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Rhythms of locomotion and seasonal changes in

activity expressed by horseshoe crabs in their
natural habitat

Winsor H. Watson III'"*, Suzanne K. Johnson!, Colin D. Whitworth!,
Christopher C. Chabot?

1Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
2Department of Biological Sciences, MSC#64, Plymouth State University, Plymouth, NH 03223, USA

ABSTRACT: The American horseshoe crab Limulus polyphemus expresses both tidal and daily
rhythms of locomotion in the laboratory and the tidal rhythms can be entrained to artificial tides.
The main purpose of this study was to determine the types of rhythms horseshoe crabs express
when freely moving in their natural habitat where they are exposed to natural light:dark and tidal
cycles. A secondary goal was to determine if their overall activity patterns and depth preferences
changed during the year. In 2010 and 2011, 20 adult horseshoe crabs (11 males, 9 females) were
fitted with ultrasonic tags and released in the Great Bay Estuary, NH, USA. The tags transmitted
acceleration and depth data every 3 to 5 min from June until December during the year in which
they were tagged, and from March to May of the following year. Acoustic transmissions from the
tags were detected and logged by a series of VR2W receivers moored throughout the estuary.
Accelerometer data were used to assess when animals were active and to determine (1) whether
they were expressing tidal or daily rhythms and (2) their overall activity level each month. We dis-
covered that horseshoe crabs were just as likely to express tidal rhythms as daily rhythms, despite
being continuously exposed to natural tide cycles. In addition, there was a tendency to move into
deeper water and become less active as water temperatures cooled in the fall, and then to move
up into the estuary and become more active as water temperatures warmed in the spring.

KEY WORDS: Telemetry - Accelerometers - Estuary - Horseshoe crab - Limulus - Tidal rhythms -
Daily rhythms

Resale or republication not permitted without written consent of the publisher

INTRODUCTION

Endogenous biological rhythms allow animals,
plants, and bacteria to synchronize with and antici-
pate natural fluctuations of light and dark as well as
tidal cycles (DeCoursey 2004). While ~24 h daily
rhythms are driven by endogenous circadian clocks
and primarily entrained by photoperiod cues (John-
son et al. 2004), organisms can use a variety of other
cues, such as changes in water depth and currents, to
entrain their tidal rhythms (See Palmer 1995 for a

*Corresponding author: win@unh.edu

review). Thus, while the endogenous ~12.4 h circa-
tidal rhythms of many organisms will persist but
'drift’” when exposed to constant conditions in the
laboratory, in nature they tend to be closely synchro-
nized to natural cyclic tidal cycles.

The American horseshoe crab Limulus polyphemus
is found along the Atlantic coast of the United States
and the Gulf of Mexico. It is one of the oldest marine
arthropods, with a fossil record dating back ~445
million yr (Shuster 2001, Rudkin & Young 2009). In
late spring and early summer, horseshoe crabs move
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into shallow water and mate at the water/beach
interface when the tides are high (Rudloe 1980, 1985,
Cohen & Brockmann 1983). Commencement of
mating activity appears to be triggered by changes in
temperature and photoperiod, as well as water level
changes (Rudloe 1980, Cohen & Brockmann 1983,
Barlow et al. 1986, Ehlinger et al. 2003, Watson et al.
2008). During the mating season, horseshoe crab
activity appears to be synchronized with the tides, as
they are only consistently observed at the water's
edge during high tides. A recent ultrasonic telemetry
study confirmed that individuals tend to be most
active during a particular portion of the tidal cycle
during the mating season; however, the duration in
which data were continuously obtained from a single
animal was limited since they would often move out
of the range of the buoys in the fixed VRAP array
(Watson & Chabot 2010). Some horseshoe crabs con-
tinue to be active at high tide after the mating season
ends, likely due to their tendency to move into mud-
flats at high tide to dig pits and forage for food (Lee
2010). Therefore, in order to extend our understand-
ing of horseshoe crab behavior and biological
rhythms, we aimed to obtain activity data from indi-
vidual crabs long enough to permit a more rigorous
analysis of the dominant patterns of activity they
express in their natural habitat throughout most of
the year.

In the laboratory, horseshoe crabs express both
tidal and daily rhythms; most of those that express a
daily rhythm are diurnal (most active in the day),
while fewer are nocturnal (most active at night)
(Chabot et al. 2004). Most crabs express a tidal
rhythm even when they are not exposed to tidal
cues, indicating that this behavior is driven by an
endogenous circatidal clock (Chabot et al. 2007).
Moreover, these endogenous tidal rhythms can be
entrained by changes in water depth that mimic the
tidal cycle (Chabot et al. 2004, 2008, 2011, Watson
et al. 2008, Chabot & Watson 2010). Horseshoe
crabs that were placed in running wheels anchored
to the bottom of the Great Bay Estuary also
expressed a tidal rhythm of activity that was syn-
chronized to the tidal cycle (Watson et al. 2009).
However, when they were suspended in similar
running wheels underneath a floating dock so they
did not experience the depth changes associated
with the tides, they tended to be most active during
the day (Watson et al. 2009). Therefore, the hypoth-
esis this study was designed to test is that horseshoe
crabs in their natural environment are more likely to
express a tidal than a daily rhythm of activity, since
they continually experience rhythmic changes in

water depth, and thus cyclic fluctuations in water
pressure.

