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ABSTRACT

A BEURLING THEOREM FOR NONCOMMUTATIVE HARDY SPACES

ASSOCIATED WITH A SEMIFINITE VON NEUMANN ALGEBRA WITH

VARIOUS NORMS

by

LAUREN B. M. SAGER
University of New Hampshire, May, 2017

We prove Beurling-type theorems for H∞-invariant spaces in relation to a semifinite von Neu-

mann algebraM with a semifinite, faithful, normal tracial weight τ , using an extension of Arveson’s

non-commutative Hardy space H∞. First we prove a Beurling-Blecher-Labuschagne theorem for

H∞-invariant subspaces of Lp(M, τ) when 0 < p ≤ ∞. We also prove a Beurling-Chen-Hadwin-

Shen theorem for H∞-invariant subspaces of Lα(M, τ) where α is a unitarily invariant, locally

‖ · ‖1-dominating, mutually continuous norm with respect to τ . For a crossed product of a von

Neumann algebra M by an action β, M oβ Z, we are able to completely characterize all H∞-

invariant subspaces of Lα(Moβ Z, τ) using our results. As an example, we completely characterize

all H∞-invariant subspaces of the Schatten p-class, Sp(H) (0 < p ≤ ∞), where H∞ is the lower tri-

angular subalgebra of B(H). We also characterize the non-commutative Hardy space H∞-invariant

subspaces in a Banach function space I(τ) on a semifinite von Neumann algebra M.
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Chapter 1

Preliminaries

1.1 Hilbert spaces

We begin by considering a complex vector space X with a norm ‖ · ‖. We define the norm topology

on X for an element x0 ∈ X and ε > 0 by a family of neighborhoods V (x0, ‖ · ‖, ε) = {x ∈ X :

‖x− x0‖ < ε}.

A complex vector space X with a norm ‖ · ‖, denoted (X , ‖ · ‖), is called a normed space.

Definition 1.1.1. A complex vector space (X , ‖ · ‖) which is complete with respect to the norm

topology on X is called a Banach space.

We consider a complex vector space H.

Definition 1.1.2. A mapping 〈 ·, · 〉 : H × H → C defined by (x, y) → 〈x, y〉 is called an inner

product on a complex vector space H if:

(i) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 for every α, β ∈ C and x, y ∈ H;

(ii) 〈y, x〉 = 〈x, y〉 for every x, y ∈ H;

(iii) 〈x, x〉 ≥ 0 for every x ∈ H.

If additionally, we have

(iv) 〈x, x〉 = 0 if and only if x = 0,

then we call 〈·, ·〉 a definite inner product.

1
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If we combine (i) and (ii), we get an additional characteristic of an inner product:

(v) 〈z, αx+ βy〉 = α〈z, x〉+ β〈z, y〉.

We call the pairing (H, 〈·, ·〉) an inner product space. We then use the inner product to define

a seminorm on the complex vector space H.

Proposition 1.1.3. Suppose that 〈·, ·〉 is an inner product on a complex vector space H. Then for

every x ∈ H, the equation ‖x‖ = 〈x, x〉1/2 defines a seminorm ‖ · ‖ on H. If, in particular, 〈·, ·〉 is

a definite inner product, then ‖ · ‖ is a norm on H.

Proof. By Definition 1.1.2, it is clear that ‖x‖ ≥ 0 for every x ∈ H. Also,

‖αx‖ = 〈αx, αx〉1/2 (for every α ∈ C and x ∈ H)

= (αα〈x, x〉)1/2

= |α|‖x‖

Additionally,

‖x+ y‖2 = 〈x+ y, x+ y〉

= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

= 〈x, x〉+ 2Re(〈x, y〉) + 〈y, y〉

≤ ‖x‖2 + 2|〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 (by the Cauchy-Schwarz inequality)

= (‖x‖+ ‖y‖)2.

So the triangle inequality is satisfied, and ‖ · ‖ is a seminorm on H.

If additionally, 〈·, ·〉 is a definite inner product on H, then ‖x‖ = 〈x, x〉1/2 = 0 if and only if

〈x, x〉 = 0. Therefore, if 〈·, ·〉 is a definite inner product, we have that ‖ · ‖ is a norm.

Definition 1.1.4. A complex vector space H is said to be a pre-Hilbert space if the norm, ‖ · ‖,

can be obtained from a definite inner product on H. Namely, ‖x‖ = 〈x, x〉1/2 for every x ∈ H.
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We may now define a Hilbert space.

Definition 1.1.5. A pre-Hilbert space H is called a Hilbert space if H is complete with respect to

the norm ‖ · ‖ determined by a definite inner product on H.

We now discuss several examples of Hilbert spaces.

Example 1.1.6. Consider the space Cn, n ∈ N, consisting of n-tuples (x1, x2, . . . , xn) where

x1, x2, . . . , xn ∈ C. We let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be elements of Cn. We

use the standard inner product on Cn, 〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn, and the associated norm

‖x‖ = (|x1|2 + |x2|2 + · · ·+ |xn|2)1/2. It may be verified that Cn is a Hilbert space.

Example 1.1.7. Suppose A is a set. We define l2(A) = {f |f : A → C;
∑

a∈A |f(a)|2 < ∞}. We

can see that, given x, y ∈ l2(A), then
∑

a∈A x(a)y(a) converges, as |x(a)y(a)| ≤ 1/2(|x(a)|2 +

|y(a)|2), and
∑

a∈A(|x(a)|2 + |y(a)|2) < ∞. We can define a definite inner product 〈x, y〉 =∑
a∈A x(a)y(a) on l2(A). Then the norm ‖x‖ = (

∑
a∈A |x(a)|2)1/2 is determined by the definite

inner product. Therefore, l2(A) is a Hilbert space.

Example 1.1.8. Let l2(0)(N) be defined to be the set of all complex valued functions on N taking

non-zero values at only finitely many points of N. Then l2(0)(N) ⊆ l2(N), so l2(0)(N) has a definite

inner product and norm, inherited from l2(N). However, l2(0)(N) is not complete with respect to ‖·‖,

and is therefore a pre-Hilbert space, but not a Hilbert space.

1.1.1 The adjoint operation

Consider a linear operator T : X → Y , where X and Y are normed spaces. We say that T is

bounded if there exists a c ∈ R such that ‖Tx‖ ≤ c‖x‖ for every x ∈ X .

Proposition 1.1.9. T is continuous if and only if T is bounded.

We define the norm of the linear operator T by ‖T‖ = supx∈X;‖x‖≤1{‖Tx‖}. Then B(X,Y ) =

{T : X → Y | ‖T‖ <∞}.
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Theorem 1.1.10. Suppose that H, K and L are Hilbert spaces. Suppose that T ∈ B(H,K). Then

there exists a unique linear operator T ∗ ∈ B(K,H) such that 〈T ∗x, y〉 = 〈x, Ty〉 for x ∈ K and

y ∈ H. Moreover,

(i) (aS + bT )∗ = aS∗ + bT ∗ for a, b ∈ C and S, T ∈ B(H,K);

(ii) (RS)∗ = S∗R∗ for S ∈ B(H,K) and R ∈ B(K,L);

(iii) (T ∗)∗ = T for every T ∈ B(H,K);

(iv) ‖T ∗T‖ = ‖T‖2 for every T ∈ B(H,K);

(v) ‖T ∗‖ = ‖T‖ for every T ∈ B(H,K).

Proof. See Theorem 2.4.1 in [22] for a proof.

Definition 1.1.11. Given T ∈ B(H,K), T ∗, as defined in Theorem 1.1.10, is called the adjoint of

T .

Remark 1.1.12. For a Hilbert space H, we may define the set of bounded linear operators T :

H → H, denoted B(H,H) = B(H). Then, as in Theorem 1.1.10, for any T ∈ B(H) there exists

T ∗ ∈ B(H), the adjoint of T .

We can then classify the bounded linear operators on H.

Definition 1.1.13. A bounded linear operator T ∈ B(H) is said to be:

(i) self-adjoint if T ∗ = T ;

(ii) normal if TT ∗ = T ∗T ;

(iii) unitary if TT ∗ = T ∗T = 1;

(iv) positive if 〈Tx, x〉 ≥ 0 for every x ∈ H.
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1.2 C∗-algebras

We say that A is a Banach algebra if A is a Banach space with norm ‖·‖, and A has a bi-continuous

multiplication (A,B)→ AB such that ‖AB‖ ≤ ‖A‖ · ‖B‖ for every A,B ∈ A. We say that A is a

unital Banach algebra if A contains a unit element I such that ‖I‖ = 1.

Definition 1.2.1. Suppose A is a Banach algebra. A mapping ∗ : A → A taking A→ A∗ (A ∈ A)

is called an involution if the following conditions hold:

(i) (aS + bT )∗ = aS∗ + bT ∗ for every a, b ∈ C and S, T ∈ A;

(ii) (ST )∗ = T ∗S∗ for every S, T ∈ A;

(iii) (T ∗)∗ = T for every T ∈ A.

Definition 1.2.2. A Banach algebra A with an involution satisfying:

(iv) ‖TT ∗‖ = ‖T‖2 for every T ∈ A

is called a C∗-algebra.

Example 1.2.3. Consider a Hilbert space H. Recall that B(H) is the set of all bounded linear

operators from H → H. Definition 1.1.11 defines the adjoint operator on B(H) which satisfies the

conditions given by Theorem 1.1.10. Therefore, the adjoint operator is an involution, and B(H) is

a C∗-algebra.

1.2.1 Topologies on B(H)

Suppose that H is a Hilbert space. Recall that the C∗-algebra B(H) is the set of all bounded linear

operators on H.

Definition 1.2.4. Suppose T0 is an element of B(H). The strong operator topology on B(H)

is given by the neighborhoods V (T0;x1, x2, . . . , xm; ε) = {T ∈ B(H) | ‖(T − T0)xj‖ < ε where j =

1, 2, . . . ,m; x1, x2, . . . , xm ∈ H; ε > 0}.
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Equivalently, a net {Tj} in B(H) converges to T0 in the strong operator topology if and only if

‖(Tj − T0)x‖ → 0 for every x ∈ H.

Definition 1.2.5. Suppose T0 is an element of B(H). Define a linear functional ωx,y : B(H) →

C by ωx,y(A) = 〈Ax, y〉 for A ∈ B(H). The weak operator topology on B(H) is given by the

neighborhoods {T ∈ B(H) | |ωx,y(T )− ωx,y(T0)| < ε}.

Equivalently, a net {Tj} in B(H) conveges to T0 in the weak operator topology if and only if

|〈Tjx, y〉 − 〈T0x, y〉| → 0 for every x, y ∈ H.

Remark 1.2.6. We have that |〈(T − T0)x, y〉| < ε for a given ε > 0 when ‖(T − T0)x‖ < ε
1+‖y‖ .

Therefore, if a set is open in the weak operator topology, then it is open in strong operator topology.

Hence, the weak operator topology is coarser than the strong operator topology.

1.3 von Neumann algebras

Definition 1.3.1. A von Neumann algebra is a C∗-algebra M acting on H which is weak operator

topology closed and contains I.

If the center of M is a subset of CI, we say that M is a factor.

Example 1.3.2. Let Mn(C) be the set of all n×n matrices with entries from the complex numbers,

for 1 ≤ n <∞. Then Mn(C) is a von Neumann algebra.

Example 1.3.3. Consider the algebra of all bounded operators on a Hilbert space H, which we

denote by B(H). It may be shown that B(H) is a factor.

1.3.1 Polar decompositions in von Neumann algebras

Definition 1.3.4. An operator mapping a closed subspace H1 of a Hilbert space isometrically onto

another closed subspace H2, which also annihilates the orthogonal compliment of H1 is called a

partial isometry. The space H1 is called the initial space of the partial isometry and H2 is called
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the final space. The projections with ranges H1 and H2 are called the initial and final projections,

respectively.

Proposition 1.3.5. If T is a bounded operator on a Hilbert space H, then there exists a partial

isometry V such that T = V (T ∗T )1/2 = (TT ∗)1/2V . Also, if T = WH where W is a partial

isometry and H is positive, then W = V and H = (T ∗T )1/2. We call such a decomposition the

polar decomposition of T .

Proof. It is easy to see that 〈(T ∗T )1/2x, (T ∗T )1/2x〉 = 〈(T ∗T )x, x〉 = 〈Tx, Tx〉. Therefore, there

exists a partial isometry V such that T = V (T ∗T )1/2. This implies that T ∗ = (T ∗T )1/2V ∗, and

TT ∗ = V T ∗TV ∗.

Hence (TT ∗)1/2 = V (T ∗T )1/2V ∗, and T = V (T ∗T )1/2 = V (T ∗T )1/2V ∗V = (TT ∗)1/2V .

It is clear that, if T = WH where W is a partial isometry and H is positive, W ∗WH = H.

Thus, T ∗T = HW ∗WH = H2. Hence, (T ∗T )1/2 = H and W must equal V .

Proposition 1.3.6. If T is a bounded operator in a von Neumann algebra M , and UH is the polar

decomposition of T , then U,H ∈M.

Proof. See Propositon 6.1.3 in [22].

1.3.2 Type decomposition of von Neumann algebras

Von Neumann algebras may be decomposed into five parts: type In, type I∞, type II1, type II∞

and type III parts.

We need several definitions before we discuss the different types of von Neumann algebras.

Definition 1.3.7. Suppose A is an operator in a von Neumann algebra M. Then the central

carrier of A is the projection I − P such that P is the union of all projections Pa in the center of

M which satisfy PaA = 0.

Definition 1.3.8. Projections E and F in a von Neumann algebra M are equivalent relative to

M if for some partial isometry V in M, V ∗V = E and V V ∗ = F .
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Definition 1.3.9. A projection E in a von Neumann algebra M is called an abelian projection if

EME is itself abelian.

Definition 1.3.10. Suppose E is a projection in a von Neumann algebraM. If there is a projection

E0 such that E is equivalent to E0, and E0 < E, then E is called an infinite projection with respect

to M. If E is not infinite with respect to M, then we say that E is a finite projection.

Now, we may define the types of von Neumann algebras.

Definition 1.3.11. A von Neumann algebraM is said to be of type I if it has an abelian projection

with central carrier I. If I is the sum of n equivalent abelian projections (n ∈ N), M is said to be

of type In.

If M has a finite projection with central carrier I, but no non-zero abelian projections, then M

is said to be of type II. If I is finite, then M is of type II1, and if I is properly infinite M is of

type II∞.

M is said to be of type III if M has no non-zero finite projections.

When M is a factor, the type definitions may be simplified.

Proposition 1.3.12. Suppose M is a factor. Then M is either of type In, II1, II∞, or type III.

The factor M is of type I is it has a minimal projection, and of type In if I can be written as

the sum of n minimal projections (n ∈ N).

If M has a finite projection but no minimal projection, then M is of type II. M is of type II1

if I is finite, and type II∞ if I is infinite.

If M has neither a non-zero finite projection nor a minimal projection, we say M is of type

III.

Proof. See Corollary 6.3 in [22].

Proposition 1.3.13. Suppose M is a type In factor. Then M is *-isomorphic to B(H) where the

dimension of the Hilbert space H is n.
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Proposition 1.3.14. Suppose M is a countably decomposable type II∞ von Neumann algebra.

Then there exists a separable Hilbert space H such thatM∼= B(H)⊗R where R is a von Neumann

algebra of type II1.

Example 1.3.15. Suppose A is an abelian von Neumann algebra. We consider Mn(A), the set of

n× n matrices with entries from A. Mn(A) is a type In von Neumann algebra.

Example 1.3.16. Let G be a discrete infinite conjugacy class group. We have that L(G) is a type

II1 factor, and for some separable Hilbert space H, B(H)⊗ L(G) is a type II∞ factor.

Example 1.3.17. Suppose that M is a type II1 factor. Consider the n× n matrices with entries

in M, Mn(M). Then when 1 ≤ n <∞, Mn(M) is a type II1 factor. When n =∞, Mn(M) is a

factor of type II∞.

It is a well known result of Murray and von Neumann in [29] that any von Neumann algebra

M may be decomposed in the following way:

M =
∑

n≤dimH
MIn +MI∞ +MII1 +MII∞ +MIII

where MIn is of type In, MI∞ is of type I∞, MII1 is of type II1, MII∞ is of type II∞ and MIII

is of type III. Any of MIn , MI∞ , MII1 , MII∞ , and MIII may be equal to zero.

1.3.3 Semifinite von Neumann algebras

When MIII = 0 in Murray and von Neumann’s result, we call M a semifinite von Neumann

algebra. However, we will use an alternate definition of a semifinite von Neumann algebra.

Let M be a von Neumann algebra, and let M+ be the positive part of M.

Definition 1.3.18. A mapping τ :M+ → [0,∞] is a tracial weight on M if

1. τ(x+ y) = τ(x) + τ(y) for x, y ∈M+;

2. τ(ax) = aτ(x) for x ∈M+ and a ∈ [0,∞];
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3. τ(xx∗) = τ(x∗x) for every x ∈M.

A tracial weight τ is called normal if τ : M+ → C is continuous with respect to the weak

∗-topology. τ is faithful if for every a ∈ M+, τ(a∗a) = 0 implies a = 0. τ is said to be finite

if τ(I) < ∞, and semifinite if for any nonzero x ∈ M+, there is a nonzero y ∈ M+ such that

τ(y) <∞ and y ≤ x. A von Neumann algebra M is called a semifinite von Neumann algebra if a

faithful, normal semifinite tracial weight τ exists.

1.3.4 The predual of a von Neumann algebra

A third topology on a von Neumann algebra is the weak *-topology, for which we need a predual

space.

Definition 1.3.19. Suppose that M is a von Neumann algebra over a Hilbert space H. Denote by

M# the linear space of linear functionals on M which are weak operator topology continuous on

the unit ball of M. The space M# is called the predual of M.

Definition 1.3.20. SupposeM is a von Neumann algebra with predualM#. The weak *-topology

onM, φ(M#,M), is given by the neighborhoods {ρ ∈M# : |ρ(xj)−ρ0(xj)| < ε (j = 1, 2, . . . ,m)}

of ρ0 where x1, x2, . . . , xm ∈M# and ε > 0.

Equivalently, a net {ρλ}λ∈Λ conveges to ρ0 in the weak *-topology if and only if |ρλ(x)−ρ0(x)| →

0. The weak *-topology on M is induced by the predual M#.

The following lemma is known (see, for example Theorem 1.7.8 in [35]), but useful when dealing

with the weak *-topology on a von Neumann algebra M.

Lemma 1.3.21. Let M be a von Neumann algebra. If {eλ}λ∈Λ is a net of projections in M such

that eλ → I in the weak ∗-topology, then eλx→ x, xeλ → x and eλxeλ → x in weak ∗-topology for

all x in M.

Lemma 1.3.22. Let M be a von Neumann algebra with a semifinite, faithful, normal, tracial

weight τ . Then the following are true.
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1. There exists a family {ej}j∈J of orthogonal projections in M such that (i)
∑

j ej converges

to I in weak ∗-topology and (ii) τ(ej) <∞ for each j ∈ J .

2. There exists a net {eλ}λ∈Λ of projections in M such that (i) eλ → I in weak ∗-topology and

(ii) τ(eλ) <∞ for each λ ∈ Λ.

Proof. It is not hard to see that (2) follows from (1). For the purpose of completeness, we sketch

the proof of (1) here. Actually, we need only to show that every nonzero projection e inM contains

a nonzero subprojection ẽ such that τ(ẽ) <∞. Then the rest follows directly from Zorn’s lemma.

Let e be a nonzero projection in M. Since τ is semifinite, there is a y ∈ M+, y 6= 0 such

that τ(y) < ∞ and y ≤ f . Therefore, there exist a positive number λ > 0 and a nonzero spectral

projection ẽ of y in M such that λẽ ≤ y. Hence ẽ is a non-zero subprojection of e such that

τ(ẽ) <∞. The rest of the proof follows.

1.4 Lα spaces for a semifinite von Neumann algebra

Let M be a von Neumann algebra with a semifinite, faithful, normal, tracial weight τ . Let I =

span{MeM : e = e∗ = e2 ∈ M with τ(e) < ∞} be the set of elementary operators in M. (For

more information, see the quasi-simple operators in Remark 2.3 of [42].) It may be shown that I

is a two-sided ideal of M.

We define a family of norms on I.

Definition 1.4.1. We call a norm α : I → [0,∞) a unitarily invariant, locally ‖ · ‖1-dominating,

mutually continuous norm with respect to τ on I if it satisfies the following characteristics:

1. α is unitarily invariant if for all unitaries u, v in M and every x in I, α(uxv) = α(x);

2. α is locally ‖ · ‖1-dominating if for every projection e in M with τ(e) < ∞, there exists

0 < c(e) <∞ such that α(exe) ≥ c(e)‖exe‖1 for every x ∈ I;

3. α is mutually continuous with respect to τ ; namely
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(a) If {eλ} is an increasing net of projections in I such that τ(eλx−x)→ 0 for every x ∈ I,

then α(eλx− x)→ 0 for every x ∈ I. Or, equivalently, if {eλ} is a net of projections in

I such that eλ → I in the weak* topology, then α(eλx− x)→ 0 for every x ∈ I.

(b) If {eλ} is a net of projections in I such that α(eλ)→ 0, then τ(eλ)→ 0.

Remark 1.4.2. Suppose M is a von Neumann algebra with a semifinite, faithful, normal tracial

weight τ . We may define a mapping ‖ · ‖p : I → [0,∞) for 0 < p <∞ by

‖x‖p = (τ(|x|p))1/p for every x ∈ I.

When 1 ≤ p < ∞, it may be shown that ‖ · ‖p is a unitarily invariant, locally ‖ · ‖1-dominating,

mutually continuous norm with respect to τ .

Definition 1.4.3. SupposeM is a von Neumann algebra with a semifinite, faithful, normal, tracial

weight τ , and suppose that I = span{MeM : e = e∗ = e2 ∈ M with τ(e) < ∞} is the set of

elementary operators in M. Define Lα(M, τ) for a norm α on I to be the completion of I under

α, namely

Lα(M, τ) = Iα.

We denote I‖·‖p by Lp(M, τ).

Notation 1.4.4. If S ⊆ Lα(M, τ), then we denote the closure of S in Lα(M, τ) by [S]α.

1.5 Arveson’s non-commutative Hardy space

In this subsection, we will recall Arveson’s definition of non-commutative Hardy spaces, and the

expansion of Arveson’s definition to Lα(M, τ). Assume that M is a von Neumann algebra with

a semifinite, faithful, normal tracial weight τ . Let A ⊆ M be a weak*-closed unital subalgebra of

M, and let D = A∩A∗. Assume that Φ :M→D is faithful, normal conditional expectation from

M onto D.
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Definition 1.5.1. A is a called a semifinite subdiagonal subalgebra, or a semifinite non-commutative

Hardy space, with respect to (M,Φ) if

1. The restriction of τ on D = A ∩A∗ is semifinite;

2. Φ(xy) = Φ(x)Φ(y) for every x, y ∈ A;

3. A+A∗ is weak* dense in M;

4. τ(Φ(x)) = τ(x) for every positive operator x in M.

