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1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing,
China, 2School of Engineering, Sierra Nevada Research Institute, University of California, Merced, California, USA, 3Earth
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Abstract Woody residence time (τw) is an important parameter that expresses the balance between
mature forest recruitment/growth and mortality. Using field data collected from the literature, this study
explored the global forest τw and investigated its influence on model simulations of aboveground biomass
(AGB) at a global scale. Specifically, τw was found to be related to forest age, annual temperature, and
precipitation at a global scale, but its determinants were different among various plant function types. The
estimated global forest τw based on the filed data showed large spatial heterogeneity, which plays an
important role in model simulation of AGB by a dynamic global vegetation model (DGVM). The τw could
change the resulting AGB in tenfold based on a site-level test using the Monte Carlo method. At the global
level, different parameterization schemes of the Integrated Biosphere Simulator using the estimated τw
resulted in a twofold change in the AGB simulation for 2100. Our results highlight the influences of various
biotic and abiotic variables on forest τw. The estimation of τw in our study may help improve the model
simulations and reduce the parameter’s uncertainty over the projection of future AGB in the current
DGVM or Earth System Models. A clearer understanding of the responses of τw to climate change and the
corresponding sophisticated description of forest growth/mortality in model structure is also needed for the
improvement of carbon stock prediction in future studies.

1. Introduction

The large carbon flux between forest ecosystems and the atmosphere plays an essential role in the global
carbon cycle [Beer et al., 2010; Xiao et al., 2011; Xue et al., 2011, 2016]. This net carbon flux can be both deter-
mined by the rate of carbon assimilation (gross primary production (GPP)) and by the time of carbon being
locked up in living plant tissue, i.e., woody residence time (τw, years) before being released into the atmo-
sphere [Lloyd and Farquhar, 1996;Malhi, 2012]. The τw is an important physiological parameter that expresses
the balance between forest recruitment/growth andmortality when it is in a steady condition [Galbraith et al.,
2013]. Many previous studies have found a close relationship between τw and forest carbon stocks and a large
amount of uncertainty in the estimation of τw per se [Vieira et al., 2005; Zhou and Luo, 2008; Zhang et al., 2010;
Zhou et al., 2012]. Therefore, quantifying τw is important to gain a clearer understanding on the global forest
carbon budget balance.

Dynamic global vegetation models (DGVMs) are useful tools for mapping global carbon stock and predicting
its variation future. In most DGVMs, the global terrestrial ecosystems are represented by different plant func-
tional types (PFTs), and much attention has been paid to improve the modeling of photosynthesis and GPP
for each PFT. Typically, carbon stock or biomass has been simulated as the vegetation carbon pool including
leaf, stem (including branch), and root produced from the allocation of net primary production (NPP). For
forest ecosystems, the total aboveground biomass (AGB, Mg ha�1) is mainly determined by the stem bio-
mass. To predict forest growth and biomass accumulation, most DGVMs use the τw parameter to represent
the time carbon remained in an ecosystem. The default PFT-specific value of τw introduces little spatial
variance and is assumed to be temporally invariant for model simulation.

Although DGVMs could simulate biomass at regional to global scales, an increasing number of recent studies
showed that the assumed invariant τw can induce large uncertainties in modeled biomass [Delbart et al.,
2010; Castanho et al., 2013; Friend et al., 2014]. Friend et al. [2014] explored the responses of the global
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vegetation to the projected climate by 2100 using seven global vegetation models (including DGVMs)
and found large variations in global carbon stocks among these models. This large variation cannot be
solely explained by the differences in simulated NPP; when uncertainties in τw were taken into account,
an additional 30% of the variation was explained. In fact, trend of projected NPP were more consistent,
while the temporal trend signs of τw may even be different (negative or positive) [Friend et al., 2014].
These results demonstrated the necessity of accurately estimating τw during model simulations. A recent
study based on forest field observations also showed that the spatial patterns of biomass of lowland
Amazonian forests can be better explained by the patterns of τw rather than by the variation in forest
productivity [Malhi et al., 2015]. These authors stated that more attention should be paid to the allocation
of NPP and τw aside from that for GPP [Malhi et al., 2015]. However, the default values of τw for most
current DGVMs are often not representative and may even be highly biased when compared with
observed values [Galbraith et al., 2013].

When forest is near equilibrium, biomass production can be balanced by biomass loss, and therefore, τw
could be determined by forest mortality. At a regional or global scale, forest mortality may originate from
either intrinsic self-thinning or natural and human disturbances, which makes it difficult to estimate τw
[Stephenson et al., 2011]. Previous studies have shown that τw could be closely related to abiotic (e.g., tem-
perature and precipitation) or biotic (e.g., stand density) factors [Lines et al., 2010; Galbraith et al., 2013;
Malhi et al., 2015]. Lines et al. [2010] compiled forest mortality rates from forest inventory data and explored
the influence of environmental and physiological variables for forests of the eastern United States. That study
emphasized the influence of climate, soil, species, and size (stem diameter) on forest mortality rates at indi-
vidual tree level. Thurner et al. [2016] estimated temperate and boreal forest residence time (including both
aboveground and belowground forest carbon stocks) at the regional scale using remote sensing data. They
found that the forest residence time was closely related to different climate drivers, depending on specific
ecosystems. At the global scale, another term—carbon residence time (including both aboveground and
belowground carbon stocks)—is used for all terrestrial ecosystems; researchers found that carbon residence
time is highly correlated with temperature and precipitation [Carvalhais et al., 2014]. More confidence in pro-
jected spatiotemporal variation in forest biomass would be achieved if more accurate τw or carbon residence
time can be obtained by field observations or processes/empirical-based models.

