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INTRODUCTION

Seasonal movements in marine decapod crusta -
ceans appear to serve a variety of purposes includ-
ing: (1) acquiring food and shelter; (2) avoiding sub-
optimal habitats and environmental perturbations
(e.g. extreme temperatures, turbulence); (3) enhanc-
ing growth and development by moving to areas
with optimal temperatures; and (4) improving the
dispersal of progeny (e.g. eggs and larvae) (Herrn -
kind 1980, Lawton & Lavalli 1995, Pittman & Mc -
Alpine 2003, Bowler & Benton 2005, Nathan 2008).
American lobsters Homarus americanus ex hibit well
documented daily and seasonal movements and,

while most lobster movements are considered local
in nature (5−10 km), long-distance movements have
also been reported (Cooper & Uzmann 1980, Fogarty
et al. 1980, Haakonsen & Anoruo 1994, Lawton &
Lavalli 1995, Bowlby et al. 2007, Scopel et al. 2009).
On a seasonal basis, lobsters tend to move offshore
into deeper water during the transition from fall to
winter when nearshore water temperatures drop,
 followed by a return to shallower water in the spring
when nearshore waters warm (Campbell 1986,
Camp bell & Stasko 1986, Haakonsen & Anoruo
1994, also see reviews in Lawton & Lavalli 1995,
Childress & Jury 2006). Lobsters can detect small
changes in water temperature (Jury & Watson 2000),
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and re spond both behaviorally (e.g. movement to
areas of preferred water temperatures; Crossin et al.
1998, Jury & Watson 2000) and physiologically (e.g.
changes in heart rate; Worden et al. 2006). Therefore,
seasonal changes in water temperature likely influ-
ence the movements and distribution of lobsters
(Jury & Watson 2013).

One hypothesis to explain seasonal movements of
lobsters is the considerable number of degree-days
they gain by moving. This gain, in turn, enhances
growth rate and modulates other temperature-
dependent processes such as ovary maturation and
egg development (see review by Waddy & Aiken
1995). For ovigerous lobsters, increased water tem-
peratures also enhance egg development rate (Tem-
pleman 1940, Perkins 1972, Talbot & Helluy 1995),
whereas temperatures <12°C may inhibit larval sur-
vivorship (MacKenzie 1988, Annis et al. 2007).
Therefore, while all lobsters might benefit from mov-
ing to gain degree-days, the influence of water tem-
perature on embryonic development and larval sur-
vivorship may preferentially favor movement in
ovi gerous female lobsters over non-ovigerous fe -
males or males. One of the goals of this study was to
test this hypothesis.

Several studies demonstrate seasonal movement
patterns in ovigerous lobsters similar to those in other
lobsters (Campbell 1986, Harding & Trites 1988,
Lawton & Lavalli 1995, Robichaud & Campbell 1995,
Cowan et al. 2007). However, despite general accept-
ance of offshore movement of lobsters in the fall and
inshore in the spring, few published examples of this
behavior in individual animals exist. For example,
Cowan et al. (2007) fitted animals with ultrasonic
tags and tracked them for months, but the transmit-
ters did not last long enough to determine whether
lobsters that moved offshore in fall returned in sum-
mer. This information is vital because the location of
females when their eggs hatch could strongly influ-
ence the fate of their larvae. Therefore, one of the
goals of this study was to test whether ovigerous
females that move away from the coast in the fall
return to inshore waters before their eggs hatch.

Other species of lobsters, and some crabs, also
exhibit shallow to deep-water movements in the fall,
and these movements often correlate with changes in
water temperature and disturbances resulting from
fall storms (Kanciruk & Herrnkind 1978, Spanier et
al. 1988, Gonzalez-Gurriaran et al. 2002, Stone &
O’Clair 2002). Ennis (1984) observed that American
lobsters in a Newfoundland bay tended to move to
deeper waters in response to increased storm turbu-
lence and the breakdown of the thermocline in the

fall, and Jury et al. (1994) showed that American lob-
sters tended to move towards colder, higher saline,
deeper waters in an estuarine system following a
hurricane. Laboratory studies demonstrate that these
lobsters can detect subtle differences in water tem-
perature (Jury & Watson 2000) and salinity (Dufort et
al. 2001), and that they avoid hyposaline water, as
well as adversely high or low temperatures (Reynolds
& Casterlin 1979, Jury et al. 1994, Crossin et al. 1998).
Thus, the third goal of this study was to test the
hypothesis that a combination of seasonal drops in
water temperature and increased turbulence result-
ing from fall storms trigger offshore movements of
American lobsters along the New Hampshire coast
during the fall-to-winter transition.

To test these aforementioned hypotheses, we
tracked 45 American lobsters (non-ovigerous and
ovi gerous females) for ~9−10 mo (September−
August) in the period 2006−2009, using a variety of
ultrasonic telemetry techniques. The data obtained
were then used to determine if: (1) the movements of
ovigerous females differed from other categories of
lobsters; (2) ovigerous females returned inshore
before their eggs hatched in the late spring/early
summer; and (3) offshore movements of lobsters in
the fall coincided with fall storms and rapidly cooling
water temperatures.