As mentioned above, some horseshoe crabs also
express daily patterns of activity when exposed to a
light:dark (L:D) cycle in the laboratory. However,
these daily patterns of activity do not appear to per-
sist in constant darkness, suggesting that they do not
possess a circadian clock that controls locomotion
even though they do have a circadian clock that
influences visual sensitivity (Barlow 1983). Rather, it
appears that the activity of some animals might be
suppressed by exogenous cues during the day or
night, yielding the daily pattern observed in some
animals exposed to artificial or natural L:D cycles
(referred to as masking; Chabot et al. 2007). Thus, we
also expected that some animals in their natural
habitat (where they always experience natural L:D
cycles) would tend to be more active during the day
or night.

While a great deal is understood about the
mating behavior of horseshoe crabs (because they
repeatedly approach beaches during the spring and
early summer high tides and are thus readily
observed), much less is known about their move-
ments and behaviors during the rest of the year.
They tend to live in bays and estuaries where visi-
bility is limited, and thus few people have observed
them in their natural habitat. Several recent studies
have taken advantage of various types of bio-
telemetry and digital video technologies to shed
light on their large-scale movements (Schaller et al.
2010, Smith et al. 2010) and their tendency to for-
age in intertidal mudflats (Lee 2010), and these
studies have provided some insight into their natu-
ral history. In general, in areas from the mid-
Atlantic States northward, horseshoe crabs tend to
be fairly sedentary during the colder months and
then increase their activity as water temperatures
warm in the spring (Moore & Perrin 2007, James-
Pirri 2010, Schaller et al. 2010). During this time
period, they move towards spawning beaches,
which are typically in warmer, shallower bays and
estuaries (James-Pirri et al. 2005, Moore & Perrin
2007, James-Pirri 2010, Schaller et al. 2010, Smith
et al. 2010). Then, after spending much of the sum-
mer and early fall foraging for prey, they move into
deeper water to overwinter (Moore & Perrin 2007,
James-Pirri 2010, Schaller et al. 2010). While our
investigation was primarily focused on the activity
rhythms expressed by freely moving horseshoe
crabs, we also took advantage of the opportunity to
address 2 additional questions. First, do horseshoe
crabs have preferences for a certain depth strata,
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and does this change on a seasonal basis? Second,
does their overall activity change as water temper-
atures decrease in the fall and increase in the
spring?

The use of ultrasonic telemetry tools to study the
physiology and behavior of aquatic species has
increased over the past 10 yr, and as a result we are
beginning to gain new insights into the behavior of
these animals in their natural habitats. While tele-
metry has traditionally been used to simply track ani-
mal movements, there are now devices that also
transmit data about the activity of the animals as well
as the environmental conditions around them (Niel-
sen et al. 2009, Cooke et al. 2013). Accelerometer
tags are particularly useful for studying animal be-
havior, and their use has increased considerably in
recent years (Williams et al. 2004, Wilson et al. 2006,
Whitney et al. 2007, Payne et al. 2011, Broell et al.
2013, Lyons et al. 2013). In this study, we employed
ultrasonic tags that transmitted accelerometer and
depth data. This allowed us to determine if a horse-
shoe crab was active or not, and to correlate its
behavioral state with the depth of the water and the
tidal cycle.

- 0
T %
=

Tixe

Fox Point

Great Bay Estuary

1-43.09°

-43.07°

N
A A
f 0 1 2 km
70.91° W 70.87° 70.83°

Fig. 1. Study location in Great Bay estuary, NH, USA. Most
data were obtained from animals that were resident in the
area between the middle of Great Bay (GB) and Little Bay
(LB). A deep (>10 m depth) channel runs the length of the
estuary and Piscataqua River, connecting LB and GB with
the Gulf of Maine. JEL = Jackson Estuarine Laboratory

MATERIALS AND METHODS
Study animals and location

This study took place in the Little Bay and Great
Bay portions of the Great Bay Estuary, New Hamp-
shire (Fig. 1), where the average tidal range varies
from 2.0 to 2.7 m and currents range from 0.5 to 2.0 m
s7! (Short 1992). Adult horseshoe crabs were col-
lected from the Great Bay estuary either while they
were spawning near the Jackson Estuarine Labora-
tory (JEL; Fig. 1), or by SCUBA divers during other
times of the year. Over 3 yr, a total of 22 adult horse-
shoe crabs were equipped with VEMCO V9AP ultra-
sonic transmitters (Table 1). During May and June
2010, 9 horseshoe crabs (4 male, 5 female) were cap-
tured while spawning and fitted with transmitters.
This was repeated in the spring of 2011, with 7 addi-
tional animals (6 male, 1 female) receiving transmit-
ters. Finally, a group of 6 animals (2 male, 4 female)
were captured by SCUBA divers near Fox Point in
late fall 2011, equipped with transmitters, and imme-
diately released at the same location. The first 2 sets
of transmitters (activated in spring 2010 and 2011),

Table 1. Information about the 22 horseshoe crabs Limulus

polyphemus fitted with ultrasonic transmitters in this study.