In this case, A will also be denoted by H∞. Furthermore, we denote [A ∩ Lα(M, τ)]α, the closure

in α-norm, by Hα.

Remark 1.5.2. It was shown in [47], [13] and [24] that such a subalgebra H∞ with respect to

(M,Φ) is maximal among semifinite subdiagonal subalgebras satisfying (1), (2), (3) and (4). From

this fact, it follows that

H∞ = {a ∈M : Φ(xay) = 0, ∀x ∈ H∞, y ∈ H∞ ∩ ker(Φ)}.

Remark 1.5.3. Following notation from Definition 1.5.1, we know that the conditional expectation

Φ : M → D can be extended to a projection from Lp(M, τ) onto Lp(D, τ) with the norm ‖ · ‖p

(1 ≤ p <∞) (see Proposition 2.3 in [47] or [2]). Such an extended projection will still be denoted

by Φ. Moreover,

Φ(axb) = aΦ(x)b, ∀ a, b ∈ D, x ∈ Lp(M, τ) (1 ≤ p <∞).

Notation 1.5.4. We will let H∞0 = ker(Φ) ∩H∞, and Hα
0 = ker(Φ) ∩Hα.

The next result follows directly from Definition 1.5.1 and can be found in Lemma 3.1 of [2].

Lemma 1.5.5. If e is a projection in D = H∞ ∩ (H∞)∗ with 0 < τ(e) <∞, then eH∞e (denoted

H∞e ) is a finite subdiagonal subalgebra of eMe (denoted Me), and [eH∞e]α = eHαe, which we

denote by Hα
e .
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We will need the following technical lemma in the later chapters.

Lemma 1.5.6. Suppose M is a von Neumann algebra with a semifinite, faithful, normal, tracial

weight τ . Let H∞ be a semifinite, subdiagonal subalgebra in M in the sense of Definition 1.5.1

(namely, the restriction of τ on D = H∞ ∩ (H∞)∗ is semifinite). Let α be a unitarily invariant,

locally ‖ · ‖1-dominating, mututally continuous norm with respect to τ .

Then for every x ∈ Lα(M, τ) with 0 < p < ∞ and for every e ∈ D with 0 < τ(e) < ∞, there

exist an h1, h3 ∈ eH∞e and an h2, h4 ∈ eHαe such that:

(i) h1h2 = e = h2h1 and h3h4 = h4h3 = e

(ii) h1ex and xeh3 are in M.

Proof. Let ex =
√
exx∗eu = |x∗e|u be the polar decomposition of (ex)∗ in Lα(M, τ) where u

is a partial isometry in M and |x∗e| is a positive operator in Lα(M, τ). Note that |x∗e| is in

eLα(M, τ)e = Lα(Me, τ). Since 0 < τ(e) <∞, we know thatMe is a finite von Neumann algebra

with a faithful, normal tracial state 1
τ(e)τ . By Lemma 1.5.5, we have that H∞e is a finite subdiagonal

subalgebra of Me with [H∞e ]α = Hα
e .

We have that |x∗e| ∈ Lα(Me,
1
τ(e)τ), and 0 < τ(e) <∞. Then w = (e+ |x∗e|)−1 is an invertible

operator in Me with w−1 ∈ Lα(Me,
1
τ(e)τ). We know that Me is a finite von Neumann algebra

with faithful, normal tracial state 1
τ(e)τ , and αe onMe is a unitarily invariant, ε-‖ · ‖1-dominating,

continuous norm on Me. Therefore, from Proposition 5.2 in [8], there exists a unitary v in Me,

h1 ∈ H∞e , and h2 ∈ Hα
e such that

(i) h1h2 = e = h2h1; and

(iia) w = vh1.

By (iia), we get (iib) h1|x∗e| = v∗w|x∗e| = v∗(e + |x∗e|)−1|x∗e| ∈ Me ⊆ M. Since u1 is a partial

isometry in M, h1ex = h1|x∗e|u1 ∈M. Therefore, (ii) holds.

The proof for h3 and h4 is similar.
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The following lemma is also useful.

Lemma 1.5.7. Suppose M is a von Neumann algebra with a semifinite, faithful, normal, tracial

weight τ . Let H∞ be a semifinite subdiagonal subalgebra with respect to (M,Φ), where Φ is a

faithful, normal conditional expectation from M onto D = H∞ ∩ (H∞)∗.

Then there exists a net {eλ}λ∈Λ of projections in D such that such that

(i) eλ → I in the weak ∗-topology of M and τ(eλ) <∞ for each λ ∈ Λ.

(ii) We have, for every x ∈ Lα(M, τ) with 0 < p <∞,

lim
λ
α(eλx− x) = 0; lim

λ
α(xeλ − x) = 0; and lim

λ
α(eλxeλ − x) = 0.

Proof. We know that H∞ is a semifinite subdiagonal subalgebra of M, therefore the restriction of

τ to D is semifinite. From Lemma 1.3.22, there exists a net of projections {eλ}λ∈Λ in D such that

eλ → I in the weak* topology on D, and τ(eλ) <∞ for all λ ∈ Λ. Therefore,

lim
λ
|τ(eλz − z)| = 0 for every z ∈ L1(D, τ).

Also, for each y in L1(M, τ), we have that

lim
λ
|τ(eλy − y)| = lim

λ
|τ(Φ(eλy − y))| = lim

λ
|τ(eλΦ(y)− Φ(y))| = 0.

Namely, eλ → I in the weak* topology on M, and τ(eλ) <∞ for every λ ∈ Λ. (i) is satisfied.

Then from (i) and Definition 1.4.1, we may conclude that (ii) holds. Namely, for every x ∈

Lα(M, τ),

lim
λ
α(eλx− x) = 0; lim

λ
α(xeλ − x) = 0; and lim

λ
α(eλxeλ − x) = 0.

Therefore, the lemma is proven.

1.6 Row sums of von Neumann algebras

Now we recall the following definition for the row sum of subspaces in Lp(M, τ) for 0 < p ≤ ∞ as

follows.
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Definition 1.6.1. Let M be a von Neumann algebra with a semifinite, normal faithful, tracial

weight τ and 0 < p < ∞. Let X be a closed subspace of Lp(M, τ). Then X is called an internal

row sum of closed subspaces {Xi}i∈I of Lp(M, τ), denoted by X =
⊕row

i∈I Xi, if

1. XjX
∗
i = {0} for all distinct i, j ∈ I; and

2. the linear span of {Xi : i ∈ I} is dense in X, i.e. X = [span{Xi : i ∈ I}]p. We will denote

span{Xi : i ∈ I} by
∑

i∈I Xi.

Definition 1.6.2. Let M be a von Neumann algebra. Let X be a weak ∗-closed subspace of M.

Then X is called an internal row sum of a family of weak*-closed subspaces {Xi}i∈I of M, denoted

by X =
⊕row

i∈I Xi, if

1. XjX
∗
i = {0} for all distinct i, j ∈ I; and

2. the linear span of {Xi : i ∈ I} is weak*-dense in X, i.e. X = span{Xi : i ∈ I}w∗. We

will denote span{Xi : i ∈ I} by
∑

i∈I Xi.

1.7 The Beurling theorem

In 1949, A. Beurling proved his classical theorem for invariant subspaces (see [5]). We recall his

Theorem now. Suppose that T is the unit circle, and let µ be the measure on T such that dµ = 1
2πdθ.

We let L∞(T, µ) be the commutative von Neumann algebra on T and define L2(T, µ) to be the

closure of L∞(T, µ) under the ‖·‖2-norm. Let H2 = span({zn : n ≥ 0}‖·‖2 , as subspace of L2(T, µ),

and let H∞ = H2 ∩ L∞(T, µ). Define Mφ(f) = φ(f) for every f ∈ L2(T, µ). It may be shown that

L∞(T, µ) has a representation onto B(L2(T, µ)) via the map φ → Mφ. Hence, L∞(T, µ) and H∞

may be assumed to act naturally on L2(T, µ) via left or right multiplication.

The classical Beurling theorem (from [5]) may be stated as follows: If W is a nonzero, closed,

H∞-left-invariant subspace of H2 (equivalently, zW ⊆ W for all z ∈ H∞), then W = φH2 for

some φ in H∞ such that |φ| = 1 a.e.(µ).
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When we define Lp(T, µ) = L∞(T, µ)
‖·‖p

, and Hp = {f ∈ Lp(T, µ) :
∫
T f(eiθ)einθdµ(θ)∀n ∈ N}

for 1 ≤ p <∞, the Beurling theorem has been extended to the H∞-left-invariant subspace on the

Hardy spaces Hp for 1 ≤ p ≤ ∞. (For example, see [7], [17], [18], [19], [21], [44], and others).

The Beurling theorem has been extended in other ways as well. Our goal is to extend it in

several new cases.



Chapter 2

Invariant subspaces of Lp-Spaces

Let H be an infinite dimensional Hilbert space with an orthonormal base {em}m∈Z, and B(H) be

the set of all bounded linear operators on H. Let τ = Tr be the usual trace on B(H), i.e.

τ(x) =
∑
m∈Z
〈xem, em〉, for all positive x in B(H).

For each 0 < p < ∞, the Schatten p-class Sp(H) consists all the elements x in B(H) such that

τ(|x|p) < ∞. It is well-known (for example, see [9]) that Sp(H) is a complete metric space (a

Banach space when p ≥ 1 and a Hilbert space when p = 2). Moreover, Sp(H) is a two sided ideal

of B(H).

Let

A = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}

be the lower triangular subalgebra of B(H). In this chapter, we are interested in answering the

following question, which is implicitly asked by McAsey, Muhly and Saito in Example 2.6 of [28].

Problem 2.0.1. Given a closed subspace K of the Schatten p-class Sp(H) where 0 < p <∞, such

that K satisfies AK ⊆ K, how can we characterize the subspace K?

The answer to Problem 2.0.1 is closely related to our generalization of the classical Beurling

theorem for a Hardy space.

One extension of the Beurling theorem comes from the work of D. Blecher and L. Labuschagne

in [6]. We recall the construction of Lp(M, τ). Let M be a semifinite von Neumann algebra, and

let τ be a faithful, normal tracial weight on M (when τ(I) < ∞, M is finite). Let I be the set

18
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of elementary operators in M (when M is finite, I = M). Then define a mapping from I to

[0,∞) by ‖x‖p = (τ(|x|p))1/p for every x ∈ I, and where |x| =
√
x∗x. It is nontrivial to prove that

when 1 ≤ p < ∞, ‖ · ‖p defines a norm on I, which we call the Lp-norm. We may then define

Lp(M, τ) = I‖·‖p . We let L∞(M, τ) = M, and this space acts naturally on Lp(M, τ) by left (or

right) multiplication.

We then recall the definition of the semifinite extension of Arveson’s non-commutative Hardy

space from [1]. If M is a von Neumann algebra, with faithful, normal, semifinite tracial weight

τ , let A ⊆ M be a weak* closed unital subalgebra. Then let D = A ∩ A∗ be a von Neumann

subalgebra of M, such that τ |D is semifinite. There exists Φ : M → D, a faithful, normal

conditional expectation, which can be extended to Φ : L1(M, τ) → L1(D, τ). Then A is called

a non-commutative Hardy space if (1) Φ(xy) = Φ(x)Φ(y) for every x, y ∈ A; (2) A+A∗ is weak*

dense in M; (3) τ(Φ(x)) = τ(x) for every positive element x ∈M.

Blecher and Labuschagne proved the following theorem for finite von Neumann algebras in [6].

Let M be a finite von Neumann algebra with a faithful, tracial, normal state τ , and H∞ be a

maximal subdiagonal subalgebra of M with D = H∞ ∩ (H∞)∗. Suppose that K is a closed H∞-

right-invariant subspace of Lp(M, τ), for some 1 ≤ p ≤ ∞. (For p = ∞ it is assumed that K is

weak* closed.) Then K may be written as a column Lp-sum K = Z ⊕col (⊕coli uiH
p), where Z is

a closed (indeed, weak*closed if p = ∞) subspace of Lp(M, τ) such that Z = [ZH∞0 ]p, and where

ui are partial isometries in M∩K satisfying certain conditions. (For more details, see [6].) Here

⊕coli uiH
p and Z = [ZH∞0 ]p are of type 1, and type 2 respectively (also see [6] for definitions of

invariant subspaces of different types).

Examples of finite von Neumann algebras include the spaces Mn(C) of all n× n matrices with

complex entries when 1 ≤ n <∞. However, if H is an infinite dimensional separable Hilbert space

and we view B(H) as M∞(C), the set of all (bounded) ∞ × ∞ matrices with complex entries,

then B(H) is a semifinite von Neumann algebra, and no longer satisfies the hypothesis of the

Beurling-Blecher-Labuschagne theorem.

In this paper, we therefore consider a version of Blecher and Labuschagne’s Beurling theorem
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for semifinite von Neumann algebras. We seek to characterize H∞-invariant spaces of Lp(M, τ)

spaces. Adapting Blecher and Labuschagne’s theorem to the semifinite case, we prove the following

results:

Theorem 2.3.5. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and H∞ be a semifinite subdiagonal subalgebra of M (see Definition 1.5.1). Let D =

H∞ ∩ (H∞)∗. Assume that K ⊆M is weak ∗-closed subspace such that H∞K ⊆ K.

Then there exist a weak* closed subspace Y of M and a family {uλ}λ∈Λ of partial isometries

in M such that:

(i) uλY
∗ = 0 for all λ ∈ Λ.

(ii) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

(iii) Y = H∞0 Y
w∗

.

(iv) K = Y ⊕row (⊕rowλ∈ΛH
∞uλ)

Here ⊕row is the row sum of subspaces defined in Definition 1.6.2.

Theorem 2.3.6. Let 1 ≤ p < ∞. Let M be a von Neumann algebra with a faithful, normal,

semifinite tracial weight τ , and H∞ be a semifinite subdiagonal subalgebra of M (see Definition

1.5.1). Let D = H∞∩(H∞)∗. Assume that K is a closed subspace of Lp(M, τ) such that H∞K ⊆ K.

Then there exist a closed subspace Y of Lp(M, τ) and a family {uλ}λ∈Λ of partial isometries in

M such that:

(i) uλY
∗ = 0 for all λ ∈ Λ.

(ii) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

(iii) Y = [H∞0 Y ]p.

(iv) K = Y ⊕row (⊕rowλ∈ΛH
puλ)

Here ⊕row is the row sum of subspaces defined in Definition 1.6.1.
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However, many of the methods used by Blecher and Labuschagne do not apply directly when

M is a semifinite von Neumann algebra. Thus, we prove a density theorem for semifinite von

Neumann algebras through a series of lemmas and propositions.

Proposition 2.3.1. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and H∞ be a semifinite subdiagonal subalgebra of M. Let 1 ≤ p <∞. Assume that K is

a closed subspace in Lp(M, τ) such that H∞K ⊆ K. Then the following statements are true.

(i) K ∩M = K ∩Mw∗ ∩ Lp(M, τ).

(ii) K = [K ∩M]p.

Proposition 2.3.2. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and H∞ be a semifinite subdiagonal subalgebra ofM. Assume that K ⊆M is weak∗-closed

subspace such that H∞K ⊆ K. Then

K = [K ∩ Lp(M, τ)]p ∩M
w∗
, ∀ 1 ≤ p <∞.

Lemma 2.3.3. If u is a partial isometry in M such that uu∗ ∈ D, then

(i) [(H∞u) ∩ Lp(M, τ)]p = Hpu for all 1 ≤ p <∞, and

(ii) H∞u = Hpu ∩Mw∗
for all 1 ≤ p <∞.

Proposition 2.3.4. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and H∞ be a semifinite subdiagonal subalgebra of M. Assume that S ⊆M is a subspace

such that H∞S ⊆ S. Then

[S ∩ Lp(M, τ)]p = [S
w∗ ∩ Lp(M, τ)]p, ∀ 1 ≤ p <∞.

Subsequently, we are able to prove a noncommutative Beurling-Blecher-Labuschagne theorem

for the semifinite case when 0 < p < 1.
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Theorem 2.4.4. Let 0 < p < 1. Let M be a von Neumann algebra with a faithful, normal,

semifinite tracial weight τ , and H∞ be a semifinite subdiagonal subalgebra of M (see Definition

1.5.1). Let D = H∞∩(H∞)∗. Assume that K is a closed subspace of Lp(M, τ) such that H∞K ⊆ K.

Then there exist a closed subspace Y of Lp(M, τ) and a family {uλ}λ∈Λ of partial isometries in

M such that:

(i) uλY
∗ = 0 for all λ ∈ Λ.

(ii) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

(iii) Y = [H∞0 Y ]p.

(iv) K = Y ⊕row (⊕rowλ∈ΛH
puλ)

Here ⊕row is the row sum of subspaces defined in Definition 1.6.1.

Here, we use similar methods to our proof for 1 ≤ p < ∞, including proving a similar density

theorem (see Proposition 2.4.1, Proposition 2.4.2).

We also prove a corollary for the case when 0 < p <∞.

Corollary 2.4.5. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ .

(i) Let 0 < p < ∞. If K is a closed subspace of Lp(M, τ) such that MK ⊆ K, then there exists

a projection q ∈M such that K = Lp(M, τ)q.

(ii) If K is a weak∗-closed subspace ofM such thatMK ⊆ K, then there exists a projection q ∈M

such that K =Mq.

2.1 Lp-spaces of semifinite von Neumann algebras

Let M be a von Neumann algebra with a semifinite, faithful, normal, tracial weight τ . We let

I = span{MeM : e = e∗ = e2 ∈M with τ(e) <∞}
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be the set of elementary operators in M (see quasi-simple operators in Remark 2.3 in [42]). Then

I is a two-sided ideal of M. We recall the construction of the space Lp(M, τ).

For each 0 < p <∞, we define a mapping ‖ · ‖p : I → [0,∞) as follows

‖x‖p = (τ(|x|)p)
1
p for every x ∈ I.

It is a well-known fact that ‖ · ‖p is a norm on I for 1 ≤ p <∞, and a p-norm on I for 0 < p < 1.

(see Theorem 4.9 in [14])

Recall the following from Defintion 1.4.3. We define Lp(M, τ), for 0 < p < ∞, to be the

completion of I under ‖ · ‖p, i.e.

Lp(M, τ) = I‖·‖p .

As usual, we let L∞(M, τ) be M.

Notation 2.1.1. If S is a subset of Lp(M, τ) with 0 < p <∞, we will denote by [S]p the closure

of S in Lp(M, τ). If S is a subset of M, we will denote by S
w∗

the closure of S in M under the

weak ∗-topology.

The following two lemmas are well known.

Lemma 2.1.2. LetM be a von Neumann algebra with a semifinite, faithful, normal, tracial weight

τ . The following are true.

1. (Hölder’s Inequality) For 0 < p, q, r ≤ ∞ with 1/p+ 1/q = 1/r, we have xy ∈ Lr(M, τ) and

‖xy‖r ≤ ‖x‖p‖y‖q for all x ∈ Lp(M, τ) and y ∈ Lq(M, τ).

2. For each 0 < r ≤ ∞, we have ‖axb‖r ≤ ‖a‖‖x‖r‖b‖ for x ∈ Lr(M, τ) and a, b ∈ M.

Therefore, Lr(M, τ) is an M bi-module for each 0 < r ≤ ∞.

3. (Duality) For any 1 ≤ p <∞ and 1 < q ≤ ∞ with 1/p+ 1/q = 1, we have

(Lp(M, τ))] = Lq(M, τ) (isometrically),
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where the duality between Lp(M, τ) and Lq(M, τ) is given by 〈x, y〉 = τ(xy). Thus, L1(M, τ)

is the predual of M.

Proof. See [14].

We have the following as a consequence of Lemma 1.5.7

Lemma 2.1.3. LetM be a von Neumann algebra with a semifinite, faithful, normal, tracial weight

τ and 0 < p <∞. If {eλ}λ∈Λ is a net of projections in M such that such that eλ → I in the weak

∗-topology, then for every x ∈ Lp(M, τ)

lim
λ
‖eλx− x‖p = 0; lim

λ
‖xeλ − x‖p = 0; and lim

λ
‖eλxeλ − x‖p = 0.

2.2 Beurling-Blecher-Labuschagne theorem for semifinite Hardy

spaces, p=2

In this section, we will prove a Beurling-Blecher-Labuschagne type theorem for semifinite non-

commutative Hardy spaces.

Theorem 2.2.1. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and H∞ be a weak∗-closed subalgebra of M. Let D = H∞ ∩ (H∞)∗ be a von Neumann

subalgebra of M, and Φ :M→D be a faithful normal condition expectation.

Assume that H∞ is a semifinite subdiagonal subalgebra with respect to (M,Φ) (see Definition

1.5.1). Let K be a closed subspace of L2(M, τ) satisfying H∞K ⊆ K. Then there exist a closed

subspace Y of L2(M, τ) and a family {uλ}λ∈Λ of partial isometries in M, satisfying

(i) uλY
∗ = 0 for all λ ∈ Λ.

(ii) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

(iii) Y = [H∞0 Y ]2, where H∞0 = H∞ ∩ ker(Φ).

(iv) K = Y ⊕
(
⊕λ∈ΛH

2uλ
)



25

The proof of this result uses a similar idea as the one in [6] for finite von Neumann algebras.

We will modify the argument in [6] to prove the preceding result for the case of semifinite von

Neumann algebras. First, we present a series of technical lemmas.

2.2.1 Some lemmas

Following the notation above, we letM be a von Neumann algebra with a faithful, normal, semifi-

nite tracial weight τ and H∞ be a semifinite subdiagonal subalgebra ofM. Let D = H∞ ∩ (H∞)∗

be a von Neumann subalgebra of M and Φ : M → D a faithful normal conditional expectation.

From Remark 1.5.3, we know that Φ can be extended to a positive contraction from Lp(M, τ) onto

Lp(D, τ) for each 1 ≤ p <∞, such that

Φ(axb) = aΦ(x)b, ∀ a, b ∈ D, x ∈ Lp(M, τ), 1 ≤ p <∞.

We find the following observation useful. LetM be a von Neumann algebra with a faithful, normal,

semifinite tracial weight τ , and H∞ be a semifinite subdiagonal subalgebra ofM. If x in L1(M, τ)

satisfies

τ(xz) = 0 for all z ∈ H∞ + (H∞)∗,

then x = 0. This follows from the weak*-density of H∞ + (H∞)∗.

Lemma 2.2.2. Let K be a closed subspace of L2(M, τ) satisfying H∞K ⊆ K. Let

X = K 	 [H∞0 K]2 ⊆ K ⊆ L2(M, τ).

Then the following are true.

(i) XX∗ ⊆ L1(D, τ).

(ii) X is a left D-module, i.e. for every d ∈ D and x ∈ X, we have dx ∈ X.