MATERIALS AND METHODS

Study site

All tracking of American lobsters Homarus ameri-
canus fitted with ultrasonic tags took place in coastal
New Hampshire (NH), Southern Maine, and north-
ern Massachusetts, USA between fall 2006 and sum-
mer 2009 (3 field seasons in total; Fig. 1). All lobsters
were captured in standard lobster traps, and released
in a small cove just off New Castle Island, NH, near
the mouth of the Piscataqua River (43° 04.912’ N;
70° 42.456’ W). The local benthic habitats at the tag-
ging and release location were comparable to much
of coastal NH and included a prominent shallow
rocky reef complex (2−8 m depth) surrounded by a
heterogeneous mixture of sand and fine sediment
flats interspersed with patchy eelgrass Zostera ma -
rina beds. A deeper channel (18−20 m) was located
slightly offshore (east) and adjacent to the reef. Bot-
tom water temperatures, monitored with HOBO tem-
perature data loggers (model UA-002-64, Onset
Computer) ranged from 2−18°C over the course of
the study. Current speeds and directions measured at
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1 m from the bottom in the release location
ranged from 0.03−28.9 cm s−1 throughout all
tidal cycles (Golet et al. 2006). For the pur-
poses of this study, we considered areas
<5 km from shore as inshore, corresponding
to a depth range of 5−20 m (mean = 8 m) and
areas >5 km from shore at depths >20 m
(Fig. 1) as offshore. The exception to these
de signations was the Isles of Shoals area
(<5 km from shore, but with steep drop-offs
and >5 km from the tagging location), which
we considered offshore.

Tagging protocol

Lobsters were caught using standard baited
lobster traps. Upon capture, lobster size
(cara pace length, CL) and sex were recorded
along with molt stage. Only postmolt lobsters

(Stage C, Waddy & Aiken 1992) were used for this
study because, unlike many sphyrion tags, ultrasonic
transmitters are typically lost during molting. For
most ovigerous lobsters, we removed a small sample
(10−15) of eggs from the abdomen and placed it in a
2.0 ml tube with a 4% formalin-seawater fixative for
later determination of developmental stage according
to the methods described in Helluy & Beltz (1991).

Lobsters were fitted with VEMCO V13-1L coded
tags (69 kHz, 13 mm diameter, 36 mm long, 6 g in
water, estimated battery life ~320 d, VEMCO-
AMIRIX Systems). Tags were coded with random
inter-ping intervals between 60 and 180 s, which
reduced the probability of tags pinging simultane-
ously and thus going undetected. Animals were also
tagged with small (19 mm diameter) vinyl-laminated
disc tags (Floy Tag) containing contact information
and a message requesting lobstermen to either keep
or release lobsters, depending on date of capture. A
subset of lobsters (ovigerous, n = 10) were also fitted
with HOBO Tidbit temperature loggers (Onset Com-
puter) that re corded temperature every 30 min and
could be downloaded using a PC-based software
package (HOBOware Pro v. 3.0) upon recapture.
Ultrasonic tags were secured by gluing them inside a
piece of Tygon® tubing and then attaching the tub-
ing to each lobster using a cable-tie fastened
between the second and third pair of walking legs
(Fig. 2; Golet et al. 2006, Scopel et al. 2009). The disc
tag and temperature logger (where applicable) were
then cable-tied onto the main transmitter harness
using smaller cable-ties. Finally, a small amount of

Fig. 1. Study area, and the capture/release location (star) for
lobsters tagged and tracked in 2006−2009 as well as posi-
tions of telemetry receiver/loggers (VR2s) (black circles).
The dashed line indicates the approximate location of the
20 m isobath, used to delineate inshore from offshore areas,
whereas the solid line outlines the area covered (~375 km2) 

using manual tracking methods

Fig. 2. Homarus americanus. Arrangement of the instrument back-
pack attached to lobsters. All animals were fitted with an ultrasonic
transmitter and laminated disc tag; some were also equipped with a 

temperature logger
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cyanoacrylate glue and 1.5 cm duct-tape squares
were fastened from the cable-tie to the carapace to
prevent the backpack from slipping. The entire tag-
ging process took ~3−5 min. After tagging, lobsters
were placed into standard single-parlor lobster traps
with doors and vent removed to facilitate escape. The
traps were lowered to the bottom, where the lobsters
gradually left the traps and took up residence in the
same area (verified by tracking with a high resolu-
tion VRAP telemetry system, VEMCO-AMIRIX Sys-
tems; Golet et al. 2006, Scopel et al. 2009). This ap -
proach reduced the tendency of lobsters to move
large distances after handling. While we did not
directly examine the influence of transmitter back-
packs on lobster behavior and locomotion, distances
traveled by tagged and untagged lobsters in both
field and laboratory settings suggested no significant
impact (Jepsen et al. 2002, Golet et al. 2006, Scopel et
al. 2009).

Although we originally tagged a
total of 53 lobsters, only 45 lobsters (18
females and 0 males in 2006, 12
females and 6 males in 2007, 5 females
and 4 males in 2008, n = 10 ovigerous
animals with temperature loggers;
Fig. 3) yielded sufficient data to in -
clude in our final analyses. Of the 8
lobsters we excluded, 3 died, 3 were
not detected after <20 d (most likely
because they moved out of the study
area), and 2 molted (one was located
SCUBA diving near the tagging site,
the other molt was found in a lobster
trap). Most lobsters were fitted with
transmitters in the late summer and
early fall and tracked throughout the
winter and the following spring and
early summer. Although one of our
primary goals was to document any
differences between the movements
expressed by ovigerous females and
non-ovigerous lobsters (males and
females), we tagged more ovigerous
lobsters for 2 reasons. First, movement
data obtained from ovigerous lobsters
were also part of a companion egg
development study (Goldstein & Wat-
son 2015). Second, ovigerous lobsters
caught by fishermen must be re -
leased, so they remain at-large longer
than those without eggs.