The ID #s for the V9AP ultrasonic transmitters listed in the

first column have one number for depth and a sequential
number for acceleration data

ID# Sex  Carapace Release Days of
width (cm) date data
(mm/dd/yy)
2730/2731 F 19.1 6/9/10 63
2732/2733 M 16.5 6/9/10 103
2734/2735 F 17.3 6/18/10 2
2736/2737 F 22.1 6/18/10 2
2738/2739 F 16 6/18/10 98
2740/2741 M 16 6/18/10 89
2742/2743 M 13.9 6/18/10 67
2744/2745 M 14.2 6/18/10 141
2621/2622 F 19.1 8/19/10 40
5859/5860 M 17.1 6/30/11 44
5861/5862 M 15.7 6/30/11 28
5863/5864 F 20.3 6/30/11 69
5865/5866 M 15.2 6/15/11 154
5867/5868 M 14.2 6/30/11 71
5869/5870 M 16.5 6/30/11 37
5871/5872 M 13.9 6/30/11 73
6502/6503 F 17 11/8/11 23
6504/6505 F 20 11/8/11 29
6506/6507 M 14 11/8/11 23
6508/6509 M 13.9 12/5/11 29
6748/6749 F 17 12/5/11 18
6750/6751 F 17 12/5/11 31
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were programmed to record data all summer and fall,
shut off for the winter to conserve power, and re-
activate the following spring. The final group (tagged
in fall 2011), was programmed to transmit data in the
fall, and then re-activate in March and transmit data
during spring 2012. For 2 animals, useful data were
only obtained for 2 d and thus their data were not
included in the final analyses.

Transmitters were either inserted into the ante-
rior-dorsal region of the carapace or attached to
the dorsal carapace (Schaller et al. 2010, Watson
& Chabot 2010). For internal placements, an inci-
sion was made in the carapace with a utility knife
and the transmitter was inserted through it into
the frontal region of the carapace. The insertion
site was then covered with duct tape held in place
with superglue. External transmitters were first
glued inside a piece of Tygon tubing containing
holes so that cable ties could be passed through
them. Two holes were drilled in the posterior mar-
gin of the prosoma and the cable ties were
slipped through the holes and closed. Duct tape
was then glued over the transmitters to make a
smooth surface that would not get snagged on
debris underwater.

Acoustic transmitters and receivers

In order to determine the range of the transmitters
(pingers), and whether transmissions diminished
when animals were buried in the sediment, we con-
ducted a preliminary transmission range study in
October 2011, followed by a more rigorous study in
July 2012. In 2011, we buried 3 VIAP transmitters at
3 different depths in the sediment (0, 7, 14 cm) in
~2 m of water, and monitored their transmissions
using 2 VR2W receivers (VEMCO) located 50 and
150 m away. Transmissions were monitored for 4 d,
so that we could also determine if the tides had any
impact on the number of transmissions detected. In
2012, SCUBA divers placed a V9 tag on a lobster trap
located on the bottom, in ~5 m of water, and a series
of 4 VR2W receivers were moored approximately 10,
100, 200, and 300 m away from the pinger. Data were
collected for ~24 h; on Day 2, divers buried the pinger
3 cm into the sediment and data were collected for an
additional 24 h. This process was repeated on Day 3,
with the pinger submerged 6 cm into the sediment.
Data from both range tests were analyzed to deter-
mine if distance, tides, and transmitter depth had any
impact on the number of times a receiver detected a
pinger.

Throughout most of the study, acoustic transmis-
sions were received and logged by 7 VR2W receivers
moored about 500 m apart throughout Little Bay and
Great Bay (Fig. 1). Most of the tagged horseshoe
crabs spent the majority of their time in the upper
portion of Little Bay, so the 7 VR2W receivers were
moored between Fox Pt. and JEL (Fig. 1). This area of
Little Bay is about 3 km long and 1 km wide. The
horseshoe crabs were almost always located along
the eastern shore, therefore the 7 VR2Ws were
moored ~0.5 km apart at a depth of ~7 m along the
eastern edge of the channel in Little Bay. With this
arrangement, there was a high probability that at any
given time 1 or 2 receivers would detect signals from
a specific transmitter. Receivers were downloaded
weekly and if one of the horseshoe crabs was not
detected by any of the receivers it was located manu-
ally using a VR100 receiver and omnidirectional
hydrophone slowly towed behind a small boat. If a
receiver was not detecting any animals or was col-
lecting redundant data, it was moved so that it could
receive data from this animal. This approach also
allowed us to track horseshoe crab movements
throughout the study. The total number of days that
data were received for each crab ranged from 2 to
154 d (Table 1). Throughout the study, water temper-
ature was continuously recorded using a YSI water
quality sonde located at 5 m depth, just off the JEL
dock.

