
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Natural Resources and the Environment 
Scholarship Natural Resources and the Environment 

3-2020 

Influence of forest-to-silvopasture conversion and drought on Influence of forest-to-silvopasture conversion and drought on 

components of evapotranspiration components of evapotranspiration 

Adam P. Coble 
University of New Hampshire, Durham 

Alexandra R. Contosta 
University of New Hampshire, Durham 

Richard G. Smith 
University of New Hampshire, Durham 

Nathan W. Siegert 
USDA Forest Service 

Matthew A. Vadeboncoeur 
University of New Hampshire, Durham 

See next page for additional authors 

Follow this and additional works at: https://scholars.unh.edu/nren_facpub 

 Part of the Agricultural Science Commons, Forest Management Commons, Hydrology Commons, and 

the Water Resource Management Commons 

Comments 
This is an Accepted Manuscript of an article published by Elsevier in Agriculture, Ecosystems, and Environment in 

2020, available online: https://dx.doi.org/10.1016/j.agee.2020.106916. This manuscript version is made available 

under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Recommended Citation Recommended Citation 
Coble AP, Contosta AR, Smith RG, Siegert NW, Vadeboncoeur MA, Jennings KA, Stewart AJ, Asbjornsen H. 
2020. Influence of forest-to-silvopasture conversion and drought on components of evapotranspiration. 
Agriculture, Ecosystems & Environment, 295:106916. 

This Article is brought to you for free and open access by the Natural Resources and the Environment at University 
of New Hampshire Scholars' Repository. It has been accepted for inclusion in Natural Resources and the 
Environment Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For 
more information, please contact Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/nren_facpub
https://scholars.unh.edu/nren_facpub
https://scholars.unh.edu/nren
https://scholars.unh.edu/nren_facpub?utm_source=scholars.unh.edu%2Fnren_facpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1063?utm_source=scholars.unh.edu%2Fnren_facpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/92?utm_source=scholars.unh.edu%2Fnren_facpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1054?utm_source=scholars.unh.edu%2Fnren_facpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1057?utm_source=scholars.unh.edu%2Fnren_facpub%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.1016/j.agee.2020.106916
mailto:Scholarly.Communication@unh.edu


Authors Authors 
Adam P. Coble, Alexandra R. Contosta, Richard G. Smith, Nathan W. Siegert, Matthew A. Vadeboncoeur, 
Katie A. Jennings, Anthony J. Stewart, and Heidi Asbjornsen 

This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/nren_facpub/
139 

https://scholars.unh.edu/nren_facpub/139
https://scholars.unh.edu/nren_facpub/139


Coble et al.  doi.org/10.1016/j.agee.2020.106916 
 

i 
 

INFLUENCE OF FOREST-TO-SILVOPASTURE CONVERSION AND DROUGHT ON 

COMPONENTS OF EVAPOTRANSPIRATION 

 

Adam P. Coblea,b*, Alexandra R. Contostac, Richard G. Smithd, Nathan W. Siegerte,  

Matthew Vadeboncoeurf, Katie A. Jenningsg, Anthony J. Stewarth, and Heidi Asbjornseni 

 

* corresponding author 

a Oregon Department of Forestry, Private Forests Division, 2600 State St, Salem, OR 97310, USA, 

adam.coble@oregon.gov, 503-945-7317 

b University of New Hampshire, Department of Natural Resources and the Environment, 56 College Rd., Durham, 

NH 03824, USA 

c University of New Hampshire, Earth Systems Research Center, 8 College Rd, Durham, NH 03824, USA, 

alix.contosta@unh.edu 

d University of New Hampshire, Department of Natural Resources and the Environment, 56 College Rd, Durham, 

NH 03824, USA, richard.smith@unh.edu 

e USDA Forest Service, State and Private Forestry, Eastern Region, Forest Health Protection, 271 Mast Road, 

Durham, NH 03824, USA, nathan.w.siegert@usda.gov 

f University of New Hampshire, Earth Systems Research Center, 8 College Rd, Durham, NH 03824, USA, 

matt.vad@unh.edu 

g University of New Hampshire, Earth Systems Research Center, 8 College Rd, Durham, NH 03824, USA, 

katie.jennings@unh.edu 

h University of New Hampshire, Department of Natural Resources and the Environment, 56 College Rd., Durham, 

NH 03824, USA, ajstewart04@gmail.com 

i University of New Hampshire, Department of Natural Resources and the Environment, 56 College Rd, Durham, 

NH 03824, USA, heidi.asbjornsen@unh.edu 

 

Keywords 

Agroforestry, Drought, Evapotranspiration, Hydrology, Land use change, Silvopasture 

 

Note:  This is a post-peer-review, pre-copyedit version of an article published in Agriculture, Ecosystems, 

and Environment, made available in accordance with Elsevier’s copyright policy. The final version is 

available online at:  https://doi.org/10.1016/j.agee.2020.106916 

 

This document should be cited as:  

Coble AP, Contosta AR, Smith RG, Siegert NW, Vadeboncoeur MA, Jennings KA, Stewart AJ, 