Ultrasonic telemetry

Lobsters were tracked using 3 types of commer-
cially available hydrophone-receiver instruments.
First, 7 fixed underwater acoustic receivers (VR2s)
that function as low resolution, high-coverage 
(~400− 500 m radius effective range) ‘gateways’ were
moored along the NH coast and out to the Isles of
Shoals (see Fig. 1). These self-contained units
detected the presence of transmitters and logged the
time and transmitter ID. The placement of the VR2s
was based on previous studies in the area (Scopel et
al. 2009), as well as prominent geomorphic features
(channels, islands, sandy flats) that could influence
movements. Second, a mobile acoustic receiver
(VR100), connected to an omni-directional hydro -
phone, was periodically towed behind a research
boat on a custom-made harness at a depth of 3−4 m.
This receiver provided medium-scale resolution
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Fig. 3. Homarus americanus. Size−frequency distribution for all lobsters
tracked in 2006−2009. Lobster categories included (a) ovigerous females (n =
20, CLmean = 87.7 ± 2.3 mm), (b) non-ovigerous females (n = 15, CLmean = 90.9 ±
2.5 mm), and (c) males (n = 10, CLmean = 86.7 ± 2.0 mm). In some cases, during
data analyses, we distinguished between large and small lobsters (delineated
by the dotted line) based on maturity schedules from Little & Watson (2003)
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(within 20−100 m of a tag) and enabled us to locate
animals in virtually any location in the study area.
 Finally, a high resolution fixed array radio-acoustic
positioning system (VRAP), which utilizes a triangu-
lation algorithm to locate animals within its range,
was deployed in the fall of 2006 to track lobster
movements during the fall and winter to determine
when lobsters initiated their offshore movements.
The high resolution fixed array radio-acoustic posi-
tioning system (VRAP) was deployed in the fall of
2006 to track lobster movements during the fall and
winter to determine when lobsters initiated their
 offshore movements. The VRAP system consisted of
a 3-buoy array and a base station. The buoys were
moored ~150 m apart in an equilateral triangle and,
when they detected transmissions, they radioed the
data to a base station where software triangulated
the position of each transmitter based on the signal
arrival times at each buoy (resolution ~1−3 m). Tech-
nical details of this tracking system are found in
Golet et al. (2006) and Watson & Chabot (2010). All
telemetry equip ment and associated software was
obtained from VEMCO-AMRIX Systems (www.
vemco.com).

Manual tracking

Manual (VR100) tracking was conducted at weekly,
or biweekly (wintertime) intervals, throughout the
year and it took approximately 1 mo to cover the
entire study area using this method (see Fig. 1).
 However, the positions of animals inshore, around
the release location, and those that were near the
VR2s, were obtained much more frequently (daily to
weekly). Therefore, while daily and weekly data
were available for some animals, seasonal movement
trends were generally analyzed using monthly data.
The accuracy and reliability of the manual (VR100)
telemetry system were verified in 2 ways. First, a sim-
ple range test was conducted to determine the dis-
tance at which a particular tag could be detected
(Webber 2009). A second test determined the most
probable location of a lobster, given that the manual
tracking system often logged multiple fixes for a sin-
gle animal as the hydrophone was being towed past
it. Data obtained using the VRAP system were used
to ground-truth the actual position of a given lob-
ster/transmitter, and this position was then compared
to GPS locations obtained using the towed system.
Averaging all the GPS coordinates obtained for a
given lobster as the vessel passed by yielded a single
GPS location that was within 10−15 m of the animal’s

actual position. In addition to data obtained using
telemetry, we frequently received positional infor-
mation (latitude/longitude or LORAN coordinates)
from lobstermen who caught tagged lobsters and
phoned or emailed us this information (per instruc-
tions on the disc tags). Informational flyers were
 distributed to lobster pounds, fishermen co-ops, and
lobster wholesalers in the area to explain the details
of the study to fishermen.

Environmental data

Daily water temperature data were acquired using
a combination of HOBO pendant temperature log-
gers attached to the VR2s in fixed locations and
HOBO Tidbit temperature loggers recovered from
some of the recaptured lobsters. Wave height meas-
urements, indicative of storm events, were obtained
from ocean observation buoys for the fall of 2006.
Wave heights were queried as daily averages and
downloaded for selected time frames from the Gulf of
Maine Ocean Observing database (GOMOOS; www.
neracoos.org/gomoos) from 2 buoy locations: (1)
NOAA CMAN IOSN3 (Isles of Shoals; 42° 58.200’ N,
70° 37.200’ W); and (2) Buoy B01 (Western Maine
Shelf; 42° 10.850’ N, 70° 25.667’ W). Relationships be -
tween lobster movements from inshore to offshore
locations, temperature, and wave heights were ana-
lyzed per individual lobster using pairwise correla-
tions in JMP v. 9.0.3 (SAS Institute).

Data processing and analysis

Lobster locations were plotted using the ArcGIS
v.9.3 software package (ESRI). If more than one posi-
tion was obtained on a given day during manual
tracking or from the VRAP system, GPS fixes were
averaged to yield a single location per day. The posi-
tions of lobsters detected by VR2s were considered to
be the location of the VR2 unit.