The objective of this study is to investigate the determinants of forest τw based on field collected values and
its role in the improvement of DGVM simulations. Specifically, we initially collected field-derived τw and ana-
lyzed the possible drivers of its change including environmental and biotic variables. Since global natural and
anthropogenic disturbances are missing, we thus mainly focus on forest plots without disturbances for a long
time. The collected field-derived τw covers all forest biomes including boreal, temperate, and tropical forests.
Second, we generated a global, gridded τw map using the field-derived τw values and other meteorological
and physiological variables as predictors with the random forest (RF) method. Third, we used the resulting
global τw map to parameterize a DGVM–Integrated Biosphere Simulator (IBIS) [Foley et al., 1996; Kucharik
et al., 2000], and based on an overview of different model descriptions of τw, we assessed how field-derived
τw data can improve biomass simulations. Our results can improve our understanding of global patterns of τw
and thus the global carbon cycle under climate change.

2. Materials and Methods
2.1. Collection of Woody Residence Time From Field Data

Assuming that forest is near an equilibrium state, τw can be calculated as follows [Galbraith et al., 2013]:

τw ¼ Mw

Wp
(1)

where Mw is the mean AGB (Mg ha�1) and Wp is the mean aboveground woody productivity (including
stem and branch, Mg ha�1 yr�1). Since we mainly focus on aboveground τw in the present study, AGB
and aboveground Wp are used, which are different from Thurner et al. [2016]. For forest ecosystems, τw is
closely related to, but not identical with, tree lifetime and is mainly determined by the lifetime of med-
ium and large trees [Galbraith et al., 2013; Malhi et al., 2015].
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We compiled τw values for a total of 1319 forest sites from published literature. These sites cover all climate
zones from boreal to temperate and tropical forests (Figure 1). To ensure the accuracy of our collected τw, we
only collected data from sites with no major human or natural disturbances for at least 100 years. This was
done to assure to a large extent that forest plots retained were near the equilibrium state. Similarly, only
“mature” or “old growth” forests were selected in our analysis; that is, secondary forest sites that have not
reached a state of equilibrium were excluded. For most of these sites, τw is not directly available, and we cal-
culated τw from the reported AGB and woody productivity (including stem and branch) using equation (1).

Many of our τw values were obtained from four articles: Galbraith et al. [2013], Luyssaert et al. [2007], Keeling
and Phillips [2007], and Guo and Ren [2014]. Most tropical forest sites are from Galbraith et al. [2013], who
compiled the τw values for tropical forests from published literature. The τw values were calculated either
by equation (1) or as the reciprocal of woody turnover time (see the supporting information of Galbraith et al.
[2013] for details). Luyssaert et al. [2007] compiled aboveground biomass and NPP data for leaf, stem, and
twig data for boreal, temperate, and tropical forests. We selected those forest sites that have historically
lacked extensive human management for our analysis. Keeling and Phillips [2007] analyzed the relationship
between forest productivity and aboveground biomass by compiling data from published literature. We
calculated the τw values using their data set provided in the supporting information. Guo and Ren [2014] col-
lected plot-level forest productivity and biomass data of natural and planted forests in China from published
literature with detailed information on the forest carbon pools and other physiological characteristics of for-
ests such as forest age, and we calculated the τw values for natural forests from the biomass and productivity
data using equation (1). For each site, we also obtained meteorological data, i.e., annual precipitation (P, mm)
and air temperature (T, °C) if these values were available in corresponding paper. For those sites where these
variables were missing, we retrieved the values from global values of WorldClim (http://www.worldclim.org/).

2.2. Analysis of the Drivers of Woody Residence Time

We analyzed the global patterns of τw according to P and T. Further exploration of the relationships between
τw and biotic variables of carbon use efficiency (CUE, ratio of NPP to GPP)/forest age was also conducted since

these variables were considered to be closely related withWp and AGB. Since not all of the plots contain infor-
mation on forest age (938 plots) and GPP (32 plots) from in situ observations, fewer plots were used during
this analysis. To examine how forest τw is determined by climate and forest age, we used linear mixed effect
models (LMMs). The absolute values of soil nutrient contents were not available, and we thus assumed differ-
ent random effects for local nutrient classification from Harmonized World Soil Database (http://webarchive.
iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/). We tested the effects of P, T, and forest age on
τw by running all possible LMMs, which were evaluated by Akaike information criterion (AIC). Models with a
ΔAIC ≤ 7 were selected for model averaging and coefficient estimation and then used to predict τw in relation

Figure 1. Spatial distribution of the 1319 forest sites where field calculated woody residence time (τw, years) data have been collected and used in the present study.
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to forest age, P, and T. Forest age and τwwas log transformed as the nonlinear relationship between AGB and
age. All explanatory variables were standardized by subtracting the mean from each value and dividing by
the standard deviation to allow for easier interpretation of coefficients and improvement of model conver-
gence [e.g., Martin et al., 2016]. All LMM analyses are conducted by R with the nlme [Pinheiro et al., 2015]
and MuMIn [Barton, 2015] packages.