(iii) Let x be an element in X and x = hu where u∗h is the polar decomposition of x∗ in L2(M, τ),

where u is a partial isometry in M and h = |x∗| ∈ L2(M, τ). Then
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(a) h ∈ L2(D, τ) and uu∗ ∈ D;

(b) [Dx]2 = L2(D, τ)u;

(c) [H∞x]2 = H2u. In particular, H2u ⊆ X.

(iv) There exists a family {uλ}λ∈Λ of partial isometries in M such that

(a) X = ⊕λ∈ΛH
2uλ;

(b) uλu
∗
λ is a projection in D; and

(c) uλu
∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

Proof. (i): Proving (i) is equivalent to showing that for every x, y ∈ X, yx∗ ∈ L1(D, τ).

Assume that x, y ∈ X ⊆ L2(M, τ). Thus yx∗ ∈ L1(M, τ). Recall Φ : L1(M, τ) → L1(D, τ) is

a positive contraction such that

Φ(d1ad2) = d1Φ(a)d2, ∀ d1, d2 ∈ D and a ∈ L1(M, τ),

and thus

Φ(da) = dΦ(a), ∀ d ∈ L1(D, τ) and a ∈M. (2.1)

Thus, to prove that yx∗ ∈ L1(D, τ), it is enough to show that yx∗−Φ(yx∗) = 0. By the observation

preceeding the lemma and the fact that yx∗ − Φ(yx∗) ∈ L1(M, τ), we need only to prove that

τ([yx∗ − Φ(yx∗)]z) = 0 for every z ∈ H∞ + (H∞)∗.

We will proceed with the proof according to the cases (1) z ∈ H∞0 , (2) z ∈ D, and (3) z ∈ (H∞0 )∗.

Case (1): Let z ∈ H∞0 . Then

τ([yx∗ − Φ(yx∗)]z) = τ(yx∗z)− τ(Φ(yx∗)z)

= τ(yx∗z)− τ(Φ(Φ(yx∗)z)) (Φ is trace preserving)

= τ(zyx∗)− τ(Φ(yx∗)Φ(z)) (by Equation 2.1)

= 0 (as x, y are in X and z is in H∞0 )
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Case (2): Let z ∈ D. Then

τ([yx∗ − Φ(yx∗)]z) = τ(Φ([yx∗ − Φ(yx∗)]z)) (Φ is trace preserving)

= τ([Φ(yx∗)− Φ(yx∗)]z)

= 0. (as x, y are in X and z is in H∞0 )

Case (3): Let z ∈ (H∞0 )∗. Then

τ([(yx∗)− Φ(yx∗)]z) = τ(yx∗z)− τ(Φ(yx∗)z)

= τ(y(z∗x)∗)− τ(Φ(Φ(yx∗)z)) (Φ is trace preserving)

= τ(y(z∗x)∗)− τ(Φ(yx∗)Φ(z)) (by equation 2.1)

= 0 (as x, y are in X and z is in H∞0 )

This ends the proof of part (i).

(ii): Let d ∈ D and x ∈ X ⊆ K. Since H∞K ⊆ K, we have dx ∈ K. Now, for h0 ∈ H∞0 and

k ∈ K,

τ(h0k(dx)∗) = τ(h0kx
∗d∗) = τ(d∗h0kx

∗) = 0,

as d∗h0 ∈ H∞0 , and x ∈ X = K 	 [H∞0 K]2. Hence dx ⊥ [H∞0 K]2. Thus dx ∈ X and X is a left

D-module.

(iii): Assume x is an element in X. Let x = hu where u∗h is the polar decomposition of x∗ in

L2(M, τ), where u is a partial isometry in M and h = |x∗| ∈ L2(M, τ). From the result in (i), we

know that h is in L2(D, τ). Therefore uu∗, as the range projection of h, is in D. This shows that

(a) is true.

From (a), it follows that [L2(D, τ)uu∗]2 = L2(D, τ)(uu∗). Observe that uu∗ is the range projec-

tion of h. Therefore, we have [Dh]2 = L2(D, τ)(uu∗), whence

[Dh]2u = L2(D, τ)(uu∗u) = L2(D, τ)u. (2.2)

We claim that

[Dx]2 = [Dh]2u.
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In order to prove this claim, we observe that for any sequence {dn} in D, dn converges in ‖·‖2-norm

to some element b in [Dx]2 if and only if dnxu
∗ = dnh is ‖ · ‖2-norm convergent to bu∗ in [Dx]2.

Uniqueness of limits ensures that the reverse part of the implication holds.

From this observation and equation (2.2), we conclude that

[Dx]2 = [Dh]2u = L2(D, τ)u.

This ends the proof of part (b). The proof of (c) is similar to (b).

(iv) We may assume that X 6= 0. From the result in (iii) and Zorn’s lemma, we may assume

that there exists a maximal family {uλ}λ∈Λ of nonzero partial isometries in M with respect to

which

(a1) H2uλ ⊆ X for each λ ∈ Λ;

(b) uλu
∗
λ is a projection in D; and

(c) uλu
∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

We will show that

(a) X = ⊕λ∈ΛH
2uλ.

In fact, from (a1), we know that each H2uλ ⊆ X. Combining with (c), we conclude that

{H2uλ}λ∈Λ is a family of orthogonal subspaces of X, whence ⊕λ∈ΛH
2uλ is a subspace of X.

Now assume that X 	 (⊕λ∈ΛH
2uλ) is not equal to 0. Pick a nonzero x in X 	 (⊕λ∈ΛH

2uλ)

and assume that x = hu is the polar decomposition of x∗ in L2(M, τ), where u is a nonzero partial

isometry in M and h = |x∗| ∈ L2(M, τ). It follows from the result proved in (iii) that H2u ⊆ X

and uu∗ is in D.

By Lemma 1.5.7, there exists a net {ej}j∈J of projections in D such that such that ej → I in

the weak ∗-topology and τ(ej) <∞ for each j ∈ J .

Let j ∈ J . Then by the choice of x, we get that H2uλ and x are orthogonal. So,

τ(dejuλx
∗) = 0, ∀ d ∈ D.
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From (i), ejuλx
∗ is in L1(D, τ). By the observation preceeding Lemma 2.2.2 we conclude that

ejuλx
∗ = 0 for each j ∈ J .

As uλx
∗ ∈ L2(M, τ), limj ‖ejuλx∗ − uλx∗‖2 = 0 by Lemma 2.1.3. Thus we have that uλx

∗ =

uλu
∗h = 0. The fact that the initial projection of u∗ is the range projection of h induces that

uλu
∗ = 0. Therefore, u is a nonzero partial isometry in M such that H2u ⊆ X, uu∗ ∈ D, and

uλu
∗ = 0 for each λ ∈ Λ. This contradicts the assumption that the family {uλ}λ∈Λ is maximal with

respect to (a1), (b) and (c). Therefore, X = ⊕λ∈ΛH
2uλ. This concludes the proof of part (iv).

Lemma 2.2.3. Let K be a closed subspace of L2(M, τ) satisfying H∞K ⊆ K. Let

X = K 	 [H∞0 K]2 and Y = K 	 [H∞X]2.

Then the following are true.

(i) Y X∗ = 0, or equivalently XY ∗ = 0.

(ii) Y = [H∞0 Y ]2

Proof. (i) We will show that yx∗ = 0 for every y ∈ Y and x ∈ X.

Note that Y ⊆ K ⊆ L2(M, τ) and X ⊆ K ⊆ L2(M, τ). We have that Y X∗ ⊆ L1(M, τ).

Assume y ∈ Y and x ∈ X. Then by the observation preceeding Lemma 2.2.2, it suffices to show

that

τ(yx∗z) = 0 for every z ∈ H∞ + (H∞)∗.

We will proceed with the proof according to the cases (1) z ∈ H∞0 , (2) z ∈ D, and (3) z ∈ (H∞0 )∗.

Case (1): Let z ∈ H∞0 . Then

τ(yx∗z) = τ(zyx∗) = 0,

since x ∈ X, zy ∈ H∞0 K, and X ⊥ [H∞0 K]2.

Case (2): Let z ∈ D. Then

τ(yx∗z) = τ(y(z∗x)∗) = 0,
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as y ∈ Y , z∗x ∈ H∞X, and Y ⊥ H∞X.

Case (3): Let z ∈ (H∞0 )∗. Then

τ(yx∗z) = τ(y(z∗x)∗) = 0,

as y ∈ Y , and z∗x ∈ H∞0 X.

Therefore, Y X∗ = 0, which ends the proof of (i).

(ii) From part (i), we know that Y X∗ = 0, whence H∞0 Y X∗ = 0. Recall Y = K 	 [H∞X]2.

It follows that [H∞0 Y ]2 ⊆ Y . Let Z = Y 	 [H∞0 Y ]2 = 0. To prove (ii), it suffices to show that

ZZ∗ = 0. Because Z ⊆ Y, we have that Z ⊥ [H∞X]2, whence Z ⊥ [H∞0 (Y ⊕ [H∞X]2)]2. This

implies that Z ⊥ [H∞0 K]2. Note that X = K 	 [H∞0 K]2. We conclude that Z ⊆ X. Note that

Y X∗ = 0. Since Z ⊆ X and Z ⊆ Y , we have that ZZ∗ ⊆ Y X∗ = 0. This ends the proof of (ii).

2.2.2 Proof of Theorem 2.2.1

We are ready to prove the main result in this section.

Proof. Recall that K is a closed subspace of L2(M, τ) satisfying H∞K ⊆ K. Let

X = K 	 [H∞0 K]2 and Y = K 	 [H∞X]2.

By Lemma 2.2.2, there exists a family {uλ}λ∈Λ of partial isometries in M such that

X = ⊕λ∈ΛH
2uλ;

and

uλu
∗
λ is a projection in D, and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ. (ii)

By the choice of Y , we have

K = Y ⊕X = Y ⊕ (⊕λ∈ΛH
2uλ). (iv)
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Moreover, from Lemma 2.2.3, we know that

eiuλY
∗ = 0

for all λ ∈ Λ, and a net of projections {ei} such that τ(ei) <∞, and ei → I in the weak*-topology.

Therefore

uλY
∗ = 0. (i)

Also,

Y = [H∞0 Y ]2. (iii)

This ends the proof of Theorem 2.2.1.

2.3 Beurling-Blecher-Labuschagne theorem for semifinite Hardy

spaces, 1 ≤ p ≤ ∞

2.3.1 Dense subspaces

Proposition 2.3.1. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and H∞ be a semifinite subdiagonal subalgebra of M. Let 1 ≤ p <∞. Assume that K is

a closed subspace in Lp(M, τ) such that H∞K ⊆ K. Then the following statements are true.

(i) K ∩M = K ∩Mw∗ ∩ Lp(M, τ).

(ii) K = [K ∩M]p.

Proof. (i) It is easily observed that

K ∩M ⊆ K ∩Mw∗ ∩ Lp(M, τ).

We will show that

K ∩M = K ∩Mw∗ ∩ Lp(M, τ).

Assume, to the contrary, that K ∩ M & K ∩Mw∗ ∩ Lp(M, τ). Then there exists an x ∈

K ∩Mw∗ ∩ Lp(M, τ) such that x /∈ K ∩M. Clearly, K ∩Mw∗ ⊆ M, so x /∈ K ∩M implies that
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x /∈ K. By the Hahn-Banach theorem, there exists ϕ ∈ Lp(M, τ)# = Lq(M, τ) (where 1
p + 1

q = 1)

such that ϕ(x) 6= 0 and ϕ(y) = 0 for every y ∈ K. Pick ξ in Lq(M, τ) such that τ(ξx) 6= 0, and

τ(K) = 0.

By Lemma 1.5.7, there exists a net {eλ}λ∈Λ of projections in D such that τ(eλ) < ∞ for each

λ ∈ Λ, and limλ τ(eλxξ) = τ(xξ). So, we can always assume that there exists a projection e in D

with 0 < τ(e) < ∞ such that τ(exξ) 6= 0 and τ(eyξ) = 0 for every y ∈ K (as K is H∞-invariant

and e ∈ D ⊆ H∞).

Now we claim that ξe ∈ L1(M, τ), as ||ξe||1 ≤ ||ξ||q||e||p <∞.

Since x ∈ K ∩Mw∗ ∩ Lp(M, τ), we can find a net {yi}i∈I in K ∩M, such that yi → x in the

weak∗-topology. Combining this with the fact that ξe ∈ L1(M, τ), we have

τ(exξ) = τ(xξe) = lim
i
τ(yiξe) = lim

i
τ(eyiξ) = 0,

which contradicts the fact that τ(exξ) 6= 0. This ends the proof of part (i).

(ii) Suppose, to the contrary, that [K ∩ M]p & K. Then there exists an x ∈ K such that

x /∈ [K ∩ M]p. Then, by the Hahn-Banach theorem, there exists ϕ ∈ Lp(M, τ)# = Lq(M, τ)

(where 1
p + 1

q = 1), such that ϕ(x) 6= 0 and ϕ(y) = 0 for every y ∈ [K ∩M]p. This occurs if and

only if there exists a ξ ∈ Lq(M, τ) such that τ(xξ) 6= 0 and τ(yξ) = 0 for every y ∈ [K ∩M]p.

By Lemma 1.5.7, there exists a net {eλ}λ∈Λ of projections in D such that τ(eλ) < ∞ for each

λ ∈ Λ, and limλ τ(eλxξ) = τ(xξ). So, we may always assume that there exists a projection e in D

with 0 < τ(e) <∞ such that

(a) τ(exξ) 6= 0; and

(b) τ(eyξ) = 0 for every y ∈ K ∩M (as K is H∞-invariant, and e ∈ D ⊆ H∞).

Since x ∈ Lp(M, τ) and e is a projection in D such that τ(e) < ∞, by Lemma 1.5.6, there

exists a h1 ∈ eH∞e, and h2 ∈ eHpe such that h1ex ∈M and h1h2 = h2h1 = e. From the fact that
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h2 ∈ eHpe, there exists a sequence {an}n∈N in eH∞e such that limn→∞ ‖an − h2‖p = 0. Therefore

lim
n→∞

|τ(anh1exξ)− τ(exξ)| = lim
n→∞

|τ(anh1exξ)− τ(h2h1exξ)|

≤ lim
n→∞

‖an − h2‖p‖h1ex‖‖ξ‖q

= 0.

On the other hand, since an, h1 and e are in H∞ and h1ex ∈ M, we know that anh1ex ∈ K ∩M.

From assumption (b), it follows that τ(anh1exξ) = 0 for all n ≥ 1. Therefore τ(exξ) = 0, which

contradicts the assumption (a) that τ(xξe) 6= 0. This ends the proof of part (ii).

Proposition 2.3.2. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ and H∞ be a semifinite subdiagonal subalgebra of M. Assume that K ⊆ M is a weak∗-

closed subspace such that H∞K ⊆ K. Then

K = [K ∩ Lp(M, τ)]p ∩M
w∗
, ∀ 1 ≤ p <∞.

Proof. First, we show that

K ⊆ [K ∩ Lp(M, τ)]p ∩M
w∗
.

Let x be an element in K ⊆ M. By Lemma 1.5.7, there exists a net {eλ}λ∈Λ of projections in D

such that such that eλ → I in the weak* topology and τ(eλ) < ∞ for each λ ∈ Λ. By Lemma

1.3.21, eλx → x in the weak* topology. To show that x ∈ [K ∩ Lp(M, τ)]p ∩M
w∗
, it suffices to

show that eλx ∈ [K ∩ Lp(M, τ)]p ∩M
w∗

for each λ ∈ Λ.

Since K ⊆ M is left H∞-invariant and x ∈ K, we have eλx ∈ K. Moreover, ‖eλx||p ≤

‖eλ||p||x||∞ <∞, so eλx ∈ Lp(M, τ). It follows that eλx ∈ K∩Lp(M, τ) for each λ ∈ Λ. As eλx→ x

in the weak* topology, x ∈ [K ∩ Lp(M, τ)]p ∩M
w∗

. We obtain K ⊆ [K ∩ Lp(M, τ)]p ∩M
w∗
.

Next, we will show that

[K ∩ Lp(M, τ)]p ∩M
w∗ ⊆ K.

Since K is weak∗-closed, it suffices to show that

[K ∩ Lp(M, τ)]p ∩M ⊆ K.
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Assume, to the contrary, that x is an element in [K ∩ Lp(M, τ)]p ∩M, but x /∈ K. Thus, by

the Hahn-Banach theorem, there exists a weak* continuous linear functional ϕ on M such that

ϕ(x) 6= 0 and ϕ(y) = 0 for every y ∈ K. Equivalently, there exists a ξ ∈ L1(M, τ) such that

(a) τ(xξ) 6= 0; and

(b) τ(yξ) = 0 for every y ∈ K.

By Lemma 1.5.7, there exists a net {eλ}λ∈Λ of projections in D such that τ(eλ) <∞ for each λ ∈ Λ

and limλ τ(eλxξ) = τ(xξ). So we may always assume that there exists a projection e in D with

0 < τ(e) <∞ such that

(a1) τ(exξ) 6= 0; and

(b1) τ(eyξ) = 0 for every y ∈ K (as K is H∞-invariant and e ∈ D ⊆ H∞).

We claim there exists a z = ze ∈Me such that

(a2) τ(xz) 6= 0; and

(b2) τ(yz) = 0 for every y ∈ K.

Observe that ξ is in L1(M, τ), and e is a projection in D such that τ(e) <∞. From Lemma 1.5.6,

there exist h3 ∈ eH∞e and h4 ∈ eH1e such that ξeh3 ∈ eMe and h3h4 = e. Thus there exists a

sequence {kn}n∈N of elements in eH∞e such that limn→∞ ‖kn − h4‖1 = 0. It follows that

lim
n→∞

|τ(exξ)− τ(xξeh3kn)| = lim
n→∞

|τ(xξeh3h4)− τ(xξeh3kn)|

≤ lim
n→∞

‖x‖‖ξeh3‖‖h4 − kn‖1 = 0.

Combining this with (a1), we know that there exists an N ∈ N such that τ(xξeh3kN ) 6= 0. Let

z = (ξeh3)kN be in M. Then z = ze ∈Me satisfies

(a2) τ(xz) = τ(xξeh3kN ) 6= 0; and

(b2) τ(yz) = τ(yξeh3kN ) = τ((eh3kN )yξ) = 0 for every y ∈ K.
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Note that x ∈ [K ∩ Lp(M, τ)]p ∩M. There exists a sequence {xn}n∈N in K ∩ Lp(M, τ) such

that limn→∞ ‖xn − x‖p = 0. Thus we have

|τ(xz − xnz)| = |τ((x− xn)ze)| ≤ ‖xn − x‖p‖z‖‖e‖q → 0, (2.3)

where q satisfies 1/p+ 1/q = 1. On the other hand, since {xn}n∈N is in K ∩ Lp(M, τ), by (b2) we

have

τ(xnz) = 0, ∀ n ∈ N.

Combining with inequality (2.3), we have

τ(xz) = 0.

This contradicts the assumption in (a2) that τ(xz) 6= 0. Therefore,

[K ∩ Lp(M, τ)]p ∩M
w∗ ⊆ K.

Hence

K = [K ∩ Lp(M, τ)]p ∩M
w∗
.

Lemma 2.3.3. If u is a partial isometry in M such that uu∗ ∈ D, then

(i) [(H∞u) ∩ Lp(M, τ)]p = Hpu for all 1 ≤ p <∞, and

(ii) H∞u = Hpu ∩Mw∗
for all 1 ≤ p <∞.

Proof. (i) can be verified directly. (ii) follows from Proposition 2.3.2 and (i).

Proposition 2.3.4. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ and let H∞ be a semifinite subdiagonal subalgebra of M. Assume that S ⊆ M is a

subspace such that H∞S ⊆ S. Then

[S ∩ Lp(M, τ)]p = [S
w∗ ∩ Lp(M, τ)]p, ∀ 1 ≤ p <∞.
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Proof. It suffices to show that

S
w∗ ∩ Lp(M, τ) ⊆ [S ∩ Lp(M, τ)]p.

Let x ∈ Sw
∗
∩Lp(M, τ). By Lemma 1.5.7, there exists a net {eλ}λ∈Λ of projections in D such that

eλ → I in the weak* topology and τ(eλ) <∞ for each λ ∈ Λ. By Lemma 2.1.3, limλ ‖eλx−x‖p = 0.

To show that x ∈ [S ∩Lp(M, τ)]p, it is enough to show that eλx ∈ [S ∩Lp(M, τ)]p for each λ ∈ Λ.

By Proposition 2.3.1, we have

[S ∩ Lp(M, τ)]p ∩M = [S ∩ Lp(M, τ)]p ∩M
w∗ ∩ Lp(M, τ).

Since x ∈ Sw
∗
∩Lp(M, τ), there exists a net {xj}j∈J in S such that xj → x in the weak∗ topology.

By Lemma 1.3.21, eλxj → eλx in the weak∗ topology for each λ. Note that ‖eλxj‖p ≤ ‖eλ‖p‖xj‖

and H∞S ⊆ S. We therefore know that eλxj ∈ S ∩Lp(M, τ). So eλx is in [S ∩ Lp(M, τ)]p ∩M
w∗

.

It is trivial to see that eλx ∈ Lp(M, τ). Hence,

eλx ∈ [S ∩ Lp(M, τ)]p ∩M
w∗ ∩ Lp(M, τ) = [S ∩ Lp(M, τ)]p ∩M.

So

x ∈ [S ∩ Lp(M, τ)]p.

Thus

S
w∗ ∩ Lp(M, τ) ⊆ [S ∩ Lp(M, τ)]p.

Hence

[S ∩ Lp(M, τ)]p = [S
w∗ ∩ Lp(M, τ)]p, ∀ 1 ≤ p <∞.

Theorem 2.3.5. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and H∞ be a semifinite subdiagonal subalgebra of M. Let D = H∞ ∩ (H∞)∗. Assume

that K ⊆M is weak∗-closed subspace such that H∞K ⊆ K.

Then there exist a weak* closed subspace Y of M and a family {uλ}λ∈Λ of partial isometries

in M such that:
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(i) uλY
∗ = 0 for all λ ∈ Λ.

(ii) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

(iii) Y = H∞0 Y
w∗

.

(iv) K = Y ⊕row (⊕rowλ∈ΛH
∞uλ)

Here ⊕row is the row sum of subspaces defined in Definition 1.6.2.

Proof. Let K1 = [K∩L2(M, τ)]2. Then K1 is a closed subspace of L2(M, τ) such that H∞K1 ⊆ K1.

By Theorem 2.2.1, there exist a closed subspace Y1 of L2(M, τ) and a family {uλ}λ∈Λ of partial

isometries in M, satisfying

(a) uλY
∗

1 = 0 for all λ ∈ Λ.

(b) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

(c) Y1 = [H∞0 Y1]2, where H∞0 = H∞ ∩ ker(Φ).

(d) K1 = Y1 ⊕
(
⊕λ∈ΛH

2uλ
)

Let

Y = Y1 ∩M
w∗
.

(i) We show that (i) is satisfied. In fact, from (a) and Lemma 1.3.21, we have

uλY
∗ = 0 for all λ ∈ Λ. (2.4)

(ii) follows directly from (b).