To calculate the distance a given animal moved
from one season to the next, we used the 2 points (1
from each season) that yielded the maximum dis-
tance traveled. The 3 seasonal time periods (4 mo
each) chosen for our calculations were fall−winter
(September 1 to December 31), winter−spring (Janu-
ary 1 to April 30) and spring−summer (May 1 to
August 31). The partitioning of these seasons corre-
sponded to periods when (1) temperatures were
decreasing (fall− winter) and, based on previous stud-
ies, lobsters tended to move offshore (Lawton &
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Lavalli 1995); (2) temperatures fell <6°C, remained
<6°C (winter− spring), and lobsters tended to remain
in one location; and (3) temperatures were increasing
and lobsters generally became more active (>6°C;
spring− summer) (Fig. 4). If animals moved away from
the coast, distances were recorded as positive values,
whereas movements towards the coast were
recorded as negative. To calculate ‘net’ distances, we
summed positive and negative values. Days-at-large
(DAL) were calculated as the cumulative number of
days from release to the last positional fix. For com-
parison of distances traveled by individual lobsters of
different size categories (based on maturity sched-
ules reported in Little & Watson 2003), animals were
grouped into 6 categories: large females (86−120 mm
CL; n = 10), small non-ovigerous females (70− 85 mm
CL; n = 5), large ovigerous females (n = 14), small
ovigerous females (n = 6), large males (n = 4) and
small males (n = 6).

To establish when lobsters left the VRAP array (in
2006 only) we utilized the ‘Playback’ command mod-
ule in the VEMCO software package (VRAP v.5.1.4),
which allows playback and visualization of the track-
ing history for each tagged animal. For each individ-
ual, we noted the day of year on which the lobster left
the VRAP array and moved offshore.

All movement analyses were conducted using the
statistical software package JMP v.9.0.3. Directional
data were analyzed from a Rayleigh’s Z-test using
Oriana (v.3.0) software (Kovach Computing Serv-
ices). Data that did not meet parametric assumptions
were analyzed using non-parametric Mann-Whitney
U-tests. All means are given ± SE.

RESULTS

A total of 45 lobsters were tagged and successfully
tracked between 2006 and 2008 (2006, n = 18; 2007,
n = 18; 2008, n = 9; Table 1). The majority of these
lobsters (82%, n = 37) moved at least 0.5 km, whereas

the remainder remained in the same general area
during the 9−10 mo tracking period. Of the lobsters
that moved, 51% moved <5 km, 19% moved 
5− 10 km, and 30% moved >10 km.

Days-at-large (DAL)

Overall, all 45 lobsters were at-large for an average
of 223.9 ± 11.8 d. However, at-large times for oviger-
ous females were longer (mean = 248.2 ± 17.1) than
for non-ovigerous females (mean = 220.9 ± 19.7), or
males (mean = 180.0 ± 24.1; Fig. 5). This difference
presumably resulted from the requirement that lob-
stermen release any captured ovigerous lobsters.
Nevertheless, DAL did not differ significantly among
the 3 lobster categories (ANOVA; F2,44 = 2.69, p =
0.081), nor in comparing DAL for large versus small
lobsters, both within, and between, lobster categories
(2-factor ANOVA; F5,44 = 1.20, p = 0.326). For exam-
ple, small males (mean DAL = 161.5 ± 32.0) were not
at-large significantly longer than large males
(mean = 207.3 ± 39.1), or either ovigerous or non-
ovigerous females (range = 217.2−251.1) (Tukey
HSD; q = 3.01, p > 0.05, α = 0.05). Of the 37 lobsters
(82.2%) caught at least once by commercial fisher-
men and reported, 8 were caught more than once.

Distance traveled

The maximum absolute distances traveled by the 3
categories of lobsters differed significantly (ANOVA;
F = 3.432,44, MS = 130.5, p = 0.041; Fig. 6). Ovigerous
lobsters moved the farthest (7.44 ± 1.38 km), whereas
males moved the least (1.29 ± 1.95 km). The mean
absolute distance traveled by ovigerous females dif-
fered significantly from the mean distance moved by
males, but not from non-ovigerous females (Tukey
HSD; q = 2.42, p < 0.05; Fig. 6). Distances traveled 
by lobsters differed significantly among seasons
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Fig. 4. Weekly temperature averages
compiled over 3 field seasons (2006−
2009) for representative inshore and
offshore locations using in situ temper-
ature (HOBO) loggers. The calendar
year was partitioned into 3 distinct
thermal time periods used to evaluate
seasonal lobster movements. See 
‘Materials and methods’ for details
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(ANOVA; F2,84 = 4.79, p = 0.011; Fig. 6), and distances
traveled by lobster type differed slightly (ANOVA;
F2,44 = 3.43, p = 0.051), but not as a function of size
(ANOVA; F1,41 = 0.46, p = 0.97). Seasonal movements
by 2 individual lobsters (an ovigerous and a non-
ovigerous female; Fig. 7) clearly illustrate the overall
patterns expressed by most of the female lobsters
tracked during this study. From fall to winter, both
types of females moved significantly farther than
males (Figs. 6 & 8). Between January and April
 (winter− spring) lobsters moved very little (Figs. 6 &
8). Then, in the late spring and early summer, oviger-
ous females moved a greater distance (mean = 2.55 ±
0.66 km) than non-ovigerous females (1.56 ± 0.64 km)
and males (0.41 ± 0.31 km). However, these move-
ments (particularly those of ovigerous lobsters) were
not necessarily inshore, and those that moved
inshore did so after the time of predicted hatch.

Initiation of fall movements

A total of 18 lobsters were tracked with the high
resolution VRAP system in the fall of 2006 (11 oviger-
ous females, CLmean = 92.0 ± 8.3 mm and 7 non-
ovigerous females, CLmean = 95.6 ± 11.7 mm). Most
lobsters (n = 16) moved away from the VRAP array
and were not detected again for >24 h, over a period
of 21 d in October and November (mean day for
departure = November 1; 95% CI = October 22 to
November 11; Fig. 9). Lobsters tagged before Octo-
ber 5 (n = 13, 72.2%) expressed strong site fidelity,
remaining near the tagging location for 39.5 ± 6.6 d
before moving offshore. By contrast, those tagged
after October 5 remained in the area for significantly
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Fig. 5. Homarus americanus. Days-at-large (DAL) for large
and small lobsters in each of the 3 categories of lobsters:
ovigerous females (nsmall = 6, nlarge = 14), non-ovigerous
 females (nsmall = 5, nlarge = 10) and males (nsmall = 6, nlarge = 4). 