Data analyses

The data obtained from the accelerometer trans-
mitters were used to determine when animals were
active or not. The V9AP accelerometer transmitter
calculates a value that represents the root mean
square acceleration based on the contribution of
accelerations from each of the 3 axes (x, y, 2),
averaged over a set interval (20 s):

-2
ms—”= y(x2+y?+z?

Based on the specifications programmed into the
tags used in this study, accelerometer data only
recorded 10% of every 3 to 5 min data collection
interval. Furthermore, even if animals were only
moving a small amount the transmitters would pro-
vide a value; therefore, we needed to determine a
threshold output that represented actual locomotion.
This was achieved by collecting digital videos of
horseshoe crabs while they moved around (or
remained stationary) in 2 m diameter tanks, while we
simultaneously recorded the output of implanted
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VIAP tags with VR2W receivers. Periods of activity
and inactivity were determined from the videos, and
the accelerometer tag output values were matched
with these periods to determine a threshold value
that represented true locomotion. This threshold
value (0.1 m s~2) was then used to filter data collected
in the field and to determine if, during each transmis-
sion, an animal was active or inactive. These data
were then lumped into 10 min bins, and if an animal
was active during any of the sampling times in that
10 min block it was considered to have been active
for that whole block of time. This approach was used
for 3 reasons. First, as stated above, the accelerome-
ter tags do not average data for the entire 3 to 5 min
and then transmit the averaged data. Rather, they
simply transmit data that has been averaged over the
20 s prior to each transmission. Thus, it is possible
that a period of activity could be missed if the animal
was active for most of the inter-transmission interval,
but then inactive for that 20 s period prior to the
transmission. Second, based on laboratory and field
observations, when horseshoe crabs are active they
tend to be active for long periods of time rather than
intermittently. Therefore, if they are active during
one of several transmissions received during a 10 min
block, it is likely they were active during most of that
10 min period. Finally, we wanted to combine our
data into discrete blocks of time, but the data were
transmitted at random intervals. This necessitated
lumping the data into bins; 10 min bins were chosen
because that length of time was long enough to allow
for the detection of more than one transmission, and
yet short enough to yield accurate periodograms.

These data were then used to calculate the total
amount of time an animal was active during each
hour and each day. However, it should be noted
that pingers were often not detected for several
hours, possibly because (1) animals were out of
range, (2) they were buried in the sediment, (3)
signals were attenuated by currents and thermo-
clines (Mathies et al. 2014), or (4) some combina-
tion of these factors. Based on our calibration tests,
when animals were in range (based on receiving a
large number of detections during certain times of
the day), the most likely cause of missed transmis-
sions was attenuation of signals due to animals
being buried in the sediment. Therefore, calcula-
tions of the percent of the time/day that a horse-
shoe crab was active were made by dividing the
amount of time when accelerometer pings were
received that were above the threshold value that
indicated animals were active (i.e. >0.1 m s72), by
24 h.

These values were also used to determine the type
of biological rhythm a given animal expressed, using
the program Clocklab (Actimetrics). Clocklab was
used both to plot actograms and determine the
period (tau) of the dominant, statistically significant,
rhythm in the 10.4 to 14.4 h (circatidal) or 22 to 26 h
(circadian) range exhibited by each animal. Finally,
for those animals that expressed a daily rhythm of
activity, the percent of each day and night during
which they were active was averaged for as many
days as clear data were available and a paired Stu-
dent's {-test was used to determine if there was a sig-
nificant difference between the amount of time they
were active in the day versus the night. Results were
considered significant at p < 0.05.

RESULTS
Pinger calibrations

Based on previous studies, our hypothesis was that
when animals were buried, transmitter output would
be attenuated. In order to test this hypothesis, we
compared our ability to detect pingers that were
buried at different depths, using VR2W receivers sta-
tioned at different distances away from the transmit-
ters. In the 2011 trial we used 3 transmitters buried at
different depths, and it was clear that being buried
attenuated the signals (Fig. 2A). In comparison to the
pinger on the surface, 40 % fewer transmissions were
detected by the receiver that was 50 m away from the
pinger buried 7 cm deep and 63 % fewer pings from
the transmitter buried 14 cm deep. The receiver that
was 150 m away did not detect any signals from the
pinger buried the deepest. In addition, there was no
clear evidence during this trial that the tides or time
of day influenced the percentage of transmissions
that were detected (Fig. 2A).