2.3. Estimation of Global Forest Woody Residence Time

In this study, to put τw as model parameter for a DGVM, i.e., Integrated Biosphere Simulator (IBIS), we extra-
polated the field collected τw into spatial continuous layers by RF method [Breiman, 2001]. The RF method is a
formalized nonparametric machine-learning algorithm and has been successfully used for parameter extra-
polation [e.g., Simard et al., 2011; Su et al., 2016]. Themain advantage of this method is that it does not require
assumptions to be made regarding to the normality of covariables and can minimize the within-group var-
iance. By the inherent unique tree “bagging” algorithm, the RF method can select a random subset of covari-
ables at each candidate split and thus overcome the overfitting habit of decision tree algorithms [Breiman,
2001]. The RF extrapolation method was implemented based on the “randomForest” R package [Liaw and
Wiener, 2002], which includes both classification and regression functions. We generated a regression “ran-
dom forest” by the field collected τw and possible predictors. Two sets of global forest τw were generated:
(1) present-day spatially variant τw and (2) projected spatially and temporally variant τw during 2006–2100
at the annual scale. Since we do not have the global wall-to-wall forest age and independent in situ woody
NPP (and thus CUE), the predictors used in the RF method were different from those in the LMM analysis. The
present-day τwwas calculated by five ancillary predictors: T, P, GPP, evapotranspiration (ET), and digital eleva-
tion model (DEM). In contrast, three predictors, T, P, and DEM, were included to build the RF model and pro-
ject annual τw by 2100. The global GPP/NPP and ET data sets were both available from the Numerical
Terradynamic Simulation Group website (http://www.ntsg.umt.edu/biblio). The MOD17 GPP/NPP data sets
were at a 1 km resolution on monthly (MOD17A2) and annual (MOD17A3) scales and are available from
2000 to the present year. The Moderate Resolution Imaging Spectroradiometer (MODIS) ET data set
(MOD16) was produced by Mu et al. [2011], using a calculation algorithm based on the Penman-Monteith
equation [Monteith, 1965] at a resolution of 1 km on a global scale. In our case, the improved version of annual
MODIS ET products (MOD16A3) was used in the calculation, which was from a consistent version of meteor-
ological variables from the Global Modeling and Assimilation Office, and this product has generally been vali-
dated and has acceptable accuracy [Mu et al., 2011].The DEM data used were obtained from the NASA Shuttle
Radar Topography Mission with a resolution of 1 km (http://srtm.csi.cgiar.org/). The projected spatially and
temporally variant τw was calculated annually from the meteorological data from Community Climate
System Model version 4.0 (CCSM4.0) simulated climatic variables under the Representative Concentration
Pathway 4.5 (RCP4.5) scenario (http://www.cesm.ucar.edu/models/ccsm4.0/).

2.4. Model Description of Woody Residence Time

Most DGVMs simulate three carbon pools: leaves, stems (for trees), and roots [e.g., Foley et al., 1996; Sitch et al.,
2003]. For a given PFT, an invariant value is commonly used for carbon residence time during model simula-
tion. In IBIS, NPP is allocated among the three carbon pools at an annual scale. In steady state conditions, the
instantaneous changes in the biomass pool j of PFT i are represented as

∂Ci; j

∂t
¼ ai; jNPPi � Ci; j

τi; j
(2)

where ai, j is the fraction of annual NPP allocated to the biomass pool and τi,j is the carbon residence time of
that biomass pool, which is identical with τw for the carbon pool of stems and branches. Note that ai, j is a
fixed value in IBIS; however, some other DGVMs (such as Lund-Potsdam-Jena [Sitch et al., 2003]) estimate
NPP allocation using allometric equations.

2.5. Model Simulation of AGB Using Estimated Woody Residence Time

We investigated how τw would improve the simulation of global forest AGB using IBIS. We first examined the
influence of τw on simulated AGB at the site level using τw values ranging between 25th and 75th percentiles
of each field-based PFT data. We then resampled the two global forest τwmaps to a 0.5° × 0.5° scale to specify
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Table 1. Candidate Mixed Effect Models for Explaining Global Forest Woody Residence Time (τw, Years)
a

