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Evaluation of continental carbon cycle simulations with
North American flux tower observations
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Abstract. Terrestrial biosphere models can help identify physical processes that control carbon
dynamics, including land–atmosphere CO2 fluxes, and have great potential to predict the terrestrial
ecosystem response to changing climate. The skill of models that provide continental-scale carbon flux
estimates, however, remains largely untested. This paper evaluates the performance of continental-scale
flux estimates from 17 models against observations from 36 North American flux towers. Fluxes
extracted from regional model simulations were compared with co-located flux tower observations at
monthly and annual time increments. Site-level model simulations were used to help interpret sources of
the mismatch between the regional simulations and site-based observations. On average, the regional
model runs overestimated the annual gross primary productivity (5%) and total respiration (15%), and
they significantly underestimated the annual net carbon uptake (64%) during the time period 2000–
2005. Comparison with site-level simulations implicated choices specific to regional model simulations
as contributors to the gross flux biases, but not the net carbon uptake bias. The models performed the
best at simulating carbon exchange at deciduous broadleaf sites, likely because a number of models used
prescribed phenology to simulate seasonal fluxes. The models did not perform as well for crop, grass,
and evergreen sites. The regional models matched the observations most closely in terms of seasonal
correlation and seasonal magnitude of variation, but they have very little skill at interannual correlation
and minimal skill at interannual magnitude of variability. The comparison of site vs. regional-level
model runs demonstrated that (1) the interannual correlation is higher for site-level model runs, but the
skill remains low; and (2) the underestimation of year-to-year variability for all fluxes is an inherent
weakness of the models. The best-performing regional models that did not use flux tower calibration
were CLM-CN, CASA-GFEDv2, and SIB3.1. Two flux tower calibrated, empirical models, EC-MOD
and MOD17þ, performed as well as the best process-based models. This suggests that (1) empirical,
calibrated models can perform as well as complex, process-based models and (2) combining process-
based model structure with relevant constraining data could significantly improve model performance.

Key words: carbon fluxes; flux towers; model–data comparison; terrestrial biosphere models.

INTRODUCTION

Future global climate predictions are uncertain. A

significant portion of global climate prediction uncer-

tainty stems from the inability to predict the amount of
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anthropogenic CO2 from fossil fuel emissions that will

be reabsorbed into the terrestrial Earth system (Randall

et al. 2007). A significant improvement in the prediction

of the terrestrial carbon cycle is necessary to develop a

well-informed projection of the natural carbon cycle,

and to design effective global carbon management

strategies (Friedlingstein et al. 2006).

Model–data comparisons have the potential to

identify terrestrial biosphere models (TBMs) that

provide the most accurate portrayal of current terrestrial

carbon-cycling processes. Unfortunately, the evaluation

of TBM skill at a continental or regional level is limited

due to a lack of observations across the same spatial

domain. For example, regional atmospheric inversions

can be used as a basis of comparison to TBMs (Peters et

al. 2007, Rayner et al. 2008); however, the observation

network that inversions rely upon remains too sparse to

reliably resolve subcontinental fluxes. In addition,

regional carbon flux estimates from inversions are

subject to transport errors (Baker et al. 2006) and

typically depend on TBM fluxes as priors. Inventory

estimates of productivity and carbon stocks are another

source for comparison with TBMs (Law et al. 2004,

Pacala et al. 2007, Rogers et al. 2011, Hayes et al. 2012);

however, the temporal resolution is too coarse to

evaluate TBM skill at simulating seasonal and interan-

nual carbon flux processes.

CO2, water, and energy flux observations derived

from eddy covariance flux towers (Baldocchi et al. 2001)

offer another source of validation for TBMs. These

observations have been used most commonly for the

evaluation of site-level model simulations (e.g., Thorn-

ton et al. 2002, Hanson et al. 2004), but can also serve as

a test for regional model performance (e.g., Hoffman et

al. 2007, Potter et al. 2007, Randerson et al. 2009) or as a

tool to evaluate regional flux maps (e.g., Ciais et al.

2005, Jung et al. 2011). Furthermore, flux tower data

combined with statistical scaling approaches can pro-

duce regional flux maps (Xiao et al. 2008, 2010, Beer et

al. 2010, Carvalhais et al. 2010).

More recently, the North American Carbon Program

(NACP) Interim Synthesis Activity collected outputs

from 34 TBMs both at the continental and site spatial

scales representing the major biome types across North

America. The variety of models, including data-driven,

empirical, and process-based formulations, combined

with flux data from 36 long-running eddy covariance

flux towers make the scope of NACP Interim Synthesis

Activity unprecedented. Flux towers (and biomass

inventory [Hayes et al. 2012]) are valuable in that they

provide a direct and independent estimate of carbon flux

and a rare source of evaluation for model performance.

In addition, the flux uncertainties are calculated for the

integrated gross primary productivity (GPP), total

ecosystem respiration (RE), and net ecosystem exchange

(NEE). This model–data comparison effort was intend-

ed to diagnose the regional carbon fluxes across the

continent (North American Carbon Program; informa-

tion available online)16 and has also led to a variety of

site-level model performance evaluations. For example,

Schwalm et al. (2010) examined model performance of

monthly net ecosystem exchange (NEE) across gradients

in dryness, seasonality, biome, site history, and model

structure. They found model simulations were outside

observed uncertainty, and that models performed the

best for summer conditions, forested ecosystems, and

with prescribed phenology. Dietze et al. (2011) studied

model performance as a function of time scale and

found that model errors in NEE were most pronounced

during the annual, 20–120-day, and diurnal time scales.

In addition, model performance was related to model

time step, soil hydrology, and representation of photo-

synthesis and phenology. Richardson et al. (2012) found

that models had an inadequate representation of

phenology that led to inaccuracies in growing season

timing, length, and the magnitude of photosynthesis for

deciduous forests. Models performed better for ever-

green forests. Schaefer et al. (2012) focused on modeled

gross primary production (GPP), and found that daily

averaged GPP could not be simulated within observed

uncertainty. They concluded that simulated GPP could

be most improved through better light-use-efficiency

parameterization, representation of soil moisture, eco-

system response during dry conditions, and GPP

inhibition during subfreezing conditions. Expanding

the analysis to include NEE, GPP, and total ecosystem

respiration (RE), Keenan et al. (2012) found that the

models simulated interannual variability of each flux

poorly. This finding was linked to shortcomings in the

timing of spring phenology, onset of soil thaw,

snowpack melting, and features due to extreme climate

events.

The use of flux tower observations has also been used

to evaluate regional-level model performance. For

example, based upon four flux tower sites, Potter et al.

(2007) found that NASA-CASA accurately simulated

NPP at crop and deciduous sites, but not at coniferous

and grassland sites. They concluded that the continental

estimates of NPP for North America were unlikely to be

underestimated. Based upon a larger sample of FLUX-

NET sites, Friend et al. (2007) identified that the carbon

sink was under-predicted by the Sheffield Dynamic

Global Vegetation Model. The under-prediction was

attributed to the omission of disturbance in the

simulation. Similarly, the Randerson et al. (2009) study

found that regional simulations of CASA and CLM-CN

underestimated the carbon uptake in boreal and

temperate forest systems.

Our study is similar to previous regional model–data

comparisons (e.g., Friend et al. 2007, Potter et al. 2007,

Randerson et al. 2009), in that flux tower data are used

as ‘‘ground-truth’’ for evaluating the model simulations.

No previous study of this type, however, can rival the

16 http://daac.ornl.gov
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combination of models and flux tower observations

organized within the NACP synthesis activity.
Here, we present a study that was an intersection of

the NACP Site and Regional Synthesis activities and
focused on the model performance of the regional

simulations, 17 models that simulated carbon fluxes
across all of North America. We used 36 flux tower

observations from the NACP Interim Synthesis Activity
to determine whether the regional model fluxes are
consistent with the observations. Regional simulations

are necessarily coarser in spatial resolution than site-
level simulations because of the size of the domain

(continent), input data, and computational limits
associated with a multiyear simulation across that

domain. Despite the obvious challenge of mismatch in
spatial scales represented by the regional model runs vs.

the flux tower measurements, it is reasonable to expect
that these regional model runs demonstrate some

consistency with 36 flux tower measurements spread
across the continent. We judge consistency of model

simulations with the observations based upon the gross
and net fluxes in terms of magnitude, temporal and

spatial correlation, magnitude of variability, seasonal
timing, and shape of the seasonal cycle. Unlike any

other model–data comparison to date, we used a
combination of regional and site-level runs in order to
assess the impact of (1) spatial mismatch; (2) model

setup, including driver data, vegetation maps, model
initialization choices; and (3) model structure upon the

model–data misfit from the regional-level runs. Finally,
we combined a suite of metrics that represent desirable

model qualities and complete a model performance
ranking. We evaluated performance in terms of time

increment (i.e., annual, monthly), plant functional types,
and model type (e.g., enzyme kinetic, light-use efficien-

cy). We attempted to identify characteristics that are
common to the best performing models. Some regional

models are interpolations of flux tower data (e.g., EC-
MOD [Xiao et al. 2008, 2010]), but have very simple

representations of ecosystem processes. Others (OR-
CHIDEE [Ciais et al. 2005], CLM-CN [Thornton et al.

2009]) are more complex models with a mechanistic
representation of processes such as photosynthesis,
respiration, and disturbance. Though this makes the

comparison sometimes difficult to interpret, it also
represents a more realistic evaluation of the skill of

TBMs currently employed for carbon cycle research.

METHODS AND PROCEDURES

Model description and setup

The regional output of 17 TBMs (Table 1) was

collected as part of the NACP Regional and Continental
Interim Synthesis (RCIS; Huntzinger et al. 2012). The

models vary in the level of complexity ranging from
statistical representations to process-based biogeochem-
ical descriptions of relevant ecosystem processes. The

primary objective of the RCIS was to synthesize and
compare TBMs to assess current understanding of the

terrestrial carbon cycle in North America. Thus, the

RCIS focused on ‘‘off-the-shelf’’ model simulations, or

existing model results available from analyses that have

been completed by ongoing NACP projects and other

recently published studies. Consequently, the regional

models used different meteorology, vegetation cover,

prescribed phenology (for applicable models), and

representation of disturbance (e.g., land use history, fire

emissions). A description of the regional, gridded

weather reanalysis, vegetation products, and disturbance

for the regional models is provided in Table 1 and in

Huntzinger et al. (2012). The majority of models

considered here include some representation of distur-

bance. In these cases, the influence of disturbance on the

carbon exchange is included in the modeled NEE.

The model driver data for the site-level runs were

observed at the site locations and included air temper-

ature, precipitation, wind speed, humidity, radiation,

vegetation type, soil type, and elevation. For the site-

level runs, gaps in the observed weather record were

filled with observations either from a nearby flux tower

or a National Climatic Data Center station. Additional

details of the gap-filling methodology for meteorology

data can be found in Ricciuto et al. (2009). Models that

required prescribed phenology were provided a multi-

year averaged satellite phenology product. The site-level

model runs were initialized through a spin-up procedure

that transitions an ecosystem to an equilibrium state.

This was achieved by looping the weather data until the

GPP and RE were nearly balanced.