In the 2012 study, receivers were located 10, 100,
200, and 300 m away from a single pinger. When
the pinger was on the surface, the 2 closest
receivers detected 142 and 135 pings h7!, respec-
tively. However, the receiver that was 200 m away
picked up only 34 % of the pings detected by the
closest receiver, and the one that was 300 m away
detected only 9%. Thus in this habitat, it was diffi-
cult for receivers >200 m away to detect animals
that were not buried. When pingers were buried
3 cm into the sediment (which is somewhat shallow
for a horseshoe crab in the Great Bay estuary based
on diver observations), transmissions were reduced
the most at the receiver that was 200 m away (from
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34 to 1.5 h7! relative to the control situation with the
pinger on the surface; Fig. 2B). When the transmitter
was buried even further (6 cm), detections were
reduced by 65 % at the 100 m receiver and by >90 %
at the more distant receivers. In this study, there
were several occasions during low tides when fewer
transmissions were detected by the receiver that
was 100 m away, and this became more pronounced
when the pinger was buried (Fig. 2B). The dominant
finding from these 2 experiments was that transmis-
sions were difficult to detect when pingers were
buried, and this was most clearly manifested when
examining data from the most distant receivers.
Therefore for our subsequent analyses, we assumed
that when animals were within range of a receiver
(i.e. it was detecting transmissions often) and there
were gaps in detection, the animals were buried
and thus inactive. However, loss of transmissions
could also be due to acoustic interference from

pinger was 6 cm into the sedi-
ment, the furthest receivers did
not detect it, and there was a de-
crease in detections recorded by
the receiver that was 100 m away

changing tides, so this should be taken into account
when interpreting these data.

Seasonal changes in activity

During the spring and summer, horseshoe crabs
were active >50 % of the time (Fig. 3B). This period of
increased activity was associated with generally
higher water temperatures (ca. 20°C; Fig. 3B). As the
water temperature started to drop in the fall and into
winter, animals became less active and moved into
deeper areas of the estuary (Fig. 3). There was a sig-
nificant correlation between water temperature and
activity (r2 = 0.65, p = 0.027), and water temperature
and depth (2 = 0.62, p = 0.035), and the relationship
between activity and the depth they occupied was
very strong (i.e. they were more active when in shal-
low water; r? = 0.85, p = 0.0032; Fig. 3).
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Seasonal movements

As documented previously (Watson et al. 2009,
Schaller et al. 2010), the horseshoe crabs in this study
were located further up into the estuary in the sum-
mer, then moved down the estuary as the water tem-
peratures decreased in the fall (Fig. 4). These fall
movements down the estuary were also correlated
with a shift to the deeper channels (Figs. 3 & 4).

In November and December 2011, we fitted 6 ani-
mals with transmitters specifically to determine
when they became active in the spring and initiated
movements up into the estuary. All horseshoe crabs
overwintered near Fox Point (see Fig. 4), and then in
March 2012, during a stretch of unseasonably warm
weather, they became quite active and moved rap-
idly up-estuary towards spawning areas in Great Bay
(Figs. 5 & 6). Water temperature then stabilized for
~2 wk before another warm period occurred, which
caused another surge of activity. While 1 horseshoe
crab moved at a rate of >1 km d~!, overall they aver-
aged ca. 0.2 km d™! from 24 to 27 March (n = 6).

Biological rhythms of activity

We found that horseshoe crabs in the Great Bay Es-
tuary, NH, expressed both daily and tidal rhythms of
activity. Of the 13 horseshoe crabs that yielded suffi-
cient data for analyses of biological rhythms (at least
10 d of continuous data), 6 expressed a statistically
significant tidal pattern of activity (Fig. 7), 5 exhibited
a daily rhythm, and 2 were arrhythmic. One of the
horseshoe crabs that exhibited a daily rhythm was
more active at night (Fig. 8; a male residing at a mean
depth of 4.13 m in July; tau = 24.0 h), and 2 showed a
preference for daytime activity during some periods
of the year (Fig. 9), but then expressed tidal rhythms
during other times (data not shown). As water temper-
atures dropped in the fall, all animals, regardless of
the type of rhythm they expressed, became less active
and exhibited less well-defined rhythms (Fig. 10).

There was no clear relationship between the depth
occupied by horseshoe crabs and the type of rhythm
they expressed. The average depth occupied by ani-
mals during the months when they expressed tidal
rhythms (9.4 + 1.4 m) was not significantly different
from the depths they occupied when they had daily
rhythms (7.8 + 1.2 m) (unpaired Student's t-test, p =
0.24). This was also evident when examining data
from the 2 animals that exhibited both types of
rhythms. One of them expressed a daily rhythm dur-
ing months when it resided at mean depths of 5.4 and
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Fig. 3. Mean (+SE) monthly (A) horseshoe crab activity and
depth and (B) monthly temperatures between June and
December. Temperature data were collected from a YSI
sonde at the dock of the Jackson Estuarine Laboratory (JEL,
Fig. 1). Activity level is based on the percent of time/day that
animals were (active). Data were based on values obtained
only from animals whose transmitters were detected for at
least 1 wk in that month; therefore sample sizes for depth
and activity calculations for each month were: June (7), July
(7), August (4), September (4), October (4), November (6),
December (4). Different lowercase letters indicate monthly
activity levels that are significantly different from each other
(1-way ANOVA, p < 0.05)

Little Bay

. . 44
Fig. 4. Locations of 6

horseshoe crabs tagged
in June 2010 and at
large for at least 40 d. f

Fox Point

Numbers represent the
last 2 numbers of their
pinger IDs (see Table 1), 38
and show their most up-
estuary position during
the summer, with ar-
rows pointing to their
most down-estuary lo- 21
cation in the fall. JEL=
Jackson Estuarine Lab-
oratory, where the crabs JEL
were tagged and re-
leased. Scale bar =1 km
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12.7 m, and tidal rhythms when occupying habitats at
mean depths of 12.0 and 16.2 m. The other horseshoe
crab was always at mean depths ranging from 11.3 to
12.9 m, but switched to a tidal rhythm of activity in
October (data not shown).