(iii) We claim that

Y = H∞0 Y
w∗
.

In fact, we need only to show that Y ⊆ H∞0 Y
w∗

. By Proposition 2.3.1 and the definition of Y , we

have

Y1 = [Y1 ∩M]2 = [Y1 ∩M
w∗ ∩ L2(M, τ)]2 = [Y ∩ L2(M, τ)]2.
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So

H∞0 Y1 = H∞0 [Y ∩ L2(M, τ)]2 ⊆ [(H∞0 Y ) ∩ L2(M, τ)]2

⊆ [H∞0 Y
w∗ ∩ L2(M, τ)]2.

Thus, from (c), we have

Y1 = [H∞0 Y1]2 ⊆ [H∞0 Y
w∗ ∩ L2(M, τ)]2. (2.5)

Now, we are able to conclude that

Y = Y1 ∩M
w∗

(by definition of Y )

⊆ [H∞0 Y
w∗ ∩ L2(M, τ)]2 ∩M

w∗

(by (2.5))

= H∞0 Y
w∗
. (by Proposition 2.3.2)

Thus

Y = H∞0 Y
w∗
. (2.6)

(iv) We show that

Y +
∑
λ∈Λ

H∞uλ
w∗

= K.

By Proposition 2.3.2, it suffices to show that

Y +
∑
λ∈Λ

H∞uλ
w∗

= [K ∩ L2(M, τ)]2 ∩M
w∗
.

First, we have that Y +
∑

λ∈ΛH
∞uλ ⊆ [K ∩ L2(M, τ)]2 ∩M

w∗
. In fact, Y = Y1 ∩M

w∗
and

Y1 ⊆ [K∩L2(M, τ)]2, so Y ⊆ [K ∩ L2(M, τ)]2 ∩M
w∗

. Moreover, for each λ ∈ Λ, by Lemma 2.3.3,

we have H∞uλ = H2uλ ∩M
w∗ ⊆ [K ∩ L2(M, τ)]2 ∩M

w∗
. So

Y +
∑
λ∈Λ

H∞uλ ⊆ [K ∩ L2(M, τ)]2 ∩M
w∗
.

Thus

Y +
∑
λ∈Λ

H∞uλ
w∗

⊆ [K ∩ L2(M, τ)]2 ∩M
w∗

= K. (2.7)
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Next, define X = Y +
∑

λ∈ΛH
∞uλ

w∗
. We want to show that

[K ∩ L2(M, τ)]2 ∩M
w∗ ⊆ X.

Notice X is weak*-closed and H∞X ⊆ X. By Proposition 2.3.2,

X = [X ∩ L2(M, τ)]2 ∩M
w∗
.

Therefore we need only to show that [K∩L2(M, τ)]2 ⊆ [X ∩L2(M, τ)]2. Or, equivalently, we may

show Y1 and {H2uλ}λ∈Λ are in [X ∩ L2(M, τ)]2. By Proposition 2.3.1, we have

Y1 = [Y1 ∩M]2 = [Y1 ∩M
w∗ ∩ L2(M, τ)]2 = [Y ∩ L2(M, τ)]2.

Thus

Y1 ⊆ [X ∩ L2(M, τ)]2. (2.8)

By Lemma 2.3.3,

H2uλ = [H∞uλ ∩ L2(M, τ)]2 ⊆ [X ∩ L2(M, τ)]2 for each λ ∈ Λ. (2.9)

Hence, from (2.8) and (2.9), we get [K ∩ L2(M, τ)]2 ⊆ [X ∩ L2(M, τ)]2 and

K = [K ∩ L2(M, τ)]2 ∩M
w∗ ⊆ Y +

∑
λ∈Λ

H∞uλ
w∗

. (2.10)

Now, combining (2.7) and (2.10), we have

K = Y +
∑
λ∈Λ

H∞uλ
w∗

= Y ⊕row (⊕rowλ∈ΛH
∞uλ), (2.11)

by Definition 1.6.2.

By (2.11), (2.4), (b) and (2.6), we know that Y and {uλ}λ∈Λ have the desired properties.

Next, we use our result for p =∞ and the density theorem to prove the case when 1 ≤ p <∞.

Theorem 2.3.6. Let 1 ≤ p < ∞. Let M be a von Neumann algebra with a faithful, normal,

semifinite tracial weight τ , and H∞ be a semifinite subdiagonal subalgebra of M. Let D = H∞ ∩

(H∞)∗. Assume that K is a closed subspace of Lp(M, τ) such that H∞K ⊆ K.
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Then there exist a closed subspace Y of Lp(M, τ) and a family {uλ}λ∈Λ of partial isometries in

M such that:

(i) uλY
∗ = 0 for all λ ∈ Λ.

(ii) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

(iii) Y = [H∞0 Y ]p.

(iv) K = Y ⊕row (⊕rowλ∈ΛH
puλ)

Here ⊕row is the row sum of subspaces defined in Definition 1.6.2.

Proof. Let K1 = K ∩Mw∗
. Then K1 is a weak∗-closed subspace of M such that H∞K1 ⊆ K1.

By Theorem 2.3.5, there exist a weak∗-closed subspace Y1 of M and a family {uλ}λ∈Λ of partial

isometries in M, satisfying

(a) uλY
∗

1 = 0 for all λ ∈ Λ.

(b) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

(c) Y1 = H∞0 Y1
w∗

.

(d) K1 = Y1 ⊕row (⊕rowλ∈ΛH
∞uλ)

Let

Y = [Y1 ∩ Lp(M, τ)]p.

(i) From (a), the definition of Y and Lemma 2.1.2, we can conclude that

uλY
∗ = 0 for all λ ∈ Λ. (2.12)

(ii) follows directly from (b).
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(iii) We want to show that Y = [H∞0 Y ]p. In fact, we have

Y = [Y1 ∩ Lp(M, τ)]p (by definition of Y )

= [H∞0 Y1
w∗ ∩ Lp(M, τ)]p (by (c))

= [(H∞0 Y1) ∩ Lp(M, τ)]p (by Proposition 2.3.4)

= [
(
H∞0 [Y1 ∩ Lp(M, τ)]p ∩M

w∗
)
∩ Lp(M, τ)]p (by Proposition 2.3.2)

⊆ [H∞0 ([Y1 ∩ Lp(M, τ)]p ∩M)
w∗ ∩ Lp(M, τ)]p (by Lemma 1.3.21)

= [(H∞0 ([Y1 ∩ Lp(M, τ)]p ∩M)) ∩ Lp(M, τ)]p (by Proposition 2.3.4)

= [(H∞0 (Y ∩M)) ∩ Lp(M, τ)]p (by definition of Y )

⊆ [H∞0 Y ]p ⊆ Y, (2.13)

(iv) There is only left to show that

K = Y ⊕row (⊕rowλ∈ΛH
puλ).

By the definition of Y , we have

Y = [Y1 ∩ Lp(M, τ)]p, (2.14)

and from Lemma 2.3.3, we have

Hpuλ = [H∞uλ ∩ Lp(M, τ)]p, ∀ λ ∈ Λ. (2.15)
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Now, we have

K = [K1 ∩ Lp(M, τ)]p (by Proposition 2.3.1)

= [Y1 +
∑
λ∈Λ

H∞uλ
w∗

∩ Lp(M, τ)]p (by Definition 1.6.1)

= [(Y1 +
∑
λ∈Λ

H∞uλ) ∩ Lp(M, τ)]p (by Proposition 2.3.4)

= [(Y ∩ Lp(M, τ)) +
∑
λ∈Λ

(H∞uλ ∩ Lp(M, τ))]p (by (a) and (b))

= [Y +
∑
λ∈Λ

Hpuλ]p (by (2.14) and (2.15))

= Y ⊕row (⊕rowλ∈ΛH
puλ), (2.16)

where the last equation follows from Defintion 1.6.1.

As a summary, from (2.12), (b), (2.13), and (2.16), Y and {uλ}λ∈Λ have the desired properties.

This ends the proof of the theorem.

2.4 Beurling-Blecher-Labuschagne theorem for semifinite Hardy

spaces, 0 < p < 1

Proposition 2.4.1. Suppose 0 < p < 1. Let M be a von Neumann algebra with a faithful, normal,

semifinite tracial weight τ , and H∞ be a semifinite subdiagonal subalgebra of M. Assume that K

is a closed subspace in Lp(M, τ) such that H∞K ⊆ K. Then the following statements are true.

(i) K ∩ L2(M, τ) = [K ∩ L2(M, τ)]2 ∩ Lp(M, τ).

(ii) K = [K ∩ L2(M, τ)]p.

Proof. (i) We need only to show that

[K ∩ L2(M, τ)]2 ∩ Lp(M, τ) ⊆ K ∩ L2(M, τ).
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Let x ∈ [K∩L2(M, τ)]2 ∩Lp(M, τ). We will show that x ∈ K. By Lemma 1.5.7, there exists a net

{eλ}λ∈Λ of projections in D such that such that τ(eλ) <∞ for each λ ∈ Λ and limλ ‖eλx−x‖p = 0.

To show that x ∈ K, it is enough to prove that eλx ∈ K for each λ ∈ Λ.

As x ∈ [K∩L2(M, τ)]2, there exists a sequence {xn}n∈N in K∩L2(M, τ) such that limn→∞ ‖xn−

x‖2 = 0. Thus, for each λ ∈ Λ and some positive number q with 1
2 + 1

q = 1
p ,

lim
n→∞

‖eλxn − eλx‖p = lim
n→∞

‖eλ(xn − x)‖p ≤ lim
n→∞

‖xn − x‖2‖eλ‖q = 0.

Here, we used the fact that τ(eλ) <∞, whence ‖eλ‖q <∞. Since H∞K ⊆ K and eλ ∈ D, we know

that eλxn ∈ K. This implies that eλx ∈ K for each λ ∈ Λ. Thus x ∈ K, whence

[K ∩ L2(M, τ)]2 ∩ Lp(M, τ) ⊆ K ∩ L2(M, τ).

(ii) We need only to show that

K ⊆ [K ∩ L2(M, τ)]p.

Suppose that x ∈ K ⊆ Lp(M, τ). By Lemma 1.5.7, we can find a net {eλ}λ∈Λ of projections in D

such that limλ ‖eλx− x‖2 = 0 and τ(eλ) < ∞ for each λ ∈ Λ. To show that x ∈ [K ∩ L2(M, τ)]p,

it suffices to prove that eλx ∈ [K ∩ L2(M, τ)]p for each λ ∈ Λ.

Note that x ∈ Lp(M, τ) and τ(eλ) < ∞. By Lemma 1.5.6, there exist h1 ∈ eλH
∞eλ and

h2 ∈ eλHpeλ such that (a) h1h2 = h2h1 = eλ and (b) h1eλx ∈M. Since h2 ∈ eλHpeλ, there exists

a sequence {kn}n∈N in eλH
∞eλ such that limn→∞ ‖kn − h2‖p = 0. Thus

lim
n→∞

‖knh1eλx− eλx‖p = lim
n→∞

‖(kn − h2)h1eλx‖p

≤ lim
n→∞

‖(kn − h2)‖p‖h1eλx‖ = 0. (2.17)

It is not hard to check that knh1eλx ∈ K. Moreover, since each kn ∈ eλH∞eλ, we have

‖knh1eλx‖2 = ‖eλknh1eλx‖2 ≤ ‖eλ‖2‖kn‖‖h1eλx‖ <∞.

Therefore, knh1eλx is also in L2(M, τ). It follows that knh1eλx ∈ K ∩ L2(M, τ). Combining with

(2.17), we know that eλx ∈ [K ∩ L2(M, τ)]p for each λ ∈ Λ, whence x ∈ [K ∩ L2(M, τ)]p. Thus

K ⊆ [K ∩ L2(M, τ)]p.
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This ends the proof of the proposition.

Proposition 2.4.2. Suppose 0 < p < 1. Let M be a von Neumann algebra with a faithful, normal,

semifinite tracial weight τ , and H∞ be a semifinite subdiagonal subalgebra of M. Assume that S

is a subspace in L2(M, τ) such that H∞S ⊆ S. Then

[S ∩ Lp(M, τ)]p = [[S]2 ∩ Lp(M, τ)]p.

Proof. We need only to show that

[[S]2 ∩ Lp(M, τ)]p ⊆ [S ∩ Lp(M, τ)]p.

Or, equivalently,

[S]2 ∩ Lp(M, τ) ⊆ [S ∩ Lp(M, τ)]p.

Let x ∈ [S]2 ∩Lp(M, τ). By Lemma 1.5.7, we can find a net {eλ}λ∈Λ of projections in D such that

limλ ‖eλx − x‖p = 0 and τ(eλ) < ∞ for each λ ∈ Λ. To show that x ∈ [S ∩ Lp(M, τ)]p, it suffices

to prove that eλx ∈ [S ∩ Lp(M, τ)]p for each λ ∈ Λ.

Note that x ∈ [S]2∩Lp(M, τ). Then there exists a sequence {xn}n∈N in S such that limn→∞ ‖xn−

x‖2 = 0. Therefore,

‖eλxn − eλx‖p = ‖eλ(xn − x)‖p ≤ ‖eλ‖q‖xn − x‖2 → 0, as n→∞, (2.18)

where q is a positive number such that 1
2 + 1

q = 1
p . Since H∞S ⊆ S and eλ ∈ D, we know that

eλxn ∈ S. Moreover, ‖eλxn‖p ≤ ‖eλ‖q‖xn‖2 < ∞, which implies eλxn ∈ Lp(M, τ). This induces

that eλxn ∈ S ∩ Lp(M, τ). Combining with (2.18), we have that eλx ∈ [S ∩ Lp(M, τ)]p for each

λ ∈ Λ. Thus x ∈ [S ∩ Lp(M, τ)]p for each λ ∈ Λ. That is,

[S]2 ∩ Lp(M, τ) ⊆ [S ∩ Lp(M, τ)]p.

Lemma 2.4.3. If u is a partial isometry in M such that uu∗ ∈ D, then
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(i) [(H2u) ∩ Lp(M, τ)]p = Hpu for 0 < p < 1;

(ii) H2u = [Hpu ∩ L2(M, τ)]2 for 0 < p < 1.

Proof. (i) Assume that x ∈ H2 such that xu ∈ (H2u) ∩ Lp(M, τ). Then xuu∗ ∈ Lp(M, τ), and

x(uu∗) is also in H2, as uu∗ ∈ D. So xuu∗ ∈ H2 ∩ Lp(M, τ) ⊆ Hp by Proposition 3.2 in [2]. Note

that Hpu is a closed subspace in Lp(M, τ). We have

[(H2u) ∩ Lp(M, τ)]p ⊆ Hpu.

Similarly, we have

[(Hpu) ∩ L2(M, τ)]2 ⊆ H2u. (2.19)

Combining with Proposition 2.4.1, we have

Hpu = [Hpu ∩ L2(M, τ)]p ⊆ [(H2u) ∩ Lp(M, τ)]p.

Hence [(H2u) ∩ Lp(M, τ)]p = Hpu, for 0 < p < 1.

(ii) Let x ∈ H2. By Lemma 1.5.7, we can find a net {eλ}λ∈Λ of projections in D such that

limλ ‖eλx−x‖2 = 0 and τ(eλ) <∞ for each λ ∈ Λ. From τ(eλ) <∞, it is easy to verify that eλx ∈

Lp(M, τ)∩H2, and Lp(M, τ)∩H2 ⊆ Hp by Proposition 3.2 in [2]. Thus eλxu ∈ (Hpu)∩L2(M, τ)

for each λ ∈ Λ, whence xu ∈ [(Hpu) ∩ L2(M, τ)]2, or equivalently,

H2u ⊆ [(Hpu) ∩ L2(M, τ)]2.

Combining with equation 2.19, we have

H2u = [(Hpu) ∩ L2(M, τ)]2.

Now, we can prove a Beurling-Blecher-Labuschagne Theorem for the semifinite case when 0 <

p < 1.
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Theorem 2.4.4. Let 0 < p < 1. Let M be a von Neumann algebra with a faithful, normal,

semifinite tracial weight τ , and H∞ be a semifinite subdiagonal subalgebra of M. Let D = H∞ ∩

(H∞)∗. Assume that K is a closed subspace of Lp(M, τ) such that H∞K ⊆ K.

Then there exist a closed subspace Y of Lp(M, τ) and a family {uλ}λ∈Λ of partial isometries in

M such that:

(i) uλY
∗ = 0 for all λ ∈ Λ.

(ii) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ.

(iii) Y = [H∞0 Y ]p.

(iv) K = Y ⊕row (⊕rowλ∈ΛH
puλ)

Here ⊕row is the row sum of subspaces defined in Definition 1.6.1.

Proof. Let K1 = [K∩L2(M, τ)]2. Then K1 is a closed subspace of L2(M, τ) such that H∞K1 ⊆ K1.

By Theorem 2.3.6, there exist a closed subspace Y1 of L2(M, τ) and a family {uλ}λ∈Λ of partial

isometries in M, satisfying

(a) uλY
∗

1 = 0 for all λ ∈ Λ.

(b) uλu
∗
λ ∈ D and uλuµ =∗ 0 for all λ, µ ∈ Λ with λ 6= µ.

(c) Y1 = [H2
0Y1]2.

(d) K1 = Y1 ⊕row (⊕rowλ∈ΛH
2uλ)

Let

Y = [Y1 ∩ Lp(M, τ)]p.

(i) From (a), the definition of Y and Lemma 2.1.2, we can conclude that

uλY
∗ = 0 for all λ ∈ Λ. (2.20)

(ii) follows directly from (b).
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(iii) We want to show that Y = [H2
0Y ]p. First we will show that

[(H∞0 Y1) ∩ Lp(M, τ)]p ⊆ [H∞0 (Y1 ∩ Lp(M, τ))]p

In fact, let x ∈ Y1 and h ∈ H∞0 be such that hx ∈ (H∞0 Y1) ∩ Lp(M, τ). We want to show that

hx ∈ [H∞0 (Y1 ∩ Lp(M, τ))]p. By Lemma 1.5.7, we can find a net {eλ}λ∈Λ of projections in D such

that eλ → I in weak∗-topology and τ(eλ) <∞ for each λ ∈ Λ. By Lemma 2.1.3, we have

lim
λ
‖eλhx− hx‖p = 0. (2.21)

Thus, to show that hx ∈ [H∞0 (Y1 ∩ Lp(M, τ))]p, it suffices to prove that eλhx ∈ [H∞0 (Y1 ∩

Lp(M, τ))]p for each λ ∈ Λ. Fix a λ0 ∈ Λ. Then, for some positive number q with 1
p = 1

2 + 1
q , we

have

lim
λ
‖eλ0heλx− eλ0hx‖p ≤ lim

λ
‖eλ0h‖q‖eλx− x‖2 = 0, (2.22)

as x ∈ Y1. Moreover, we have eλ0h ∈ H∞0 and eλx ∈ Y1 ∩ Lp(M, τ), as ‖eλx‖p ≤ ‖eλ‖q‖x‖2 < ∞.

Thus, eλ0heλx is in H∞0 (Y1 ∩ Lp(M, τ)) for each λ ∈ Λ. From (2.22), eλ0hx is in [H∞0 (Y1 ∩

Lp(M, τ))]p for each λ0 ∈ Λ. Therefore, from (2.21), hx ∈ [H∞0 (Y1 ∩ Lp(M, τ))]p, or equivalently,

[(H∞0 Y1) ∩ Lp(M, τ)]p ⊆ [H∞0 (Y1 ∩ Lp(M, τ))]p (2.23)

Now, we have

Y = [Y1 ∩ Lp(M, τ)]p (by definition of Y )

= [[H2
0Y1]2 ∩ Lp(M, τ)]p (by (c))

= [(H∞0 Y1) ∩ Lp(M, τ)]p (by Proposition 2.4.2)

⊆ [H∞0 (Y1 ∩ Lp(M, τ))]p (by (2.23))

⊆ [H∞0 Y ]p ⊆ Y. (by the definition of Y )

Thus,

Y = [H∞0 Y ]p. (2.24)



48

(iv) We have only to show that

K = Y ⊕row (⊕rowλ∈ΛH
puλ).

By the definition of Y , we have

Y = [Y1 ∩ Lp(M, τ)]p. (2.25)

And from Lemma 2.4.3, we have

Hpuλ = [H2uλ ∩ Lp(M, τ)]p, ∀ λ ∈ Λ. (2.26)

Now, we have

K = [K1 ∩ Lp(M, τ)]p (by Proposition 2.4.1)

= [[Y1 +
∑
λ∈Λ

H2uλ]2 ∩ Lp(M, τ)]p (by Definition 1.6.1)

= [(Y1 +
∑
λ∈Λ

H2uλ) ∩ Lp(M, τ)]p (by Proposition 2.4.2)

= [(Y1 ∩ Lp(M, τ)) +
∑
λ∈Λ

(H2uλ ∩ Lp(M, τ))]p (by (a) and (b))

= [Y +
∑
λ∈Λ

Hpuλ]p (by (2.25) and (2.26))

= Y ⊕row (⊕rowλ∈ΛH
puλ), (2.27)

where the last equation follows from Definition 1.6.1.

As a summary, from (2.20), (b), (2.24), and (2.27), Y and {uλ}λ∈Λ have desired properties.

This ends the proof of the theorem.

Corollary 2.4.5. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ .

(i) Let 0 < p < ∞. If K is a closed subspace of Lp(M, τ) such that MK ⊆ K, then there exists

a projection q ∈M such that K = Lp(M, τ)q.
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(ii) If K is a weak∗-closed subspace ofM such thatMK ⊆ K, then there exists a projection q ∈M

such that K =Mq.

Proof. (i) Note that M itself is a semifinite subdiagonal subalgebra of M. Let H∞ = M. Then

D =M and Φ is the identity map from M to M. Hence H∞0 = {0} and Hp = Lp(M, τ).

Assume that K is a closed subspace of Lp(M, τ) such thatMK ⊆ K. From Theorem 2.3.6 and

Theorem 2.4.4,

K = Y ⊕row (⊕rowλ∈ΛH
puλ),

where Y and the {uλ}λ∈Λ satisfy the conditions in Theorem 2.3.6 and Theorem 2.4.4.

From the fact that H∞0 = {0}, we know that Y = {0}. Since D =M, we know that

Hpuλ = Lp(M, τ)uλ = Lp(M, τ)uλu
∗
λuλ

⊆ Lp(M, τ)u∗λuλ ⊆ Lp(M, τ)uλ = Hpuλ.

So Hpuλ = Lp(M, τ)u∗λuλ and

K = Y ⊕row (⊕rowλ∈ΛH
puλ) = (⊕rowλ∈ΛL

p(M, τ)u∗λuλ)

= Lp(M, τ)

(∑
λ∈Λ

u∗λuλ

)
= Lp(M, τ)q,

where q =
∑

λ∈Λ u
∗
λuλ is a projection in M. This ends the proof of (i).

(ii) The proof is similar to (i).