A subset of the regional models, denoted by daggers

(�) in Table 1, provide site-level simulations for all sites

in Table 2 as part of the site synthesis. Here, these seven

‘‘crossover’’ models were used to help interpret the

regional model results. The site-level model simulations

shared a common simulation protocol, whereas the

regional models did not share a consistent simulation

protocol. As a result of the differences in the spatial

resolution and model setup between the regional and

site-level simulations, the crossover models provided an

opportunity to evaluate the impact of spatial mismatch

and the model setup (i.e., vegetation, climate, distur-

bance, initial conditions) on model performance. A

listing of site vs. regional level differences amongst the

crossover models is located in Appendix A: Table A1.

Flux tower observations

The flux observations for this analysis (Table 2) were

obtained and processed within the NACP Site Interim

Synthesis (Schwalm et al. 2010). We used observations

from 36 sites across North America representing 10

different biomes for the years 2000–2005. These sites

encompass a wide range of climate and vegetation types.

Here, the NEE, measured from the towers, represents

the difference between RE and GPP. A negative value of

NEE indicates a net sink of carbon into the land. The

NEE flux tower data were filtered on a site-by-site basis

during low turbulence conditions to reduce uncertainties

November 2013 533EVALUATING CARBON FLUX SIMULATIONS



in NEE associated with these conditions (Barr et al.
2009). Parameterized equations were used to gap-fill the

NEE records, and to partition NEE into the gross fluxes
of GPP and RE (Moffat et al. 2007, Desai et al. 2008,

Barr et al. 2009). Strictly speaking, the GPP and RE

values are not observed values, but products inferred
from NEE observations. The uncertainties were calcu-

lated using a Monte Carlo approach for both monthly
and annual flux increments (Barr et al. 2009). This

approach accounts for the uncertainty from several

sources: the low-turbulence filtering threshold (u*
threshold), the random error (Richardson and Hollinger

2007), and the gap-filling and partitioning algorithm.

Matching observations and model output
in time and space

The model simulations and site observations under-

went temporal and spatial aggregation to provide a
uniform comparison. The site-level output and site

observations were gap-filled and integrated to monthly

and annual flux increments (Barr et al. 2009). Similarly,
the regional model runs were aggregated to monthly and

annual temporal resolution at one-degree spatial reso-
lution (Huntzinger et al. 2012). The modeled carbon flux

data were extracted from the grid cell that corresponded

to the location of each flux tower site for comparison.
While some of the regional models provide flux

estimates at finer spatial resolution, we have chosen to
evaluate all of the models at this common resolution. In

this way, we evaluated all of the regional models on

‘‘equal footing’’ with regards to spatial resolution.

This comparison thus includes a significant mismatch

in the spatial scales represented by the models (;104-

km2 grid cells) and the flux tower observations (;1-km2

flux footprint). This will degrade model performance

relative to the flux tower observations, particularly in

regions where climate and land cover are heterogeneous.

We acknowledge that failure of the model to reproduce

flux tower observations could be entirely due to this

mismatch in spatial scales. Conversely, it is also possible

that larger scale features that are coherent across grid

cells (e.g., climate) dominate both the tower and model

fluxes. We confront this issue by utilizing the crossover

models to test for the influence of spatial mismatch and

site-specific driver data on regional model performance.

Statistical measures

Given the many different types of models and sites

within the analysis, we used the Taylor diagram (Taylor

2001), which provides a comprehensive representation of

variability and correlation amongst the model output.

Here, we compared modeled ( f ) to observed (r) fluxes

of CO2 at monthly and annual increments. Performance

is determined by standard deviation (r), Pearson

correlation coefficient (R), and centered root mean-

square deviation (E0 ). The Taylor diagram uses the

biased form of r as follows:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

ð fn � �f Þ2
vuut ð1Þ

TABLE 1. Description of regional model driver data and model formulation.

Regional
models Reference Radiation Temperature

BEPS� Chen et al. (1999), Ju et al. (2006) NCEP NCEP
CASA-GFEDv2 van der Werf et al. (2004, 2006) ISCCP, NCEP(R2) IIASA, GISSTEMP

CASA-Trans Randerson et al. (1997) ��� Leemans and Cramer (1991),
Hansen et al. (1999)

CLM-CASA’ Randerson et al. (2009) NCEP NCEP
CLM-CN� Thornton et al. (2009), Randerson et al. (2009) NCEP NCEP
Can-IBIS� Kucharik et al. (2000), Foley et al. (1996) CFS spatial data CFS spatial data
DLEM� Tian et al. (2010) NARR NARR, PRISM
EC-MOD Xiao et al. (2008, 2010) N/A MODIS LST
ISAM� Jain and Yang (2005), Yang et al. (2009) N/A Mitchell and Jones (2005)
LPJ-wsl� Bondeau et al. (2007) CRU05 CRU05
MC1 Bachelet et al. (2000) N/A PRISM
MOD17þ Beer et al. (2010) ERA-INTERIM ERA-INTERIM
NASA-CASA Potter et al. (2007) New et al. (2000) DAYMET 1982–2000

NCEP 2001–2004
ORCHIDEE� Krinner et al. (2005), Viovy et al. (2000) CRU, NCEP CRU, NCEP
SIB3.1 Baker et al. (2008) NCEP NCEP
TEM6 Hayes et al. (2011) CRU, NCEP CRU, NCEP
VEGAS2 Zeng et al. (2004, 2005) NCEP NASA, GISSTEMP

Note: More details of models and model driver data are provided in Huntzinger et al. (2012). Abbreviations are: EK, enzyme
kinetic; LUE, light-use efficiency; DA, data assimilation; N/A, not applicable; and LAI, leaf area index. Zero-order kinetic models
base the decomposition rate of soil carbon on moisture and temperature conditions only, and first-order kinetic models base the
decomposition rate on moisture, temperature and the soil carbon pool; w/N stands for ‘‘with nitrogen’’ and indicates that the model
also includes nitrogen limitation on the soil carbon decomposition rate calculation. Ellipsis indicates that data are not available.

� ‘‘Crossover’’ models that were run at both continental (regional) spatial domain and at individual sites.

BRETT M. RACZKA ET AL.534 Ecological Monographs
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where N is the total number of data points. The

correlation R is defined as

R ¼
1

N

XN

n¼1
ð fn � �f Þðrn � r̄Þ
rf rr

: ð2Þ

Finally, E0 is defined as

E 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

�
ð fn � �f Þ � ðrn � r̄Þ

�2

vuut : ð3Þ

We used several additional statistical criteria that are

not included in the Taylor diagram. The bias (�E) is the

difference in the average magnitude between the

observations (r) and model output ( f ) and is defined as

�E ¼ 1

N

XN

n¼1

ðrn � fnÞ: ð4Þ

The total root mean square deviation (E) is the

average deviation between each observation (rn) and

corresponding modeled value ( fn):

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

ðrn � fnÞ2
vuut : ð5Þ

The sigma ratio is defined as the logarithmic ratio

between the modeled standard deviation and the

observed standard deviation. This is the only metric

that provides a direct comparison between simulated

and observed magnitude of variation. A value close to

zero indicates the model matches the observed standard

deviation closely.

The chi-square (v2) statistic is a measure of how well

modeled values match observed values considering

observational uncertainty (e) as defined:

v2 ¼ 1

N

XN

n¼1

rn � fn
en

� �2

: ð6Þ

A chi-square ,1 indicates the model matches the

observations given the uncertainty inherent in the

observations. The uncertainty in flux tower observa-

tions of NEE, RE, and GPP is due to random sampling

error and uncertainty in filling missing observations.

The random uncertainty is caused by limited sampling

of the turbulence that transports CO2 at the land–air

interface (Richardson et al. 2006). Gap-filling uncer-

tainty stems from the original measurement error,

uncertainty in the low friction velocity, and the

algorithms used to fill in missing data (Richardson

and Hollinger 2007). A more complete discussion of

the observed uncertainty calculation and filling tech-

nique is given in Barr et al. (2009).

We derived the mean monthly and annual flux

observational uncertainty from the single-month and

annual observational uncertainty. The ‘‘systematic’’

approach (worst-case scenario) assumes the single-

month and annual uncertainty is entirely systematic,

and therefore, the uncertainty is the same between the

mean and single-month/annual fluxes. The ‘‘random’’

approach (best-case scenario), on the other hand,

assumes the single-month/annual uncertainty is entire-

ly random and independent; therefore, the relative

uncertainty is reduced when the fluxes are averaged

(Taylor 1997). The true flux uncertainty is composed

of both random measurement and systematic error;

therefore, the true uncertainty lies in between these

estimates.

Partitioning statistics into time and space

We further diagnosed model performance by parti-

tioning the temporal (within-site) and spatial (across-

site) contributions to the annual correlation and

magnitude of variation (sigma) statistics. This disaggre-

gates the modeled year-to-year variations in flux at a

single site from the modeled variations in fluxes across

sites. To calculate the temporal contribution, the annual

flux data were preprocessed by subtracting out the site-

year mean for each of the modeled fluxes and

observations. In order to calculate the spatial contribu-

tion, the site-years for each model and observational

data set were averaged. The processed data in both cases

then underwent the normal statistical calculation to

obtain correlation and sigma (see subsection Statistical

measures). For the monthly correlation and sigma

statistics, both temporal and spatial contributions were

considered simultaneously.

TABLE 1. Extended.

Phenology Photosynthesis
Soil

decomposition

custom LAI EK first order, w/N
GIMMS
NDVI-derived LAI

LUE first order

prognostic LUE first order

prognostic EK first order
prognostic EK first order, w/N
prognostic EK first order
prognostic EK first order, w/N
MODIS EVI statistical, DA zero order
N/A statistical first order, w/N
prognostic EK first order
prognostic statistical first order, w/N
MODIS LAI LUE, DA zero order
MODIS EVI LUE first order, w/N

prognostic EK first order, w/N
GIMMSg EK zero order
prognostic EK first order, w/N
prognostic LUE first order

November 2013 535EVALUATING CARBON FLUX SIMULATIONS



Grouping approach for model–data comparison

We conducted model–data comparisons by flux type

(NEE, GPP, and RE), time increment (monthly,

annual), plant functional type (PFT), and model

formulation. All 36 sites were categorized into the

following PFTs (Table 2): deciduous broadleaf forest

(DBF), temperate evergreen forest (ENFT), boreal

evergreen forest (ENFB), grassland (GRASS), crops

(CROP), and miscellaneous (MISC). For our analysis,

mixed-forest sites, a combination of deciduous and

evergreen forest, were included under the DBF designa-

tion. Shrubland, tundra, woody savannah, and wetland

sites, none of which were represented by more than two

sites, were included in the MISC designation. In this

way, we reduced the original 10 PFT groups based upon

the IGBP classification into 6 PFTs to increase the

sample size within the groupings. It is important to note

that these classifications do not necessarily represent the

PFTs used in the regional models. They represent a

grouping according to the land cover representative of

the flux tower footprints. The magnitude and variation

of the observed fluxes grouped by the PFT of the flux

tower site is provided in Appendix B: Tables B1–B3. The

range of flux magnitude and variation across sites within

a PFT grouping is provided in Appendix B: Figs. B1–B3.