DISCUSSION

Rhythms expressed by freely moving horseshoe
crabs in their natural habitat

To our knowledge, this is the first study to continu-
ously record the expression of both tidal and daily
rhythms of activity by an aquatic species in its natural

horseshoe crabs typically commence
mating in May

T 6
4/16 4/21

3.5

g
o

Fig. 6. Simultaneous depth and ac-
celeration data from horseshoe crab
#6508 in spring 2012. The animal
was sedentary from 3/21/12 to
3/22/12 (gray horizontal line: thresh-
old for considering an animal active),
so the depth sensor provides a good
representation of the changing tides.
Then near peak high tide on 3/22/12
(A) it became active and moved into
shallow water. Activity declined dur-
ing low tide on 3/23/12, and then in-
creased again near peak high tide as
it moved into even shallower water.
o The gap in the data (B) is most likely
the result of this animal being buried
in the sediment

= ro
o
Acceleration (m s?)

T
—_

o
o

3/24/12

habitat. Interestingly, the patterns of horseshoe crab
activity we documented, and the variety of rhythms
they exhibited, were very similar to those previously
demonstrated in the laboratory (Chabot & Watson
2010, Dubofsky et al. 2013). This was somewhat sur-
prising because in their natural habitat they are
exposed to strong tidal cues, and when exposed to
artificial tides in the laboratory, most of them readily
synchronize their activity to the tides (Watson et al.
2008, 2009, Chabot & Watson 2010).

Several of the animals in this study expressed a
clear preference for daytime or nighttime activity
(Figs. 8-10). This is also common in juvenile and
adult horseshoe crabs in the laboratory when
exposed to artificial L:D cycles (Chabot & Watson
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Fig. 7. Actogram of a freely moving horseshoe crab (#2744, male) in its natural habitat, expressing a tidal rhythm of activity
during September. Horizontal bars at the top of the actogram represent daytime (white) and nighttime (black). Activity is
double-plotted so that rhythms are more evident; thus each line equals 48 h of data. Black ticks: bouts of activity; white blanks:
inactivity; underlined blanks: gaps in the data that we interpret as animals burrowing in the sediment (thus inactive). This
animal tended to be most active during high tides. On 9/10/10, the first day on this actogram, high tide was at 16:30 h. The
periodogram (right) shows that the dominant, statistically significant (p < 0.05, line on graph), rhythm had a period of 12.45 h
(amplitude = relative strength of the rhythm). Note that from ~9/16 to 9/22 there may have been less activity during the day
high tide than the night high tide

0 8 16 0 8 16 0
Time of day (h)

Fig. 8. Actogram of a freely moving horseshoe crab (#5861,

male) exhibiting a nocturnal pattern of activity during the

first half of July. Horizontal bars at the top of the actogram

represent daytime (white) and nighttime (black). This animal

resided at an average depth of 4.13 m during this month and

tau was 24.0 h. See Fig. 7 for a more in-depth description of
the graphical features of the actogram

2010, Dubofsky et al. 2013), as well as adult Limulus
exposed to ambient light in outdoor tanks, or near-
shore enclosures (Watson & Chabot 2010, Anderson
et al. 2013). However, while it is very clear that
horseshoe crabs possess a circadian clock that influ- .

. 1 itivity (Barl 1983), to date th i Fig. 9. Actograms of 2 horseshoe crabs (top: #5865; bottom:
ences visua s‘enSI ‘Nl y (Barlow o odate ? eV. B #2740) that expressed a preference for being active during
dence for a circadian clock controlling locomotion is the daytime. Animal #5865 was a male that resided at a
not strong (Dubofsky et al. 2013). An alternative mean depth of 12.8 m during September; #2740 was a male
explanation is that some animals have a preference who ﬁsf at 12.7 m du}‘;”/lg JI‘{ﬂkY)- tau = i3~3 h for #5865 an
for daytime or nighttime activity (Chabot et al. 2007) 23.6 h for #2740. Light/dark bars on the top represent day

) . and night. Note that the days were longer in July. See Fig. 7
for reasons that have yet to be elucidated, and this for a more in-depth description of how the actogram was
preference influences—and in some cases over- constructed