Models Model Rank Df Log Likelihood AIC ΔAIC Conditional R2

A + T + P + A*T + A*P 1 8 �379.94 776.04 0 0.55
A + T + P + A*T + A*P + T*P 2 9 �379.7 777.59 1.55 0.55
A + T + P + A*P + T*P 3 8 �392.39 800.93 24.89 0.52
A + T + P + A*P 4 7 �393.53 801.18 25.14 0.52
A + P + A*P 5 6 �397.7 807.5 31.46 0.53
A + T + P + T*P 6 7 �416.67 847.46 71.42 0.5
A + T + P + A*T + T*P 7 8 �416.61 849.38 73.34 0.5
A + T + P 8 6 �421.67 855.44 79.4 0.5
A + T + P + A*T 9 7 �421.61 857.35 81.31 0.5
A + P 10 5 �431.46 872.98 96.94 0.51
A 11 4 �440.81 889.66 113.62 0.49
A + T 12 5 �439.87 889.8 113.76 0.49
A + T + A*T 13 6 �439.87 891.82 115.78 0.49
P 14 4 �671.52 1351.1 575.05 0.21
T + P 15 5 �670.61 1351.3 575.25 0.2
T + P + T*P 16 6 �670.53 1353.1 577.1 0.2
Null Model 17 3 �674.71 1355.4 579.4 0.21
T 18 4 �674.69 1357.4 581.38 0.2

aA: forest age, T: annual temperature, P: annual precipitation.

Figure 2. The relationship between forest age and τw for different climate zones. Panels represent binned mean annual
temperature (rows) and total annual precipitation (columns). Each point represents an individual forest sites and the
solid lines shows the predictions by model-averaged coefficients.
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τw for IBIS model simulations. IBIS used the calculated τw for forests and default values for other PFTs
(shrublands and grasses). In detail, we conducted three numerical experiments of global AGB simulations
in 1948–2100 with different parameterization schemes: (1) parameterization with the temporally (and also
spatially) dynamic τw (projected annual τw, only for 2006–2100), (2) parameterization with the spatially
dynamic but temporally invariant τw (present-day τw), and (3) parameterization with the IBIS model default τw.

The climatic data to drive IBIS, including monthly mean air temperature, precipitation, relative humidity,
cloudiness, diurnal temperature range, wind speed, and the number of wet days during 1948–2005 were
obtained from the Climate Research Unit [Harris et al., 2014]. These data were used as DGVM inputs to repro-
duce the amounts of global historical forest biomass during the years 1948–2005. Independent field col-
lected forest AGB data (a total of 716 plots [Hu et al., 2016]) with specific recorded measurement time
were also compiled to validate themodel simulations with improved and default τw (Figure S1 in the support-
ing information). To project the AGB to the end of 2100, the CCSM4.0 simulated climatic variables at the land
surface under the RCP4.5 scenario (1.25° × 1.0°) were used to drive the DGVM. The CCSM4.0 data covering the
period of 2006–2100 were downloaded and interpolated to a 0.5° × 0.5° resolution for model inputs.

3. Results
3.1. Drivers of Woody Residence Time

The model-averaged coefficients indicate positive relationships between τw and the logarithm of forest age
(slope = 0.34 ± 0.01, importance value = 1, and p< 0.001) and mean annual temperature (slope = 0.07 ± 0.02,
importance value = 1, and p< 0.001), which show negative relationship between mean annual precipitation
(slope =�0.09 ± 0.02, importance value = 1, and p< 0.001). Furthermore, the slope related to forest age also
increased (interaction term = �0.07 ± 0.01, importance value = 1, and p < 0.001) and decreased (interaction
term = �0.1 ± 0.01, importance value = 1, and p < 0.001) with mean annual temperature and precipitation.
The interaction term between temperature and precipitation is considered to be less important in character-
izing forest τw (interaction term = 0.01 ± 0.01, importance value = 0.32, and p = 0.48). The first two models
included in the model-averaging process have great prediction power (conditional R2 = 0.55; Table 1 and
Figure 2), and this results in an improved prediction performance compared with models containing only
age, precipitation, or temperature (Table 1).

3.2. Estimation of Global Forest Woody Residence Time

The percentage increase in mean squared error (%IncMSE) and node purity (IncNodePurity) was calculated to
evaluate the importance of each predictor (Figure 3). The absence of the annual precipitation and GPP will
significantly increase mean squared error and node purity and thus lower the predictive ability of the RF

Figure 3. The mean importance of variables for 100 runs woody residency time random forest model, denoted by (a) the
percentage increase of mean squared error (%IncMSE) and (b) the increase in node purity (IncNodePurity). Temp, Prep, GPP,
ET, and DEM represent annual temperature, annual precipitation, gross primary production, evapotranspiration, and digital
elevation model, respectively. %IncMSE means the percentage increase in mean squared error when the variable is rando-
mized. IncNodePurity is a specific parameter for regression trees, which is measured by the residual sum of squares. The
larger the %IncMSE and IncNodePurity of a variable are, the worse the model performs when the variable is randomized.
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model. Therefore, these predictors are the two most important ones for the estimation of global τw. Similarly,
ET, temperature, and DEM were also found to be effective predictors for the model.

The τw exhibits large spatial heterogeneity, with an average value of 66.7 years on a global scale (Figure 4).
Large values of τw were found in tropical areas, especially in the Amazonian forests. The τw values in this area
were generally above 50 years, and larger values above 70 years were observed in the eastern part of
Amazonian forest, showing a west-east increasing gradient as highlighted by other authors [Galbraith
et al., 2013]. In contrast, τw for central African forests has a moderate value of about 50 years. The estimated
τw for boreal forests in central Siberia also had a high value of greater than 100 years; meanwhile, the τw for

Figure 4. Spatial pattern of (a) the estimated woody residence time (τw, years) based on collected field data and (b) relative difference of estimated τw. The relative
difference is estimated as the ratio of standard deviation of τw to the resulting τw. The standard deviation of τw is calculated when 75% of the collected field
plot data were randomly selected in each of 100 random forest simulationmodel runs. The estimated τw has a 1 km resolution and was resampled to 0.5° × 0.5° when
used as parameters for dynamic global vegetation model simulations in this study.