During a preliminary evaluation of results, the Can-IBIS

model demonstrated outlier behavior that significantly

changed the findings both when considering all regional

models together or when grouped by model formula-

tions. For example, when considering all sites, Can-IBIS

averaged over twice as much magnitude in annual gross

flux as compared to the observations. The vast majority

of the other models were within 630% of the observed

gross carbon fluxes. Therefore, with the exception of the

crossover model comparison, Can-IBIS was not includ-

ed within any findings that required the grouping of

models. Can-IBIS was retained for the crossover model

comparison, however, because its model runs were part

of both model groupings (site and regional models).

There are a variety of ways that biogeochemical

models represent ecosystem function and processes as

well as responses to environmental constraints. Here, we

analyzed model performance based upon photosynthet-

ic, phenological, and soil carbon decomposition formu-

lations. The major photosynthetic groupings were

TABLE 2. Location and vegetation description (plant functional type [PFT]) of flux tower sites.

Site code Reference State/province Latitude, longitude (8N, 8W) PFT

Ca-Ca1 Schwalm et al. (2007) British Columbia, Canada 49.87, �125.33 ENFT
Ca-Let Flanagan and Adkinson (2011) Alberta, Canada 49.71, �112.94 GRASS
Ca-Mer Lafleur et al. (2003) Ontario, Canada 45.41, �75.52 WET (MISC)
Ca-Oas Barr et al. (2002) Saskatchewan, Canada 53.63, �106.20 DBF
Ca-Obs Kljun et al. (2006) Saskatchewan, Canada 53.99, �105.12 ENFB
US-Ha1 Urbanksi et al. (2007) Massachusetts, USA 42.54, �72.17 DBF
US-Ho1 Richardson et al. (2009) Maine, USA 45.20, �68.74 ENFT
US-Me2 Thomas et al. (2009) Oregon, USA 44.45, �121.56 ENFT
US-Ne3 Suyker and Verma (2008) Nebraska, USA 41.18, �96.44 CROP
US-UMB Gough et al. (2008) Michigan, USA 45.56, �84.71 DBF
US-ARM Fischer et al. (2007) Oklahoma, USA 36.61, �97.49 CROP
US-Ne1 Suyker and Verma (2008) Nebraska, USA 41.17, �96.48 CROP
US-Ne2 Suyker and Verma (2008) Nebraska, USA 41.16, �96.47 CROP
US-IB1 Allison et al. (2005) Illinois, USA 41.86, �88.22 CROP
US-Var Ryu et al. (2008) California, USA 38.41, �120.95 GRASS
US-Shd Burba and Verma (2005) Oklahoma, USA 36.93, �96.68 GRASS
US-IB2 Matamala et al. (2008) Illinois, USA 41.84, �88.24 CROP
US-Dk2 Pataki and Oren (2003) North Carolina, USA 35.97, �79.10 DBF
US-MMS Schmid et al. (2000) Indiana, USA 39.32, �86.41 DBF
US-WCr Cook et al. (2004) Wisconsin, USA 45.81, �90.08 DBF
US-Moz Gu et al. (2006) Missouri, USA 38.74, �92.20 DBF
Ca-Man Goulden et al. (1997) Manitoba, Canada 55.88, �98.48 ENFB
Ca-Ojp Kljun et al. (2006) Saskatchewan, Canada 53.92, �104.69 ENFB
Ca-Qfo Bergeron et al. (2007) Quebec, Canada 49.69, �74.34 ENFB
US-Dk3 Siqueira et al. (2006) North Carolina, USA 35.98, �79.09 ENFT
US-NR1 Bradford et al. (2008) Colorado, USA 40.03, �105.55 ENFT
Ca-TP4 Peichl and Arain (2007) Ontario, Canada 42.71, �80.36 ENFT
US-Pfa Davis et al. (2003) Wisconsin, USA 45.95, �90.27 MF (DBF)
US-Syv Desai et al. (2005) Michigan, USA 46.24, �89.35 MF (DBF)
Ca-Gro McCaughey et al. (2006) Ontario, Canada 48.22, �82.16 MF (DBF)
US-Ton Ma et al. (2007) California, USA 38.43, �120.97 WSA (MISC)
US-So2 Luo et al. (2007) California, USA 33.37, �116.62 SHR (MISC)
US-Brw Harazono et al. (2003) Alaska, USA 71.32, �156.63 TUN (MISC)
US-Atq Oberbauer et al. (2007) Alaska, USA 70.47, �157.41 TUN (MISC)
US-Los Sulman et al. (2009) Wisconsin, USA 46.08, �89.98 WET (MISC)
Ca-WP1 Flanagan and Syed (2011) Alberta, Canada 54.95, �112.47 WET (MISC)

Plant functional types (PFT) are: ENF(T/B), evergreen needleleaf forest (temperate/boreal); GRASS, grassland; WET, wetland;
DBF, deciduous broadleaf forest; CROP, cropland; SHR, shrubland; WSA, woody savannah; TUN, tundra; MF, mixed forest;
and MISC, miscellaneous, a combination of WET, WSA, SHR, and TUN.
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enzyme-kinetic (EK) and light-use-efficiency (LUE)

models. EK models emphasize the light- and enzyme-

limited constraints on photosynthesis and are generally

considered more physiologically based than LUE

models. In contrast, LUE models take an empirical

approach to estimating photosynthesis, by combining

the fraction of photosynthetically active radiation

(fPAR), a measure or proxy of leaf area index (LAI),

and a light-use-efficiency or conversion factor. Pheno-

logical groupings were divided between models that use

prescribed vs. internally predicted LAI. LAI can be

estimated over large regions using remote measurements

(e.g., Cook et al. 2008), but there can be considerable

variability in performance when using different LAI

products (Garrigues et al. 2008). Nevertheless, pre-

scribed LAI should be more accurate and reduce

computational costs, but limits the model’s prognostic

capability. The phenological and photosynthetic group-

ings in the models represented here are very similar in

that the EK models mostly use prognostic LAI, whereas

the LUE models primarily prescribe LAI. For this

reason, the photosynthetic grouping was used in place of

the phenological grouping because we could not

separate these factors with the suite of models available.

Finally, the soil carbon decomposition grouping was

divided between first-order soil carbon decomposition

rate models that include the influence of nitrogen

dynamics upon respiration processes and those that

did not (Huntzinger et al. 2012). First-order decompo-

sition models include the size of the soil carbon pool

when determining the rate of decomposition. The

inclusion of nitrogen dynamics should have an impact

on overall ecosystem respiration (Waring and Running

2007). Although not a formal model grouping, the

models EC-MOD and MOD17þ are unique in that they

are based on data-driven or data assimilation (data

fusion) methods. Data-driven methods make use of flux

observations and statistical approaches (e.g., ensemble

of regression models) to develop flux models (Xiao et al.

2008). Data assimilation indicates that model parame-

ters are estimated or optimized with the observed flux

tower data (e.g., Braswell et al. 2005). Clearly,

incorporating flux observations provides EC-MOD

and MOD17þ with an advantage over the remaining

models.

Model ranking

The model ranking developed for this study took into

account five metrics at once in order to quantify a

model’s overall performance. These five metrics mea-

sured (1) the bias in magnitude between the average

modeled and observed fluxes, (2) the average difference

in flux magnitude between the modeled and observed

fluxes (RMSD), (3) the temporal correlation between

modeled and observed fluxes (R), (4) the similarity in

temporal magnitude of variation between modeled and

observed fluxes (sigma ratio), and (5) the agreement of

modeled and observed fluxes considering the observed

uncertainty (chi-square). The final model rankings

(Tables 6–10) were created by first calculating a
statistical value for every combination of metric (n ¼
5), model grouping (PFTs and all sites) (n¼ 7), flux (n¼
3), and time resolution (n ¼ 2), where the values in

parentheses are the number of groups in each category.
For example, a correlation value was calculated for

every model (17 total), for annual NEE, for DBF sites
only. The correlation values are sorted from best
(smallest value) to worst (largest value). Next, the

correlation value for each model is replaced by a
ranking value of 1 through 17 (1 ¼ best, 17 ¼ poor).

This process was completed a total of 210 times to cover
every combination within each category. The values in

Tables 6–10 are the average model ranking within the
respective grouping.

Diagnostic roadmap

Our approach was to present the performance of all
regional models based upon one metric at a time,

followed by a diagnosis of the main result (e.g., NEE
bias). The diagnosis was accomplished by comparison of

performance based upon grouping of the models by
individual PFTs, site vs. regional model runs, model

formulations, and meteorology data as needed. The
ability to compare site and regional model performance

allows us to identify the significance of spatial mismatch
and model setup upon the results. Furthermore, the
crossover models can help identify if shortcomings in

regional model performance are inherent to the model
structure or a result of spatial mismatch and setup

differences.

RESULTS AND DISCUSSION

Diagnosis of bias

Annual bias.—Overall, the annual NEE of the 16

regional models had a positive bias ranging from 52% to
71% across all PFTs (Table 3). A positive bias in annual

NEE indicates that overall, the models are systemati-
cally underestimating the net carbon uptake. The models

also overestimate the annual gross fluxes (GPP and RE)
by 5% and 15%, respectively, when considering all sites
together. These biases are outside of the 1-sigma

observed uncertainty range (worst case) for NEE
(614%), GPP (64 %), and RE (66%). The models

tend to overestimate RE more than GPP, which
contributes to the overall underestimation of the carbon

sink. On a seasonal basis, the regional models underes-
timated GPP during the growing season, but overesti-

mated the GPP during the transition seasons (see
Appendix A: Fig. A1). This is consistent with the

findings from the site-level analyses where models
tended to over-predict GPP during cold conditions

(Schaefer et al. 2012) and overestimate leaf area during
transition seasons (Richardson et al. 2012). Neverthe-

less, over the entire year, the regional models underes-
timated the net carbon uptake (Keenan et al. 2012),

whereas they overestimated gross fluxes. The range of
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the overestimation of the gross fluxes varied greatly

across the PFTs (Table 3). The models significantly

overestimated the gross fluxes of the grass sites during

the growing season. The site-level analysis (Schaefer et

al. 2012) attributed this to the inability of the models to

properly simulate soil moisture, drought, and humidity

stress. The ENFT sites are unique in that the models

systematically underestimate the gross fluxes for the

entire year (see Appendix A: Fig. A1). Individual model

performance is listed in Appendix A: Table A2.

Crossover models.—We diagnosed the flux bias of the

regional models by comparing the site- and regional-

level simulations of the crossover models. The gross

fluxes for the regional level runs are at least 30% higher

in magnitude than the site level runs (Table 4). From a

seasonal vantage point (Fig. 1; Appendix A: Fig. A2),

the regional runs approximate the magnitude of NEE

and GPP better than the site runs during the growing

season months. Outside of the growing season, the

regional runs overestimated the GPP by roughly 20%.

This does not appear to be due to an error in the

seasonal timing of GPP, but to a persistent overestimate

of the GPP. Although the site-level model mean matches

the observed annual sum of GPP well, this is the result

TABLE 3. Regional modeled fluxes with bias (model output� observations), excluding Can-IBIS.