Time of day (h)
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Fig. 10. Actograms of 2 different horseshoe crabs, one from
2010 (top) and one from 2011 (bottom), illustrating the de-
crease in overall activity that took place as water tempera-
tures dropped in the fall. Horizontal bars at the top of the ac-
togram represent daytime (white) and nighttime (black).
The top panel also illustrates a switch from a diurnal (tau =
23.3 h) to a tidal rhythm (tau = 12.5 h). Even though most of
the horseshoe crabs moved deeper as the water temperature
decreased, this animal remained at basically the same depth
in September and October (11.5 to 12.8 m), so the change
from a daily to a tidal rhythm was not likely due to a change
in depth

rides —the control of their locomotion rhythms by an
endogenous circatidal clock. In some cases, this
influence of light and dark yields a very clear daily
rhythm (Fig. 8), while in other cases it manifests itself
as a tidal rhythm with only one of the bouts of activity
that usually occur at high tide being expressed dur-
ing either night or day. For example, the activity pat-
tern depicted in Fig. 10 appears to be the manifesta-
tion of an animal that preferred to be active during
the high tides that occurred during the day (Fig. 10,
top). Perhaps in some animals this preference for
being active during the light (or dark) portion of the
day reaches the point where it completely overrides
the influence of the endogenous circatidal clock on

activity, and thus they appear to be expressing a
clear daily rhythm (Figs. 8 & 9).

Another possibility is that the preference for night-
time or daytime high tide is related to the relative
height of the 2 tides. Field studies have documented
increased activity in both nighttime and daytime
high tides during mating season, depending on
which tide is the highest (Barlow et al. 2001). While a
preference for the diurnal high tide has been
observed in some horseshoe crab populations (Cohen
& Brockmann 1983), others appear to prefer the night
tides (Florida: Rudloe 1979, 1980; Cape Cod, Massa-
chusetts: Barlow et al. 1986). Given the apparent sen-
sitivity of horseshoe crabs to changes in water depth,
it is possible that more animals detect the highest of
the 2 tides in these locations and thus more animals
approach the spawning beaches during the highest
tides. However, in the Great Bay estuary both tides
are of comparable size, and similar numbers of ani-
mals appear on the mating beaches during daytime
and nighttime high tides (Watson et al. 2009, H.
Cheng unpubl. data). Moreover, even in outdoor
tanks where they are not exposed to depth fluctua-
tions, some animals are most active during only 1 of
the 2 tides (W. H. Watson unpubl. data). Thus, our
working hypothesis at this time is that activity
rhythms in horseshoe crabs are influenced by a com-
bination of inputs including an endogenous circatidal
clock system, a mechanism for sensing water depth,
and L:D cycles. Moreover, it appears that the relative
influence of each of these factors varies somewhat
from animal to animal.

While horseshoe crabs are often seen spawning
during spring and early summer high tides, less is
known about their activities during other times of the
year. Our recent studies along with the findings of
this investigation indicate that they also tend to be
most active during the high tides that occur during
much of the remainder of the summer and fall (Wat-
son & Chabot 2010). Based on our high-resolution
tracking studies (VEMCO VRAP system; Watson &
Chabot 2010), observations by SCUBA divers, and a
study of the pits dug by the crabs while foraging (Lee
2010), horseshoe crabs move into intertidal mudflats
to search for food when these areas are submerged
during high tides. This conclusion is supported by
some of the findings of the current study, showing
that (1) during the times of the year when they were
most active their mean depth preference was ~4 to
10 m as a result of moving back and forth from the
edge of the channels to the adjacent mudflats, and (2)
when some animals became active during the high
tide portion of the tide cycle, they moved into shal-
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lower water (similar to the pattern shown in Fig. 6).
Thus, while additional studies are necessary to con-
firm this hypothesis, the available data suggest that
horseshoe crabs periodically forage on mudflats for a
large portion of the year, and because some of these
mudflats are only accessible during high tides, their
activity rhythms are often synchronized to the tides.

Use of accelerometer transmitters to
monitor activity

While there are many ways to monitor animal
activity in the laboratory, it is much more challenging
in aquatic habitats, especially with animals that
move large distances. While traditional tag/recap-
ture and telemetry methods are useful for determin-
ing where and when animals move, they are not
optimal for investigating finer scale movements such
as the biological rhythms these animals express
when exposed to the range of cues available in their
natural habitat. In previous studies, we used 2 differ-
ent methods to monitor the daily activity of freely
moving horseshoe crabs, and while each yielded use-
ful data, they were not optimal for monitoring biolog-
ical rhythms. The first method (Watson & Chabot
2010) involved a high resolution ultrasonic telemetry
system (VRAP, VEMCO) that provided precise data
about the position of a horseshoe crab fitted with a
transmitter; however, if the animal moved out of range
of any of the 3 receivers/buoys, data were lost. The
second approach (W. H. Watson unpubl.) involved
attaching an accelerometer data logger (HOBO pen-
dant, Onset Computer) to an animal so that activity
was constantly logged, and moving out of range of
receivers was not a problem. A similar approach was
used by Whitney et al. (2007) to study the activity
patterns of whitetip reef sharks Triaenodon obesus,
except the sharks were confined during their study.
The drawback of this method is that in order to
retrieve the data the animal must be recaptured,
which can be difficult in an estuary where visibility
for divers is limited. The technique used in the pres-
ent study shared characteristics of both systems. The
accelerometer tag transmitted movement data so
activity did not have to be extrapolated from tracks of
animal movements, and we were able to detect the
signals using individual VR2W receivers rather than
an array of 3 receivers, which increased the probabil-
ity that continuous data could be obtained. As a
result, we were able to collect activity data from indi-
vidual animals long enough to determine the type of
rhythm being expressed. In fact, we were able to

almost continuously monitor the activity of one
horseshoe crab from April to November in 2010.
Another advantage of this technique is the ability to
activate and inactivate the transmitters so that bat-
tery life is not ‘wasted’ during the time of year when
animals are not moving. Thus we were able to fit ani-
mals with transmitters in the fall, turn them off for
most of the winter and then re-activate them early
the following spring, allowing us to determine when
they first became active as the water warmed up in
March (Figs. 5 & 6).