Global Biogeochemical Cycles 10.1002/2016GB005557

XUE ET AL. FOREST WOODY RESIDENCE TIME AND BIOMASS MODELING 827



the Alaska forest had relatively high values greater than 60 years. European forests had a relatively high value
of about 60 years in contrast with the temperate forests in other areas such as North America. However, the
estimated values of τw are large (>100 years) for the temperate forests in the western areas of the United
States. Similarly, the forests in subtropical areas of China and Japan also show large values. Areas with a large
τw also exhibit a large degree of uncertainty such as areas in central and eastern Amazonia (Figure 4b).

3.3. Simulation of AGB Based on Estimated Woody Residence Time

Figure 5 shows the model performance of the simulated present-day AGB with model “default” and our esti-
mated present-day τw. Each point in Figure 5 indicates one or more validation plots that are located in the
same IBIS grid (0.5° × 0.5°). The simulated AGB using default τw showed large scattering, with underestimation
for large amounts of AGB. Moreover, the default τw resulted in many small amounts of AGB (close to
0 Mg ha�1), which indicates a nonforest PFT for the model simulation. The resulting AGB from the improved
τw has a relatively close relationship with plot values, even though overestimation and underestimation were
observed for small and large AGB values (Figure 5b). Note that the simulated AGB using our estimated
present-day τw was also subjected to scattering, which may be caused by the scale difference between mea-
sured and simulated AGB (0.01° and 0.5°).

Ten Fluxnet sites, representing five different woody PFTs, were randomly selected to test the AGB uncertain-
ties due to τw forward in time under RCP4.5 climate scenarios (Table S1 in the supporting information and
Figure 6). The projected AGB was found to increase in most sites when using the averaged τw, but with large
uncertainties caused by τw. One exception was observed for a boreal coniferous forest in Canada, where the
AGB was consistently decreasing during all the test runs (Figure 6). The simulated AGB was shown to be sen-
sitive to τw for all sites, resulting in a large variation in τw by the year of 2100. The projected AGB for Manaus
and BANNA was found to increase fast when the averaged τw was used and a twofold AGB was obtained by
2100 for BANNA. The four temperate PFT sites witnessed similar simulation results and an increasing trend in
AGB by 2100 for the averaged τw case, indicating that the temperate forests should benefit from the
projected climate change in the future. Results from two of four boreal sites (US-WCr and US-Syr) revealed
a generally constant AGB over the simulation period and a decreasing AGB for the remaining two of all τw
cases. However, our simulation results also show that the boreal forest may benefit from future climate
change with an increasing AGB trend in certain test cases. This further necessitates the accurate estimation
of τw for model simulation.

Figure 5. Comparison between observed and model-simulated aboveground biomass (AGB) by (a) default and (b) esti-
mated present-day τw. Each point in the figure indicates the AGB measured in one or more plots (average for more
than one plot) within a 0.5° × 0.5° model grid. Observed AGB was mostly measured during 1990–2010, and the model
simulations were the averaged values during those corresponding years. The dashed line shows the 1:1 line. Root-mean-
square error (Mg ha�1) is also shown.
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Figure 6. Simulated temporal trends of aboveground biomass during 2006–2100 for different plant functionaltTypes
(PFTs) by the Integrated Biosphere Simulator (IBIS) under RCP4.5 scenario. The green lines show the 1000 test runs using
the random τw data resulting between the one fourth and three fourth percentiles; the red line shows the result of the
averaged τw based on the collected field data. The abbreviations are defined as follows: TrB, tropical broadleaf forest;
TeC, temperate coniferous forest; TeB, temperate broadleaf forest; BoC, boreal coniferous forest; BoB, boreal broadleaf
forest. All the test sites were randomly selected from Fluxnet; details of the sites are provided in Table S1.
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Difference in the reproduced historical variations of AGB increased for the three model runs from 2006 to
2100 (Figure 7). The two improved runs with our estimated τw showed a consistent increasing trend for
AGB, while the model run with default τw results in a decreasing trend and AGB does not change much after
2060. Though similar results were found for the two improved model runs, simulated AGB with present-day
τw was slightly larger than that with projected annual τw. The simulated global forest AGB was 171.1 and
170.0 Mg ha�1 in 2100 for the two cases, respectively. Because the projected τw showed a decreasing trend
by 2100 (Figure S2), assuming a constant τw may overestimate AGB for long-term simulations. Furthermore,
the simulated spatial patterns of AGB in 2100 under the RCP4.5 scenario also showed large differences for the
three runs (Figure S3). AGB from the two model runs with estimated τw is much larger in tropical forests and
temperate forests areas compared with results with default τw. Another major difference was found for the
transition from boreal coniferous evergreen forest to broadleaf cold deciduous forests in the Siberian areas,
indicating the essential role of τw in mapping PFT over long-term simulation (Figure S4). Actually, the simu-
lated forest PFT mapping showed large difference among the three simulation runs (Figure S4). Furthermore,
the climate changes from cold and dry prior to 2040 to warm and wet later in the projected scenario. The
interactions of changes in climate and the different woody residence values may result in the overall different
variations in AGB for the simulation periods.