PFT

NEE GPP RE

Annual
modeled flux
(g C�m�2�yr�1)

Bias
(g C�m�2�yr�1)

Bias
(%)

Annual
modeled flux
(g C�m�2�yr�1)

Bias
(g C�m�2�yr�1)

Bias
(%)

Annual
modeled flux
(g C�m�2�yr�1)

Bias
(g C�m�2�yr�1)

Bias
(%)

ENFT �55 135 71 1187 �472 �28 1133 �337 �23
DBF �73 110 60 1262 66 5 1179 164 16
CROP �86 184 68 1394 169 14 1288 332 35
ENFB �17 18 52 914 225 33 898 244 37
GRASS �38 56 60 828 242 41 786 296 61
MISC �39 45 54 1089 351 48 1048 396 61
All sites �54 96 64 1142 51 5 1082 140 15

Notes: The percentage bias is calculated in relation to the observed flux values. Abbreviations are: NEE, net ecosystem
exchange; GPP, gross primary production; and RE, total ecosystem respiration. See Table 2 for PFT abbreviations.

TABLE 4. Comparison of annual flux bias (model output � observations) between the site-level and regional-level (crossover)
model runs.

PFT and
level

NEE GPP RE

Annual bias
(g C�m�2�yr�1) Bias (%) D�

Annual bias
(g C�m�2�yr�1) Bias (%) D�

Annual bias
(g C�m�2�yr�1) Bias (%) D�

ENFT

Region 132 68 8 �146 �9 142 �23 �2 192
Site 124 62 �288 �17 �215 �15

DBF

Region 101 55 �47 425 35 314 521 51 307
Site 147 76 111 9 214 21

CROP

Region 182 68 12 545 45 881 720 75 886
Site 170 55 �336 �26 �166 �16

ENFB

Region �4 �11 �13 486 70 252 481 74 254
Site 9 24 233 33 227 34

GRASS

Region 54 59 �20 314 54 371 366 75 353
Site 74 67 �57 �10 13 3

MISC

Region 43 51 �16 657 90 351 701 108 375
Site 59 68 306 43 326 52

All sites

Region 88 59 �14 357 33 342 441 47 356
Site 102 66 15 1 86 9

Notes: ‘‘Region’’ denotes regional-level model runs, and ‘‘site’’ denotes site-level model runs. See Table 2 for PFT abbreviations.
� Delta (D) is the difference in bias between the regional simulations (first row) and the site simulations (second row), therefore

there is only one D value for each PFT.
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of compensating biases between the growing and

transition seasons. RE was systematically overestimated

during the entire year for the regional runs, whereas the

site-level runs approximated the RE magnitude and

seasonal pattern very well. The crossover model

performance thus shows that: (1) the difference in model

setup (site vs. regional) did not change the overall

annual biases in modeled carbon uptake (NEE);

however, (2) the gross fluxes of the regional model runs

were significantly higher than the site-level runs. Thus,

even though many of the regional models include spin-

up and a representation of disturbance history, they, like

the site model runs, underestimated the observed carbon

sink. On the other hand, it appears that the model setup

does play a role in the gross flux biases. The cause of the

degraded performance of the regional crossover runs has

important implications for interpretation of the validity

of the regional model results as a whole. If the

differences in the crossover runs were caused simply by

vegetation map mismatch, for example, then we might

expect the regional flux biases to be random by site, and

the regional models to perform well for a continental

average. The persistent overestimation of GPP and RE

by the regional crossover models suggests a systematic

cause other than vegetation cover resolution.

Meteorology data.—We examined the influence of

meteorology upon the simulated fluxes by parsing the

model output into groupings of shortwave radiation

driver data. This grouping was chosen because two of

the shortwave radiation products used for the regional

models were found to be 39% (NCEP) and 28%
(NARR) positively biased with respect to site observa-

tions (Oak Ridge National Laboratory Distributed

Active Archive Center [ORNL DAAC]; data available

online).17 Another radiation product, CRU-NCEP, was

found to be slightly negatively biased (�4%; see footnote

17). These radiation products were used in eight out of

the 17 regional models (Table 1), and only these eight

models were considered within the radiation groupings.

The radiation bias is most pronounced during cloudy

conditions, in which leaves were not saturated with light,

unlike in full-sun conditions. Consequently, shortwave

radiation positive bias during cloudy conditions should

promote vegetation growth. On the contrary, the models

using positively biased radiation gave lower GPP and

net carbon uptake than the models run with negatively

biased radiation (Appendix A: Table A3). To test if

other confounding model factors masked the expected

signal upon GPP, we examined the three crossover

models that used known positively biased regional

radiation products and compared the fluxes between

the site and regional-level runs. BEPS and CLM-CN

demonstrate flux biases consistent with positively biased

radiation, i.e., high net carbon uptake and high gross

fluxes; however, DLEM shows a negative bias (Appen-

dix A: Table A4).

The variability of meteorology data may also con-

tribute to the positive bias in modeled GPP. Medvigy et

al. (2010) demonstrated that lower variation (lower

standard deviation) in radiation and precipitation driver

data boosts modeled GPP, RE, and NEP fluxes as

compared to modeled output derived from higher

variation in driver data at Harvard Forest. In particular,

they found that two of the regional meteorology

products that are used in the NACP Interim Synthesis,

NCEP and ISCCP, exhibited lower overall variability

than the site meteorology observations. We could not

identify a strong link between the regional models that

used these regional meteorology products and provided

a positive bias in GPP.

In summary, only when we considered a subset of

crossover models that use positively biased shortwave

radiation data, do the majority of these models produce

a positively biased GPP as compared to the site-level

runs. Otherwise, the positive bias GPP signal is lost,

indicating that the biases in the shortwave radiation

products were not the dominant influence on the overall

regional model positive flux biases. The regional

meteorology products are also subject to temperature

biases; however, a separate analysis (not shown here) did

not reveal any obvious linkages between biases in

temperature and biases in GPP.

Model structure formulations.—We now examine the

influence of model structure upon the flux biases. EK-

based models simulated higher magnitude fluxes com-

pared to LUE-based models for both GPP and RE (Fig.

2, Table 5; Appendix A: Fig. A3). The EK models also

simulated more net carbon uptake (more negative NEE)

relative to LUE models. These results are consistent with

those of Huntzinger et al. (2012), who performed a

similar model formulation comparison of continental

fluxes for North America. The flux tower data suggest

that the EK models are simulating high GPP (15% bias)

that is offset by even higher RE (26% bias). This results

in a substantial underestimation of carbon uptake (61%
bias). The LUE models, on the other hand, underesti-

mate GPP (�15%), leading to larger underestimations of

net carbon uptake (81% bias in NEE).

It is not clear what drives the difference in estimation of

GPP (and RE) between EK and LUE models. The EK

models overestimate the length of the growing season

(Fig. 2) consistent with Richardson et al. (2012), who

found the modeled growing-season length was overesti-

mated for deciduous sites within the NACP site synthesis.

The overestimated growing season (positive bias in GPP),

however, is at least partially compensated for by the

underestimation of GPP during the peak of the growing

season. Therefore, phenology is unlikely the main driver

for the gross flux bias in EKmodels. Another explanation

for the differences in GPP relates to the extent of

parameter estimation used within the model groupings.

VEGAS2, an LUEmodel, optimizes a key photosynthetic

parameter that forces the continental GPP to fall within

an accepted range (N. Zeng, personal communication).17 http://daac.ornl.gov
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VEGAS2 is not unique in its calibration methodology as

other types of models perform similar calibrations based

upon accepted regional flux values (Cramer et al. 1999,

Ruimy et al. 1999). In this way parameter optimization

might help explain the minimal positive GPP biases for

LUE and EK models, even when confronted with

positively biased radiation data.

When grouped by soil carbon decomposition type,

only the no-nitrogen model mean overestimates the

magnitude of respiration (25% bias), resulting in an

underestimation of the overall carbon uptake (84%; Fig.

3; Appendix A: Table A5). The increased amount of RE

for the no-nitrogen grouping is consistent with the

findings of Huntzinger et al. (2012), who found a similar

trend between the two formulations when comparing

heterotrophic respiration results for all of North

America. In this study, nitrogen-inclusive models were,

on average, more consistent with the observations

(lower RE and NEE bias).

FIG. 1. Mean monthly fluxes for all sites for crossover
models only (including Can-IBIS) for (a) net ecosystem
exchange (NEE), (b) gross primary productivity (GPP), and
(c) total ecosystem respiration (RE). The error bars on the
observations are 61 sigma values (best- and worst-case
scenarios) calculated from monthly modeled uncertainty. The
shaded regions represent the 61 sigma values of the across-
model spread for each model grouping (darker gray indicates
overlap of shaded areas).

FIG. 2. Mean monthly fluxes for regional models at all sites
categorized by photosynthetic model formulation for (a) NEE,
(b) GPP, and (c) RE. The error bars on the observations are 61
sigma values (best- and worst-case scenarios) calculated from
monthly modeled uncertainty. The shaded regions represent the
61 sigma values of the across-model spread for each model
grouping (darker gray indicates overlap of shaded areas).
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In summary, both the regional- and site-level model

runs substantially underestimated the net carbon sink,

despite that the majority of the regional model runs

include a disturbance history and are not run from a
state of equilibrium. The underestimate of the carbon

sink is persistent regardless of the implementation of

disturbance history (e.g., prescribed land use, harvest,

fire) for the regional models. For the regional models

that include fire, the average carbon emissions from fire
only accounted for 6% of the NEE and are too small to

explain the NEE bias. This indicates either the initial

conditions do not represent the state of the ecosystem or

that the models underestimate ecosystem productivity as
a result of inaccurate parameterization/structure. Al-

though the flux tower observations indicated a larger

carbon sink than the regional models (64% lower NEE),

they are consistent with atmospheric inversion estimates,
which predict an 80% larger carbon sink than the

regional models (Hayes et al. 2012). On the other hand,

the inventory approach by Hayes et al. (2012) provides a

net carbon sink that is more consistent with the regional
models.

Annual variability

Temporal (within-site) and spatial (across-site) corre-

lation.—Overall, the regional model runs demonstrated
negligible temporal correlation (range in R was �0.2 to

þ0.2 across all sites) with observed interannual variation

in NEE, GPP, and RE, with the exception of the

correlation of GPP and RE at ENFB sites (R¼ 0.4) and

grass sites (R¼ 0.3; Fig. 4; Appendix A: Table A6). The

correlation between modeled and observed gross fluxes

is consistently higher than that of NEE (Appendix A:

Table A6), most likely a reflection of the high sensitivity
of NEE to small relative errors in the large gross fluxes.

No single model has a higher R value than 0.4 for any

annual flux when all sites are considered (Fig. 4). The

interannual correlation improved from regional- to site-
level runs across all sites and models (Fig. 5). This

improvement is most pronounced for GPP (R ¼ 0.09–

0.46; Appendix A: Table A7). This suggests that the

models possess some skill at predicting interannual

variations for all fluxes, but this skill is diluted when
regional driver data (meteorology and vegetation cover)

were used. For the site level models, the correlation was

lowest for RE, suggesting this is the main contributor to

poor interannual variability in NEE. The crop sites
demonstrated the most improvement between region

and site runs (Appendix A: Table A7). Such a large

improvement in site-level performance is likely due to

the specification of changes in vegetation cover (i.e.,
corn/soybean crop rotation), whereas the regional runs

were likely provided an unchanging, generic land cover

type.