Asbjornsen H.  2020.  Influence of forest-to-silvopasture conversion and drought on components of 

evapotranspiration.  Agriculture, Ecosystems & Environment, 295:106916. 

mailto:adam.coble@oregon.gov
mailto:alix.contosta@unh.edu
mailto:richard.smith@unh.edu
mailto:nathan.w.siegert@usda.gov
mailto:matt.vad@unh.edu
mailto:katie.jennings@unh.edu
mailto:ajstewart04@gmail.com
mailto:heidi.asbjornsen@unh.edu
https://doi.org/10.1016/j.agee.2020.106916


Coble et al.  doi.org/10.1016/j.agee.2020.106916 
 

2 
 

Abstract 

The northeastern U.S. is projected to experience more frequent short-term (1-2 month) droughts 

interspersed among larger precipitation events. Agroforestry practices such as silvopasture may 

mitigate these impacts of climate change while maintaining economic benefits of both 

agricultural and forestry practices. This study evaluated the effects of forest-to-silvopasture (i.e., 

50% thinning) conversion on the components of evapotranspiration (transpiration, rainfall 

interception, and soil evaporation) during the growing season of 2016. The study coincided with 

a late-summer drought throughout the northeastern U.S., which allowed us to also evaluate the 

effects of forest-to-silvopasture conversion on drought responses of multiple tree species, 

including Pinus strobus, Tsuga canadensis, and Quercus rubra.  In the reference forest and 

silvopasture, we observed declining soil moisture and tree water use during the drought for all 

three tree species. However, the decline in P. strobus water use in response to declining soil 

moisture in the silvopasture was not as steep as compared with the reference forest, resulting in 

greater water use in the silvopasture for this species. In contrast, we did not detect different 

water-use responses between forest and silvopasture in T. canadensis or Q. rubra. This suggests 

that forest-to-silvopasture conversion via thinning can alleviate drought stress for P. strobus and 

that this species may be more sensitive to moisture stress when competition for water is high in 

denser stands. Evapotranspiration was 35% lower in the silvopasture compared with the 

reference forest, primarily a result of lower transpiration and rainfall interception. While soil 

evaporation was greater in the silvopasture, this was not enough to offset the considerably lower 

transpiration and interception. We observed greater radial tree growth 1-3 years following 

conversion in the silvopasture as compared with the reference forest for T. canadensis and Q. 

rubra, but not for P. strobus.  Overall, our results suggest that forest conversion to silvopasture 
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(in lieu of clearcutting for new pasture) may mitigate the impacts of agricultural land use 

intensification and climate change on ecosystem services, especially in terms of sustaining 

hydrologic regulation functions.  Further study is required to determine the generality of these 

results and whether these benefits extend beyond the first few years post-conversion.  

 

1. Introduction 

Land cover in New England has shifted from nearly 50 percent agricultural through the 

late 18th to mid-19th century to predominantly forests by the end of the 20th century (Foster, 

1992; Foster et al., 2010; Nowak and Greenfield, 2012). Recently, however, agriculture in New 

England has experienced a resurgence, due in large part to increasing consumer demand for 

locally produced goods which enables a high percentage of farms to sell directly to consumers 

and retailers (e.g., restaurants, grocery stores) (USDA-NASS, 2014). At the same time, most 

farm properties in the region remain heavily forested, with as much as 65% of total farmland 

classified as woodland in some states (USDA-NASS, 2014). Hence, farmers in the region 

interested in expanding their agricultural land base to meet growing consumer demand will 

necessarily need to convert some of this forested land to agricultural uses (USDA-NRCS, 2001; 

Donahue et al., 2014).  

While conversion of forested land to agriculture increases the land area available for food 

production, it also increases the risk of losing critical ecosystem services that forests provide to 

society, such as carbon sequestration and hydrological regulation. Agroforestry practices may 

offer a strategy that balances some of these ecological and economic trade-offs (Garrett and 

Buck, 1997; Shrestha and Alavalapati, 2004; DeBruyne et al., 2011; Nair, 2011; Orefice et al., 

2019). In fact, the U.S. Department of Agriculture (USDA) has recently promoted agroforestry 
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to help mitigate the effects of climate change, provide resilience to agricultural landscapes, and 

offer improved food security throughout the U.S., while also recognizing that additional 

scientific research in agroforestry systems is needed (Schoeneberger et al., 2017). Given the New 

England region is projected to experience more frequent short-term (1-2 month) droughts 

interspersed among larger precipitation events (Hayhoe et al. 2007, Wake et al. 2014), 

identifying ways in which agroforestry practices can potentially mitigate climate change impacts 

while meeting the region’s future agricultural goals is an important area of emerging research 

(Schoeneberger et al. 2012, Orefice et al. 2017).    