Chapter 3

Applications for ‖ · ‖p-norms

Using our results from Chapter 2, we are able to prove a Beurling-Blecher-Labuschagne-like theorem

for the crossed product of a semifinite von Neumann algebraM by a trace-preserving action α when

0 < p <∞ (see the definition in Section 3.1.1). We are actually able to fully characterize the H∞-

invariant subspace of the crossed product.

Theorem 3.1.3. Let M be a von Neumann algebra with a semifinite, faithful, normal, tracial

weight τ , and α be a trace-preserving ∗-automorphism of M. Denote by M oα Z the crossed

product of M by an action α, and still denote by τ the semifinite, faithful, normal, extended tracial

weight on Moα Z.

Let H∞, a weak ∗-closed, nonself-adjoint subalgebra generated by {Λ(n)Ψ(x) : x ∈ M, n ≥ 0}

in M oα Z, be a semifinite subdiagonal subalgebra of M oα Z. H∞ is a semifinite subdiagonal

subalgebra of Moα Z, for which the following statements are true.

(i) Let 0 < p <∞. Assume that K is a closed subspace of Lp(Moα Z, τ) such that H∞K ⊆ K.

Then there exist a projection q in M and a family {uλ}λ∈Λ of partial isometries in Moα Z

satisfying

(a) uλq = 0 for all λ ∈ Λ;

(b) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) K = (Lp(Moα Z, τ)q)⊕row (⊕rowλ∈ΛH
puλ).
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(ii) Assume that K is a weak ∗-closed subspace of Moα Z such that H∞K ⊆ K. Then there exist

a projection q in M and a family {uλ}λ∈Λ of partial isometries in Moα Z satisfying

(a) uλq = 0 for all λ ∈ Λ;

(b) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) K = ((Moα Z)q)⊕row (⊕rowλ∈ΛH
∞uλ).

In [28], McAsey, Muhly and Saito prove a Beurling theorem for a crossed product. Suppose M

is a finite von Neumann algebra with finite trace τ and α, a trace preserving automorphism of M,

such that α fixes each element of the center Z(M) of M. Then let A = M oα Z+. Then every

A and A∗-invariant subspace K of L2(M, τ) has the form K = vH2 for a partial isometry v in the

commutant of right multiplication by M on L2(M, τ). This follows from Theorem 3.1.3 when τ is

finite, and p = 2.

McAsey, Muhly and Saito’s result is a corollary of a result by Nazaki and Watatani in [30].

Suppose M is a finite von Neumann algebra with trace τ , a faithful, normal, trace-preserving

conditional expectation Φ : M → D, and D ⊆ M. We let H∞ be a maximal subdiagonal algebra

with respect to Φ, and suppose that Z(D) ⊆ Z(M). Then, if we let K be a H∞-invariant subspace of

L2(M, τ) such that K is of H∞-type I (in the sense defined in [30]), there exists a partial isometry

v in the commutant of right multiplcation by M such that K = vH2. Again, this follows from our

result in the finite case when p = 2.

Similarly, Saito in [39] proves another Beurling-like theorem for a finite von Neumann algebra

M. Let a closed subspace K of L2(M, τ) be invariant under M oα Z+ such that there are no

subspaces of K with (M oα Z)K ⊆ K then K has the form
∑∞

n=0⊕VnH2 with {Vn} a family of

partial isometries with {VnV ∗n } mutually orthonogal.

We are also able to prove a Beurling-Blecher-Labuschagne-like theorem for the Schatten p-classes

for 0 < p <∞, as described in Section 3.1.3 , using our results.

Corollary 3.1.4. Let H be a separable Hilbert space with an orthonormal base {em}m∈Z. Let H∞
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be the lower triangular subalgebra of B(H), i.e.

H∞ = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}.

Let D = H∞ ∩ (H∞)∗ be the diagonal subalgebra of B(H).

(i) For each 0 < p < ∞, let Sp(H) be the Schatten p-class. Assume that K is a closed subspace

of Sp(H) such that H∞K ⊆ K. Then there exist a projection q in D and a family {uλ}λ∈Λ of

partial isometries in B(H) satisfying

(a) uλq = 0 for all λ ∈ Λ;

(b) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) K = (Sp(H)q)⊕row (⊕rowλ∈ΛH
puλ).

(ii) Assume that K is a weak ∗-closed subspace of B(H) such that H∞K ⊆ K. Then there exist a

projection q in D and a family {uλ}λ∈Λ of partial isometries in B(H) satisfying

(a) uλq = 0 for all λ ∈ Λ;

(b) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) K = (B(H)q)⊕row (⊕rowλ∈ΛH
∞uλ).

However, if we have that this projection q in D has the characteristic that Sp(H)q ⊆ Hp, then

we can fully characterize, in Corollary 3.1.6, a H∞-invariant subspace K ⊆ Hp when 0 < p ≤ ∞

and H is a separable Hilbert space with an orthonormal base.

Corollary 3.1.6. Let H be a separable Hilbert space with an orthonormal base {em}m∈Z. Let H∞

be the lower triangular subalgebra of B(H), i.e.

H∞ = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}.

Let D = H∞ ∩ (H∞)∗ be the diagonal subalgebra of B(H).

(i) For each 0 < p < ∞, if K is a closed subspace of Hp such that H∞K ⊆ K, then there exists

a family {uλ}λ∈Λ of partial isometries in H∞ satisfying
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(a) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(b) K = ⊕rowλ∈ΛH
puλ.

(ii) Assume that K is a weak ∗-closed subspace of H∞ such that H∞K ⊆ K. Then there exists a

family {uλ}λ∈Λ of partial isometries in H∞ satisfying

(a) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(b) K = ⊕rowλ∈ΛH
∞uλ.

Therefore, we are able to answer the question given in problem 2.0.1 and fully characterize an

A-invariant subspace of a Schatten p-class: given a subspace K ⊆ Sp(H) such that AK ⊆ K, we

have that K = (Sp(H)q)⊕rowλ∈Λ H
puλ when 0 < p <∞, and K = (B(H)q)⊕row (⊕rowλ∈ΛH

∞uλ) when

p =∞.

3.1 Invariant subspaces for analytic crossed products

3.1.1 Crossed product of a von Neumann algebra M by an action α

Let M be a von Neumann algebra with a semifinite, faithful, normal tracial state τ . Let α be a

trace-preserving ∗-automorphism of M (so τ(α(x)) = τ(x), ∀x ∈M+).

We let l2(Z) be the Hilbert space consisting of complex-valued functions f on Z such that∑
m∈Z |f(m)|2 <∞. We denote by {en}n∈Z the orthonormal basis of l2(Z) determined by en(m) =

δ(n,m). We also denote by λ : Z→ B(l2(Z)) the left regular representation of Z on l2(Z), i.e. each

λ(n) is determined by λ(n)(em) = em+n.

Let H = L2(M, τ) ⊗ l2(Z). Then H can also be written as ⊕m∈ZL2(M, τ) ⊗ em. Consider

representations Ψ and Λ of M and Z, respectively, on H, defined by

Ψ(x)(ξ ⊗ em) = (α−m(x)ξ)⊗ em, ∀ x ∈M, ∀ ξ ∈ L2(M, τ), ∀ m ∈ Z

Λ(n)(ξ ⊗ em) = ξ ⊗ (λ(n)em), ∀ n,m ∈ Z
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It can be verified that

Λ(n)Ψ(x)Λ(−n) = Ψ(αn(x)), ∀ x ∈M, ∀ n ∈ Z.

Then the crossed product of M by an action α, denoted by Moα Z, is the von Neumann algebra

generated by Ψ(M) and Λ(Z) in B(H). If no confusion arises, we will identify M with its image

Ψ(M) in Moα Z.

It is well known (for example, see Chapter 13 in [22]) that there exists a faithful, normal

conditional expectation Φ from Moα Z onto M such that

Φ

(
N∑

n=−N
Λ(n)Ψ(xn)

)
= x0, where xn ∈M for all −N ≤ n ≤ N.

Moreover, there exists a semifinite, faithful, normal, extended tracial weight, still denoted by τ , on

Moα Z satisfying

τ(y) = τ(Φ(y)), for every positive element y in Moα Z.

Example 3.1.1. M = l∞(Z) is an abelian von Neumann algebra with a semifinite, faithful, normal

tracial weight τ , determined by

τ(f) =
∑
m∈Z

f(m), for every positive element f ∈ l∞(Z).

Let α be an action on l∞(Z), defined by

α(f)(m) = f(m− 1), for every element f ∈ l∞(Z).

It is not hard to verify (for example see Proposition 8.6.4 in [22]) that l∞(Z) oα Z is a type I∞

factor. Thus l∞(Z) oα Z ' B(H) for some separable Hilbert space H.

3.1.2 Invariant subspace for crossed products

From the construction of crossed products, we immediately have the following result (also see

Section 3 in [1]).
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Lemma 3.1.2. Let Moα Z+ be a weak ∗-closed non-self-adjoint subalgebra generated by

{Λ(n)Ψ(x) : x ∈M, n ≥ 0}

in Moα Z. Then the following statements are true:

(i) MoαZ+ is a semifinite subdiagonal subalgebra with respect to (MoαZ,Φ). (Such MoαZ+

is called an analytic crossed product and will be denoted by H∞.)

(ii) H∞0 = ker(Φ) ∩H∞ is a weak ∗-closed nonself-adjoint subalgebra generated by

{Λ(n)Ψ(x) : x ∈M, n > 0}

in Moα Z satisfying

H∞0 = Λ(1)H∞.

(iii) H∞ ∩ (H∞)∗ =M.

Following the notation in Section 3.1.1, our next result characterizes invariant subspaces in a

crossed product of a semifinite von Neumann algebra M by a tracing-preserving action α.

Theorem 3.1.3. LetM be a von Neumann algebra with a semifinite, faithful, normal tracial weight

τ , and α be a trace-preserving ∗-automorphism of M. Denote by M oα Z the crossed product of

M by an action α, and still denote by τ the semifinite, faithful, normal, extended tracial weight on

Moα Z.

Let H∞ be the weak ∗-closed non-self-adjoint subalgebra generated by {Λ(n)Ψ(x) : x ∈M, n ≥

0} in M oα Z. H∞ is a semifinite subdiagonal subalgebra of M oα Z, for which the following

statements are true.

(i) Let 0 < p <∞. Assume that K is a closed subspace of Lp(Moα Z, τ) such that H∞K ⊆ K.

Then there exist a projection q in M and a family {uλ}λ∈Λ of partial isometries in Moα Z

satisfying

(a) uλq = 0 for all λ ∈ Λ;
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(b) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) K = (Lp(Moα Z, τ)q)⊕row (⊕rowλ∈ΛH
puλ).

(ii) Assume that K is a weak ∗-closed subspace of Moα Z such that H∞K ⊆ K. Then there exist

a projection q in M and a family {uλ}λ∈Λ of partial isometries in Moα Z satisfying

(a) uλq = 0 for all λ ∈ Λ;

(b) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) K = ((Moα Z)q)⊕row (⊕rowλ∈ΛH
∞uλ).

Proof. (i) From Theorem 2.3.6 and Theorem 2.4.4,

K = Y ⊕row (⊕rowλ∈ΛH
puλ),

where Y is a closed subspace of Moα Z and {uλ}λ∈Λ is a family of partial isometries in Moα Z

satisfying

(a1) uλY
∗ = 0 for all λ ∈ Λ;

(b1) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c1) Y = [H∞0 Y ]p.

From (c1) and Lemma 3.1.2, we have

Y = [H∞0 Y ]p = [Λ(1)H∞Y ]p ⊆ Λ(1)Y.

By induction, we have that Λ(−n)Y ⊆ Y for every n ∈ N. We already have, from the definition

of H∞, that Λ(n)Y ⊆ Y , for every n ≥ 0, and ψ(x)Y ⊆ Y . So, Y is a left M oα Z-invariant

subspace of Lp(M oα Z, τ). From Corollary 2.4.5, there exists a projection q in M such that

Y = Lp(Moα Z, τ)q. Therefore, we have

(a) uλq = 0 for all λ ∈ Λ;
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(b) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) K = (Lp(Moα Z, τ)q)⊕row (⊕rowλ∈ΛH
puλ).

This ends the proof of (i).

(ii) The proof is similar to (i).

3.1.3 Invariant subspaces for Schatten p-classes

Let H be an infinite dimensional separable Hilbert space with an orthonormal base {em}m∈Z. Let

τ = Tr be the usual trace on B(H), i.e.

τ(x) =
∑
i∈Z
〈xem, em〉, for all positive x in B(H).

Then B(H) is a von Neumann algebra with a semifinite, faithful, normal tracial weight τ . For each

0 < p <∞, the Schatten p-class Sp(H) is the associated non-commuative Lp-space Lp(B(H), τ).

Let

A = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}

be the lower triangular subalgebra of B(H). From Example 3.1.1, B(H) can also be realized as a

crossed product l∞(Z) oα Z of l∞(Z) by an action α, where the action α is determined by

α(f)(m) = f(m− 1), ∀ f ∈ l∞(Z).

Moreover, it can be verified quickly that A, as a subalgebra of B(H), is l∞(Z) oα Z+ (see Lemma

3.1.2) is a semifinite subdiagonal subalgebra of l∞(Z) oα Z (see Example 2.6 in [28]). Thus from

Theorem 3.1.3, we have the following statements.

Corollary 3.1.4. Let H be a separable Hilbert space with an orthonormal base {em}m∈Z. Let H∞

be the lower triangular subalgebra of B(H), i.e.

H∞ = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}.

Let D = H∞ ∩ (H∞)∗ be the diagonal subalgebra of B(H).
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(i) For each 0 < p < ∞, let Sp(H) be the Schatten p-class. Assume that K is a closed subspace

of Sp(H) such that H∞K ⊆ K. Then there exist a projection q in D and a family {uλ}λ∈Λ of

partial isometries in B(H) satisfying

(a) uλq = 0 for all λ ∈ Λ;

(b) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) K = (Sp(H)q)⊕row (⊕rowλ∈ΛH
puλ).

(ii) Assume that K is a weak ∗-closed subspace of B(H) such that H∞K ⊆ K. Then there exist a

projection q in D and a family {uλ}λ∈Λ of partial isometries in B(H) satisfying

(a) uλq = 0 for all λ ∈ Λ;

(b) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) K = (B(H)q)⊕row (⊕rowλ∈ΛH
∞uλ).

Remark 3.1.5. Let 0 < p < ∞. Assume q is a projection in D such that Sp(H)q ⊆ Hp. Notice

that all finite rank operators are in Sp(H). Thus es⊗et, where es⊗et is a rank one operator defined

for all ξ ∈ H by es ⊗ et(ξ) = 〈ξ, et〉es, is in Sp(H) for all s, t ∈ Z. Hence, for all s, t ∈ Z, we have

(es⊗ et)q ∈ Hp. Combining this with the fact that q ∈ D is a diagonal projection in B(H), we may

conclude that q = 0.

The the next result follows directly from Corollary 3.1.4 and Remark 3.1.5.

Corollary 3.1.6. Let H be a separable Hilbert space with an orthonormal base {em}m∈Z.

Let H∞ be the lower triangular subalgebra of B(H), i.e.

H∞ = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}.

Let D = H∞ ∩ (H∞)∗ be the diagonal subalgebra of B(H).

(i) For each 0 < p < ∞, if K is a closed subspace of Hp such that H∞K ⊆ K, then there exists

a family {uλ}λ∈Λ of partial isometries in H∞ satisfying
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(a) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(b) K = ⊕rowλ∈ΛH
puλ.

(ii) Assume that K is a weak ∗-closed subspace of H∞ such that H∞K ⊆ K. Then there exists a

family {uλ}λ∈Λ of partial isometries in H∞ satisfying

(a) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(b) K = ⊕rowλ∈ΛH
∞uλ.

Remark 3.1.7. Similar results hold when H∞ is the upper triangular subalgebra of B(H).



Chapter 4

Invariant subspaces under unitarily

invariant, locally ‖ · ‖1-dominating,

mutually continuous norms

Suppose that (X,Σ, ν) is a localizable measure space with the finite subset property (i.e. a measure

space is localizable if the multiplication algebra is maximal abelian, and has the finite subset property

if for every A ∈ Σ such that ν(A) > 0, there exists a B ∈ Σ such that B ⊆ A, and 0 < ν(B) <∞).

We let E be a two-sided ideal of the set of complex-valued, Σ-measureable functions on X, such

that all functions equal almost everywhere with respect to ν are identified. If E has a norm ‖ · ‖E

such that (E, ‖ · ‖E) is a Banach lattice, then we call E a Banach function space. (See the work of

de Pagter in [33]).

We let M be a von Neumann algebra with a semifinite, faithful, normal tracial weight τ . For

every operator x ∈ M, we define dx(λ) = τ(e|x|(λ,∞)) for every λ ≥ 0 (where e|x|(λ,∞) is the

spectral projection of |x| on the interval (λ,∞)), and µ(x) = inf{λ ≥ 0 : dx(λ) ≤ t} for a given

t ≥ 0. Consider the set I = {x ∈ M : x is a finite rank operator in (M, τ) and ‖µ(x)‖E < ∞}

and let ‖ · ‖I(τ) : I → [0,∞) be such that ‖x‖I(τ) = ‖µ(x)‖E for all x ∈ I. It is known that ‖ · ‖I(τ)

defines a norm on I (see [33]). Denote by I(τ) the closure of I under ‖ · ‖I(τ).

We briefly recall an extension of Arveson’s non commutative Hardy space for a semifinite von

Neumann algebra. Let H∞ be a weak*-closed unital subalgebra of M. Then D = H∞ ∩ (H∞)∗

60



61

is a von Neumann subalgebra of M. Assume also that there exists a faithful, normal, conditional

expectation Φ : M→ D. Then H∞ is called a semifinite non-commutative Hardy space if (i) the

restriction of τ on D is semifinite; (ii) Φ(xy) = Φ(x)Φ(y) for every x, y ∈ H∞; (iii) H∞ + (H∞)∗

is weak* dense in M; and (iv)τ(Φ(x)) = τ(x) for every positive x ∈M.

We want to ask the following question about the space I(τ):

Problem 4.0.1. Consider a semifinite subdiagonal subalgebra H∞ of M and a closed subspace K

of I(τ) such that H∞K ⊆ K. How can the subspace K be characterized?

It can be shown that when M is diffuse, and ‖ · ‖I(τ) is order continuous, the norm ‖ · ‖I(τ) on

I(τ) is in the family of unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norms

with respect to the tracial weight τ . (See Definition 1.4.1).

Our goal for this chapter is to prove a Beurling-type theorem for a von Neumann algebra with

semifinite, faithful, normal tracial weight τ , and a unitarily invariant, locally ‖ · ‖1-dominating,

mutually continuous norm with respect to τ , for example, the Banach function space I(τ) with the

norm ‖ · ‖I(τ).

In 1937, J. von Neumann introduced the unitarily invariant norms on Mn(C) as a way to

metrize the matrix spaces [32]. He showed that the class of unitarily invariant norms on Mn(C) are

in correspondence with the class of symmetric gauge norms on Cn. Specifically, he proved that for

any unitarily invariant norm α, there exists a symmetric gauge norm Ψ on Cn such that for every

finite rank operator A, α(A) = Ψ(a1, a2, . . . , an), where {ai}1≤i≤n is the spectrum of |A|.

Since von Neumann’s result, these norms have been extended and generalized in different ways.

Schatten defined unitarily invariant norms on 2-sided ideals of the continuous functions on a Hilbert

space, B(H) (for example, see [40, 41]). Chen, Hadwin and Shen defined a class of unitarily

invariant, ‖ · ‖1-dominating, normalized norms on a finite von Neumann algebra in [8]. Unitarily

invariant norms also play an important role in the study of non-commutative Banach function

spaces. For more information and history of unitarily invariant norms see Schatten [40], Hewitt

and Ross [20], Goldberg and Krein [16], or Simon [43].
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Typical examples of noncommutative Banach function spaces include the so called noncommu-

tative Lp-spaces, Lp(M, τ), associated with semifinite von Neumann algebras. SupposeM is a von

Neumann algebra with a semifinite, faithful, normal tracial weight τ . We consider I, the set of

elementary operators on M (when M is finite, M = I). We recall the construction of Lp(M, τ).

When 0 < p <∞ define a mapping ‖ · ‖p : I → [0,∞) by ‖x‖p = (τ(|p|))1/p where |x| =
√
x∗x for

every x ∈ I. It is non-trivial to prove that ‖ · ‖p is a norm, called the p-norm, when 1 ≤ p < ∞.

We define the space Lp(M, τ) = I‖·‖p for 0 < p <∞. When p =∞, we set L∞(M, τ) =M, which

acts naturally on Lp(M, τ) by right or left multiplication.

In the previous chapters, we extended the work of Blecher and Labuschagne in [6] for a finite von

Neumann algebra to von Neumann algebrasM with a semifinite, normal, faithful tracial weight τ .

Suppose 0 < p ≤ ∞, and M is a von Neumann algebra with a semifinite, faithful, normal tracial

weight τ . Let H∞ be a semifinite subdiagonal subalgebra of M, and D = H∞ ∩ (H∞)∗. Suppose

that K is a closed subspace of Lp(M, τ) (if p =∞, K is weak* closed), such that H∞K ⊆ K. Then

there exists a closed subspace Y ⊆ Lp(M, τ) and a family of partial isometries {uλ} ⊆ M such that

K = Y ⊕row (⊕rowλ∈ΛH
puλ), where Y = [H∞0 Y ]p, uλY

∗ = 0 for every λ ∈ Λ, and the uλ satisfy other

conditions. (See Chapter 2 for more information.)

In [8], Chen, Hadwin and Shen proved a Beurling-type theorem for unitarily invariant norms

on finite von Neumann algebras. A motivation of the following chapters is to extend the result

in [8] to the setting of unitarily invariant norms on semifinite von Neumann algebras. We define

the family of unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norms on the von

Neumann algebraM with respect to the semifinite, faithful, normal tracial weight τ . Suppose that

M is a von Neumann algebra with a semifinite, faithful, normal tracial weight τ . We let I be

the set of finite rank operators in (M, τ). A norm α : I → [0,∞) is a unitarily invariant, locally

‖·‖1-dominating, mutually continuous norm with respect to τ if α is a norm for which the following

conditions hold:

(i) for any unitaries u, v ∈M and x ∈ I, α(uxv) = α(x);
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(ii) for every projection e ∈ M with τ(e) < ∞ and any x ∈ I, there exists 0 < c(e) < ∞ such

that α(exe) ≤ c(e)‖exe‖1;

(iii) (a) if {eλ} is an increasing net of projections in I such that τ(eλx−x)→ 0 for every x ∈ I,

then α(eλx− x)→ 0 for every x ∈ I;

(b) if {eλ} is a net of projections in I such that α(eλ)→ 0, then τ(eλ)→ 0.

Chen, Hadwin and Shen’s family of norms in [8] is a subset of this family of norms. We also show

that the norm ‖ · ‖I(τ) on a Banach function space I(τ) is a unitarily invariant, ‖ · ‖1-dominating,

mutually continuous norm.