4. Discussion
4.1. Abiotic and Biotic Influences on Woody Residence Time

Few studies have focused on the mapping of τw at a global scale. A recent study investigated the global car-
bon residence time using field data andmodel simulations [Carvalhais et al., 2014]. Because carbon residence
time used in that study is different from τw in the present study in that the former calculates the residence
time for both soil and vegetation residence time (including leaf, stem, and litter), comparing their values
and our results directly would be difficult. However, their results show carbon residence time increases as
temperature decreases in forests located in tropical to boreal areas, which is different from our results. This
may be because decomposition occurs more slowly in boreal areas than in tropical areas because of the
low temperature, resulting in the largest carbon residence time in boreal forests [Carvalhais et al., 2014]. In
our case, we did not consider soil carbon residence time and this could result in relatively small τw for boreal
forests compared with other PFTs. This difference indicates that when calculating total ecosystem carbon
stocks for both vegetation and soil, modelers should pay more attention to carbon residence time in soil
of ecosystems in cold areas [Yang et al., 2014; Chen et al., 2015].

Globally, we observe a negative influence of P on τw according to LMM analysis; while T has positive influence
on τw. However, the influence of P and T on τw may be different for a given PFT (Figure S5). T is found to be
positively related to τw for boreal (p = 0.54) and temperate PFTs (p< 0.05), while it is negatively related to τw
for warm temperate (p = 0.63) and tropical PFTs (p < 0.05). In cold areas, the forest may suffer from frost
damage, thus resulting in large forest mortality [Thurner et al., 2016]. Therefore, forest mortality in these areas
is more controlled by temperature because of the inhibition of carbon assimilation for the low temperature
and short grown season [van Dijk et al., 2005; Beer et al., 2010]. Thurner et al. [2016] found that the forest car-
bon residence time for temperate forests in Northern Hemisphere was more controlled by P, which is partly

Figure 7. Temporal variations of the global average aboveground biomass (AGB, Mg ha�1) simulated by the Integrated
Biosphere Simulator during 2006–2100 under the RCP4.5 scenario for different parameterization schemes. Red line:
parameterized by projected annual τw, blue line: present-day (adj) τw, black line: default τw.
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supported by our results (Figure S5). We found a quadratic relationship between P and τw for temperate for-
est. In detail, τw is found to decrease with P when P is below 1500 mm, while it increases with P when P is
above 1500 mm. Most our collected temperate forest sites with P above 1500 mm are located in west
North America with Mediterranean climate (Figure 1). The forests in these areas are found with largemortality
in recent years most probably due to droughts [van Mantgem and Stephenson, 2007; van Mantgem et al.,
2009]. Even though the mechanism of forest mortality due to droughts is still controversial, drought-induced
forest mortality has been widely observed globally [Allen et al., 2015]. The temperate forest plots with P below
1500 mm are mostly located in coastal areas of Europe with high latitude and mountainous areas of China
(Figure 1). Forest growth in these areas may be limited by the surplus water due to the limited evaporation
[Tao et al., 2016]. Thus, our results show that determinants of τw may be different even for the same PFT
depending on the local climate [Carvalhais et al., 2014; Malhi et al., 2015; Thurner et al., 2016]. Furthermore,
several studies show that accumulation of woody biomass was more controlled by mortality due to extreme
disturbance events instead of normal meteorological conditions [Galbraith et al., 2013; Thurner et al., 2016].
Therefore, the relationships using only T and P as predictors may not be enough for the global estimation
of τw (Table 1 and Figure S6).

Our LMM analysis shows the important influence of interaction term between biotic term (i.e., age) and T (or P)
on τw. Over large scales, τw may be determined more by forest structure and ecosystem succession [Kobe
et al., 1995; Purves et al., 2008], climate [Allen et al., 2015], and responses to climate change and disturbances
[Kurz et al., 2008]. Therefore, the estimation of forest mortality or τw, especially at a large scale, is difficult and
also has large uncertainty [e.g., Carvalhais et al., 2014; Thurner et al., 2016].Malhi et al. [2015] suggested that a
direct link may exist between forest mortality (i.e., τw) and carbon use efficiency and/or woody allocation.
Based on our collected sites available with CUE, we found inverse relationships between CUE and τw
(Figure S6). Further analysis also shows a significant inverse relationship between woody allocation and τw
for tropical forests (n = 18, data not shown). This indicates that the forests with a high CUE andWp are usually

characterized with a short life time, and therefore, AGB cannot be simply predicted by CUE orWp [Malhi et al.,