Silvopasture is an agroforestry system that includes the simultaneous management of 

growing trees and livestock grazing on the same lands. Silvopasture systems vary widely 

depending on climate and resources, but the primary goals of silvopasture in New England are 

for production of sawtimber, firewood, and fruit production, in addition to livestock production 

(Orefice et al., 2017). Previous research has demonstrated silvopasture systems can provide 

important ecosystem services including carbon sequestration (Sharrow and Ismail, 2004; Dold et 

al., 2019) and improved water quality (Michel et al., 2007; Nair et al., 2007; Bambo et al., 2009), 

as well as providing favorable microclimate conditions for grazing animals (Karki and 

Goodman, 2015). A large collection of studies has also shown that forested catchments have 

greater evapotranspiration and lower water yield compared with open pastures (Bosch and 

Hewlett, 1982; Zhang et al., 2001; Brown et al., 2005; Beets and Oliver, 2007), suggesting that 

tree cover reduces runoff.  However, less is known regarding how conversion of forested land to 

silvopasture affects ecosystem services that regulate runoff and streamflow, including tree 

transpiration, rainfall interception, soil evaporation, and evapotranspiration.   
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We evaluated how conversion of a mixed species forest to a silvopasture affected 

microclimate, stand structure (i.e., basal area and density), ecohydrology, and tree growth 1 to 3 

years following conversion. The study coincided with extreme drought conditions that occurred 

throughout the northeastern U.S., with areas receiving 25-75% of normal precipitation (Coble et 

al., 2017; Sweet et al., 2017). This allowed us to additionally quantify drought responses in both 

the recently converted silvopasture and a reference forest. At the individual tree level, we 

hypothesized that following thinning, all species would experience greater increases in water use 

and tree growth and subsequent increases in water availability due to less competition. We also 

hypothesized that conversion of forest to silvopasture would alleviate water-stress and negative 

effects of drought on water use (i.e., sap flux density). Finally, we hypothesized that forest-to-

silvopasture conversion would decrease total stand evapotranspiration one year following 

conversion via decreases in stand transpiration and intercepted precipitation. The primary target 

tree species for this study were Pinus strobus (white pine), Tsuga canadensis (eastern hemlock), 

and Quercus rubra (northern red oak).   

 

2. Methods 

2.1. Study site  

The study site was a mixed P. strobus-T. canadensis forest located at the University of 

New Hampshire Organic Dairy Research Farm (43.0972 N, 70.9961 W; 30 m elevation) in Lee, 

New Hampshire. In the spring of 2015, two 1-ha (50 × 200 m) plots were converted to open 

pasture and silvopasture, herein referred to as ‘pasture’ and ‘silvopasture’, respectively. An 

additional 1-ha plot was left untreated, which served as the control, herein referred to as 

‘reference forest’. These three plots were adjacent to each other, with the pasture located in 
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between the silvopasture and reference forest plots. The goals of the silvopasture conversion 

were to create sufficient light in the understory for forage production and cattle grazing (~50% 

reduction in canopy cover and removal of understory trees) by removing trees with lower timber 

value (e.g., T. canadensis and understory trees) while retaining trees with high timber value (e.g., 

primarily P. strobus and Q. rubra). All trees and understory were removed in the pasture 

treatment. 

Orchard grass (Dactylis glomerata) seed was applied to the silvopasture and pasture plots 

immediately following conversion in 2015. Since there was very little establishment of orchard 

grass in 2015, seed was applied again in the spring of 2016. After seeding occurred in 2016, 

rotational grazing of Jersey heifers in the pasture and silvopasture plots over a ~13 week period 

was established to help scarify the soil and promote orchard grass germination and 

establishment. Ten heifers grazed in 15 × 100 m fenced paddocks that included portions of both 

the silvopasture and pasture. Within the paddocks, hay bales were evenly distributed to promote 

additional seeding and soil scarification. Paddocks initially started at the eastern end of the plots 

and were moved sequentially once per week to cover the entire area of the silvopasture and 

pasture plots. Grazing intensity was estimated to be 1.42 head ha-1 day-1 year-1 (Stewart et al. 

2019).  

A complete tree inventory of the reference forest and silvopasture was conducted in May 

2016. The total basal area of the reference forest and silvopasture were 49.5 and 20.5 m2 ha-1, 

respectively (Table 1). T. canadensis and P. strobus were the dominant species in the reference 

forest with a basal area of 28.9 and 12.1 m2 ha-1, respectively.  Other major species in the 

reference forest included Betula lenta (2.3 m2 ha-1), Carya ovata (2.1 m2 ha-1), Acer rubrum (1.4 

m2 ha-1), Q. rubra (1.2 m2 ha-1), and Quercus alba (1.0 m2 ha-1).  T. canadensis and P. strobus 
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were the dominant species remaining in the silvopasture plot with a basal area of 5.7 and 10.0 m2 

ha-1, respectively. Other major species in the silvopasture included Q. rubra (2.2 m2 ha-1), Betula 

lenta (1.5 m2 ha-1), Acer rubrum (0.5 m2 ha-1), Carya ovata (0.2 m2 ha-1), and Quercus alba (0.1 

m2 ha-1).   