However, many of the methods used by Chen, Hadwin and Shen no longer apply when M is a

semifinite von Neumann algebra. We use a similar method to extend their theorem as in Chapter

2 for Lp(M, τ) spaces. We therefore prove a series of density results for the Lα(M, τ) spaces.

Lemma 4.3.2. Suppose M is a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and that H∞ is a semifinite, subdiagonal subalgebra of M. Suppose also that α is a

unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ . Assume

that K is a closed subspace of Lα(M, τ) such that H∞K ⊆ K. Then the following hold:

1. K ∩M = K ∩Mw∗ ∩ Lα(M, τ)

2. K = [K ∩M]α

Lemma 4.3.3. Suppose M is a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and suppose that α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous

norm with respect to τ . Let H∞ be a semifinite, subdiagonal subalgebra of M. Assume that K is a

weak*-closed subspace of M such that H∞K ⊆ K. Then

K = [K ∩ Lα(M, τ)]α ∩M
w∗
.

Lemma 4.3.4. Suppose M is a semifinite von Neumann algebra with a faithful, normal tracial

weight τ , and suppose that α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually-continuous
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norm with respect to τ . Let H∞ be a semifinite, subdiagonal subalgebra of M. Assume that S is a

subset of M such that H∞S ⊆ S. Then

[S ∩ Lα(M, τ)]α = [S
w∗ ∩ Lα(M, τ)]α.

Following these results, we are able to prove a noncommutative Beurling-Chen-Hadwin-Shen

theorem for unitarily invariant, ‖ · ‖1-dominating, mututally continuous norms with respect to τ on

a von Neumann algebra M with a semifinite, faithful, normal tracial weight τ .

Theorem 4.3.1. LetM be a von Neumann algebra with a faithful, normal semifinite tracial weight

τ , and H∞ be a semifinite subdiagonal subalgebra ofM. Let α be a unitarily invariant, locally ‖·‖1-

dominating, mutually continuous norm with respect to τ . Let D = H∞ ∩ (H∞)∗. Assume that K

is a closed subspace of Lα(M, τ) such that H∞K ⊆ K. Then, there exist a closed subspace Y of

Lα(M, τ) and a family {uλ} of partial isometries in M such that

(i) uλY
∗ = 0 for every λ ∈ Λ;

(ii) uλu
∗
λ ∈ D, and uλu

∗
µ = 0 for every λ, µ ∈ Λ with λ 6= µ;

(iii) Y = [H∞0 Y ]α;

(iv) K = Y ⊕row (⊕rowλ∈ΛH
αuλ).

We can fully characterize K in the case when K ⊆ Lα(M, τ) is M-invariant.

Corollary 4.3.5. Suppose that M is a von Neumann algebra with a faithful, normal, semifinite

tracial weight τ . Let α be a unitarily invariant, locally ‖ ·‖1-dominating, mutually continuous norm

with respect to τ . Let K be a subset of Lα such that MK ⊆ K. Then there exists a projection q

with K =Mq.

4.1 Operators affiliated with M

Given a von Neumann algebra M with a semifinite, faithful, normal tracial weight τ acting on a

Hilbert space H, a measure topology on M is given by the system of neighborhoods Uδ,ε = {a ∈
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M : ‖ap‖ ≤ ε and τ(p⊥) ≤ δ for some projection p ∈ M} for any ε, δ > 0 (for more details see

[31]). We say that an is Cauchy in measure if, given ε and δ > 0, there exists an n0 such that if

n,m ≥ n0, then an − am is in Uδ,ε.

Definition 4.1.1. Let M̃ denote the algebra of closed, densely defined (possibly unbounded) oper-

ators on H affiliated with M.

Remark 4.1.2. M̃ is also the closure ofM in the measure topology (see [31] for more information).

4.2 Unitarily invariant norms and examples

In this section, we introduce a class of unitarily invariant, locally ‖ · ‖1-dominating, mutually

continuous norms on semifinite von Neumann algebras. We also introduce interesting examples

from this class.

4.2.1 Lα spaces of semifinite von Neumann algebras

Suppose that M is a von Neumann algebra with a semifinite, faithful, normal tracial state τ . We

then let

I = span{xey : x, y ∈M, e ∈M, e = e2 = e∗ with τ(e) <∞}

be the set of elementary operators ofM (see Remark 2.3 in [42]). Recall that for each 1 ≤ p <∞,

we define the ‖ · ‖p-norm on I by

‖x‖p = (τ(|x|p))1/p for every x ∈ I.

It is a non-trivial fact that the mapping ‖ · ‖p defines a norm on I. We let Lp(M, τ) denote the

completion of I with respect to the ‖ · ‖p-norm.

Recall from Definition 1.4.1 that we call a norm α : I → [0,∞) a unitarily invariant, locally

‖ · ‖1-dominating, mutually continuous norm with respect to τ on I if it satisfies the following

characteristics:
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1. α is unitarily invariant if for all unitaries u, v in M and every x in I, α(uxv) = α(x);

2. α is locally ‖ · ‖1-dominating if for every projection e in M with τ(e) < ∞, there exists

0 < c(e) <∞ such that α(exe) ≥ c(e)‖exe‖1 for every x ∈ I;

3. α is mutually continuous with respect to τ ; namely

(a) If {eλ} is an increasing net of projections in I such that τ(eλx−x)→ 0 for every x ∈ I,

then α(eλx− x)→ 0 for every x ∈ I. Or, equivalently, if {eλ} is a net of projections in

I such that eλ → I in the weak* topology, then α(eλx− x)→ 0 for every x ∈ I.

(b) If {eλ} is a net of projections in I such that α(eλ)→ 0, then τ(eλ)→ 0.

Recall that given a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm α

with respect to τ on I, we define Lα(M, τ) to be the completion of I under α, namely,

Lα(M, τ) = Iα.

Notation 4.2.1. We will denote by [S]α the closure, with respect to the norm α, of a set S in M.

Lemma 4.2.2. Suppose M is a von Neumann algebra with a semifinite, faithful, normal tracial

weight τ , and let α be a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm

with respect to τ . Then for any x ∈ Lα(M, τ), and a, b ∈M,

α(axb) ≤ ‖a‖α(x)‖b‖.

Proof. The proof is included here for completeness. It suffices to show that for any x ∈ I, and

a, b ∈M,

α(axb) ≤ ‖a‖α(x)‖b‖.

Without loss of generality, we might assume that ‖a‖ < 1. By Russo-Dye Theorem, there exist a

positive integer n and unitary elements u1, . . . , un inM such that a = (u1 + · · ·+un)/n. Therefore,

α(ax) = α((u1 + · · ·+ un)x)/n ≤ α(x)

since α is unitarily invariant. So, α(ax) ≤ ‖a‖α(x) for every a ∈M.

It may be proved similarly that α(xb) ≤ α(x)‖b‖ for every b ∈M.
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4.2.2 Examples of unitarily-invariant, locally ‖ · ‖1-dominating, mutually con-

tinuous norms

Remark 4.2.3. It is trivial to show that the ‖·‖p-norms ofM with 1 ≤ p <∞ for a semifinite von

Neumann algebra M with a faithful, normal, semifinite tracial weight τ are unitarily equivalent,

‖ · ‖1-dominating, mutually continuous norms with respect to τ on M.

Remark 4.2.4. It is also trivial to show that a continuous, unitarily invariant, normalized, ‖ · ‖1-

dominating norm on a finite von Neumann algebraM as given in [8] is a unitarily invariant, locally

‖ · ‖1-dominating, mutually continuous norm with respect to τ on M.

Proposition 4.2.5. Suppose that M is a semifinite factor, and α : I → [0,∞) is a unitarily

invariant norm satisfying the following condition: if {eλ} is a net in M with eλ → I in the weak*

topology, then α(eλx − x) → 0 for each x ∈ I. Then α is a unitarily invariant, locally ‖ · ‖1-

dominating, mutually continuous norm with respect to τ .

Proof. By assumption, α is unitarily invariant.

Let e be projection in M such that τ(e) < ∞. Let x = exe be an element in eMe, which

we denote by Me. As |x| ≤ ‖x‖e, we have that α(x) = α(|x|) ≤ ‖x‖α(e). Note Me is a finite

factor with a tracial state τe, defined by τe(y) = τ(y)/τ(e) for all y ∈ Me. By the Dixmeier

Approximation Property, for every ε > 0, there exist c1, c2, . . . , cn in [0, 1] with
∑n

i=1 ci = 1, and

unitaries u1, u2, . . . , un in Me such that ‖τe(|x|)e −
∑n

i=1 ciuixu
∗
i ‖ < ε. Therefore, α(τe(|x|)e −∑n

i=1 ciuixu
∗
i )) ≤ εα(e). Thus,

‖x‖1 = τ(|x|) = τ(e)τe(|x|) =
τ(e)

α(e)
α(τe(|x|)e)

≤ τ(e)

α(e)
[α(τe(|x|)e−

n∑
i=1

ciuixu
∗
i ) + α(

n∑
i=1

ciuixu
∗
i )]

≤ ετ(e) +
τ(e)

α(e)

n∑
i=1

α(ciuixu
∗
i )

≤ ετ(e) +
τ(e)

α(e)
α(x).
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Letting ε→ 0, we find that τ(x) ≤ τ(e)
α(e)α(x) for every x in Me. Namely,

‖exe‖1 ≤ c(e)α(exe) for all x ∈ I. (4.1)

where c(e) = τ(e)
α(e) . Thus, α is locally ‖ · ‖1-dominating.

We now show that α is mutually continuous with respect to τ . Actually, we need only to show

that, if {eλ} is a net of projections in I such that α(eλ) → 0, then τ(eλ) → 0. Assume, to the

contrary, that there exist a positive number ε > 0 and a family {en} of projections in I such

that α(en) < 1/n but τ(en) > ε for each n ∈ N. As M is a semifinite factor and α is unitarily

invariant, we may assume further that {en}n is a decreasing sequence of projections in I. Let

e0 = ∧nen. Then τ(e0) ≥ ε and α(e0) = 0 as e0 ≤ en implies α(e0) ≤ α(en) < 1/n for each n.

This is a contradiction. Therefore, if {eλ} is a net of projections in I such that α(eλ) → 0, then

τ(eλ)→ 0.

Non-commutative Banach function spaces

In this subsection, we follow the notation of de Pagter in [33]. We suppose, as before, that M is a

von Neumann algebra with a semifinite, faithful, normal tracial state τ . In this case, we have the

ideal of the distrubtion function dx, where x is a τ -measurable operator in M. We define dx by

dx(λ) = τ(e|x|(λ,∞)) for every λ ≥ 0,

where e|x|(λ,∞) is the spectral projection of |x| on (λ,∞). It is easy to see that dx is decreasing,

right-continuous and dx(λ) → 0 as λ → ∞. This allows us to define a generalized singular value

function

µ(x; t) = inf{λ ≥ 0 : dx(λ) ≤ t} for a given t ≥ 0 and for every x ∈M.

Definition 4.2.6. Suppose that (X,Σ, ν) is a localizable measure space with the finite subset prop-

erty. Let E be a two-sided ideal of the set of all complex-valued, Σ-measurable functions on X with

the identification of all functions equal a.e. with respect to ν. If E has a norm ‖ · ‖E such that

(E, ‖ · ‖E) is a Banach lattice, then E is called a Banach function space.
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We assume that E is a symmetric Banach function space on (0,∞) with Lebesgue meausure

(see definition 2.6 in [33]).

Following [33], we let I = {x ∈ M : x is a finite rank operator in (M, τ) and ‖µ(x)‖E < ∞}

and define a Banach function space I(τ) equipped with a norm ‖ · ‖I(τ) such that

‖x‖I(τ) = ‖µ(x)‖E for every x ∈ I.

Denote the closure of I under ‖ · ‖I(τ)by I(τ) We will use the following Lemma to show that the

restriction of ‖ · ‖I(τ) on I is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous

norm with respect to τ .

Lemma 4.2.7. Suppose that y0 is an element of I such that y0 =
∑n

i=1 βipi where β1, β2, . . . , βn

are nonnegative and p1, . . . , pn are projections in M such that τ(p1) = τ(p2) = · · · = τ(pn). Then

‖y0‖I(τ) ≥
‖p1 + · · ·+ pn‖I(τ)

τ(p1 + · · ·+ pn)
‖y0‖1.

Proof. Note that y0 is an element of I such that y0 =
∑n

i=1 βipi where τ(p1) = τ(p2) = · · · = τ(pn).

Now let βn+j = βj for all 1 ≤ j ≤ n and yj =
∑n

i=1 βi+jpi for 1 ≤ j ≤ n. Then, by definition,∑n
k=1 yk = (β1 + · · ·+ βn)(p1 + · · ·+ pn), and also ‖yk‖I(τ) = ‖y0‖I(τ) for all 1 ≤ k ≤ n. Therefore,

‖y0‖I(τ) ≥
‖
∑n

k=1 yk‖I(τ)

n

≥ (
β1 + · · ·+ βn

n
)‖p1 + · · ·+ pn‖I(τ)

=
τ(y0)

τ(p1 + · · ·+ pn)
‖p1 + · · ·+ pn‖I(τ)

= ‖y0‖1
‖p1 + · · ·+ pn‖I(τ)

τ(p1 + · · ·+ pn)
.

Proposition 4.2.8. Suppose that I(τ) is a Banach function space. Suppose thatM is a diffuse von

Neumann algebra with a semifinite, faithful, normal tracial state τ and with an order continuous

norm ‖·‖I(τ). Then the restriction of ‖·‖I(τ) on I is a unitarily invariant, locally ‖·‖1-dominating,

mututally continuous norm with respect to τ .
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Proof. Note ‖ · ‖I(τ) : I → [0,∞) is a norm. Now we will verify that ‖ · ‖I(τ) satisfies the following

conditions:

1. ‖uxv‖I(τ) = ‖x‖I(τ) for all unitaries u, v in M, and every x in I;

2. for every projection e in M with τ(e) < ∞, there exists c(e) < ∞ such that ‖exe‖I(τ) ≥

c(e)‖exe‖1 for all x ∈M;

3. a. if {eλ}λ∈Λ is a net inM such that eλ → I in the weak* topology, then ‖eλx−x‖I(τ) → 0

for every x ∈ I.

b. if {eλ}λ∈Λ is a net in M such that ‖eλ‖I(τ) → 0, then τ(eλ)→ 0.

(1) We begin by showing that ‖uxv‖I(τ) = ‖x‖I(τ).

Given any x and y in I, we know that if τ(|x|n) = τ(|y|n) for every n ∈ N, then ‖x‖I(τ) = ‖y‖I(τ)

from Definition 3.4 in [33]. We have that τ is unitarily invariant by defintion, so for all unitaries u

and v in M and x in I,

τ(|uxv|n) = τ(v−n|x|nvn) = τ(|x|n) for every n ∈ N.

Hence ‖uxv‖I(τ) = ‖x‖I(τ), and ‖ · ‖I(τ) is unitarily invariant.

(3) a. We show that if {eλ} ⊆ I is an increasing net of projections such that eλ → I in the

weak* topology, then eλx→ x in ‖ · ‖I(τ)-norm for each x ∈ I.

Suppose that {eλ} ⊆ I is an increasing net of projections such that eλ → I in the weak*

topology. By definition, ‖ · ‖I(τ) is order continuous. So for every x in I, ‖
√
x∗(I − eλ)x‖I(τ) → 0,

and ‖(I− eλ)x‖I(τ) = ‖|(I− eλ)x|‖I(τ) = ‖
√
x∗(I − eλ)x‖I(τ) by (1). Therefore, ‖x− eλx‖I(τ) → 0

for every x in I, as desired.

b. We show that if {eλ} ⊆ I is a net of projections such that ‖eλ‖I(τ) → 0, then τ(eλ)→ 0.

We suppose that {eλ} ⊆ I is a net of projections such that ‖eλ‖I(τ) → 0. Suppose to the

contrary, that τ(eλ) 9 0. There exist an ε0 > 0, a subsequence {eλn} of {eλ}λ∈Λ such that for

every n ≥ 1, τ(eλn) ≥ ε0. As ‖eλ‖I(τ) → 0, ‖eλn‖I(τ) → 0. Recall that M has no minimal
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projection. By the properties of the norm ‖ · ‖I(τ), we may assume that {eλn} is a decreasing

sequence of projections in I. Thus there exist an x = ∧neλn in M such that 0 ≤ x ≤ eλn for every

n, and ε0 ≤ τ(x) ≤ τ(eλn). Moreover, we have that ‖eλn‖I(τ) ≥ ‖x‖I(τ) for every n, so therefore,

‖x‖I(τ) = 0. Hence x = 0, which contradicts with the fact that ε0 ≤ τ(x).

(2) We show that for a projection e ∈ M such that τ(e) < ∞ there exists c(e) =
‖e‖I(τ)
τ(e)

satisfying ‖exe‖I(τ) ≥ c(e)‖exe‖1 for all x ∈M.

Suppose that e = e2 = e∗ is a projection inM such that τ(e) <∞. Let x be a positive element in

M. For any ε > 0, there exist nonnegative numbers β1, β2, . . . , βn and subprojections p1, p2, . . . , pn

of e inM such that ‖exe−
∑n

i=1 βipi‖I(τ) ≤ ‖e−
∑n

i=1 βipi‖‖e‖I(τ) < ε and ‖exe−
∑n

i=1 βipi‖1 ≤

‖e −
∑n

i=1 βipi‖‖e‖1 < ε. We call
∑n

i=1 βipi = y0. For each m ∈ N and 1 ≤ i ≤ n , we partition

pi = qi,1 +qi,2 + · · ·+qi,ki +qi,ki+1 where ki is a positive integer and qi,1, qi,2, . . . , qi,ki are projections

in M such that τ(qi,1) = τ(qi,2) = · · · = τ(qi,ki) = 1/m, and 0 ≤ τ(qi,ki+1) < 1/m. We can write

y0 =
n∑
i=1

βi(

ki+1∑
j=1

qi,j) = z1 + z2,

where z1 =
∑n

i=1 βi(
∑ki

j=1 qi,j) and z2 =
∑n

i=1 βiqki+1.

We let q =
∑n

i=1

∑ki
j=1 qi,j . Then, by Lemma 4.2.7,

‖y0‖E(τ) ≥ ‖z1‖I(τ) ≥
‖q‖I(τ)

τ(q)
‖z1‖1.

Also, by the triangle inequality,

‖z1‖1 ≥ ‖y0‖1 − ‖z2‖1 ≥ ‖y0‖1 − (
n∑
i=1

βi)/m,

which approaches ‖y0‖1 as m→∞. Furthermore, by (3) we have

‖q‖I(τ)

τ(q)
≥
‖e‖I(τ) −

∑n
i=1 βi‖qi,ki+1‖I(τ)

τ(e)
→
‖e‖I(τ)

τ(e)
as m→∞.

Therefore,

‖y0‖I(τ) ≥
‖e‖I(τ)

τ(e)
‖y0‖1.
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By the choice of y0, we conclude that

‖exe‖I(τ) ≥
‖e‖I(τ)

τ(e)
‖exe‖1,

for all x in M.

4.2.3 Embedding from Lα(M, τ) into M̃

We would like to show that there is a natural embedding from Lα(M, τ) into M̃.

Suppose thatM is a von Neumann algebra with a semifinite, faithful, normal tracial weight τ ,

and H is a Hilbert space. Recall

I = span{xey : x, y ∈M, e ∈M, e = e2 = e∗ with τ(e) <∞}

is the set of elementary operators of M. Define M̃ to be the algebra of closed, densely defined

operators on H affiliated withM. We recall that the measure topology onM is given by the family

of neighborhoods Uδ,ε = {a ∈ M : for some projection p ∈ M, ‖ap‖ ≤ ε and τ(p⊥) ≤ δ} for any

ε, δ > 0.

Suppose that α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm

with respect to τ on M.

Lemma 4.2.9. Let ε > 0 be given. There exists δ0 > 0 such that if e is a projection in I with

α(e) < δ0, then τ(e) < ε.

Proof. Suppose, to the contrary, that there exists an ε > 0 such that for every δ0 > 0, there exists

a projection eδ0 in I such that α(eδ0) < δ, and τ(eδ0) ≥ ε. Let δ0 = 1/n for each n ∈ N. Then

there exits a sequence {en}n∈N such that for every n ∈ N, α(en) < 1/n, and τ(en) ≥ ε. This is a

contradiction, as α is mutually continuous with respect to τ (see definition 1.4.1). Therefore, the

Lemma is proven.

Lemma 4.2.10. Suppose a sequence {an} in I is Cauchy with respect to the norm α. Then {an}

is Cauchy in the measure topology.
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Proof. To prove that {an} ⊆ I is Cauchy in the measure topology, it suffices to show that for every

ε, δ > 0, there exists an N ∈ N such that for n,m > N , there exists a projection pm,n satisfying

‖|am−an|pm,n‖ < δ and τ((pm,n)⊥) < ε. By Lemma 4.2.9, we know that there exists a δ0 > 0 such

that

if e is a projection in I with α(e) < δ0, then τ(e) < ε. (4.2)

For each m,n ∈ N, let {eλ(m,n)} be the spectral decomposition of |am−an| inM. By the spectral

decomposition theorem, we have |am−an| =
∫∞

0 λdeλ(m,n), and τ(|am−an|) =
∫∞

0 λdτ(eλ(m,n)).

Let λ0 = δ0. Hence λ0eλ0(m,n)⊥ ≤ |am − an|eλ0(m,n)⊥. So

α(λ0eλ0(m,n)⊥) ≤ α(|am − an|) for all m,n ∈ N. (4.3)

Recall that {an} is Cauchy in α-norm. For ε1 = λ0δ0 > 0, there existsN ∈ N such that for allm,n >

N , α(am−an) < ε1. Combining with (4.3), we have that for every m,n > N , λ0α(eλ0(m,n)⊥) < ε1.

This implies that

α(eλ0(m,n)⊥) < ε1/λ0 = δ0.

Because of (4.2), τ(eλ0(m,n)⊥) < ε for every m,n > N . Put pm,n = eλ0(m,n). Then for every

m,n > N ,

‖|am − an|pm,n‖ ≤ λ0 = δ0, and τ(p⊥m,n) < ε.

The proof is complete.

Therefore, there is a natural continuous mapping from Lα(M, τ) into M̃.

Let e be a projection inM such that τ(e) <∞, and letMe = eMe. Define a faithful, normal,

tracial state τe on Me by τe(x) = 1
τ(e)τ(x) for every x in Me.

It can be shown that τe is a finite, faithful, normal tracial state on Me. Suppose that α is a

unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ on M.

Define αe = α|eMe. We define α′e : Me → [0,∞] by α′e(x) = sup{|τ(xy)| : y ∈ M, αe(y) ≤ 1} for

every x inMe. It may be shown that α′e is indeed a norm, and we call α′e the dual norm of αe (see

[8] for more information). We define Lα
′
e(Me, τ) =Me

α′e .
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We may also define αe : L1(Me, τ) → [0,∞] by αe(x) = sup{|τ(xy)| : y ∈ M, α′e(y) ≤ 1} for

every x in Me, and α′e : L1(Me, τ) → [0,∞] by α′e = sup{|τ(xy)| : y ∈ M, αe(y) ≤ 1} for every x

in Me. L
αe(Me, τ) and Lα

′
e(Me, τ) are defined to be Me

αe
and Me

αe′
respectively.