2015]. The apparent relationship between high CUE and Wp with τw is not a direct result of variation in the

productivity (Wp); instead, they may be a result of forest ecosystem trade-offs between growth and defenses
against large-scale disturbance such as wind or disease (along edaphic gradients) or perhaps reproduction

and persistence (along climatic and edaphic gradients) by the surrogate of Wp [Stephenson and van
Mantgem, 2005, 2011]. This has been partly verified in Amazonian forests, where an edaphic decreasing gra-
dient exists fromwest to east [Baker et al., 2004]. The eastern Amazonian forests growing on infertile soil (thus,
with less subcanopy vegetation), more recourses are spent on forest defense while low productivity and slow
growth favor a large τw; in contrast, the counterparts in western Amazonian forests on fertile soil (with more
subcanopy) exhibit much higher productivity and rapid growth, which may result in a small τw (Figure 3b).
Another research by Quesada et al. [2012] also shows that soil fertility plays an essential role in the dynamics
of forest structure and biomass turnover in Amazonian forests by driving the patterns of mortality in the area.

4.2. Estimation of Global Forest Woody Residence Time

Based on the collected field data, we mapped the global woody residence time by a RF method (Figure 4). To
our knowledge, this is the first τw map at the global scale, and therefore, this map may help improve model
simulation of AGB by parameterizing τw using this data set (Figures 5 and 6). However, there is still uncertainty
in the simulations (Figure 5b), which may originate from absence of plots in certainty areas (such as Siberia),
the random forest method, and model structure in the description of forest growth/mortality. The LMM
analysis shows the important influence of forest age and CUE on τw, while these two variables could not
be integrated as predictors in the RF method because gridded forest age and CUE data at the global scale
were not available yet. Therefore, large-scale estimation of these two variables should be to conducted in
future to improve the calculation of τw in the RF method.

A recent research focusing on boreal and temperate forest residence time was published based on remote
sensing data [Thurner et al., 2016]. Thurner et al. [2016] calculated forest residence time for both above ground
and below ground, and it is therefore difficult to compare their results with ours directly. Following the
methods in Thurner et al. [2016], we downloaded AGB from Thurner et al. [2014] and also downloaded the
global MODIS NPP and calculated τw for the boreal and temperate forests at 0.01° × 0.01° resolution
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(Figures S7 and 8). Similar patterns were found for both of the two results, such as the relatively large
values in Europe, northwestern United States, and Siberia (Figure 8). On the other hand, τw from our study
is larger than that from Thurner et al. [2016] in most of the global forest areas (Figure 8b). This may be due
to the fact that τw from our study was extrapolated from plot values assuming that forests were near equi-
librium and the plots used for random forest calculation are largely undisturbed. Actually, secondary and/or
human planted forests are found in North America and China and AGB for these forests were usually below
equilibrium values [Liu et al., 2014; Galbraith et al., 2013]. We calculated τw based on their results by using a
simple regression model to estimate aboveground NPP from MODIS NPP (Figure S8). This calculation pro-
cesses may introduce uncertainty to the resulting τw and also make it difficult for the comparison.
Nevertheless, with more remote sensing data of AGB and/or NPP becoming available for regional or global
scale [e.g., Thurner et al., 2014; Hu et al., 2016], the method in Thurner et al. [2016] could have large poten-
tial in estimation of global forest τw.

4.3. Implications for Model Simulation

The τw can induce high levels of uncertainty in model simulation of AGB, both at site and global levels. This
has already been shown in other model simulations as well as in field data-based analysis [Delbart et al., 2010;
Castanho et al., 2013; Friend et al., 2014; Malhi et al., 2015]. Based on regional estimation of τw in Amazonian
forests, Castanho et al. [2013] found that the spatially explicit τw could improve the accuracy of modeled AGB.
Similarly, a large difference in estimated AGB was observed by different parameterization schemes of τw in
our results (Figure 7).

DGVMs integrated in Earth system models (ESMs) are useful tools in the projection of future carbon fluxes
and stocks at a global scale [e.g., Friedlingstein et al., 2006; Sitch et al., 2008]. Default values of τw for PFTs in
DGVMs should be further calibrated based on additional field data (Table 2). Eight of 12 DGVMs use a fixed
background turnover rate (or τw) and fire-induced mortality to simulate the overall τw. Even though some

Figure 8. Spatial pattern of (a) estimated woody residence time (τw, years) according to the method from Thurner et al. [2016] and (b) difference between our
estimate τw and results according to the method in Thurner et al. [2016]. Both of the τw maps have a resolution of 0.01° × 0.01°.
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models explicitly simulate mortality, these are still with uncertainty due to the unclear mechanisms
in mortality per se [McDowell et al., 2011]. No background τw is provided in Organizing Carbon and
Hydrology in Dynamic Ecosystems (ORCHIDEE) and Community Land Model (CLM)-DGVM, and these two
models explicitly simulate fire disturbance mortality modified from Lund-Potsdam-Jena (LPJ), which
underestimates the mortality rate over a large scale. This results in overestimated τw and thus carbon
stock, especially for tropical forests [Krinner et al., 2005]. The Ecosystem Demography version 2 (ED2)
model provides a density independent mortality rate for PFTs during different successional stages without
providing an explicit background turnover rate. Only one of 12 models (i.e., Jena diversity (JeDi)-DGVM)
investigated actually simulated the background τw using dynamic values; in this case it was determined by
air temperature [Pavlick et al., 2013]. The fixed background τw varies considerably even for the same PFT
for the investigated models. For example, the τw for boreal coniferous forests ranges from 1.5 to 500 years
for all the models; many default values are far from the averaged ones found in our meta-analysis.
Furthermore, one third of the 12 models use the same values of τw for all PFTs in their simulations.
This indicates that large variations of AGB may be derived in model simulations even with the same
meteorological variables [Sitch et al., 2008; Friend et al., 2014]. Furthermore, most of the current DGVMs
only consider background mortality and influences of natural disturbances on τw and do not explicitly
simulate human disturbances. Further uncertainties in AGB may also arise from assumptions of the
homogeneity of forest stands (such as equal probability of forest mortality for all species) and the steady
state in the DGVM calculations. Therefore, even though our estimated gridded τw may help in the
parameterization of models at this stage, more work should be done to explore the forest mortality
mechanisms in the future [McDowell et al., 2011] and thus to improve model structure in the description of
recruitment and mortality.