 All measurements in this study were made within one plot per treatment, which is a form 

of simple pseudoreplication with unreplicated treatments (Hurlbert 1984). One potential issue 

arising from simple pseudoreplication is that the experimental units may not be identical at the 

time of and following the treatment, apart from the treatment effect (Hurlbert 1984). Thus, pre-

existing differences among plots can be mistaken for treatment effects. While the current study 

lacks pre-treatment data for most parameters reported in this manuscript, there is evidence for 

similar soil conditions between the reference forest and silvopasture. At the same site during the 

same year (2016), Stewart et al. (2019) found no significant differences in soil bulk density or 

soil particle size among the reference forest, silvopasture, and pasture plots. Stewart et al. (2019) 

also found that saturated hydraulic conductivity (Ksat) was not significantly different between the 

reference forest and silvopasture at three soil depths (0, 15, and 30 cm). The only difference in 

Ksat observed was between the reference forest and pasture at the 15 cm depth. Furthermore, we 

did not detect differences in 3-yr mean raw ring width between the reference forest and 

silvopasture for the pretreatment period for any of the tree species (see Section 3.4). Overall, 

these findings are consistent with the idea that pre-existing differences in site conditions across 

our plots are not the dominant drivers of the measured differences that we interpret as treatment 

effects. 
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2.2. Meteorological and microclimate measurements 

 One meteorological station was placed in the center of the reference forest, silvopasture, 

and pasture plots in October 2015. Each station continuously measured relative humidity (RH, 

%) and air temperature (°C) using a HOBO U23 Pro V2 Temperature/Relative Humidity Data 

Logger (Onset Computer Corporation, Bourne, MA, USA). Photosynthetic photon flux density 

(PPFD, umol m-2 s-1) was measured using a HOBO PAR Smart Sensor. Relative humidity, air 

temperature, and PPFD were measured 1.5 m above the ground. We also measured RH and air 

temperature at 15 m above the ground in the silvopasture and reference forest canopies using two 

HOBO U23 Pro V2 Temperature/Relative Humidity Data Loggers, which were tied to parachute 

chord suspended by two large branches in two P. strobus trees. Relative humidity and air 

temperature measured at 1.5 and 15 m were used to calculate vapor pressure deficit (VPD, kPa) 

using the R-software package ‘plantecophys’ (Duursma, 2015). Soil temperature (°C) was 

measured at a 0-15 cm depth at three locations around each tower with a HOBO 12-Bit 

Temperature Smart Sensor. Volumetric soil water content (VWC, m3 m-3) was measured at three 

locations around each tower and at three soil depths (0-15 cm, 15-30 cm, and 30-50 cm) using a 

HOBO 10HS Soil Moisture Smart Sensor. The analysis in this study includes VWC data at the 0-

15 cm depth to simplify the analysis. Meteorological measurements were logged at an hourly 

time-step using a HOBO Micro Station Data Logger. Precipitation (mm) was also measured 

hourly in the pasture. However, there were a number of gaps in the data due to equipment 

malfunction. To fill in these gaps, we used hourly precipitation (mm) data from the National 

Oceanic and Atmospheric Administration USCRN meteorological station (WBAN #54795), 

located approximately 4 km from the study area.  
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 In order to characterize light conditions throughout the reference forest and silvopasture 

plots, hemispherical photographs were taken at multiple locations throughout each plot, using a 

digital camera (NIKON E4500) with a fish-eye lens attached to a gimbal and telescoping pole. 

During the mornings and evenings of 17-18 August 2016, hemispherical photographs were taken 

directly above each throughfall collector (described below) in the reference forest and 

silvopasture plots for a total of 60 hemispherical photographs following the methods of Zhang et 

al. (2005) (Supplementary Material I). Hemispherical images were analyzed for gap fraction, 

indirect site factor, and direct site factor using HemiView v.2.1 software (Delta-T Devices, Ltd.; 

Cambridge, UK). Gap fraction is the fraction of the canopy not blocked by foliage from a 

viewpoint of 2 m above the forest floor. Direct site factor (DSF) is the proportion of direct light 

relative to open conditions, while indirect site factor (ISF) is the proportion of diffuse light under 

a standard overcast sky.   

 

2.3. Throughfall measurements  

 Within each plot we measured net precipitation (i.e., throughfall) using 30 collectors. We 

randomly selected the locations of five transects (50 m length) within each plot. Transects were 

equally divided into six 8.3 m sections and one collector was randomly assigned a location 

within each section. We also included three equally spaced collectors in the reference pasture to 

measure gross precipitation for the same rain events. Throughfall collectors consisted of funnels 

(12 cm diameter) secured to the tops of the 3.8-liter plastic bottles. The bottles were secured to 

wooden stakes using parachute chord. Following each rain event, the quantity of water (mL) 

collected by the bottles was measured using a graduated cylinder. We measured throughfall for 
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rain events occurring from 6 June to 20 September 2016 for a total of 13 rain events at the 

silvopasture and reference plots, respectively.   