Lemma 4.2.11. Let α be a unitarily invariant, ‖ · ‖1-dominating, mutually continuous norm with

respect to τ . Then αe, α
′
e, α

′
e and αe are unitarily invariant norms on Lα(M, τ).

Proof. Clearly, αe(uxv) = α(uxv) = α(x) = αe(x) for unitaries u and v and an element x in

Me ⊂M. Therefore, αe is a unitarily invariant norm.

Let u and v be unitaries, and x be an element of Lα
′
e(Me, τe). Then

α′e(uxv) = sup{|τ(uxvy)| : y ∈M, αe(y) ≤ 1}

= sup{|τ(xuyv)| : y ∈M, αe(y) ≤ 1}

= sup{|τ(xy0)| : y0 ∈M, αe(y0) ≤ 1}

= α′e(x)

for every x ∈ Lα′e(Me, τe). Therefore, α′e is unitarily invariant.

The proofs that αe and α′e are unitarily invariant are similar.

Lemma 4.2.12. Suppose α is a unitarily invariant, ‖ · ‖1-dominating, mutually continuous norm

with respect to τ on M. Then

(i) ‖x‖1 ≤ αe(x) for every x ∈ Lαe(Me, τ); and

(ii) ‖x‖1 ≤ αe′(x) for every x ∈ Lαe′(Me, τ).

Proof. (i) Suppose that x is in Lαe(Me, τ) ⊆ L1(Me, τ). Let x = uh be the polar decomposition of

x in L1(Me, τ), such that u is a unitary in Me, and h is positive in L1(Me, τ). As αe is unitarily

invariant (see Lemma 4.2.11),

αe(x) = αe(uh) = αe(h). (4.4)

By definition, αe(h) ≥ |τ(h)| = ‖x‖1. Hence, combining with Equation 4.4,

‖x‖1 ≤ αe(x).
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(ii) The proof of (ii) is similar.

Lemma 4.2.13. For every y ∈Me and every z ∈ L1(Me, τ), α′e(yz) ≤ ‖y‖α′e(z).

Proof. Suppose y ∈Me such that ‖y‖ = 1, and let y = ω|y| be the polar decomposition of y inMe,

i.e. ω ∈Me is unitary and |y| ∈ Me is positive. Define v = |y|+ i
√

1− |y|2. Then by construction,

v is unitary in Me, and |y| = v+v∗

2 . Consider any z in L1(Me, τ). Then we have that

α′e(yz) = α′e(ω|y|z) = α′e(
vz + v∗z

2
) ≤ α′e(vz) + α′e(v

∗z)

2
for every z in L1(Me, τ),

and y inMe such that ‖y‖ = 1. Thus α′e(yz) ≤ ‖y‖α′e(z) for every z in L1(Me, τ) and y inMe.

Lemma 4.2.14. For every x ∈Me, αe(x) = αe(x).

Proof. First, we show that αe(x) ≤ αe(x) for every x in Me. By definition, |τ(xy)| ≤ αe(x)α′e(y)

for every x and y in Me. Suppose α′e(y) ≤ 1. Then |τ(xy)| ≤ αe(x)α′e(y) < αe(x) for every x in

Me, and y in Me such that α′e(y) ≤ 1. Hence

αe(x) = sup{|τ(xy)| : y ∈Me, α
′
e(y) ≤ 1} ≤ αe(x) (4.5)

by definition.

Next, we show that αe(x) ≥ αe(x). Suppose x is in Me with αe(x) = 1. Then by the Hahn-

Banach Theorem, there exists a ϕ in Lαe(Me, τ)# such that ϕ(x) = αe(x) = 1, and ‖ϕ‖ = 1.

Since ϕ is in Lαe(Me, τ)#, there exists ξ in Lα
′
e(Me, τ) such that ϕ(x) = |τ(xξ)| = 1, and αe

′(ξ) =

‖ξ‖ = 1. Let ξ = uh be the polar decomposition of ξ in Lα
′
e(Me, τ), where u ∈Me is unitary and

h ∈ Lα′e(Me, τ) is positive.

By Lemma 3.8 in [8], there exists a family {eλ} of projections inMe such that ‖h−heλ‖1 → 0,

and eλh = heλ ∈ Me for every 0 < λ < ∞. Also, u ∈ Me, so uheλ ∈ Me. Thus α′e(uheλ) =

αe
′(uheλ) ≤ αe

′(uh)‖eλ‖ ≤ αe
′(uh) = α′e(ξ) = 1, as α′e(x) = αe

′(x) for every x ∈ Me by Lemma

3.2 in [8]. So, αe(x)|τ(xξ)| = |τ(xuh)| = limλ→∞ |τ(xuheλ)| ≤ sup{|τ(xy)| : y ∈ Me, α
′
e(y) ≤ 1} =

αe(x). Therefore

αe(x) ≤ αe(x). (4.6)
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Hence from equations 4.5 and 4.6, αe(x) = αe(x), and the Lemma is proven.

Lemma 4.2.15. Lαe(Me, τ) = {x ∈ L1(Me) : αe(x) <∞} is a complete space in αe-norm.

Proof. It suffices to show that for every Cauchy sequence {bn} in Lαe(Me, τ), there exists b in

Lαe(Me, τ) such that bn → b in αe-norm. Suppose that {bn} is a Cauchy sequence in Lαe(Me, τ).

There exists M > 0 such that αe(bn) ≤M for every n.

By Lemma 4.2.12,

‖bn − bm‖1 ≤ α(bn − bm) for all m,n ≥ 1.

Therefore, {bn} is Cauchy in L1(Me, τ), which is complete. So there exists a b0 in L1(Me, τ) such

that ‖bn − b0‖1 → 0.

First, we claim that b0 is in Lαe(Me, τ). Let y ∈ Me such that α′e(y) ≤ 1. We have that

|τ(bny) − τ(b0y)| = |τ((bn − b0)y)| ≤ ‖bn − b0‖1‖y‖∞ by Hölder’s Inequality. However, ‖bn −

b0‖1‖y‖∞ → 0. Also, by the definition of α, we also have that |τ(b0y)| = limn→∞ |τ(bny)| ≤

lim supn→∞ αe(bn)α′e(y) ≤M . Therefore, α(bx) ≤M , and b0 ∈ Lαe(Me, τ).

Now, we show that αe(bn − b0)→ 0. We know that {bn} is Cauchy in Lα(Me, τ), so for every

n ≥ 1,

|τ((bn − b0)y)| = lim
m→∞

|τ((bm − bn)y)|

≤ lim sup
m→∞

αe(bn − bm)α′e(y)

≤ lim sup
m→∞

α(bm − bn)

Therefore, αe(bn − b0) ≤ lim supm→∞(bn − bm) for every n ≥ 1, and since {bn} is Cauchy in

Lαe(Me, τ),

αe(bn − b0)→ 0 as n→∞,

and the Lemma is proven.

Therefore Lαe(Me, τ) is a Banach space with respect to αe-norm.
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Lemma 4.2.16. Suppose that e ∈ M is a projection such that τ(e) < ∞. Suppose {eane} ⊆ I is

Cauchy in α-norm, and eane converges in measure to 0. Then

(i) for every ε > 0, there exists a δ > 0 such that, if q is a projection in M with τ(q) < δ,

|τ(eaneq)| < ε for every n;

(ii) given δ > 0, ε > 0 and N ∈ N, there exists pn, a projection in M, such that ‖eanepn‖ ≤ ε,

and τ(p⊥n ) < δ for every n ≥ N ;

(iii) for every projection q in I, τ(eaneq)→ 0 as n→∞; and

(iv) for every b in M, τ(eaneb)→ 0 as n→∞.

Proof. (i) Suppose that, as above, e ∈ M is a projection such that τ(e) < ∞ and {eane} is a

Cauchy sequence in α-norm. Let ε > 0 be given. By assumption, α is a locally ‖ · ‖1-dominating

norm, so there exists c(e) such that α(exe) ≥ c(e)‖exe‖1 for every x ∈M. Then, given ε
2c(e), there

exists N0 ∈ N such that for all n,m > N0,

α(eane− eame) ≤
ε

2
c(e).

Let δ = mink≤N0{ ε
2‖eake‖∞ }. Suppose q is a projection in M such that τ(q) ≤ δ. Then for

every k ≤ N0, |τ(eakeq)| ≤ ‖eake‖‖q‖1 by Hölder’s Inequality, and τ(q) = ‖q‖1 ≤ δ. Hence

|τ(eakeq)| ≤ ‖eake‖δ < ε/2 for all k ≤ N0 by our choice of δ.

For k > N0,

|τ(eakeq)| ≤ |τ((eake− eaN0e)q)|+ |τ(eaN0eq)|

≤ ‖eake− eaN0e‖1‖q‖+ ‖eaN0e‖‖q‖1 (by Hölder’s Inequality)

≤ 1

c(e)
α(eake− eaN0e)‖q‖+ ‖eaN0e‖δ (by Definition 1.4.1)

< ε/2 + ε/2 = ε.

Hence, (i) is proven.
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(ii) Suppose that {eane} is a Cauchy sequence in α-norm and eane→ 0 in measure. Then, by

the definition of convergence in measure, for any ε > 0, δ > 0 and N ∈ N, there exists pn in M

such that ‖eanepn‖ < ε and τ(p⊥n ) < δ for every n ≥ N .

(iii) Suppose that {eane} is a Cauchy sequence in α-norm such that eane → 0 in measure.

Then by (i), given ε > 0 and a projection q in I, there exists a δ1 > 0 such that if τ(q′) < δ1,

then |τ(eaneq
′)| < ε/2. Let δ > 0 and ε1 = ε

2τ(q) . Then by (ii), there exists N ∈ N such that

‖eanepn‖ < ε1, and τ(p⊥n ) < δ for every n ≥ N . Thus, for n ≥ N and any projection q ∈ I,

τ(eaneq) = τ(eane(q − q ∩ pn)) + τ(eane(q ∩ pn)). (4.7)

However, τ(q − q ∩ pn) = τ(q ∪ pn − pn) ≤ τ(p⊥n ) < δ. Therefore,

|τ(eane(q − q ∩ pn))| < ε/2. (4.8)

from (i). Also,

|τ(eane(q ∩ pn))| = |τ(eanepn(q ∩ pn))|

≤ ‖eanepn‖‖q ∩ pn‖1

≤ ε1τ(q ∩ pn)

< ε1τ(q) = ε/2. (4.9)

Then from equations 4.7, 4.8 and 4.9, |τ(eaneq)| < ε for any given ε > 0. Therefore, τ(eane) → 0

for every q ∈M such that q is a projection and τ(q) <∞.

(iv) Suppose that {eane} is a Caucy sequence in α-norm. Then there exists M > 0 such that

τ(eane) ≤ α(eane)
c(e) < M

c(e) . By considering ebe instead, we may assume that b ∈ I. By the spectral

decomposition theorem, b can be approximated by a finite linear combination of projections qi in
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M, i.e. there exist qi ∈ I such that ‖b−
∑n

i=1 qi‖ < ε c(e)M for any given ε > 0. Therefore,

|τ(eaneb)− τ(eane
n∑
i=1

qi)| = |τ(eane(b−
n∑
i=1

qi))|

≤ ‖τ(eane)‖1‖b−
n∑
i=1

qi‖

≤ M

c(e)
ε
c(e)

M
< ε.

Therefore, the Lemma is proven.

Proposition 4.2.17. There exists a natural embedding from Lα(M, τ) into M̃.

Proof. By Lemma 4.2.10, there exists a natural mapping from Lα(M, τ) to M̃.

It suffices to show that this mapping is an injection. Suppose that {an} ⊆ I is a Cauchy sequence

in α-norm such that xn → 0 in measure. As Lα(M, τ) is complete, there exists a ∈ Lα(M, τ) such

that an → a in α-norm. Assume that a 6= 0. There exists a projection e in M such that τ(e) <∞

and eae 6= 0. Thus {eane} is Cauchy in αe-norm, eane → 0 in measure and eane → eae 6= 0 in

αe-norm. By Lemma 4.2.16, τ(eaneb) → 0 for any b ∈ M. As, |τ(eaneb) − τ(eaeb)| ≤ αe(eane −

eae)α′e(b)→ 0, we have

τ(eaeb) = 0 for all b ∈ I.

On the other hand, by Lemma 4.2.14 and definition of αe, since eae 6= 0, there exists some b0 ∈Me

such that α′e(b0) ≤ 1 and τ(eaeb0) > α(eae)
2 . This is a contradiction. Therefore, a = 0, and the

mapping is an embedding.

4.3 A Beurling theorem for semifinite Hardy spaces with norm α

Theorem 4.3.1. Let M be a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and H∞ be a semifinite subdiagonal subalgebra of M. Let α be a unitarily invariant,

locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ . Let D = H∞ ∩ (H∞)∗.

Assume that K is a closed subspace of Lα(M, τ) such that H∞K ⊆ K.
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Then, there exist a closed subspace Y of Lα(M, τ) and a family {uλ} of partial isometries in

M such that

(i) uλY
∗ = 0 for every λ ∈ Λ;

(ii) uλu
∗
λ ∈ D, and uλu

∗
µ = 0 for every λ, µ ∈ Λ with λ 6= µ;

(iii) Y = [H∞0 Y ]α;

(iv) K = Y ⊕row (⊕rowλ∈ΛH
αuλ).

First, we prove some lemmas.

Lemma 4.3.2. Suppose M is a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and that H∞ is a semifinite, subdiagonal subalgebra of M. Suppose also that α is a

unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ . Assume

that K is a closed subspace of Lα(M, τ) such that H∞K ⊆ K. Then the following hold:

(i) K ∩M = K ∩Mw∗ ∩ Lα(M, τ)

(ii) K = [K ∩M]α

Proof. (i) It is clear that

K ∩M ⊆ K ∩Mw∗ ∩ Lα(M, τ).

We will prove that

K ∩M = K ∩Mw∗ ∩ Lα(M, τ).

Assume, to the contrary, that K∩M $ K ∩Mw∗ ∩Lα(M, τ). Then there exists an x ∈ K ∩Mw∗ ∩

Lα(M, τ), with x /∈ K ∩M. By the Hahn-Banach theorem, there exists a ϕ ∈ Lα(M, τ)# such

that ϕ(x) 6= 0, and ϕ(y) = 0 for every y ∈ K ∩M.

Since the restriction of τ to D = H∞ ∩ (H∞)∗ is semifinite, there exists a family {eλ} of

projections in D such that τ(eλ) <∞ for every λ, and eλ → I in the weak* topology. This implies

that eλx→ x in the weak* topology and in α-norm by condition (iiia) of definition 1.4.1.
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Thus, there must exist a λ such that eλx /∈ K ∩M. Also, eλx ∈ eλLα(M, τ).

Define ψ :M→ C by ψ(z) = ϕ(eλz) for every z ∈ M. Then ψ is a bounded linear functional.

We will show that ψ is normal, i.e. for an increasing net fµ of projections in M such that fµ →

I in weak∗-topology, then ψ(fµ) → ψ(I). By condition (iiia) of Defintion 1.4.1, we have that

α(eλfµ − eλI)→ 0, for a fixed λ. Since ϕ ∈ Lα(M, τ)#, ϕ(eλfµ)→ ϕ(eλI). However

ϕ(eλfµ) = ψ(fµ),

and ϕ(eλI) = ψ(I). Thus, ψ(fµ) → ψ(I). Therefore, ψ is a normal, bounded linear functional,

namely, ψ ∈ L1(M, τ).

There exists a ξ ∈ L1(M, τ) such that ψ(z) = τ(zξ) for every z ∈ M. Note that ψ(x) =

ϕ(eλx) = τ(xξ) 6= 0. Thus, there exists a projection e ∈ D such that τ(e) < ∞ so that ψ(ex) =

ϕ(eλex) = τ(exξ) 6= 0, and ψ(ey) = ϕ(eλey) = τ(eyξ) = 0 for every y ∈ K ∩M.

Recall that x ∈ K ∩Mw∗
. Therefore, there exists a sequence {yµ} in K ∩M such that yµ → x

in the weak* topology. Note that ξe ∈ L1(M, τ). Hence,

τ(yµξe)→ τ(xξe).

However, τ(yµξe) = 0, so τ(xξe) = 0, which is a contradiction. Therefore (i) is proven.

(ii) Clearly, K ∩M ⊆ K, and K is α-norm closed, so

[K ∩M]α ⊆ K.

We will show that

K = [K ∩M]α.

Suppose to the contrary, that [K ∩M]α $ K. There exists an x ∈ K such that x /∈ [K ∩M]α. We

know that D is semifinite, so there exists a family of projections {eλ}λ∈Λ such that τ(eλ) < ∞,

and eλ → I in the weak-* topology. By Definition 1.4.1, part (iiia), eλx→ x in α-norm. So, there

exists λ such that eλx ∈ K, since x ∈ K, and eλx /∈ [K ∩M]α, as x /∈ [K ∩M]α.

By Lemma 1.5.6, there exist an h1 ∈ eλH
∞eλ and an h2 ∈ eλH

αeλ such that h1eλx ∈ M,

and h1h2 = eλ = h2h1. Thus, eλx = h2h1eλx, h1eλx ∈ M, and h1eλx ∈ K, since H∞K ⊆ K.
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Also, h2 ∈ eλHαeλ, so there exists a sequence {an} in H∞ such that an → h2 in α-norm. Hence,

eλx = h2h1ex, anh1eλx ∈ K ∩M, and

anh1eλx→ h2h1ex

in α-norm.

Therefore, eλx ∈ [K ∩M]α, which is a contradiction. Thus, (ii) is proven.

Lemma 4.3.3. Suppose M is a von Neumann algebra with a faithful, normal, semifinite tracial

weight τ , and suppose that α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous

norm with respect to τ . Let H∞ be a semifinite, subdiagonal subalgebra of M. Assume that K is a

weak* closed subspace of M such that H∞K ⊆ K. Then

K = [K ∩ Lα(M, τ)]α ∩M
w∗

.

Proof. First we must show that

K ⊆ [K ∩ Lα(M, τ)]α ∩M
w∗
.

Let x ∈ K ⊆M. We know that τ restricted to D is semifinite, so there exists a net of projections

{eλ}λ∈Λ such that τ(eλ) < ∞ and eλ → I in the weak* topology. Also, eλx → x in the weak*

topology.

To show that

x ∈ [K ∩ Lα(M, τ)]α ∩M
w∗
,

it is sufficient to show that eλx ∈ [K ∩ Lα(M, τ)]α ∩ M. We have that eλx is in K, as x ∈ K

and K is H∞-invariant. We also know ‖eλx‖α ≤ ‖eλ‖α‖x‖ <∞. Therefore, eλx ∈ Lα(M, τ), and

eλx ∈ K ∩ Lα(M, τ) ⊆ [K ∩ Lα(M, τ)]α. Thus, x ∈ [K ∩ Lα(M, τ)]α ∩M
w∗

.

Hence K ⊆ [K ∩ Lα(M, τ)]α ∩M
w∗

.

Next, we show that

[K ∩ Lα(M, τ)]α ∩M
w∗ ⊆ K.



83

It suffices to show that [K ∩ Lα(M, τ)]α ∩M ⊆ K since K is weak*-closed.

Suppose, to the contrary, that [K∩Lα(M, τ)]α∩M $ K. There exists an x ∈ [K∩Lα(M, τ)]α∩

M such that x /∈ K. Since the restriction of τ to D is semifinite, there exists a net {eλ}λ∈Λ of

projections such that τ(eλ) ≤ ∞ and eλx→ x in the weak* topology.

As x /∈ K, by the Hahn-Banach theorem, there exists a ϕ ∈ M# such that ϕ(x) 6= 0 and

ϕ(y) = 0 for all y in K. As x ∈ [K ∩ Lα(M, τ)]α ∩ M and x /∈ K, there exists a λ such that

eλx ∈ [K ∩ Lα(M, τ)]α ∩M and eλx /∈ K. Since ϕ ∈ M#, there exists a ξ in L1(M, τ) such that

ϕ(z) = τ(zξ) for every z ∈ M. It follows that there exists a projection e ∈ D with τ(e) < ∞ so

that τ(xξe) 6= 0, and τ(yξe) = 0 for every y ∈ K.

We claim that there exists a z = ξe ∈Me such that τ(xz) 6= 0 and τ(yz) = 0 for all y ∈ K.

Note that ξe ∈ L1(M, τ) since ξ ∈ L1(M, τ) and τ(e) < ∞. By Lemma 1.5.6, there exist

h3 ∈ eH∞e, and h4 ∈ eH1e such that h3h4 = e = h4h3 and ξeh3 ∈ M. There exists {kn} in H∞

such that kn → h4 in ‖ · ‖1-norm. So,

lim
n→∞

|τ(exξ)− τ(xξeh3kn)| = lim
n→∞

|τ(xξeh3h4)− τ(xξeh3kn)|

≤ lim
n→∞

‖x‖‖ξeh3‖‖h4 − kn‖1

= 0.

There exists an N ∈ N such that τ(xξeh3kN ) 6= 0, since τ(xξ) 6= 0. We let z = ξeh3kN ∈M. Then,

z = ze ∈Me such that τ(xz) = τ(xξeh3kN ) 6= 0, and τ(yz) = τ(yξeh3kN ) = τ((eh3kN )yξ) = 0 for

every y ∈ K.

Since x ∈ [K∩Lα(M, τ)]α∩M there exists {xn} in K∩Lα(M, τ) such that xn → x in α norm,

and exn → ex in α-norm. Note ey =
√
eyy∗ev = e

√
eyy∗eev. Therefore, exn → ex in ‖ · ‖1-norm,

as ‖ey‖1 = ‖e
√
eyy∗ee‖1, α(ey) = α(e

√
eyy∗ee), and α is locally ‖ · ‖1 -dominating.

We also have that |τ(xz − xnz)| = |τ((x − xn)z)| ≤ ‖e(xn − x)‖1‖z‖. Finally, since {xn} is in

K ∩ Lα(M, τ) ⊆ K, τ(xnz) = 0. Hence, τ(xz) = 0, which is a contradiction.

Therefore, [K ∩ Lα(M, τ)]α ∩M
w∗ ⊆ K.

Thus, K = [K ∩ Lα(M, τ)]α ∩M
w∗

.
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Lemma 4.3.4. Suppose M is a semifinite von Neumann algebra with a faithful, normal tracial

weight τ , and suppose that α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually-continuous

norm with respect to τ . Let H∞ be a semifinite, subdiagonal subalgebra of M. Assume that S is a

subset of M such that H∞S ⊆ S. Then

[S ∩ Lα(M, τ)]α = [S
w∗ ∩ Lα(M, τ)]α.

