differences for YZRB, PRB,
SERB (∼0.5%), and SWRB (∼0.1%). These results
showed that the changes in vegetation greenness
alteredwater yield at the scale of large river basins.

4.Discussion

Many studies have shown that vegetation greenness
has been increasing over the last three decades based
on long-term NDVI and/or LAI records (Xiao and
Moody 2004, Park and Sohn 2010, Li et al 2012, Chen
et al 2014, Xiao 2014). Changes in vegetation greenness
in China were driven by multiple environmental and
human factors (Tian et al 2011, Xiao et al 2015). Air
temperature was the leading climatic factor driving the
increases in vegetation productivity (Zhou et al 2001,
Xiao et al 2015). Increasing precipitation also
enhanced vegetation productivity in semi-arid and
arid regions (Xiao et al 2015). The increase in diffuse
radiation (Ren et al 2013) can also enhance plant
growth (Xiao et al 2015). A modeling study indicated
that rising atmospheric CO2 significantly increased
China’s terrestrial carbon storage (Tian et al 2011).
Nitrogen deposition enhanced vegetation productivity
in regions with large increases in nitrogen deposition
(Tian et al 2011, Xiao et al 2015). Forest plantations
were partly responsible for the increases in vegetation
greenness (Lu et al 2012, Xiao et al 2015, Zhang
et al 2015b). Elevated crop yield resulting from
improved agricultural management practices (e.g.,
improved irrigation infrastructure, increasing use of
chemical fertilizers, and substitution of higher-yield
crops for lower-yield crops) contributed to the

increases in vegetation greenness (Xiao et al 2015). The
relative contributions of these environmental and
human factors to increasing vegetation greenness
variedwith spatial scale (Xiao et al 2015).

Despite the overall greening trends, browning
trends were also observed in many areas in China.
Multiple mechanisms are possibly responsible for the
decreasing trends in vegetation greenness. The decline
in vegetation greenness was mainly caused by ecosys-
tem degradation (Li et al 2012) and urbanization (Liu
and Gong 2012). Decreasing vegetation greenness in
southeastern China and parts of southwestern China
was possibly caused by the climatic abnormality
(droughts and ice storm) and land cover changes (i.e.,
urbanization) (Peng et al 2011, Liu andGong 2012, Liu
et al 2012b). Vegetation browning in northeastern
China was mainly associated with negative effects of
increasing droughts (Peng et al 2011, Liu
et al 2013a, 2014b). The vegetation greening and
browning trends observed were generally consistent
with those identified in previous studies (Chen
et al 2014, Xiao 2014).

Our model simulations showed that on per-pixel
basis, the increasing trends in LAI (vegetation green-
ing) generally increased annual ET and decreased
water yield, while decreasing trends in LAI (vegetation
browning) decreased annual ET and increased water
yield. The differences in annual ET and water yield
between the two simulations exhibited increasing and
decreasing trends, respectively, at the scales of large
river basins and at the national scale, indicating that
vegetation greening had positive effects on ET and
negative effects on water yield at these spatial scales.
Despite the effects of vegetation greening, the nation-
ally-averaged annual ET and water yield did not exhi-
bit significant increasing or decreasing trends. This is
partly because vegetation greening trends only
accounted for 15.8% of China’s land area. For regions
without significant changes in LAI or vegetation type,

Figure 7.Trends of nationally-averaged annual ET (a) andwater yield (b) during the period 2000–2014. The difference in ET (orwater
yield) stands for the difference in the simulated ET (orwater yield)with original LAI and the simulated ET (orwater yield)with
detrended LAI.

9

Environ. Res. Lett. 11 (2016) 094010



the changes in ET or water yield may follow different
directions or exhibit no trends depending on the chan-
ges in precipitation and temperature. Moreover, vege-
tation browning was also observed in some regions,
and the resulting decrease in ET and increase in water

yield could partly offset the effects of vegetation green-
ing. This indicates that the net effects of vegetation
greening such as afforestation and reforestation on the
hydrological cycle depend on the spatial scale. The
State Forestry Administration of China expected that

Figure 8. Spatially-averaged annual ET for the 10 river basins during the period 2000–2014. The difference in ET stands for the
difference between the simulated ETwith original LAI and the simulated ETwith detrended LAI.

Figure 9. Spatially-averagedwater yield for the 10 river basins during the period 2000–2014. The difference inwater yield stands for
the difference between the simulatedwater yield with original LAI and the simulatedwater yield with detrended LAI.
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the continued ecosystem restoration program will
increase national forest cover to 26% by 2050
(Lei 2005). Vegetation greening therefore will likely
have larger impacts on the hydrological cycle.