 

2.4. Sap flux density measurements 

Target species for sap flux density measurements included T. canadensis, P. strobus, and 

Q. rubra due to their high contribution to stand basal area in the silvopasture and reference 

forest, as well as the high timber value of Q. rubra. We selected five T. canadensis, five P. 

strobus, and two Q. rubra trees in each plot for a total of 24 trees. The mean diameter of these 

sample trees by species is shown in Table 1. Our objective in selecting sample trees was to select 

trees of similar diameter at breast height (DBH, cm) among treatments, which was accomplished 

for P. strobus and T. candensis.  However, due to the low number of Q. rubra trees in the 

reference forest, selecting trees with comparable diameters was not possible. Due to the greater 

diameter size of Q. rubra in the reference forest, we used sap flux density to compare water use 

patterns among individual species, which accounts for differences in the total sapwood area of 

each tree (Hernandez-Santana et al., 2015).   

We used the heat-ratio method (HRM) for measuring sap flux density, which consisted of 

an upper and a lower temperature probe spaced 0.6 cm from a middle heater probe (Burgess et 

al., 2001; Vandegehuchte and Steppe, 2013). One set of temperature probes (i.e., upper, lower, 

and heater probe) per sample tree was installed in the tree sapwood after chiseling the bark and 

phloem from the sapwood. Bark thickness at each set of probes was measured with a depth 

gauge to account for bark thickness in diameter measurements and calculation of sapwood area.  

Probes were installed in trees at 2.7-3.0 m above the ground in the silvopasture plot to eliminate 

the potential for damage from cows that were grazing in the plot. Probes were installed 1.3 m 
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above the ground in the reference forest where heifers were not allowed to graze. For two P. 

strobus trees and one Q. rubra tree in the reference forest, we added additional probes at 3 m to 

assess whether vertical position along the bole affected sap flux density. For P. strobus, we 

observed strong correlations (R2 = 0.93-0.98) between sap flux density at 1.3 m and at 3 m, and 

the slopes ranged from 0.95 to 1.11 for the linear models. For Q. rubra, we also observed a 

strong linear correlation (R2 = 0.99) and a slope of 1.0.  This analysis indicates that sap flux 

density measurements taken at 1.3 and 3 m can be compared directly.   

Due to differing sapwood depth among species, two types of temperature probes that 

differed in length were constructed prior to installation: longer probes of 4 cm with 

thermocouples at depths of 1, 2.25, and 3.5 cm from the outer edge of the sapwood for P. strobus 

and large T. canadensis trees (> 32 cm DBH), and shorter probes of 2.5 cm with thermocouples 

at depths of 0.5, 1.0, and 1.5 cm for small T. canadensis (< 32 cm DBH) and Q. rubra trees. 

Appropriate probe length was based on sapwood depth observations in the three species included 

in the study (Daley et al., 2007; McIntire, 2018). Based on predicted sapwood depths using DBH 

(described below) and probe lengths, the proportion of sapwood depth covered by the probes was 

estimated to be 100% for P. strobus, 44% for small T. canadensis trees (< 32 cm DBH), 52% for 

large T. canadensis trees (> 32 cm DBH), and 92% for Q. rubra. Different probe lengths and 

depths into the sapwood were accounted for when conducting sap flow analysis at the tree level.   

Each sap flow sensor set was wired to a channel relay multiplexer (AM16/32B-ST-SW, 

Campbell Scientific, Logan, UT) and datalogger (CR1000, Campbell Scientific, Logan, UT) 

powered by 12 volt batteries. Data loggers were programmed to collect consecutive 

measurements of sapwood temperature for 30 seconds prior to the heat pulse and for 100 seconds 

following the heat pulse, and these sets of measurements were collected every 15 minutes from 1 
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July through 1 October 2016.  For each depth of the temperature probes, we calculated sap flux 

density using the methods described in Burgess et al. (2001). Sap flux density measurements at 

each depth were scaled to the tree using a weighted average based on of the proportion of 

sapwood area associated with each depth of the temperature probes (Hernandez-Santana et al., 

2015).   

 For the purposes of estimating sapwood area and depth for each tree, tree cores were 

collected from outside and adjacent to the silvopasture plot from T. canadensis (10 trees) and Q. 

rubra (10 trees) in July 2017 using an increment borer. Sapwood depth was measured after the 

cores were stained with methyl orange (0.1%). Using the sapwood depth, we developed a 

regression equation for predicting sapwood depth using DBH as the independent variable. 

Regression equations relating DBH to sapwood depth were then used for predicting sapwood 

depth for the trees in the reference forest and silvopasture plots. DBH-sapwood depth regression 

equations for P. strobus were developed from another nearby study (4 km; McIntire, 2018).  This 

method involved scanning tree discs and measuring sapwood depth and area using ImageJ 

software (Schneider et al., 2012).   

 

2.6. Soil evaporation  

We measured in situ soil evaporation to assess forest-to-silvopasture effects on soil 

evaporation during the late summer and to validate modeled soil evaporation (described below) 

relative to the reference forest and pasture treatments. We followed the methods of Jackson and 

Wallace (1999) for measuring in situ soil evaporation using microlysimeters with some 

modifications. Microlysimeters were constructed using polyvinyl chloride (PVC) pipe with a 10 

cm diameter cut at 12 cm lengths, and equally spaced holes were drilled along the entire surface 
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of the pipe to allow for drainage of saturated soils. In the spring of 2016, prior to the study 

period, approximately 18 microlysimeters were inserted into the soil at a depth of 12 cm in an 

area adjacent to the silvopasture plot. Following three rain events in August, the microlysimeters 

were collected from the adjacent site in the morning at 0800 hours. Microlysimeters were 

carefully extracted to prevent soil loss from the soil collar. Three evenly spaced holes were dug 

within the reference forest, silvopasture, and pasture plots to a depth of 16 cm for the purpose of 

housing the microlysimeters, and lined with aluminum sheeting to form a microlysimeter holder. 