In terms of photosynthetic formulation, LUE models

tended to outperform EK models for temporal flux
correlation (Fig. 4; Appendix A: Table A8). Almost all

of the LUE models used prescribed phenology, whereas

EK models used mostly prognostic phenology. The

prescribed phenology products used within the RCIS

TABLE 5. Comparisons of annual flux bias between enzyme-kinetic (EK) and light-use-efficiency (LUE) models.

PFT and
photosynthetic
formulation

NEE GPP RE

Annual bias
(g C�m�2�yr�1) Bias (%) D�

Annual bias
(g C�m�2�yr�1) Bias (%) D�

Annual bias
(g C�m�2�yr�1) Bias (%) D�

ENFT

EK 133 70 �14 �355 �21 334 �222 �15 292
LUE 147 80 �690 �42 �515 �36

DBF

EK 105 59 �19 166 14 293 271 27 285
LUE 124 67 �126 �10 �13 �1

CROP

EK 184 71 �35 295 24 412 479 50 389
LUE 219 80 �118 �9 90 9

ENFB

EK �3 �9 �72 336 49 320 333 51 246
LUE 69 198 16 2 86 13

GRASS

EK 58 60 �26 276 48 161 334 70 137
LUE 84 90 115 19 197 39

MISC

EK 47 55 �34 465 63 358 512 79 320
LUE 81 97 107 15 192 29

All sites

EK 89 61 �34 157 15 325 246 26 286
LUE 123 81 �168 �15 �40 �4

� Delta (D) is the difference in bias between the regional simulations (EK; first row) and the site simulations (LUE; second row);
therefore there is only one D value for each PFT.
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include interannual variation and are capable of

improving the modeled leaf onset and senescence

processes that control the length of the growing season,

which in turn influences the year-to-year flux variation

(correlation). The seasonal fluxes in Fig. 2 appear to

support this idea, as the gross fluxes are well captured by

the LUE models during the transition seasons where leaf

onset and senescence timing are important. The im-

provement in correlation for the LUE models is most

significant for the crop, grass, and ENFB sites. For the

soil carbon decomposition formulation, there were no

significant correlation differences between the model

groupings for all fluxes.

Overall, the regional models possessed some skill at

capturing spatial (across-site) correlation for the annual

gross fluxes (for GPP, R ¼ 0.36; for RE, R ¼ 0.29), but

less skill for NEE (R ¼ 0.18; Appendix A: Table A9).

The spatial correlation was generally stronger than the

temporal correlation. We attribute this to the fact that

annual flux has more variation across space than time.

Therefore, the models are more likely to identify flux

patterns where there exist larger flux gradients across

sites (i.e., larger signal), hence higher correlation values.

The overall performance for individual models is

provided in the appendices (Appendix A: Fig. A5).

Temporal (within-site) and spatial (across-site) mag-

nitude of variability (sigma).—Overall, the regional

models captured approximately half of the magnitude

of year-to-year temporal variability for all fluxes

([normalized sigma] rNEE, 0.51; rGPP, 0.63; rRe, 0.56;

Fig. 4; Appendix A: Table A10). The models tended to

underestimate the variability for ENFT and crop sites

the most. This suggests that the models do not capture

the influence of crop rotation (soybean, corn), which

could limit the magnitude of year-to-year flux variability

(Lokupitiya et al. 2009). For crop sites, this implies that

specific planting type/schedules, not climate, is the main

driver of interannual variability. Conversely, the models

predict twice as much variability than is observed for the

ENFB sites for all fluxes. This could be a symptom of

the models’ tendency to overestimate fluxes during cold

conditions (Schaefer et al. 2012), due to inaccurate

temperature inhibition functions, or as a result of

presumed instantaneous recovery from frost days during

the growing season. The true recovery timing is

dependent upon the number of frost days and may take

weeks to months (Strand and Oquist 1985). On a per

model basis, all models underestimated the temporal

magnitude of variability in NEE and most models

underestimated the variability in GPP and RE (Fig. 4).

Next, we used the model groupings to help identify the

source of the underestimation of variability. For the

crossover models, overall, the regional runs showed

slightly less temporal variability than the site-level runs

for all fluxes (Appendix A: Table A11). Differences in

temporal variability were dependent upon the PFT type,

however, as the regional runs were much more variable

for the ENFB sites, but less variable for the DBF sites

for all fluxes. Unlike the case for interannual correlation,

however, the site level runs did not substantially increase

or improve the interannual variability as compared to

the regional level runs.

In terms of photosynthetic formulation, the EK

models were more variable (higher temporal annual

variability) for all flux types compared to the LUE

models (Fig. 4; Appendix A: Table A12). Whereas the

EK models captured 62%, 61%, and 57% of the

variability for NEE, GPP, and RE, respectively, the

LUE models only captured 23%, 45%, and 36% of the

FIG. 3. Mean monthly fluxes for regional models at all sites
categorized by soil carbon decomposition formulation for (a)
NEE, (b) GPP, and (c) RE. The error bars on the observations
are 61 sigma values (best- and worst-case scenarios) calculated
from monthly modeled uncertainty. The shaded regions repre-
sent the 61 sigma values of the across model spread for each
model grouping (darker gray indicates overlap of shaded areas).
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variability. The significant underestimation by the LUE

models likely reflects the highly empirical nature of these

models that are driven predominantly by radiation and

LAI, and are less capable of capturing the temperature

and soil moisture stresses that influence year-to-year

changes in flux magnitude. For soil carbon decomposi-

tion formulation, the nitrogen inclusive models showed

consistently higher annual variability as compared to the

no-nitrogen models (Appendix A: Table A13).

In summary, all models showed a tendency to

underestimate the magnitude of interannual variability

for NEE, GPP, and RE. This tendency was reinforced in

FIG. 4. Annual fluxes for all sites for (a) NEE, (b) GPP, and (c) RE. The statistics of correlation coefficient (black dotted-
dashed axis lines), average difference in flux magnitude between the modeled and observed fluxes (RMSD; gray dashed axis lines),
and standard deviation (gray dotted axis lines) are calculated from temporal (within-site) modeled variability. Squares represent
light-use-efficiency models, X’s represent enzyme-kinetic models, and dots represent statistical models (observed and model mean).
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the cases of LUE and no-nitrogen soil decomposition

models. The crossover model analysis suggests that the

magnitude of interannual variability is a function of

model structure and parameters, yet mostly independent

of model setup. In contrast to the temporal variability,

the models captured the spatial (across-site) magnitude

of variability for annual gross fluxes well, suggesting

that input data such as vegetation cover, soil type, and

climate forcing are sufficient for simulating spatial

variability in these fluxes. The spatial variability is listed

in Appendix A: Fig. A5 and Table A14.

Seasonal variability

Monthly correlation coefficient (R).—When consider-

ing all models and sites, the monthly fluxes correlated

best with the observations of GPP (R ¼ 0.70), followed

by RE (R ¼ 0.63) and NEE (R ¼ 0.43; Appendix A:

Table A15). More specifically, all modeled fluxes

correlated best with the observations for the forested

sites, including both deciduous and evergreen vegetation

types. On the other hand, the modeled fluxes for the

grass and crop sites tended to correlate most poorly with

the observations. On a per model basis, the correlation

FIG. 5. Crossover models for all sites for annual (a) NEE, (b) GPP, and (c) RE. The statistics of correlation coefficient, RMSD,
and standard deviation are calculated from within-site modeled variability. The site-level run for each model type is represented by
X’s, and the regional-level run is represented by squares. The daggers (�) indicate the model runs that were slightly negatively
correlated with the observations but were moved to a correlation of zero in order to fit all the data on a single quadrant display for
better viewing. Lines are defined as in Fig. 4.
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performance was consistent for the gross fluxes, as the

models ranged between an R value of 0.6 to 0.8 (Fig. 6).

The modeled NEE, however, has a wider range of

correlation (R ¼ 0.0–0.7).

For the crossover models, the site-level runs consis-

tently correlated better with the observations than the

regional runs for all fluxes (Appendix A: Table A16).

The most improvement between the crossover models

was concentrated within the crop and grass sites. The

improvement was just as persistent on a per model basis

as nearly every site-level model run improved in

comparison to its regional model counterpart in

correlation for all fluxes (Fig. 7). The consistent

improvement for site-level runs indicates that a signif-

icant amount of valuable site-specific driver data is lost

in the regional model simulations. In particular, the

improved performance of the grass and crop site level

runs indicate that the correct vegetation characterization

and initial condition are critical factors for capturing

seasonal variation.

The LUE model groupings correlated slightly better

than the EK grouping for gross fluxes and moderately

better for NEE (Appendix A: Table A17). This result is

most pronounced for the crop sites, which show the

largest improvement in correlation for the LUE models.

In general, LUE models have the advantage of using

prescribed LAI likely improving the correlation. On a

per model basis, the individual LUE models perform

similarly in terms of correlation (and variability) for all

fluxes, whereas the EK models have a much larger

FIG. 6. Taylor diagrams grouped by photosynthetic formulation for monthly (a) NEE, (b) GPP, and (c) RE. All site–model
pairs are grouped, and then one statistical value is calculated for all (includes both within- and across-site contributions). Squares
represent light-use-efficiency models, X’s represent enzyme-kinetic models, and dots represent statistical models (observed and
model mean). Lines are defined as in Fig. 4.
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spread in performance presumably influenced by the

variety of phenological sub-models used to approximate

bud-burst and senescence (Fig. 6). When grouped by soil

carbon decomposition formulations, the no-nitrogen

grouping performed consistently better across all sites in

general, but in particular for crop sites (Appendix A:

Table A18).

Monthly magnitude of variability (sigma).—On aver-

age, the modeled gross fluxes captured almost all of the

observed magnitude of seasonal variation, whereas the

modeled NEE captured only 70%, based upon the

normalized standard deviation (Appendix A: Table

A19). The models overestimated the variability for the

ENFB and miscellaneous sites the most, whereas the

crops sites were typically underestimated. Individual

model performance is listed in Fig. 6.

For the crossover models, the regional runs were more

highly variable across all gross fluxes for each PFT as

compared to the site-level runs (Fig. 7; Appendix A:

Table A20). Overall, both types of model runs were

equally variable for NEE flux, but the regional runs

demonstrated much higher variability for ENFB sites

than the site-level models.

For the photosynthetic formulation, the EK models

displayed higher variability and were more consistent

with the observed seasonal variability for all flux types

(Fig. 6; Appendix A: Table A21). Similar to the

crossover model comparison, the EK models’ increased

FIG. 7. Taylor diagrams for crossover models only for monthly (a) NEE, (b) GPP, and (c) RE. All site–model pairs are grouped
and then one statistical value is calculated for all (includes both within- and across-site contributions). The site-level run for each
model type is represented by X’s; the regional-level run is represented by squares. Lines are defined as in Fig. 4.
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seasonal variability was a result of the consistent

monthly positive bias for the gross fluxes as discussed

in the subsection Model structure formulations (Fig. 2).