The effects of vegetation greening particularly
afforestation projects on water yield have received
growing attention. Some studies indicated that affor-
estation/reforestation caused significant increase of
ET and reduction of streamflow (McVicar et al 2007,
Yu et al 2009, Mátyás and Sun 2014, Yao et al 2015).
Forests typically have higher ET than other vegetation
types, and the conversion of croplands, grasslands,
and bare lands to forests can lead to higher ET. For
example, a pervious study showed that vegetation
restoration resulted in different reduction of average
water yield in the semiarid Loess Plateau region (50%)
and the tropical southern region (30%), respectively
(Sun et al 2006). By contrast, another study showed
that forest recovery at Guangdong Province did not
cause significant water reduction (Zhou et al 2010). A
recent global-scale synthesis study indicated that land
cover changes can lead to greater hydrological respon-
ses in non-humid regions or in watersheds of low
water retention capacity (Zhou et al 2015). Our results
showed that vegetation greening including afforesta-
tion/reforestation enhanced annual ET and reduced
water yield, and the effects of vegetation greening on
ET and water yield could be offset by other factors at
the large river basin and the national scales. Our
results also showed the difference between simulated
water yield with original LAI and simulated water yield
with detrended LAI was larger in northern river basins
than in southern river basins, which indicates that
vegetation change plays a larger role in regulating the
water cycle in semi-humid, semi-arid, or arid areas.

There has been a debate on the feasibility and
effectiveness of afforestation/reforestation efforts in
northern China (Sun et al 2006, Cao 2008, Ma
et al 2013). On one hand, afforestation/reforestation
has improved ecological environment and sequestered
more carbon in ecosystems (Liu et al 2014a). On the
other hand, afforestation/reforestation could increase
regional ET and reduce water yield, thereby aggravat-
ing the water shortage issue in northern China. Some
previous studies argued that the feasibility of afforesta-
tion was constrained by the water availability in Chi-
na’s arid and semi-arid regions (Cao 2008). The
carbon gain of ecosystems is associated with the cost of
water consumption. Our results showed that affor-
estation/reforestation increased annual ET and
reduced water yield. Afforestation efforts perhaps
should focus on southern China with larger water sup-
ply given the water crisis in northern China (Hao
et al 2015a) and the negative effects of these efforts on
water yield (Xiao et al 2013).

Afforestation/reforestation induced changes in
vegetation greenness can have feedbacks to the climate
by altering the hydrological and energy cycles (van
Dijk and Keenan 2007, Trabucco et al 2008, Ellison

et al 2012, Jiang et al 2015). A regional climate model-
ing study indicated that the northern China forest
shelterbelt project was likely to improve overall hydro-
climatic conditions by increasing precipitation, rela-
tive humidity, and soil moisture (Liu et al 2008b).
Using reanalysis atmospheric perceptible water and
satellite vegetation index data, Jiang and Liang (2013)
found that improved vegetation greenness strength-
ened ET and increased summer atmospheric water
vapor over Northern China, indicating that afforesta-
tion/reforestation may have positive effects on regio-
nal water resources availability. Our results showed
that the effects of the changes in vegetation greenness
on ET and water yield varied with spatial scale. Asses-
sing the net effects of vegetation greening/browning
on annual ET and water yield in China requires the
consideration of various environmental and human
factors on plant productivity, mapping of the exact
location and type of forests annually, and incorpora-
tion of the feedbacks to the climate.

5. Conclusions

We examined how the recent trends in vegetation
greenness affected annual ET and water yield of
China’s terrestrial ecosystems during the period from
2000 to 2014. Significant trends of vegetation green-
ness were identified over 26.1% of China’s land area,
with 15.8% for greening and 10.3% for browning
areas. Vegetation greening mainly occurred in central
and northern China, while browning was mainly
observed in southeastern, southwestern, and north-
easternChina. On a per-pixel basis, greening increased
annual ET and decreased water yield, while browning
reduced annual ET and increased water yield. At the
large river basin and national scales, vegetation green-
ing trends had positive effects on annual ET and had
negative effects on water yield. The effects of the
changes in vegetation greenness on the hydrological
cycle depend on the spatial extent of the region and the
fraction of greening or browning area. Our results
indicate that afforestation efforts perhaps should focus
on southern China where precipitation is abundant
given the water crisis in northern China and the
negative effects of vegetation greening on water yield.
Future studies on the effects of vegetation greening/
browning on the hydrological cycle at large scales
should account for the feedbacks of the changes in ET
and other biophysical properties (e.g., albedo) to the
climate.
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