Immediately after extracting the microlysimeters, they were wrapped in plastic to prevent 

evaporation from the holes, weighed, and placed on a mounting platform within each 

microlysimeter holder. The mounting platform raised the soil core above bottom of the 

microlysimeter holder and kept the top of the microlysimeter at the same height as the soil 

surface. Microlysimeters were weighed immediately after extraction and measured at 0800 hrs 

and 1800 hrs each day for three days following each rain event in order to obtain daytime, 

nighttime, and 24-hour estimates of soil evaporation. In the analysis, we focus on the 24-hour 

measurements. We obtained six 24-hour estimates of soil evaporation for the three replicates in 

the reference forest and silvopasture for a total of thirty six 24-hour measurements of soil 

evaporation.   

 The rate of soil evaporation (Es, kg m-2 s-1) was modeled at an hourly time-step in all 

plots in order estimate total cumulative soil evaporation (mm) and evapotranspiration (mm) over 

the entire study period. Briefly, the modeling approach used in this study estimates the difference 

in partial water vapor pressures between the air and the soil, as well as the conductance of water 

vapor through the soil and boundary layers above the soil surface (see Supplementary Material 

I). This modeling approach is described by Duursma and Medlyn (2012), which is based on 
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models developed by Choudhury and Monteith (1988) and modified by Williams et al. (2001).  

We validated modeled soil evaporation with our in situ measurements. 

 

2.8. Tree growth 

Within the reference forest and silvopasture plots, sap flow trees and additional trees of 

similar diameter class were selected and cored in November 2017 for tree growth analysis. Ten 

trees for each species (P. strobus, T. canadensis, and Q. rubra) were selected in the reference 

forest and silvopasture plots, except for Q. rubra in the reference forest, which were limited to 

eight trees. Trees located near the edge of the pasture were excluded when possible. One core 

was collected from each tree at a height of 20-30 cm (to preserve future timber value, consistent 

with the management objectives). Samples were processed using standard dendrochronological 

techniques (Speer 2010). Due to the timing of the tree core collection, tree measurements were 

restricted to 3 years of growth following forest-to-silvopasture conversion. 

While collecting short cores to assess radial growth three years before and after forest-to-

silvopasture conversion was our primary objective, we also collected longer cores appropriate for 

cross-dating purposes. For instance, 78% of the chronologies were at least 25 years in length and 

50% of the cores were at least 40 years in length. For T. canadensis, the series intercorrelation 

was 0.491 with an average mean sensitivity of 0.229. For P. strobus, the series intercorrelation 

was 0.365 with an average mean sensitivity of 0.252. For Q. rubra, the series intercorrelation 

was 0.684 with an average mean sensitivity 0.226.  

 

2.9. Data Analysis 
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Statistical analyses were conducted using R statistical software v3.5.2 (R Core Team, 

2018). We used ANCOVA to compare net precipitation (mm; i.e., throughfall) between the 

reference forest and silvopasture. Net precipitation was the dependent variable, and the 

independent variables were treatment, gross precipitation (covariate), and treatment × gross 

precipitation. ANCOVA was also used to compare daily sap flux density (cm3 cm-2 day-1) 

between treatments and time periods (i.e., pre-drought, drought, and post-drought). The 

dependent variable was daily sap flux density, and the independent variables were treatment, 

time period, (ln)VPD (covariate), and all interaction effects.  In comparing daily sap flux 

density-VPD slopes, we repeated this analysis after changing the default factor level (i.e., base 

case) for time period so that tests for differences in slopes could be made for all time periods. We 

used t-statistics to test whether slopes differ between treatments and time periods. 

To further compare drought responses between treatments and species, we conducted a 

piecewise linear regression for the relationships between sap flux density and VWC for each 

species within each treatment. Data for this analysis includes days with above-average daily 

PPFD and that include VWC data in both the reference forest and silvopasture. Breakpoints for 

the piecewise linear regression were also estimated to identify the point, or threshold, at which 

sap flux density begins to decrease with decreasing VWC using the R package ‘segmented’ 

(Muggeo 2008). ANCOVA was used to compare the rate of decreasing sap flux density with 

decreasing soil moisture for values below the breakpoints. The dependent variable was daily sap 

flux density, and the independent variables were treatment, species, VWC (covariate), and all 

interaction variables. For this ANCOVA, we only included days that had above-average PPFD 

(> 429 mol m-2 day-1). The reason for not including cloudy, cooler days is that sap flux density is 

limited by these conditions and less likely to be influenced by soil moisture and crown 
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illumination, masking the effects of forest thinning or drought on tree water use. We only 

included days that contained soil VWC data in both the reference forest and silvopasture to avoid 

a biased comparison.  