Means are expressed ± SE

Year   Sex    CL    Date tagged  DAL   Max. dist.    Egg 
                   (mm)   (mm/dd/yy)                (km)     dev. (%)

2006
          F(o)    79       12/06/06      211          7.73         62
          F(o)    82       10/03/06      216          0.28         38
          F(o)    84       09/22/06      315        11.35         58
          F(o)    84       11/02/06      206        19.59         52
          F(o)    86       08/30/06      250        20.73          0
          F(o)    88       09/26/06      99          0.54          0
          F(o)    89       09/19/06      370          1.65          0
          F(o)    90       09/22/06      296          7.40         34
          F(o)    103       10/26/06      336          5.90         43
          F(o)    104       10/04/06      309        14.44          0
          F(o)    122       09/19/06      345        11.72          0
            F      82       11/09/06      264        12.49           
            F      87       11/02/06      180          0.97           
            F      92       09/26/06      217          2.64           
            F      95       09/29/06      124        21.82           
            F      99       09/29/06      220          1.98           
            F      109       09/26/06      223          9.20           
            F      112       10/13/06      206          5.80

2007
          F(o)    90       10/26/07      250        15.07         30
          F(o)    90       10/16/07      252          3.57         15
          F(o)    91       10/22/07      260        10.05         12
          F(o)    101       10/16/07      204        10.79           
          F(o)    88       10/22/07      34          0              23
          F(o)    92       10/26/07      313          0                
            F      80       07/20/07      152          5.20           
            F      80       11/14/07      241          4.03           
            F      85       10/26/07      229        22.54           
            F      89       10/16/07      340          1.15           
            F      92       10/22/07      247          3.17           
            F      90       10/16/07      239          0                
           M     80       10/26/07      221          0.31           
           M     81       11/09/07      207          3.41           
           M     82       10/22/07      39          0.62           
           M     91       10/22/07      58          0.50           
           M     98       07/26/07      267          0                
           M     94       10/23/07      196          2.81

2008
          F(o)    80       09/30/08      225          0.58          8
          F(o)    84       09/30/08      275          7.73         66
          F(o)    94       10/14/08      197          0                
            F      81       09/30/08      200          3.23           
            F      90       10/14/08      232          0.77           
           M     83       09/30/08      250          1.20           
           M     83       09/30/08      44          0                
           M     83       10/14/08      208          0.98           
           M     92       10/14/08      308          3.10

Table 1. Inventory of all Homarus americanus tagged and
tracked (ntotal = 45) in each season: 2006 (n = 18), 2007 (n =
18), and 2008 (n = 9). Categories include ovigerous females,
F(o), non-ovigerous females (F), and males (M). CL: carapace
length. Days-at-large (DAL) were calculated as the cumula-
tive number of days from release to the last positional fix.
Max. Dist. is the maximum absolute distance traveled. Egg
assessment is based on the Perkins Eye Index (Perkins 1972)
and calculated for a subset of eggs. Egg dev.% is the percent-
age of ovigerous females with eggs. Eggs with 0% develop-
ment lacked discernible eyespots, and were not measured
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less time (1.5 ± 1.5 d; t = 3.781, df = 17, p = 0.0015).
Lobsters moving offshore initially headed SSE, with a
mean vector of 159° (Rayleigh test; Z = 25.35, p <
0.001), placing them offshore and in deeper waters.
However, we did not isolate a specific cue though
data on other species we have examined suggests
wave surge may be used (authors’ unpubl. data).

Environmental cues

We hypothesized that declines in water tempera-
ture and storm events may both trigger fall offshore
movements of lobsters. We monitored water temper-
atures and wave heights before, during, and after the
period when lobsters left the tagging location
(August−December of 2006) to assess the relation-
ship between these environmental cues and lobster
movements (Fig. 9). Water temperatures were gener-
ally stable during the time period prior to the initia-
tion of offshore movements (14.1 ± 0.3°C; range =

12.9–15.7°C). However, starting in mid-October,
when offshore movements began, temperature de -
creased significantly (from 14.1 to 10.3 ± 0.5°C, or a
drop of 28.4%, range = 9.0−12.8°C; Mann-Whitney
U-test; χ2 = 12.9, df = 1, p = 0.0003), compared with a
similar time frame prior to the initiation of offshore
movements (Fig. 9). Likewise, wave heights during
these same 2 time periods also differed significantly
(Mann-Whitney U-test; χ2 = 5.8, df = 1, p = 0.0160),
averaging 0.8 ± 0.08 m (range = 0.43−1.17 m) before
the initiation of offshore movements and 1.2 ± 0.13 m
(~36% increase; range = 0.58−1.77 m) after offshore
movements commenced (Fig. 9).