Proof. Clearly, S ∩ Lα(M, τ) ⊆ Sw
∗
∩ Lα(M, τ) so, [S ∩ Lα(M, τ)]α ⊆ [S

w∗ ∩ Lα(M, τ)]α.

We will show that S
w∗ ∩Lα(M, τ) ⊆ [S ∩Lα(M, τ)]α. Let x ∈ Sw

∗
∩Lα(M, τ). We know that

there exists a net {eλ} in D of projections such that τ(eλ) <∞, and eλ → I in the weak* topology.

Thus, eλx→ x in the weak* topology.

We will show that eλx ∈ [S∩Lα(M, τ)]α in order to show that x ∈ [S∩Lα(M, τ)]α. By Lemma

4.3.2, we have that

[S ∩ Lα(M, τ)]α ∩M ⊆ [S ∩ Lα(M, τ)]α
w∗ ∩ Lα(M, τ).

Since x ∈ Sw
∗
∩ Lα(M, τ), there exists a net {xj} in S such that xj → x in the weak*-topology.

Therefore eλxj → eλx in the weak*-topology for every λ ∈ Λ. We note that α(eλxj) ≤ α(eλ)‖xj‖,

and H∞S ⊆ S. Therefore eλxj ∈ S ∩ Lα(M, τ), and eλxj ∈ [S ∩ Lα(M, τ)]α ∩M
w∗

. Thus, eλx ∈

[S ∩ Lα[M, τ)]α ∩M
w∗

. It is clear that eλx ∈ Lα(M, τ). By Lemma 4.3.2, [S ∩ Lα(M, τ)]α ∩M
w∗∩

Lα(M, τ) = [S ∩ Lα(M, τ)]α ∩M. So eλx ∈ [S ∩ Lα(M, τ)]α.

Therefore, x ∈ [S ∩ Lα(M, τ)]α, whence S
w∗ ∩ Lα(M, τ) ⊆ [S ∩ Lα(M, τ)]α. Hence,

[S
w∗ ∩ Lα(M, τ)]α = [S ∩ Lα(M, τ)]α.

Now, we prove Theorem 4.3.1.

Proof. Let K1 = K ∩Mw∗
. K1 is a weak* closed subspace of M such that H∞K1 ⊆ K1. Then

by Theorem 2.3.5, there exist a weak* closed subspace Y1 ⊆ M and a family {uλ}λ∈Λ of partial

isometries in M such that
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(a) uλY
∗

1 = 0 for every λ ∈ Λ;

(b) uλu
∗
λ ∈ D, and uλu

∗
µ = 0 for every λ, µ ∈ Λ such that λ 6= µ;

(c) Y1 = H∞0 Y1
w∗

;

(d) K1 = Y1 ⊕row (⊕rowλ∈ΛH
∞uλ).

Let Y = [Y1 ∩ Lα(M, τ)]α.

(i) We know that there exists {an} ⊆ Y ∗1 such that an → a in α-norm for some a ∈ Y ∗1 . From (a),

and the definition of Y1, anui → aui in α-norm. Thus, we may conclude that uλY
∗ = 0 for every

λ ∈ Λ.

(ii) follows from (b).

(iii) We will show that Y = [H∞0 Y ]α. We have that

Y = [Y1 ∩ Lα(M, τ)]α (by definition of Y )

= [H∞0 Y1
w∗ ∩ Lα(M, τ)]α (by (c))

= [H∞0 Y1 ∩ Lα(M, τ)]α (by Lemma 4.3.4)

= [H∞0 ([Y1 ∩ Lα(M, τ)]α ∩M
w∗

) ∩ Lα(M, τ)]α (by Lemma 4.3.3)

⊆ [H∞0 ([Y1 ∩ Lα(M, τ)]α ∩M)
w∗ ∩ Lα(M, τ)]α (by Theorem 1.7.8 in [35])

= [H∞0 ([Y1 ∩ Lp(M, τ)]α ∩M) ∩ Lα(M, τ)]α (by Lemma 4.3.4)

= [H∞0 (Y ∩M) ∩ Lα(M, τ)]α (by defintion of Y )

⊆ [H∞0 Y ]α

⊆ Y.

Hence, Y = [H∞0 Y ]α as desired.

(iv) Finally, we will show that K = Y ⊕row (⊕rowλ∈ΛH
αuλ).

Recall that Y = [Y1 ∩ Lα(M, τ)]α.

We claim that [H∞0 Y1 ∩ Lα(M, τ)]α ⊆ [H∞0 (Y1 ∩ Lα(M, τ))]α.
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Also, by Lemma 4.3.2, Hαuλ = [H∞uλ ∩ Lα(M, τ)]α for every λ ∈ Λ. Now,

K = [K1 ∩ Lα(M, τ)]α

= [Y1 +
∑
λ∈Λ

H∞uλ
w∗

∩ Lα(M, τ)]α (by definition of K1)

= [Y1 +
∑
λ∈Λ

H∞uλ ∩ Lα(M, τ)]α (by Lemma 4.3.4)

= [Y1 ∩ Lα(M, τ) +
∑
λ∈Λ

H∞uλ ∩ Lα(M, τ)]α (by (a) and (b))

= [Y +
∑
λ∈Λ

Hαuλ]α

= Y ⊕row (⊕rowλ∈ΛH
αuλ)

where the last equality comes from Definition 1.6.1.

Corollary 4.3.5. Suppose that M is a von Neumann algebra with a faithful, normal, semifinite

tracial weight τ . Let α be a unitarily invariant, locally ‖ ·‖1-dominating, mutually continuous norm

with respect to τ . Let K be a subset of Lα(M, τ) such thatMK ⊆ K. Then there exists a projection

q with K =Mq.

Proof. We note that M can be considered as a semifinite subdiagonal subalgebra of M itself.

Hence, we let M = H∞, and it follows that D = M and Φ is the identity map on M. Also,

H∞0 = {0} and Hα = Lα(M, τ).

Let K be a closed subspace of Lα(M, τ) such that MK ⊆ K. From Theorem 4.3.1,

K = Y ⊕row (⊕rowλ∈ΛH
αuλ),

where uλY
∗ = 0 for every λ ∈ Λ, uλu

∗
λ ∈ D, and uλu

∗
µ = 0 for every λ, µ ∈ Λ such that λ 6= µ, and

Y = [H∞0 Y ]α.

It is clear that because H∞0 = {0}, Y = 0. Also, since D =M, we have that

Hαuλ = Lα(M, τ)uλ = Lα(M, τ)uλu
∗
λuλ

⊆ Lα(M, τ)u∗λuλ ⊆ Lα(M, τ)uλ = Hαuλ.
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Therefore, Hαuλ = Lα(M, τ)u∗λuλ. Specifically, we find that

K = Y ⊕row (⊕rowλ∈ΛH
αuλ) = (⊕rowλ∈ΛL

α(M, τ)u∗λuλ)

Lα(M, τ)
(∑
λ∈Λ

u∗λuλ
)

= Lα(M, τ)q

where we let
∑

λ∈Λ u
∗
λuλ = q, and q is a projection in M. This ends the proof.



Chapter 5

Applications for unitarily invariant,

locally ‖ · ‖1-dominating, mutually

continuous norms

In Chapter 4, we were able to prove a Beurling-Chen-Hadwin-Shen theorem for a semifinite von

Neumann algebra M. We seek to extend those results to semifinite factors, crossed products of a

von Neumann algebra by an action β, and Banach function spaces, as described in Chapter 4.

When M is a factor, we can weaken the conditions on α.

Corollary 5.2.1. Suppose M is a factor with a faithful, normal tracial weight τ . Let α : I →

[0,∞), where I is the set of elementary operators in M, be a unitarily invariant norm such that

any net {eλ} in M with eλ ↑ I in the weak* topology implies that α((eλ − I)x) → 0. Let D =

H∞ ∩ (H∞)∗. Assume that K is a closed subspace of Lα(M, τ) such that H∞K ⊆ K. Then, there

exist a closed subspace Y of Lα(M, τ) and a family {uλ} of partial isometries in M such that

(i) uλY
∗ = 0 for every λ ∈ Λ;

(ii) uλuλ ∈ D, and uλuµ for every λ, µ ∈ Λ with λ 6= µ;

(iii) Y = [H∞0 Y ]α;

(iv) K = Y ⊕row (⊕rowλ∈ΛH
αuλ).
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Similar to our result in Chapter 3 for Lp spaces, we prove a Beurling-Chen-Hadwin-Shen theorem

for the crossed product of a von Neumann algebraM by a trace-preserving action β with a unitarily

invariant, locally ‖ · ‖1-dominating, mutually continuous with respect to the trace τ .

Corollary 5.3.2. Suppose that M is a von Neumann algebra with a semifinite, faithful, normal

tracial weight τ . Let α be a unitarily invariant, locally ‖ ·‖1-dominating, mutually continuous norm

with respect to τ , and β be a trace-preserving, *-automorphism of M. Consider the crossed product

of M by an action β, Moβ Z. Still denote the semifinite, faithful, normal, extended tracial weight

on Moβ Z by τ .

Denote by H∞ the weak *-closed nonself-adjoint subalgebra in M oβ Z which is generated by

{Λ(n)Ψ(x) : x ∈M, n ≥ 0}. Then H∞ is a semifinite subdiagonal sublagebra of Moβ Z.

Let K be a closed subspace of Lα(MoβZ, τ) such that H∞K ⊆ K. Then there exist a projection

q in M and a family {uλ}λ∈Λ of partial isometries in Moβ Z which satisfy

(i) uλq = 0 for all λ ∈ Λ;

(ii) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(iii) K = (Lα(Moβ Z)q)⊗row (⊗rowλ∈ΛH
αuλ).

As B(H) is a factor and can be realized as the crossed product, we can also weaken the conditions

on α when M = B(H). Additionally, we can fully characterize the H∞ invariant subspace.

Corollary 5.4.2. Suppose H is a separable Hilbert space with an orthonormal base {em}m∈Z, and

let

H∞ = {x ∈ B(H) : 〈xem, en〉 = 0,∀n < m}

be the lower triangular subalgebra of B(H). Then D = H∞ ∩ (H∞)∗ is the diagonal subalgebra of

B(H).

Suppose α : I → [0,∞), where I is the set of elementary operators inM, is a unitarily invariant

norm such that any net {eλ} in M with eλ ↑ I in the weak* topology implies that α((eλ− I)x)→ 0.
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Assume that K is a closed subspace of Hα such that H∞K ⊆ K. Then there exists {uλ}λ∈Λ, a

family of partial isometries in H∞ which satisfy

(i) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for every λ, µ ∈ Λ such that λ 6= µ;

(ii) K = ⊕rowλ∈ΛH
αuλ.

Additionally, we prove a result for a Banach function space E with norm ‖ · ‖I(τ) and provide

an answer for Problem 4.0.1.

Corollary 5.1.1. Suppose that I(τ) is a Banach function space on the diffuse von Neumann algebra

M with order continuous norm ‖·‖I(τ). Let D = H∞∩(H∞)∗. Assume that K is a closed subspace

of I(τ) such that H∞K ⊆ K. Then, there exist a closed subspace Y of I(τ) and a family {uλ} of

partial isometries in M such that

(i) uλY
∗ = 0 for every λ ∈ Λ;

(ii) uλuλ ∈ D, and uλuµ for every λ, µ ∈ Λ with λ 6= µ;

(iii) Y = [H∞0 Y ]I(τ);

(iv) K = Y ⊕row (⊕rowλ∈ΛH
I(τ)uλ).

5.1 Invariant subspaces for non-commutative Banach function spaces

We briefly recall our discussion of a non-commutative Banach function space. Let E be a symmetric

Banach function space on (0,∞) with Lebesgue measure. As before, we letM be a von Neumann al-

gebra with a faithful, normal tracial state τ and I = {x ∈M : x is a finite rank operator in (M, τ)

and ‖µ(x)‖E < ∞}. We may then define a Banach function space I(τ), and a norm ‖ · ‖I(τ) by

‖x‖I(τ) = ‖µ(x)‖E for every x ∈ I(τ). We let H∞ be a semifinite subdiagonal subalgebra ofM, as

described in Chapter 4. The following is an easy corollary of Theorem 4.3.1 and Proposition 4.2.8.
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Corollary 5.1.1. Suppose that I(τ) is a Banach function space on the diffuse von Neumann algebra

M with order continuous norm ‖·‖I(τ). Let D = H∞∩(H∞)∗. Assume that K is a closed subspace

of I(τ) such that H∞K ⊆ K.

Then, there exist a closed subspace Y of I(τ) and a family {uλ} of partial isometries inM such

that

(i) uλY
∗ = 0 for every λ ∈ Λ;

(ii) uλu
∗
λ ∈ D, and uλu

∗
µ = 0 for every λ, µ ∈ Λ with λ 6= µ;

(iii) Y = [H∞0 Y ]I(τ);

(iv) K = Y ⊕row (⊕rowλ∈ΛH
I(τ)uλ).

5.2 Invariant subspaces for factors

We also have the following corollary from Theorem 4.3.1 and Proposition 4.2.5.

Corollary 5.2.1. Suppose M is a factor with a faithful, normal tracial weight τ . Let α : I →

[0,∞), where I is the set of elementary operators in M, be a unitarily invariant norm such that

any net {eλ} in M with eλ ↑ I in the weak* topology implies that α((eλ − I)x)→ 0. Let H∞ be a

semifinite subdiagonal subalgebra of Lα(M, τ). Let D = H∞ ∩ (H∞)∗. Assume that K is a closed

subspace of Lα(M, τ) such that H∞K ⊆ K.

Then, there exist a closed subspace Y of Lα(M, τ) and a family {uλ} of partial isometries in

M such that

(i) uλY
∗ = 0 for every λ ∈ Λ;

(ii) uλu
∗
λ ∈ D, and uλu

∗
µ = 0 for every λ, µ ∈ Λ with λ 6= µ;

(iii) Y = [H∞0 Y ]α;

(iv) K = Y ⊕row (⊕rowλ∈ΛH
αuλ).
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5.3 Invariant subspaces of analytic crossed products

Suppose that M is a von Neumann algebra with a semifinite, faithful normal tracial weight τ .

We let β be a *-automorphism of M such that τ(β(x)) = τ(x) for every x ∈ M+ (i.e. β is

trace-preserving).

Let l2(Z) denote the Hilbert space which consists of the complex-valued functions f on Z

which satisfy
∑

m∈Z |f(m)|2 < ∞. Let {en}n∈Z be the orthonormal basis of l2(Z) such that

en(m) = δ(n,m). We also denote the left regular representation of Z on l2(Z) by λ : Z→ B(l2(Z)),

where λ(n)(em) = em+n.

We let H = L2(M, τ)⊗ l2(Z), or equivalently, H = ⊕m∈ZL2(M, τ)⊗ em. The representations

Ψ of M and Λ of Z may be defined by

Ψ(x)(ξ ⊗ em) = (β−mξ)⊗ em, for all x ∈M, ξ ∈ L2(M, τ) and m ∈ Z

Λ(n)(ξ ⊗ em) = ξ × (λ(n)em) for all n,m ∈ Z.

It is not hard to verify that

Λ(n)Ψ(x)Λ(−n) = Ψ(βn(x)) for all x ∈M and n ∈ Z.

We may define the crossed product of M by an action β, which we denote by M oβ Z, to be

the von Neumann algebra generated by Ψ(M) and Λ(Z) in B(H). When there is no possibility of

confusion, we will identify M with its image Ψ(M) under Ψ in Moβ Z.

In Chapter 13 of [22], amongst others, it is shown that there exists a faithful, normal conditional

expectation, Φ, taking Moβ Z onto M such that

Φ

( N∑
n=−N

Λ(n)Ψ(xn)

)
= x0 where xn ∈M for every −N ≤ n ≤ N.

There also exists a semifinite, normal, extended tracial weight on M oβ Z, which we still denote

by τ , and which satisfies

τ(y) = τ(Φ(y)), for every postive y ∈Moβ Z.
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Example 5.3.1. Let M = l∞(Z). Then M is an abelian von Neumann algebra with a semifinite,

faithful, normal tracial weight τ which is given by

τ(f) =
∑
m∈Z

f(m), for every positive f ∈ l∞(Z).

We let β be an action on l∞(Z), which we define by

β(f)(m) = f(m− 1), for every f ∈ l∞(Z) and m ∈ Z.

It is known (see, for example Proposition 8.6.4 of [22]) that l∞(Z) oβ Z is a type I∞ factor.

Therefore, for a separable Hilbert space H, l∞(Z) oβ Z ' B(H).

The next result follows from our construction of crossed products. Recall the following from

Lemma 3.1.2 (see also section 3 of [1]).

Take the weak *-closed, non-self-adjoint subalgebraMoβ Z+ ofMoβ Z which is generated by

{Λ(n)Ψ(x) : x ∈M, n ≥ 0}.

Then the following hold:

(i) Moβ Z+ is a semifinite subdiagonal subalgebra with respect to (Moβ Z,Φ). We will denote

such a semifinite subdiagonal subalgebra by H∞ and call H∞ an analytic crossed product.

(ii) We denote by H∞0 the space ker(Φ) ∩ H∞. Then H∞0 is a weak *-closed nonself-adjoint

subalgebra which is generated in Moβ Z by

{Λ(n)Φ(x) : x ∈M, n ≥ 0}

and satisfies

H∞0 = Λ(1)H∞.

(iii) H∞ ∩ (H∞)∗ =M.

We are able to characterize the invariant subspaces of a crossed product of a semifinite von

Neumann algebra M by a trace-preserving action β.
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Corollary 5.3.2. Suppose that M is a von Neumann algebra with a semifinite, faithful, normal

tracial weight τ . Let α be a unitarily invariant, locally ‖ ·‖1-dominating, mutually continuous norm

with respect to τ , and β be a trace-preserving, *-automorphism of M. Consider the crossed product

of M by an action β, Moβ Z. Still denote the semifinite, faithful, normal, extended tracial weight

on Moβ Z by τ .

Denote by H∞ the weak *-closed nonself-adjoint subalgebra in M oβ Z which is generated by

{Λ(n)Ψ(x) : x ∈M, n ≥ 0}. Then H∞ is a semifinite subdiagonal subalgebra of Moβ Z.

Let K be a closed subspace of Lα(MoβZ, τ) such that H∞K ⊆ K. Then there exist a projection

q in M and a family {uλ}λ∈Λ of partial isometries in Moβ Z which satisfy

(i) uλq = 0 for all λ ∈ Λ;

(ii) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(iii) K = (Lα(Moβ Z)q)⊗row (⊗rowλ∈ΛH
αuλ).

Proof. From Theorem 4.3.1, we know that

K = Y ⊕row (⊕rowλ∈ΛH
αuλ)

such that Y is a closed subspace of M oβ Z and a family of partial isometries, {uλ}, in M oβ Z

which satisfy

(a) uλY
∗ = 0 for all λ ∈ Λ;

(b) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(c) Y = [H∞0 Y ]α.

By Lemma 3.1.2 and (c), it is clear that

Y = [H∞0 Y ]α = [Λ(1)H∞Y ]α ⊆ Λ(1)Y.

We can show, by induction, that Λ(−n)Y ⊆ Y for any n in N. From the defintion of H∞,

we know that Λ(n)Y ⊂ Y for every n ≥ 0, and ψ(x)Y ⊆ Y for every x ∈ M. Therefore,
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Y ⊆ Lα(M oβ Z) is left-M oβ Z-invariant, and from Corollary 4.3.5, there exists a projection

q ∈M with Y = Lα(Moβ Z, τ)q. Therefore,

(i) uλq = 0 for all λ ∈ Λ;

(ii) uλu
∗
λ ∈M and uλu

∗
µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(iii) K = (Lα(Moβ Z)q)⊗row (⊗rowλ∈ΛH
αuλ)

hold, and the corollary is proven.

5.4 Invariant subspaces for B(H)

Let H be an infinite dimensional separable Hilbert space with orthonormal base {em}m∈Z. We let

τ = Tr be the usual trace on B(H), namely

τ(x) =
∑
m∈Z
〈xem, em〉 for every x ∈ B(H) with x > 0.

With this τ , B(H) is a von Neumann algebra with a semifinite, faithful, normal tracial weight τ .

We let

A = {x ∈ B(H) : 〈xem, en〉 = 0 ∀n < m}

be the lower triangular subalgebra of B(H).

Recall from Example 5.3.1 that the crossed product of l∞(Z) by an action β, denoted l∞(Z)oβZ,

where the action β is determined by

β(f)(m) = f(m− 1) for every f ∈ l∞(Z),m ∈ Z

is another way to realize B(H).

It is easy to see that A is l∞(Z)oβ Z+, a semifinite subdiagonal subalgebra of l∞(Z)oβ Z (see

Lemma 3.1.2).

The following corollary follows from Corollary 5.3.2
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Corollary 5.4.1. Suppose H is a separable Hilbert space with an orthonormal base {em}m∈Z, and

let

H∞ = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}

be the lower triangular subalgebra of B(H). Then D = H∞ ∩ (H∞)∗ is the diagonal subalgebra of

B(H). Suppose α : I → [0,∞), where I is the set of elementary operators in B(H), is a unitarily

invariant norm such that any net {eλ} in B(H) with eλ ↑ I in the weak* topology implies that

α((eλ − I)x)→ 0.

Assume that K is a closed subspace of B(H) such that H∞K ⊆ K. Then there exists a projection

q in D and {uλ}λ∈Λ, a family of partial isometries in H∞ which satisfy

(i) uλq = 0 for every λ ∈ Λ;

(ii) uλu
∗
λ ∈ D, and uλu

∗
µ = 0 for every λ, µ ∈ Λ with λ 6= µ;

(iii) K = (B(H)q)⊕row (⊕rowλ∈ΛH
αuλ).

The following is a corollary of Corollary 5.3.2 and Proposition 4.2.5.

Corollary 5.4.2. Suppose H is a separable Hilbert space with an orthonormal base {em}m∈Z, and

let

H∞ = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}

be the lower triangular subalgebra of B(H). Then D = H∞ ∩ (H∞)∗ is the diagonal subalgebra of

B(H).

Suppose α : I → [0,∞), where I is the set of elementary operators in B(H), is an unitarily

invariant norm such that any net {eλ} in B(H) with eλ ↑ I in the weak* topology implies that

α((eλ − I)x)→ 0.

Assume that K is a closed subspace of Hα such that H∞K ⊆ K. Then there exists {uλ}λ∈Λ, a

family of partial isometries in H∞ which satisfy

(i) uλu
∗
λ ∈ D and uλu

∗
µ = 0 for every λ, µ ∈ Λ such that λ 6= µ;
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(ii) K = ⊕rowλ∈ΛH
αuλ.

Remark 5.4.3. The result is similar when H∞ is instead the upper triangular subalgebra of B(H).

Remark 5.4.4. Recall that any unitarily invariant norm α gives rise to a symmetric gauge norm

Ψ on the spectrum of |A|, {an}1≤n≤N , where A finite rank operator. Then Corollary 5.4.2 holds

for Ψ.
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