We used a linear mixed-effects model to compare daily sap flux density and tree growth 

between both treatments and among different time periods. For both linear mixed-effects models, 

tree was included as a random effect, and time (e.g., drought period or pre-/post-conversion), 

treatment, and time × treatment were the fixed effects. Prior to running the models, mean daily 

sap flux density was averaged across each drought period (pre-drought, drought, and post-

drought) for each tree, and ring width 3 years prior to and 3 years following the forest-to-

silvopasture conversion were averaged for each tree to calculate 3-year mean ring width.  

Differences in 3-year mean ring width between pre- and post-conversion, as well as differences 

between reference forest and silvopasture, are reported along with corresponding 95% 

confidence intervals.   

 

3. Results 

3.1. Microclimate and soil moisture 

As expected, daily photosynthetic photon flux density (PPFD) was greatest in the pasture, 

intermediate in the silvopasture, and lowest in the reference forest (Fig. 1a). Mean PPFD in the 

pasture, silvopasture, and reference forest over the study was 423±17, 103±5, 6±1 mol m-2 day-1 

(±SE). Vapor pressure deficit (VPD) was greater in the pasture and silvopasture than the 

reference forest (Fig. 1b). Mean VPD in the pasture, silvopasture, and reference forest, and was 

0.67±0.04, 0.65±0.04, and 0.53±0.02 kPa (±SE), respectively. The difference in VPD between 

the reference forest and silvopasture was much more apparent at 1.5 m than what was observed 
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in the canopy. Mean VPD in the silvopasture and forest canopies at 15 m above the ground were 

the same (0.75±0.04 kPa for both).   

During the study period at this site and throughout southeastern New Hampshire, a 

drought occurred from 23 August through 18 September (Fig. 1c), which was preceded by 

several months of below-average precipitation. The large rain event at the end of this drought 

occurred on 19 September, which resulted in 30 mm of gross precipitation. In the upper soil layer 

(0-15 cm), we observed a fairly constant and greater VWC in the pasture as compared with the 

reference forest and silvopasture (Fig. 1d). Declining VWC associated with drought was 

apparent in the reference forest and silvopasture and was likely associated with water uptake by 

trees and increased soil evaporation in the latter (see Section 3.2). Despite the greater number of 

trees present in the reference forest, VWC was similar between the reference forest and 

silvopasture.  

 

3.2. Canopy interception and soil evaporation 

 We observed greater canopy interception by the reference forest as compared with the 

silvopasture (Fig. 2). The ANCOVA showed a significant treatment × gross precipitation effect 

for predicting net precipitation (p < 0.001), indicating that the slope of the relationship between 

net precipitation and gross precipitation was significantly greater at the silvopasture than the 

forest. Approximately 83 and 92% of the precipitation falling onto the reference forest and 

silvopasture canopies (as throughfall), respectively, penetrated the canopies to reach the ground.   

 In situ measurements showed that soil evaporation was greatest in the pasture, 

intermediate in the silvopasture, and lowest in the reference forest in August 2016 (Fig. 3). The 

in situ measurements were similar to modeled estimates except for the pasture, where measured 
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soil evaporation was approximately 50% greater than the modeled estimate. The inconsistencies 

among measured and modeled estimates are discussed in Section 4.3.  

 

3.3. Sap flux density and drought response 

 While daily sap flux density for P. strobus appeared to be greater in the silvopasture than 

the reference forest in early June and during the late-summer drought (Fig. 4a), we did not detect 

a significant treatment effect (p > 0.05) on mean daily sap flux density (e.g., averaged over each 

drought period) for any of the species or drought periods (pre-drought, drought, and post-

drought). We did observe a significant (p < 0.05) drought period effect for all species. Mean 

daily sap flux density was significantly greater during the pre-drought than both the drought and 

post-drought periods for all species. Mean daily sap flux density was significantly greater during 

the drought period than the post-drought period for Pinus strobus and Quercus rubra in the 

silvopasture, but not in the reference forest.     

 In comparing seasonal differences in sap flux density between the silvopasture and 

reference forest, we calculated the ratio of the silvopasture to reference forest sap flux density 

(Supplementary Material II). For P. strobus, we observed a large increase in this ratio during the 

drought period, providing further evidence of decreased sensitivity to drought through thinning. 

This ratio slightly decreased during the drought period for T. canadensis and did not change for 

Q. rubra.  

 To better understand drought response and recovery following drought for the three 

species, we compared sap flux density and vapor pressure deficit (VPD) relationships among the 

pre-drought, drought, and post-drought time periods. Vapor pressure deficit is a key predictor in 

stomatal behavior. Thus, a diminished response (i.e., lower slope) indicates greater stomatal 
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closure. Sap flux density for all species displayed a non-linear response to VPD during all 

portions of the study period including pre-drought, drought, and post-drought (i.e., time period) 

(Fig. 5a-f). For the ANCOVA, a treatment and (ln)VPD × treatment effect was detected for P. 

strobus, but not for Q. rubra or T. canadensis. For all species, we detected (ln)VPD, time period, 

and (ln)VPD × time period effects. For all species, the slopes of the sap flux density-VPD 

relationships were greater during the pre-drought period as compared with the drought and post-

drought periods in both reference forest and silvopasture (Table 2). Within each time period, the 

slopes were not significantly different between the reference forest and silvopasture for all 

species, except for P. strobus during the pre-drought period (Table 2).   