Movements and egg development

During 2006−2009, we tracked 17 ovigerous
females carrying eggs that were partially developed
(25.9 ± 6.0%, range = 0−66%) when the females
were first tagged. Distance traveled by lobsters was
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Fig. 6. Homarus americanus. (a) Maximum
distance traveled by lobsters in each of the
3 categories (all sizes combined). Diamonds
indicate 95% confidence intervals, with
horizontal lines representing means for
each group. Open circles represent data
points for individual animals. Different let-
ters above bars indicate significant differ-
ences (p < 0.05). (b) Net seasonal move-
ments by lobsters in each category, based
on animals that moved at least 0.5 km and
were at large for at least 150 d. Means ex-
pressed ± SE. Shared letters above bars in-
dicate no significant differences (p > 0.05)
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unrelated to the initial stage of the eggs (early- vs.
late-stage) they were carrying (r = 0.24; Spearman
ρ = 0.26). We also analyzed the thermal histories of 6
ovigerous lobsters with attached temperature log-
gers that we tracked in the fall of 2006 and success-
fully re-captured. Of these 6 individuals, 2 remained
inshore, whereas 4 moved offshore in the fall. The
predicted hatch time for the eggs carried by each
lobster was determined from (1) recaptures and
reports by commercial fishermen and (2) calculations
of egg development based on starting egg stage val-
ues, ambient water temperatures recorded by our
in situ temperature loggers attached to the lobsters,
and the use of a modified Perkin’s (1972) eye index
(PEI) model (Goldstein 2012). Based on the tempera-
ture regimes these ovigerous females experienced
while we tracked them, we predicted that the eggs
carried by inshore lobsters hatched between July 10
and July 27 (average inshore temperature = 10.8°C),
whereas those carried by lobsters that moved off-
shore hatched from August 1 to August 20 (average
offshore temperature = 10.4°C).

DISCUSSION

By combining 3 different ultrasonic telemetry tech-
niques, we documented both small-scale excursions
of American lobsters Homarus americanus in New
Hampshire coastal waters as they initiated offshore
movements in the fall, as well as larger-scale,
inshore−offshore and offshore− inshore, seasonal
movements. Although the majority of ovigerous lob-
sters (60%) we tracked moved offshore for the win-
ter, so did 46% of all the other adult lobsters in our
study, regardless of their sex or reproductive status.
A combination of rapidly cooling waters and in -
creased turbulence caused by fall storms appear to
trigger these offshore movements in the fall. Taken
together, these data suggest that offshore move-
ments are likely adaptive for all types of lobsters, and
not just those carrying eggs. Moving offshore may
offer lobsters a more stable (and less variable) ther-
mal habitat during the colder months when they tend
to be less active and require less food. This pattern
has been noted in the congener, H. gammarus,
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Fig. 7. Homarus americanus. Seasonal movements of a large ovigerous female (CL = 90) and a small male lobster (CL = 82) in
2006−2007. The track of the large ovigerous female is fairly typical for this group, characterized by large rapid offshore move-
ments in the fall, a more stationary period in the winter months, followed by some additional movements after the predicted
hatching date (H). Note that this lobster and other ovigerous females did not return inshore in the early summer, and larvae
were therefore likely released offshore. In contrast, most males (large and small) tracked in this study remained exclusively 

within inshore waters. Other details as in Fig. 1
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Fig. 8. Homarus americanus. Seasonal movements of (a) female lobsters (ovigerous, n = 20, circles; non-ovigerous, n = 15,
squares), and (b) male lobsters (n = 10, triangles) during the fall−winter, winter−spring and spring−summer time periods (see
‘Materials and methods’ for definitions). Numbers adjacent to symbols indicate multiple lobsters (n) at that location. Other 

details as in Fig. 1

Fig. 9. Weekly water temperatures and wave heights in the fall of 2006 for the period before and during the offshore move-
ments of tagged lobsters Homarus americanus. Lobster symbols indicate when individual lobsters initiated offshore move-
ments. Most (75%, n = 16) of the lobsters left the area between October 22 and November 21, with a mean date of departure of 

November 1 (range = 295−315 d)
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where seasonal movements and overall activity pat-
terns also correlated with seasonal fluctuations in
water temperature (Moland et al. 2011).

Most attention on the relationship between water
temperature and seasonal movements in American
lobsters has focused on ovigerous females because
their movements influence the thermal history of the
eggs they carry for 9−11 mo (Templeman 1940, Co -
wan et al. 2007). Seasonal inshore-to-offshore move-
ments of ovigerous lobsters optimize the number of
degree-days for rapid egg development (Camp bell
1986). However, we recently demonstrated no signif-
icant difference in the number of degree-days accu-
mulated by lobsters inhabiting inshore vs. offshore
waters in coastal New Hampshire waters (Goldstein
2012). Note, however, that differences between in -
shore and offshore water temperatures might be
more pronounced in some regions (e.g. Atlantic Can-
ada, Gendron & Ouellet 2009), and thus ovigerous
female movements in these areas may be vital for
providing eggs with sufficient degree-days so that
they hatch at an appropriate time. Waddy & Aiken
(1995) demonstrated that lobster egg development
slowed at temperatures <4°C and hypothesized that
eggs exposed to a sufficient number of days less than
this threshold value would be synchronized for sum-
mer hatching. Overall, we found no difference be -
tween inshore and offshore seawater temperatures
(p = 0.440, t-test) over the course of the year. How-
ever, water temperatures for inshore and offshore
differed significantly within the May−August (spring−
summer) time period, (11.5°C vs. 10.5°C; t-test, p =
0.011, respectively). Data provided from a comple-
mentary study, emphasize the importance of differ-
ing thermal regimes on developing eggs and suggest
that the rapid rate of warming of inshore waters in
the spring profoundly impacts the time of larval hatch
in these locations (Goldstein & Watson 2015).