The biggest drawback of this approach with this
particular species was that we intermittently lost
transmissions, apparently due to the fact that the
crabs frequently buried in the sediment, which atten-
uated the transmissions. In order to test this hypothe-
sis, we conducted several studies in which we buried
transmitters at varying depths in the sediment and
then monitored their transmissions at various dis-
tances away using VR2Ws (Fig. 2). It was clear from
these tests that if horseshoe crabs buried themselves
deep enough to just cover their dorsal carapace,
transmitters would be at least 6 cm under the surface
and transmissions would be hard to detect >100 m
away (Fig. 2). This finding is also supported by our
previous investigations using the VRAP system,
which detects ultrasonic transmitters and plots posi-
tions every 2 to 5 min (Watson & Chabot 2010).
Detections would often stop for short periods and
then start up again, with the animal in the exact same
location; presumably because the animal would bury
itself and then come back out of the sediment. Given
a study area that was ~5 km long it was difficult to
maintain VR2Ws close enough to all of the animals at
any given time. Thus, we were forced to accept the
occasional loss of transmissions, and assumed that
when this happened for several hours it was because
the animals were buried and not very active. How-
ever, periodic gaps in detections could also be the
result of currents and thermoclines (Mathies et al.
2014), or animals periodically moving out of range of
all our VR2Ws and then back again. While we did
detect an apparent influence of tides on our ability
to detect pings at a distance of 100 m, when pingers
were buried it did not appear that the currents
associated with the tides were a common issue for
several reasons. First, when tidal patterns were
apparent, they should have been more consistent if
they were artifacts of the impact of tides on transmis-
sions. However, as illustrated in Fig. 7, the tidal
rhythms recorded were somewhat inconsistent from
day to day. Second, a number of animals expressed
very clear daily rhythms, which should have been
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obscured if the tides were the cause of periodic loss
of signals (Figs. 8 & 9). Finally, during one of the
calibration tests, tidal rhythms were not obvious, and
the impact of tides was intermittently apparent only
when the pinger was buried and the receiver was
>100 m away. Loss of detections due to burying is a
more likely explanation for the following reasons: (1)
signals were clearly attenuated when pingers were
buried in the sediment (Fig. 2), (2) it seems unlikely
that animals would consistently, with a 124 h
rhythm, walk out of range of all the receivers and
then back into range, day after day, and (3) we did
obtain some tidal rhythm data from animals when
signals were not attenuated during periods of inac-
tivity (Fig. 9), indicating that not all the tidal rhythms
we documented were due to artifacts induced by the
tides.

Seasonal changes in activity and depth

The seasonal changes in depth, location and activ-
ity that were expressed by the animals in this study
are consistent with the findings of our earlier labora-
tory and field studies (Watson et al. 2009, Chabot &
Watson 2010). As water temperatures began to drop
in the fall, horseshoe crabs in the Great Bay estuary
moved down the estuary towards the coast into
deeper waters (Figs. 3 & 4) and became less active
(Figs. 3 & 10). This phenomenon has also been
observed in the laboratory, and it appears that the
threshold for shifting from one behavioral state to the
other is about 8 to 10°C (Watson et al. 2009).
Although we did not monitor their activity during the
winter, our previous studies indicate that they move
very little at this time, when water temperatures are
typically <8°C (Watson et al. 2009, Schaller et al.
2010). As water temperatures increase in the spring,
animals tend to move from their overwintering areas
to spawning sites further up in the estuary (Schaller
et al. 2010). We were fortunate to document this
spring migration very closely in 2012, when there
was an unusually warm stretch of weather in March
that caused water temperatures to rapidly rise, and
this jump to temperatures above 8°C appeared to
trigger an increase in activity and movements up into
Great Bay (Figs. 5 & 6). The warm spring in 2012 also
caused horseshoe crab spawning to commence about
1 mo earlier than usual.

In conclusion, the behavior of horseshoe crabs
freely moving in their natural habitat is remarkably
similar to their behavior in tanks in the laboratory.
They are most active when water temperatures are

>8 to 10°C, they express a variety of biological
rhythms, and they have a tendency to be most active
during the high tide portion of the tidal cycle. This
study illustrates how much can be learned about the
normal behavior of animals in their natural habitat
using the appropriate technology, as well as how
much insight can be gained about the normal behav-
ior of animals from carefully controlled investigations
that are only possible in a laboratory setting.
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