The model groupings performed more similarly in terms

of the NEE, but the ability of EK models to simulate a

larger carbon sink during the growing season gave them

an advantage in modeling seasonal variability.

The soil carbon decomposition model groupings did

not express any significant differences in seasonal

variability for GPP, but the no-nitrogen grouping had

more variability for RE (Fig. 3; Appendix A: Table

A22). The difference in the seasonal variability of RE

likely stems from the high respiration for the no-

nitrogen model grouping during the growing season

(Fig. 3). The nitrogen model grouping captured more

variability than the no-nitrogen grouping for NEE. The

individual model behavior for the magnitude of seasonal

variability is given in Appendix A: Fig. A6.

Seasonal timing maps.—The regional model mean of

the gross fluxes predicted an elongated growing season

(defined as the sharp ascent and descent of the monthly

GPP) as compared to the observations (Appendix A:

Fig. A1). This finding is consistent with that of the site-

level model runs within the site synthesis analysis

(Richardson et al. 2012). In addition, the models tended

to predict a peak in uptake (NEE) that is approximately

one month earlier than the observations. The deviations

of growing-season length or peak uptake timing from

the observations, however, were also PFT dependent.

DBF and crop sites both displayed extended growing

seasons with premature peak carbon storage, while

ENFT and ENFB sites both showed a shortened

growing season with a late peak carbon uptake. For

the grass sites, the models depicted a late start to the

growing season and also extended the growing season

approximately two to three months too late into the fall.

The modeled timing of the maximum carbon uptake for

the grass sites matches the observations well, although

the models were unable to capture the suppression of

carbon uptake during the late spring and early summer,

likely a result of soil moisture constraints (Schaefer et al.

2012).

For the crop sites, the models tended to predict an

early onset of growth and a late senescence. The peak of

the carbon uptake was modeled two months earlier than

that of the observations. Most striking for the crop sites

was the models’ inability to capture the narrow and

sharp peak of the growing-season fluxes. Whereas the

observations indicated an intense growing season lasting

from June to September, the models predicted a longer

and gradual growing season extending roughly from

April to October.

When examining seasonal flux characteristics (all

sites) between crossover models, there was no discern-

ible difference between the model groupings in terms of

seasonal timing or maximum carbon uptake timing

(Appendix A: Fig. A2). In fact, the seasonal flux

patterns mimicked each other quite closely, and flux

biases alone (most pronounced during the growing

season) were the only differences between the model

groupings (see Results and discussion: Crossover mod-

els). Similar differences from biases alone are observed

for the ENFT, DBF, ENFB, and MISC sites. The crop

and grass sites, however, displayed fundamental

differences in seasonal flux shape and timing between

the two model groupings. For the crop sites, the

regional models predicted a muted and elongated

growing season, whereas the site-level runs match the

observations better. The site-level runs predicted a far

more modest increase in photosynthesis during the

spring that held steady into the late summer, similar to

the observations. The differences are likely due to

inaccuracy in the land cover maps used for the regional

runs.

The photosynthetic formulation model groupings

displayed differences in both seasonal timing and

maximum carbon uptake when considering all sites

(Appendix A: Fig. A3). The EK models predicted an

early growing season and later senescence than the

observations, whereas the LUE models were synchro-

nous with the observations. The LUE models also

matched the observations in terms of the maximum

carbon uptake (July), whereas the EK model grouping

maximum uptake was one month earlier. This is most

likely because LUE models take advantage of remotely

sensed LAI proxies, whereas EK models rely on internal

mechanisms to predict leaf onset and senescence. Also of

note, is that neither model grouping offers significant

advantages over the other when considering grass and

crop sites. This reinforces the assertion that vegetation

cover issues are responsible for the inaccurate seasonal

flux representation, and not issues of phenology or

photosynthetic sub-modules in the case of these sites.

The soil carbon decomposition model groupings offer

similar seasonal fluxes (Appendix A: Fig. A4). Biased

meteorology products (e.g., radiation, temperature) did

not impose a discernible influence on the seasonal

timing.

Individual model performance: individual and combined

weighting of metrics

In this final section, individual model behavior is

evaluated in terms of bias, RMSD, correlation, sigma

ratio, and chi-square. MOD17þ, a data assimilated

model, consistently performed the best overall across all

statistics, flux types, and time increments, performing

especially well for the gross fluxes (Table 6). Other top

performing models include CASA-GFEDv2, SIB3.1,

and EC-MOD. With the exception of EC-MOD (data-

driven), models that perform well for gross fluxes tend to

perform more poorly for NEE. Conversely, models that

best captured NEE, such as CLM-CASA’ and CLM-

CN, performed more poorly for the gross fluxes.

When evaluating model performance for all statistics

and fluxes based upon annual time increments only,

CLM-CN, a process-based model, performed the best,
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followed by EC-MOD and MOD17þ (Table 7). At least

one of those models ranked in the top three overall for

each PFT, except for ENFT and ENFB, where none of

the overall top model performers ranked in the top

three. The top performers were ISAM, DLEM, and

SIB3.1 for ENFT sites, and ORCHIDEE, LPJ-wsl, and

CLM-CASA’ for ENFB sites. This type of behavior is

consistent with the idea that models are designed or

parameterized to simulate specific sites, making it rare

for a single model to perform well across all sites. It

should be noted that ISAM only simulated annual NEE,

and the sample size of performance is limited.

TABLE 6. Average model ranking and model-ranking standard deviation (in parentheses), showing photosynthetic formulation.

NEE GPP

Annual Monthly Annual Monthly

Rank Model Rank Model Rank Model Rank Model

5.8 (0.4) CLM-CASA’ 6.0 (4.2) EC-MOD� 5.3 (3.5) DLEM 4.4 (2.5) SIB3.1
6.3 (3.8) CLM-CN 6.6 (4.6) NASA-CASA 5.6 (2.8) MOD17þ� 5.2 (3.4) MOD17þ�
6.9 (4.1) ISAM 7.1 (4.4) MOD17þ� 5.8 (3.2) CASA-GFEDv2 5.4 (3.2) CASA-GFEDv2
7.6 (4.6) ORCHIDEE 7.2 (4.3) CLM-CASA’ 5.9 (2.6) SIB3.1 5.9 (4.1) VEGAS2
8.0 (5.2) EC-MOD� 7.9 (4.0) CASA-GFEDv2 6.4 (3.1) CLM-CN 6.2 (3.1) BEPS
8.0 (3.5) LPJ-wsl 8.0 (4.6) BEPS 6.4 (3.4) EC-MOD� 6.3 (3.2) EC-MOD�
8.5 (5.2) NASA-CASA 8.0 (4.8) CASA-Trans 6.5 (3.9) VEGAS2 6.6 (4.3) TEM6
8.7 (5.4) MOD17þ� 8.3 (4.3) CLM-CN 7.1 (3.6) LPJ-wsl 7.3 (3.1) CLM-CN
8.8 (3.3) CASA-GFEDv2 8.3 (4.5) SIB3.1 7.2 (4.5) TEM6 7.4 (2.8) LPJ-wsl
9.4 (5.6) BEPS 8.9 (5.6) TEM6 7.2 (3.3) BEPS 7.4 (3.3) DLEM
9.7 (4.4) Can-IBIS 9.0 (4.5) ISAM 8.4 (4.3) ORCHIDEE 7.5 (3.8) CLM-CASA’
10.0 (5.9) CASA-Trans 9.4 (4.2) VEGAS2 8.7 (3.4) CLM-CASA’ 9.4 (3.7) ORCHIDEE
10.1 (5.6) TEM6 9.6 (3.9) LPJ-wsl 9.6 (4.1) Can-IBIS 10.9 (2.6) Can-IBIS
10.1 (4.3) SIB3.1 9.6 (6.2) ORCHIDEE
10.2 (3.4) DLEM 10.6 (4.2) DLEM
10.6 (5.8) MC1 12.3 (4.6) MC1
10.8 (2.9) VEGAS2 12.6 (4.0) Can-IBIS

Notes: The average model ranking is calculated from the individual model rankings (1–17) for every model-PFT-metric
combination based upon bias, the average difference in flux magnitude between the modeled and observed fluxes (RMSD),
correlation coefficient, sigma ratio, and chi-square. The photosynthetic formulation is displayed as enzyme kinetic in normal type,
light-use efficiency in italic type, and statistical in boldface type. Statistical models did not use a mechanistic formulation to
simulate photosynthesis (GPP), but rather a statistical fitting routine or statistical estimation for calculating photosynthesis (GPP).
A dagger (�) denotes that the model underwent data assimilation. Empty cells indicate that data were not available for this model
inter-comparison, meaning either that the models did not simulate GPP or RE, or that they did not simulate specific sites.

TABLE 7. Average model ranking and model-ranking standard deviation (in parentheses) for annual fluxes only, showing
photosynthetic formulation.

CROPS DBF ENFB ENFT

Rank Model Rank Model Rank Model Rank Model

5.2 (4.2) VEGAS2 5.3 (4.9) EC-MOD� 2.8 (4.0) ISAM 4.3 (2.2) ORCHIDEE
5.5 (3.3) CLM-CN 5.9 (4.3) MOD17þ� 4.4 (4.0) DLEM 5.3 (4.1) LPJ-wsl
5.9 (3.5) MOD17þ� 6.0 (2.7) CASA-GFEDv2 4.5 (1.6) SIB3.1 5.5 (3.7) CLM-CASA’
6.1 (3.7) CASA-GFEDv2 6.2 (2.7) LPJ-wsl 5.7 (3.6) TEM6 6.4 (2.9) CLM-CN
6.1 (3.7) EC-MOD� 6.6 (3.3) DLEM 6.0 (4.2) EC-MOD� 6.5 (3.9) EC-MOD�
6.9 (4.2) DLEM 6.7 (3.3) CLM-CN 6.2 (3.1) VEGAS2 7.3 (4.6) SIB3.1
7.1 (2.1) LPJ-wsl 6.9 (4.5) ORCHIDEE 6.6 (2.6) CASA-GFEDv2 7.4 (5.5) CASA-Trans
7.5 (4.7) SIB3.1 7.1 (4.4) TEM6 6.8 (4.5) MOD17þ� 7.8 (4.3) BEPS
7.6 (4.3) BEPS 7.2 (4.7) ISAM 7.4 (4.7) CASA-Trans 8.0 (3.7) MOD17þ�
8.2 (3.9) CLM-CASA’ 7.8 (4.5) BEPS 7.9 (4.1) CLM-CASA’ 8.2 (4.8) NASA-CASA
8.4 (4.3) NASA-CASA 8.1 (4.3) VEGAS2 8.0 (3.5) CLM-CN 8.5 (3.6) CASA-GFEDv2
8.5 (4.4) ORCHIDEE 9.7 (3.2) CLM-CASA’ 8.3 (2.9) BEPS 8.6 (3.6) DLEM
8.8 (3.6) ISAM 9.8 (3.0) SIB3.1 10.3 (2.8) LPJ-wsl 9.1 (4.5) Can-IBIS
9.3 (4.2) Can-IBIS 11.0 (4.2) NASA-CASA 10.9 (2.6) Can-IBIS 9.2 (4.1) ISAM
11.2 (6.1) CASA-Trans 11.2 (4.2) Can-IBIS 11.7 (2.7) ORCHIDEE 10.8 (5.4) TEM6
11.4 (3.4) MC1 11.4 (5.1) CASA-Trans 10.9 (2.0) VEGAS2

12.7 (6.0) MC1 13.4 (7.0) MC1

Notes: The average model ranking is calculated from the individual model rankings (1–17) for every model-PFT-metric
combination based upon bias, RMSD, correlation coefficient, sigma ratio, and chi-square. The photosynthetic formulation is
displayed as enzyme kinetic in normal type, light-use efficiency in italic type, and statistical in boldface type. A dagger (�) denotes
that the model underwent data assimilation. Empty cells indicate that data were not available for this model inter-comparison,
meaning either that the models did not simulate GPP or RE, or that they did not simulate specific sites.
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The best model performers for all statistics and fluxes

based upon monthly time increments only were EC-

MOD, CASA-GFEDv2, and SIB3.1 (Table 8). The

higher performance of EC-MOD and CASA-GFEDv2

overall is largely influenced by their high performance

within the DBF sites. These same models yielded only

average performance for ENFT and grass sites. The high

performance of EC-MOD is likely, in part, due to the

incorporation of the flux tower data in the statistical

simulation methodology (Xiao et al. 2008).