Seasonal movement patterns

The data obtained in this study contradict the
hypo thesis that ovigerous females move offshore in
the fall and then return inshore to incubate their eggs
in warmer water in the spring and early summer.
Because one of our main goals was to track females
through until egg hatch, and noting the finite battery
life of each tag, we were unable to evaluate a full
year of movement for all females, something that
could be evaluated in future studies. Although we
did not track individual lobsters throughout an entire
year, it is possible that the lobsters we tracked re -

turned to inshore waters later in the summer after our
tags stopped transmitting. That said, with the timing
of egg development at different temperatures, we
can say confidently that many (~50%, n = 10) of the
ovigerous lobsters we tracked remained offshore
until after their eggs hatched in the summer (Fig. 8)
and, in some cases, these animals only undertook
large excursions after their expected time of egg
hatching (e.g. Fig. 7). Two previous studies reported
similar data; Jarvis (1989) documented strong resi-
dent behavior in late-stage ovigerous lobsters, and
both Jarvis (1989) and Watson et al. (1999) reported
little movement in females with late-stage eggs com-
pared to other females. Moreover, females in both
studies appeared to increase in mobility after the
time when their eggs likely hatched. Because oviger-
ous females remained offshore until after their eggs
hatched, larvae were presumably released offshore
rather than inshore locations. Ongoing ocean drifter
and drogue trials indicate different likely trajectories
in larvae released offshore than those that hatch
inshore (Goldstein 2012). Thus, at least in NH and
southern Gulf of Maine coastal waters, larvae dis-
persed from offshore locales increases the probabil-
ity of settlement in a variety of different areas (Incze
et al. 2010).

One goal of this study was to ascertain whether sea-
sonal movement patterns of ovigerous American
 lobsters differed from their male or non-ovigerous
 female counterparts. We found disproportionately
longer move ments by ovigerous and non-ovigerous
females (60% moved >5 km) compared with males
(no male moved >4 km). Many studies attribute sex-
biased movements to selective pressures acting on
disparate male and female reproductive strategies or
physiological requirements (Haakonsen & Auoruo
1994, Jury et al. 1994, Jury & Watson 2013). For ex -
ample, male American lobsters can withstand lower
salinities and prefer warmer water, which may ex -
plain their prevalence in the upper reaches of bays
and estuaries (Munro & Thierriault 1983, Howell et al.
1999, Jury & Watson 2013). Past studies document
 differences in movement patterns in coastal male and
female lobsters, but the patterns are not as clear as
those shown in the present study. Campbell & Stasko
(1986) and Templeman (1940) found greater distances
moved by mature females than mature males in some
areas, but not others, whereas ovigerous females in
waters near Cape Cod, Massachusetts moved farther
and faster than other lobsters (Morrissey 1971). Foga-
rty et al. (1980) and Krouse (1981) found no differences
in the movements of male and female lobsters,
possibly because many of the lobsters they tracked
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were immature. Whereas constraints of reproduction
may strongly influence movements in female lobsters,
territorial male lobsters defend dens, especially during
the mating season (Karnofsky et al. 1989). Therefore,
males may move less than females, especially during
certain times of year (e.g. molting, den acquisition).
Because we followed all types of American lobsters
throughout most of the year, in cluding during their
breeding season, mating-related behaviors, including
the defense of dens, may have driven some differences
in male and female movement. This interpretation is
consistent with reduced movements of large males in
a high-resolution tele metry study conducted in the
same location as our study (Golet et al. 2006). How -
ever, be cause we tagged and released our lobsters in
late summer and early fall after most lobsters had al-
ready mated, and we tracked them until the beginning
of the mating  season in the following year, it is un -
likely that the inshore residency of males in this study
was solely the result of guarding potential mating
dens. Although our goal was to track as many kinds of
American  lobsters as possible, time and financial con-
straints limited our statistical power given the vari-
ability in movement, a problem encountered by many
telemetry studies (Pittman & McAlpine 2003). None-
theless, the detailed telemetry tracks provide impor-
tant information on individual movements (a key con-
tribution to this study) and continued technological
improvements will further enhance future studies.

Foraging-related movements

Although we found that female lobsters tended to
move most, the fact that both large and small lobsters
tended to move offshore in the fall and, to a lesser
extent, inshore in the spring, suggests that needs
common to most lobsters motivated these seasonal
movements. As key predatory species, American lob-
sters exert a strong influence on their ecosystem by
foraging on benthic communities (Scarratt 1980,
Conklin 1995, Palma et al. 1998). On a daily basis,
foraging activity probably accounts for many of the
documented small, local movements (typically
100−500 m or less; Cooper & Uzmann 1971, Ennis
1984, Scopel et al. 2009). However, even though
these animals do not move very far during their daily
foraging excursions, their larger seasonal move-
ments may be motivated, in part, by a need to move
to areas of high prey abundance during the time of
year when they are most active and require the most
nutrition. Despite no direct evidence that food avail-
ability drives inshore movements of lobsters, they

often shift their prey base  spatio-temporally and this
may drive some seasonal movement patterns (Scar-
ratt 1980, Elner & Campbell 1987).