Several studies observed the lessened τw during the most recent decades [Phillips and Gentry, 1994; Phillips
et al., 2004], which is different from the fixed temporal τw in models (Figure S2). The change in τw was, to a
large extent, caused by climate change such as the warming temperature and/or the increasing atmospheric
CO2 concentration [Phillips and Gentry, 1994; Phillips et al., 2004]. The ESMs projected enhanced forest produc-
tivity in the current century mainly caused by global warming and CO2 fertilization [e.g., Cramer et al., 2001;
Sitch et al., 2008; Piao et al., 2013]. Therefore, an invariant τwmay result in an overestimation of simulated AGB
according to equation (1) if τw decreased in the future. Our simulation results show that assuming a time
invariant τw may result in larger AGB compared with using the projected τw (Figures 7 and S3). Therefore, a
better understanding and prediction on the responses of τw to climate change and atmospheric CO2 concen-
tration is needed and should be fully investigated.

Table 2. Default Woody Residence Time (τw, Years) in Different Dynamic Global Vegetation Model (DGVM)a

Model Name General Approach TrB WTeB WTeC TeB TeC BoB BoC References

BIOME-BGC Background turnover rate and fixed mortality rate 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Running and Coughlan [1988]
CLM-DGVM Simulated mortality rate due to negative carbon balance,

competition, harsh climate, and fire
Dynamic values due to fire mortality Levis et al. [2004]

HYBRID3.0 Fixed woody turnover rate 100 100 100 100 100 100 100 Friend et al. [1997]
ED2 Fixed mortality rate 250 250 250 250 333 250 333 Medvigy et al. [2009]
IBIS Fixed woody biomass residence time 25 25 25 50 50 100 100 Kucharik et al. [2000]
JeDi-DGVM Simulated dynamic woody biomass residence time 37 Pavlick et al. [2013]
JULES-TRIFFID Fixed woody biomass residence time and disturbance rate 100 100 100 100 100 100 100 Cox [2001]
LPJ (origional) Simulated mortality rate due to negative carbon balance,

competition, harsh climate and fire
Dynamic values due to fire mortality Sitch et al. [2003]

LPJ-GUESS Background mortality rate and additional mortality rate
due to harsh climate

Dynamic values due to mortality Smith et al. [2001]

ORCHIDEE Simulated mortality rate due to negative carbon balance,
competition, harsh climate and fire

Dynamic values due to fire mortality Krinner et al. [2005]

SEIB-DGVM Simulated mortality rate due to forest growth
and competition

20 20 20 20 20 20 20 Sato et al. [2007]

VISIT Fixed woody turnover rate 15 20 20 20 20 500 500 Ito and Oikawa [2002]
Meta-analysis 64.1 104.1 72.0 82.9 74.7 55.5 80.9 This study

aThe abbreviations are defined as follows: TrB, tropical broadleaf forest; WTeB, warm temperate broadleaf forest; WTeC, warm temperate coniferous forest; TeC,
temperate coniferous forest; TeB, temperate broadleaf forest; BoC, boreal coniferous forest; BoB, boreal broadleaf forest.
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5. Conclusions

The τw is an important parameter that expresses the balances between mature forest recruitment/growth
and mortality. By collecting field data from the literature, this study explores the global forest woody resi-
dence time and investigates its influences on model simulations of AGB at the global scale. Parameter τw is
highly related with forest age, T and P, but shows different determinants among various PFTs. The estimated
global forest τw based on the collected field data shows large spatial heterogeneity as well. This heterogene-
ity plays an important role in model simulation of carbon stocks in DGVMs. Parameter τw could change the
resulted AGB in 10 folds based on a site-level test using the Monte Carlo method. At the global level, different
parameterization schemes of the Integrated Biosphere Simulator using estimated τw resulted in a twofold
change in AGB for 2100. The results from the study highlight the influences by various biotic and abiotic vari-
ables on forest τw. The global estimation of τw may help improve the model simulations and lower the para-
meter uncertainty over the projection of future AGB in current DGVM or ESMmodels. A clearer understanding
of τw responses to climate change is also needed for the improvement of model prediction of carbon stock in
future studies.
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