When evaluating model performance by individual

statistics for annual fluxes (Table 9) the models, in

general, segregate into two groupings: those that

perform well for bias, RMSD, and chi-square, and

those that perform well for correlation (R) and sigma

ratio. Although the metrics in the first statistical

grouping are related and likely to rank models in a

similar order, it is unclear why these same models tend

to perform poorly in terms of correlation and sigma

ratio. The reverse is also generally true. The best model

performers across all statistics include CLM-CN and

EC-MOD. It is notable that CLM-CN did not assimilate

flux tower data like EC-MOD, yet performed equally as

well. On the other hand, it is important to recognize that

a relatively simple data-driven model such as EC-MOD

does not include the level of detail of a process-oriented

CLM-CN. Both CLM-CN and EC-MOD excel at all

statistics with the exception of the temporal correlation

(R value), where they finish near the bottom of all

models. This indicates that these models are most

capable of capturing the magnitude and range of

variability of annual fluxes, but are mostly incapable

of capturing the interannual variation consistent with

Fig. 5. Other models that perform consistently well are

MOD17þ, ISAM, and DLEM, although MOD17þ and

ISAM performed poorly for RMSD and sigma ratio,

respectively (Table 9).

The best model performers across all statistics based

on monthly fluxes were EC-MOD and MOD17þ,

TABLE 6. Extended.

RE

Annual Monthly

Rank Model Rank Model

5.2 (2.6) DLEM 4.9 (3.3) MOD17þ�
5.3 (2.4) SIB3.1 5.0 (4.3) TEM6
5.5 (4.2) VEGAS2 5.1 (2.9) EC-MOD�
5.8 (2.8) MOD17þ� 5.1 (3.7) VEGAS2
5.9 (2.4) CASA-GFEDv2 5.8 (2.3) CASA-GFEDv2
6.0 (3.7) EC-MOD� 6.2 (2.7) SIB3.1
6.3 (4.2) TEM6 6.8 (3.8) CLM-CN
6.4 (3.4) CLM-CN 6.9 (3.1) DLEM
7.9 (3.8) LPJ-wsl 7.4 (3.3) LPJ-wsl
7.9 (2.6) BEPS 7.7 (3.2) BEPS
8.3 (4.4) ORCHIDEE 8.3 (3.4) CLM-CASA’
9.6 (2.8) CLM-CASA’ 9.2 (4.0) ORCHIDEE
9.8 (4.1) Can-IBIS 11.4 (1.8) Can-IBIS

TABLE 7. Extended.

GRASS MISC All sites

Rank Model Rank Model Rank Model

4.9 (4.0) CLM-CN 4.8 (1.8) ISAM 5.8 (2.4) CLM-CN
6.1 (2.6) SIB3.1 6.1 (5.7) TEM6 5.9 (4.3) EC-MOD�
6.3 (3.1) CASA-GFEDv2 6.6 (3.0) CLM-CN 6.4 (4.7) MOD17þ�
6.6 (3.6) MOD17þ� 6.6 (3.8) MC1 6.6 (3.1) CASA-GFEDv2
6.7 (2.9) DLEM 6.7 (5.0) VEGAS2 6.6 (4.8) SIB3.1
6.9 (4.6) Can-IBIS 6.9 (4.9) MOD17þ� 6.7 (4.7) BEPS
7.6 (8.2) NASA-CASA 7.2 (5.3) NASA-CASA 7.4 (5.1) ISAM
7.7 (2.8) EC-MOD� 7.5 (4.1) SIB3.1 7.4 (4.0) TEM6
8.4 (3.4) ISAM 7.6 (2.5) CASA-GFEDv2 7.5 (4.2) DLEM
8.5 (4.2) LPJ-wsl 7.8 (4.4) CLM-CASA’ 7.9 (2.7) LPJ-wsl
8.6 (4.9) VEGAS2 8.1 (4.7) DLEM 8.0 (5.0) ORCHIDEE
9.1 (4.4) BEPS 8.1 (3.8) ORCHIDEE 8.9 (4.1) VEGAS2
9.1 (3.4) CLM-CASA’ 8.5 (4.4) BEPS 9.3 (3.9) CLM-CASA’
9.1 (5.1) ORCHIDEE 8.7 (3.3) LPJ-wsl 9.6 (4.8) NASA-CASA
9.2 (7.2) MC1 9.1 (5.0) EC-MOD� 10.4 (4.1) Can-IBIS
9.4 (4.3) TEM6 9.2 (7.6) CASA-Trans 11.2 (5.0) CASA-Trans
13.2 (6.9) CASA-Trans 10.6 (3.5) Can-IBIS 14.0 (5.2) MC1
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although EC-MOD performed relatively poorly for chi-

square and MOD17þ for correlation (R value; Table

10). Other models that performed well overall were

NASA-CASA, CASA-GFEDv2, and SIB3.1; however,

they each performed relatively poorly for sigma ratio

and bias, respectively. Although the goal of the model

ranking was to identify the best performing models, the

ultimate choice of model also depends upon the

application. The strength of highly statistical, data-

driven models resides in their ability to extrapolate

carbon fluxes to create spatial flux maps. Process-based,

prognostic models, on the other hand, have additional

capacity for prediction and attribution of fluxes.

CONCLUSIONS

We compared the performance of 17 regional TBMs

across North America against observations from 36 flux

tower observations. Here, we condense our broad range

of results into six major findings. First, the regional

models significantly underestimated the net carbon sink

TABLE 8. Average model ranking and model-ranking standard deviation (in parentheses) for monthly fluxes only, showing
photosynthetic formulation.

CROPS DBF ENFB ENFT

Rank Model Rank Model Rank Model Rank Model

3.5 (2.6) EC-MOD� 3.7 (2.7) EC-MOD� 3.4 (2.6) ISAM 4.4 (3.9) CLM-CASA’
3.7 (2.7) CASA-GFEDv2 4.9 (4.0) CASA-GFEDv2 4.1 (3.5) MOD17þ� 4.9 (3.1) ORCHIDEE
5.7 (3.3) SIB3.1 5.3 (2.6) MOD17þ� 4.7 (2.5) SIB3.1 5.4 (4.1) LPJ-wsl
6.0 (2.8) BEPS 6.6 (3.8) NASA-CASA 4.8 (2.4) VEGAS2 5.8 (3.3) MOD17þ�
6.1 (2.6) CLM-CASA’ 6.7 (3.3) BEPS 5.5 (3.8) EC-MOD� 7.1 (4.9) SIB3.1
6.2 (6.2) CASA-Trans 7.2 (6.4) CASA-Trans 6.4 (3.5) BEPS 7.4 (4.9) BEPS
6.5 (4.2) VEGAS2 7.3 (4.9) VEGAS2 6.5 (4.8) TEM6 7.4 (3.5) NASA-CASA
6.8 (3.4) NASA-CASA 7.6 (6.7) DLEM 6.7 (3.9) DLEM 7.5 (3.5) CLM-CN
7.5 (3.9) MOD17þ� 7.7 (3.4) SIB3.1 7.5 (3.0) CLM-CN 7.5 (2.3) EC-MOD�
7.9 (3.5) CLM-CN 7.8 (3.5) CLM-CASA’ 7.9 (2.0) CASA-GFEDv2 7.6 (4.0) CASA-GFEDv2
8.5 (2.8) LPJ-wsl 8.2 (4.0) TEM6 8.9 (2.6) LPJ-wsl 8.9 (3.1) DLEM
8.8 (4.7) DLEM 8.5 (4.4) ORCHIDEE 9.8 (1.6) CASA-Trans 9.0 (4.8) ISAM
9.9 (4.3) ORCHIDEE 8.9 (4.0) LPJ-wsl 10.3 (3.9) CLM-CASA’ 9.1 (5.5) TEM6
11.2 (2.1) Can-IBIS 9.2 (3.8) CLM-CN 11.0 (2.5) Can-IBIS 9.6 (3.5) CASA-Trans
11.2 (2.9) ISAM 11.6 (3.9) ISAM 12.0 (3.4) ORCHIDEE 10.5 (3.1) VEGAS2
12.0 (4.5) MC1 12.6 (6.1) MC1 12.1 (2.5) Can-IBIS

13.3 (2.3) Can-IBIS 14.6 (4.3) MC1

Notes: The average model ranking is calculated from the individual model rankings (1–17) for every model-PFT-metric
combination based upon bias, RMSD, correlation coefficient, sigma ratio, and chi-square. The photosynthetic formulation is
displayed as enzyme kinetic in normal type, light-use efficiency in italic type, and statistical in boldface type. A dagger (�) denotes
that the model underwent data assimilation. Empty cells indicate that data were not available for this model inter-comparison,
meaning either that the models did not simulate GPP or RE, or did not simulate specific sites.

TABLE 9. Average model ranking and model-ranking standard deviation (in parentheses) for annual fluxes only, showing
photosynthetic formulation.