Environmental perturbations

The cues that initiate and control seasonal, directed
movements in American lobsters are largely unknown.
Movements typically correlate with seasonal changes
in temperature and, in locations such as estuaries,
fluctuations in salinity (Wahle 1993, Jury et al. 1995,
Watson et al. 1999). However, Cooper et al. (1975) re-
ported that these lobsters typically moved from shoal
waters (5−20 m) to deeper waters (30− 60 m) during
strong wind events associated with increased wave
heights. Others report that a combination of ice scour
and wave action reaching shallow bottom sediments
(coupled with low water temperatures) triggered lob-
sters to shelter beneath hard substrate features or in
deep water (Ennis 1984, Karnofsky et al. 1989). Some
of the strongest correlations between seasonal lobster
movements and environmental perturbations come
from studies on the Caribbean spiny lobster Panulirus
argus, where autumnal storms (with associated in-
creases in waves and turbidity), coupled with de-
creasing water temperatures of ~5°C over several
days, appear to trigger mass migration (Kanciruk &
Herrnkind 1978, Herrnkind 1980). In contrast, other
cues such as day length, photoperiod, and changes in
salinity were generally insufficient to elicit the same
responses in other lobsters (e.g. Panulirus ornatus,
Moore & MacFarlane 1984).

Our study correlated the offshore movements of
tagged lobsters in the fall with decreasing water tem-
peratures and increased wave action due to storms,
a finding consistent with several aforementioned
models. Although American lobsters often undertake
large post-tagging, post-handling movements, this
phenomenon cannot explain our results. Most of the
lobsters used for our study were resident near the
tagging location for about a month prior to their sea-
sonal offshore excursions (VRAP telemetry data). In-
terestingly, in a parallel and concurrent study in the
near by Great Bay Estuary, fewer lobsters moved in
the fall than those tagged along the coast (T. Langley
et al. unpubl. data.). We believe this difference may
be explained by drops in water temperature experi-
enced by lobsters in the estuary that were as pro-
nounced as those encountered by lobsters along the
coast, but without exposure to the same large wave
events. Therefore, our results support the hypothesis
that seasonal offshore movements of American lob-
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sters are triggered by a combination of falling tem -
per atures and other environmental stimuli (such as
storm events) that create a more challenging and
stressful environment in in shore areas. However, we
acknowledge that other environmental cues could be
equally important, or work in synergy with these cues
to trigger or direct the offshore movements of lobsters
in the fall. Logically, a series of lab-based trials may
provide the best opportunity to isolate the most po-
tential environmental cues.

Brooding-related movements

Many ovigerous marine crustaceans (e.g. spiny
lobsters and crabs) that maintain external lecitho -
trophic egg masses and hatch pelagic larvae undergo
brooding-related movements that are thought to
selectively position larvae for transport away from
unfavorable en vironments. Booth (1997) summarized
long-distance movement data for several Pacific
spiny lobsters and associated inshore-to-offshore
movement events with reproduction and molting.
Other such lobster movements are de scribed as con-
tranatant, acting to facilitate dispersal of larvae to
maternal areas (e.g. Groeneveld & Branch 2002).
Telemetry studies of the movements of late-stage
ovigerous Caribbean spiny lobsters Panulirus argus
determined that some individuals leave their dens to
release their larvae at the reef edge and then return
(Bertelsen & Hornbeck 2009, Bertelsen 2013). One of
the most interesting spawning migrations occurs in
ornate spiny lobsters Panulirus ornatus, where fe -
males undertake mass migrations (maximum dis-
tance = 511 km) across the Gulf of Papua (Moore &
MacFarlane 1984). Al though there is clear evidence
that some ovigerous lobsters incorporate brooding-
specific movements into their repertoire to optimize
larval release, whether ovigerous American lobster
females make such directed movements solely for
this purpose re mains unclear. Most ovigerous
females tagged in our study (80%) remained offshore
throughout much of the egg development period
until their eggs hatched. However, other ovigerous
females (35%) moved <2 km or remained resident
near the tagging location. Perhaps the advantages of
releasing larvae offshore drive behavior of ovigerous
lobsters in this region more than gaining degree-
days by moving back inshore in the spring, whereas
movement back inshore in the spring in other regions
may be necessary in order to accelerate egg develop-
ment and en sure that eggs hatch at the appropriate
time of year.

Implications for larval dispersal

Because local oceanographic conditions (e.g. tidal
fronts, eddies, convergence zones) often constrain
larval dispersal, the location (inshore vs. offshore) of
ovigerous lobsters over their hatching period can sig-
nificantly influence larval dispersal and, ultimately,
survival. Even modest movements by brooding
adults (10s of km) can significantly impact subse-
quent larval trajectories. This effect has been demon-
strated in other marine species with meroplanktonic
larvae, particularly marine fishes that sometimes
self-recruit to natal locations (e.g. Almany et al.
2007). Therefore, knowledge of the movements of
ovigerous lobsters, and their locations during hatch-
ing, could enhance our understanding of larval dis-
persal and help to refine existing biophysical models
of connectivity for H. americanus (Harding et al.
2005, Xue et al. 2008, Incze et al. 2010). These data
also have biologically relevant implications for future
studies and MPA design for H. americanus stocks
across its range from Atlantic Canada to Southern
New England.

Lobsters are highly mobile and their attraction to
specific temperatures, and avoidance of others,
greatly impacts their seasonal movements and distri-
bution (Childress & Jury 2006). As climate change
warms shallow, coastal waters, lobsters will likely
adjust their movements to remain within their pre-
ferred temperature range (thermal niche), and
vacate other areas (Caputi et al. 2013). In the case of
NH coastal lobsters, this preference may drive off-
shore movement into deeper water, as reported in
the southern extent of their range (Buzzard’s Bay,
Massachusetts, T. Pugh & R. Glenn unpubl. data).
This behaviour, in turn, could shift the timing and
location of hatch, which would invariably influence
larval drift and recruitment, as well as overall popu-
lation dynamics. Therefore, scientists and fisheries
managers alike must consider the potential impact of
climate change on seasonal movements of ovigerous
lobsters and devise appropriate management strate-
gies to ensure the long-term health and sustainability
of this highly lucrative fishery.
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