Bias RMSD R

Rank Model Rank Model Rank Model

5.4 (3.1) CLM-CN 5.0 (2.5) ISAM 4.4 (3.7) CASA-GFEDv2
5.4 (4.2) EC-MOD� 5.7 (2.7) CLM-CN 5.8 (3.6) MOD17þ�
5.8 (3.1) BEPS 5.7 (4.4) EC-MOD� 6.3 (3.5) ORCHIDEE
5.8 (3.9) MOD17þ� 5.8 (4.1) NASA-CASA 6.4 (3.1) SIB3.1
6.3 (3.7) ISAM 6.2 (4.1) VEGAS2 6.5 (6.9) CASA-Trans
7.1 (4.3) DLEM 6.3 (4.3) DLEM 7.3 (4.8) Can-IBIS
7.7 (5.3) VEGAS2 6.7 (4.5) TEM6 7.4 (3.4) DLEM
7.8 (3.1) NASA-CASA 6.7 (4.2) CLM-CASA’ 7.5 (3.4) ISAM
7.8 (6.0) TEM6 7.1 (2.6) CASA-GFEDv2 7.8 (4.5) VEGAS2
7.9 (3.0) CASA-GFEDv2 7.3 (4.4) SIB3.1 7.9 (3.4) BEPS
8.2 (3.6) CLM-CASA’ 7.3 (5.5) CASA-Trans 8.0 (5.7) TEM6
8.2 (3.0) LPJ-wsl 7.4 (4.7) MOD17þ� 8.5 (3.2) CLM-CASA’
8.2 (3.7) SIB3.1 7.8 (3.1) LPJ-wsl 8.5 (3.4) LPJ-wsl
8.7 (4.9) ORCHIDEE 10.1 (4.0) ORCHIDEE 8.7 (4.5) CLM-CN
9.0 (7.3) MC1 10.7 (4.0) BEPS 9.9 (3.7) EC-MOD�
11.2 (2.3) Can-IBIS 11.8 (1.6) Can-IBIS 12.2 (6.4) NASA-CASA
12.2 (4.5) CASA-Trans 12.6 (5.7) MC1 13.2 (4.1) MC1

Notes: The average model ranking is calculated from the individual model rankings (1–17) for every model-PFT-metric
combination. The photosynthetic formulation is displayed as enzyme kinetic in normal type, light-use efficiency in italic type, and
statistical in boldface type. A dagger (�) denotes that the model underwent data assimilation.
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observed at the flux towers. This finding is reminiscent

of previous regional model vs. flux tower comparisons
(Friend et al. 2007, Randerson et al. 2009). Though the

scale mismatch is large, the flux tower observations are
more consistent with the atmospheric inversion models’
estimate of the magnitude of the North American

carbon sink (Hayes et al. 2012). Applying this finding
to Huntzinger et al. (2012), where the same regional

models in this study simulated the net ecosystem
productivity across North America (�0.7 to 2.2 Pg C/

yr), gives credibility to only the models simulating a

large carbon sink (positive number is carbon sink). A

few regional models in our study accurately estimated

the magnitude of the carbon sink; however, this resulted

from compensating positive biases in the gross fluxes.

Similarly, the models that accurately estimated the

annual gross fluxes accomplish this through the under-

estimation of gross fluxes during the growing season and

the overestimation of gross fluxes during the transition

seasons (e.g., Richardson et al. 2012). Although biases in

regional meteorology data can influence modeled fluxes

(Ito and Sasai 2006, Poulter et al. 2011, and Zhao et al.

2011), they do not seem to be the main driver of the flux

biases here. The state of the soil and vegetation (choice

of spin-up and initialization) are known to influence

carbon dynamics (Stoy et al. 2008, Carvalhais et al.

2010) and we hypothesize that this had a significant role

in the flux biases. Identifying whether the modeled flux

biases are a result of insufficient representation of initial

conditions or inherent flaws within the model parame-

terization/structure (e.g., soil carbon decomposition)

should be a focus of future studies.

Second, the models were most successful at simulating

seasonal patterns and variability in flux, but unable to

simulate the year-to-year flux variability (Braswell et al.

2005, Ricciuto et al. 2008, Dietze et al. 2011, Keenan et

al. 2012) and year-to-year magnitude of variation in

flux. A single reason for this remains elusive (e.g.,

Siqueira et al. 2006, Urbanski et al. 2007, Stoy et al.

2009). The fact that the models’ performance improves

when using local site driver data indicates that the

models have some inherent skill in simulating interan-

nual variability. On the other hand, the systemic

underestimation of the magnitude of annual variability

(sigma) seems to be an inherent property of the model

TABLE 8. Extended.

GRASS MISC ALL SITES

Rank Model Rank Model Rank Model

4.1 (2.6) MOD17þ� 3.8 (3.8) VEGAS2 4.7 (3.9) EC-MOD�
5.3 (3.6) SIB3.1 4.0 (4.5) TEM6 5.1 (3.2) CASA-GFEDv2
5.8 (4.8) CLM-CN 5.0 (6.8) NASA-CASA 5.4 (3.7) SIB3.1
6.5 (5.1) TEM6 6.3 (2.8) CASA-GFEDv2 6.2 (2.7) BEPS
7.0 (6.4) NASA-CASA 6.7 (4.3) EC-MOD� 6.5 (3.1) MOD17þ�
7.4 (5.9) CASA-Trams 6.9 (3.4) CLM-CN 6.9 (4.5) CLM-CASA’
7.7 (2.4) CASA-GFEDv2 7.2 (3.5) ISAM 7.2 (6.1) CASA-Trans
7.9 (2.7) EC-MOD� 7.3 (3.6) SIB3.1 7.9 (4.2) TEM6
7.9 (3.5) CLM-CASA’ 7.4 (5.4) MOD17þ� 8.1 (3.2) CLM-CN
7.9 (4.3) VEGAS2 7.6 (5.1) CASA-Trans 8.1 (4.6) VEGAS2
8.5 (3.5) LPJ-wsl 8.0 (3.0) BEPS 8.1 (4.1) DLEM
8.7 (4.1) DLEM 8.5 (2.7) LPJ-wsl 8.2 (3.7) LPJ-wsl
9.3 (4.1) BEPS 9.1 (3.8) DLEM 10.1 (5.1) ORCHIDEE
9.7 (4.6) Can-IBIS 9.6 (2.6) CLM-CASA’ 11.4 (3.7) ISAM
10.1 (5.6) ORCHIDEE 11.0 (4.0) ORCHIDEE 11.4 (4.6) NASA-CASA
10.6 (4.2) MC1 11.8 (5.0) MC1 12.0 (2.3) Can-IBIS
11.6 (3.6) ISAM 12.5 (2.3) Can-IBIS 13.0 (5.7) MC1

TABLE 9. Extended.

Sigma ratio Chi-square

Rank Model Rank Model

5.5 (4.6) LPJ-wsl 4.6 (4.3) NASA-CASA
5.6 (3.7) ORCHIDEE 5.2 (3.5) EC-MOD�
6.2 (4.8) Can-IBIS 5.7 (3.0) CLM-CN
6.2 (3.3) SIB3.1 5.7 (2.9) ISAM
6.2 (2.8) CLM-CN 6.4 (4.3) DLEM
7.2 (3.1) MOD17þ� 6.8 (2.8) CASA-GFEDv2
7.2 (5.2) MC1 6.9 (4.0) VEGAS2
7.2 (3.8) DLEM 7.3 (4.9) MOD17þ�
7.6 (3.8) EC-MOD� 7.4 (4.1) CLM-CASA’
7.7 (4.6) BEPS 7.4 (4.5) SIB3.1
7.9 (3.3) CASA-GFEDv2 7.7 (4.8) CASA-Trans
8.7 (4.1) TEM6 8.1 (5.2) TEM6
9.4 (4.2) CLM-CASA’ 8.4 (3.3) LPJ-wsl
9.5 (3.4) VEGAS2 8.8 (3.9) BEPS
9.8 (6.4) ISAM 9.8 (4.5) ORCHIDEE
12.0 (4.1) NASA-CASA 10.6 (6.7) MC1
16.2 (1.6) CASA-Trans 11.8 (2.4) Can-IBIS
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structure based upon the crossover model analysis. This

finding reinforces the need for model structural im-

provements identified during the site-level synthesis

work including improved phenology (Richardson et al.

2012), soil moisture (Schaefer et al. 2012), and vegeta-

tion responses to heat and stress (Keenan et al. 2012).

Third, the use of prescribed phenology improves the

models’ ability to simulate seasonal fluxes, but offers no

advantage for annual fluxes. In general, the LUE models

are superior in terms of monthly correlation and RMSD

statistics. Nevertheless, EK models with prognostic

phenology perform better when capturing the (grow-

ing-season) magnitude for gross fluxes and are more

capable of capturing the magnitude of annual variation

for all fluxes. This result is encouraging because models

with prognostic phenology are critical for the prediction

of fluxes under future climate or disturbance scenarios.

Fourth, the models simulated fluxes the best for

deciduous forests, but were poor at simulating crops,

grasslands, and evergreen forests. This finding likely

reflects the influence of DBF sites upon model develop-

ment and the strong correlation between phenology and

seasonal flux. Simulations of crop and grass sites likely

suffer from inaccurate vegetation cover.

Fifth, the site-level model runs performed better than

the region-level runs for annual and monthly flux

correlation only. The fact that the models’ performance

improves when using local site driver data indicates that

the models have some inherent skill in simulating

interannual variability. Nevertheless, even with spatial

resolution, vegetation cover, disturbance history, and

meteorology data designed specifically to capture site-

level fluxes, the site-level runs offered minimal improve-

ment for a majority of statistical metrics. This implies

that much of the model–observation mismatch for the

regional runs is attributable to shortcomings in model

structure, parameters, and setup. As the skill of the

models improve, however, we anticipate that spatial

mismatch will become a primary source of the overall

model–data mismatch. Our ability to diagnose the

causes of the model–data divergence is limited because

multiple factors could explain these differences. While it

is important to document the range of fluxes obtained

from an unconstrained model comparison, more limited

experiments will be required to diagnose the particular

causes of the divergent model performance documented

here.

Finally, highly statistical, data-driven approaches can

perform better than process-based TBMs built upon

detailed ecosystem processes if the goal is to quantify

past and present fluxes. We base this conclusion on the

finding that EC-MOD and MOD17þperformed the best

overall. The performance of these data-driven models is

rivaled or exceeded in some cases by process-based

models CLM-CN, CASA-GFEDv2, and SIB3.1, per-

haps because of their more mechanistically precise

descriptions of ecosystem carbon cycling. This finding

is important if the goal is not only to quantify past and

present fluxes, but for attribution and prediction of

fluxes. It seems likely that if flux tower data are

assimilated into process-based ecosystem models, model

performance should improve even further.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of
Energy’s Office of Science through the Northeastern Regional
Center of the National Institute for Climatic Change Research
and through NASA’s Terrestrial Ecology Program. We also
acknowledge the DOE Office of Science for support of the three

TABLE 10. Average model ranking and model-ranking standard deviation (in parentheses) for monthly fluxes only, showing
photosynthetic formulation.

Bias RMSD R

Rank Model Rank Model Rank Model
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statistical in boldface type. A dagger (�) denotes that the model underwent data assimilation.
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SUPPLEMENTAL MATERIAL

Appendix A

Tables and figures providing statistical support including representation of the differences between the regional and site level
protocols and of model bias, correlation, and variability statistics (Ecological Archives M083-018-A1).

Appendix B

Tables and figures providing a statistical representation of the observed flux tower carbon fluxes grouped by the plant function
type of the site locations (Ecological Archives M083-018-A2).

Data Availability

Data associated with this paper have been deposited in the Oak Ridge National Laboratory Distributed Active Archive Center
for Biogeochemical Dynamics: http://dx.doi.org/10.3334/ORNLDAAC/1183
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