 Breakpoints of the piecewise regression model were similar among treatments and 

species, ranged from 0.15 to 0.18 m3 m-3, and indicate that sap flux density declines with 

decreasing VWC below this range (Fig. 6). For all species, regressions between sap flux density 

and VWC were significant (p < 0.001) below the breakpoint and non-significant (p > 0.05) above 

the breakpoints (Fig. 6). For the ANCOVA that compared sap flux-VWC slopes below the 

breakpoint, we observed a significant treatment, VWC, and species effect (p < 0.001) on sap flux 

density. The 2-way and 3-way interaction effects on sap flux density were also significant (p < 

0.001). In the reference forest, the slope (slope±SE) of the relationship between sap flux density 

and VWC (e.g., below the breakpoint) was greater for P. strobus (2403±254) than for T. 

canadensis (1100±208) and Q. rubra (604±134). This suggests that P. strobus was most 

sensitive to drought in the reference forest. In the silvopasture, the slope of the sap flux-VWC 

relationship was greater for P. strobus (977±93) and T. canadensis (782±62) as compared with 

Q. rubra (509±85). Thus, P. strobus was more sensitive to drought than Q. rubra in both 

treatments. Within species, the sap flux-VWC slopes were similar between treatments for T. 
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canadensis and Q. rubra, but not for P. strobus. We observed a greater sap flux-VWC slope in 

the reference forest as compared with the silvopasture for P. strobus. This suggests that for P. 

strobus, sap flux density was less sensitive to declining VWC in the silvopasture than in the 

reference forest. In contrast, forest-to-silvopasture conversion had no effect on the sap flux 

density response to decreasing VWC for T. canadensis and Q. rubra.   

 

3.4. Tree growth 

 Mean ring widths were similar among the reference forest and silvopasture prior to 

forest-to-silvopasture conversion (Fig. 7a-c). Following conversion, we observed a consistent 

positive response in 3-year mean ring width in the silvopasture for all tree species (Fig. 7a-c). In 

the silvopasture, we detected a significant increase for Q. rubra from pre- to post-conversion, but 

not for T. canadensis (Table 3, Fig. 7a-c). For P. strobus, there was some evidence of an increase 

in 3-year mean ring width following conversion. The confidence limits did not straddle zero, yet 

the model output indicated non-significance (Table 3). In the reference forest, mean ring width 

did not change over time (e.g., pre- to post-harvest) for any species. After forest-to-silvopasture 

conversion, 3-year mean ring width was greater in the silvopasture compared to the reference 

forest for both T. canadensis and Q. rubra, but not for P. strobus (Table 3). Finally, changes in 

3-year ring width that occurred from pre- to post-conversion were significantly greater in the 

silvopasture than the reference forest for T. canadensis, but not for P. strobus and Q. rubra (last 

row of Table 3).  

 

3.5. Stand-level evapotranspiration 
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 Total evapotranspiration (ET), evaporation of intercepted precipitation (Ei), and 

transpiration (Et) were greater in the reference forest than the silvopasture over the study period 

(Fig. 8). Data for Ei and Et in the pasture were not collected because vegetation in this treatment 

site was sparse at beginning of the study and increased over time, and we did not attempt to 

model transpiration. Thus, we report soil evaporation for the pasture only. Consistent with our in 

situ measurements of soil evaporation, modeled soil evaporation (Es) was greater in the 

silvopasture and pasture as compared with the reference forest. In the reference forest, the 

contributions by Ei, Et, and Es were 21%, 67%, and 12%, respectively. In the silvopasture, the 

contributions by Ei, Et, and Es were 16%, 49%, and 35%. Thus, in the silvopasture, the relative 

contribution of Es to ET was greater than Ei.   

 

4. Discussion 

4.1. Tree-level thinning and drought response 

 Our results provided partial support for our first hypothesis that forest thinning and 

conversion to silvopasture would increase water use on a sapwood area basis. Mean daily sap 

flux density was similar between the silvopasture and reference forest for all tree species 

examined. However, we detected treatment effects for P. strobus when VPD and soil moisture 

were included as covariates. Sap flux density for P. strobus was greater in the silvopasture 

during days with high VPD prior to the drought and during low soil moisture conditions during 

the drought. Opening the canopy through forest thinning reduces competition for light within the 

canopy and typically results in greater wind speeds lower in the canopy due to reduced leaf area 

index (Cionco, 1972). By exposing tree crowns to greater light conditions, greater absorption of 

shortwave radiation by leaves increases leaf surface temperature and conductance to water vapor, 
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and greater wind speed increase the conductance of water vapor through the leaf and canopy 

boundary layers (Campbell and Norman, 1998). Collectively, this may explain why P. strobus is 

more responsive to higher VPD in the silvopasture prior to the drought.   

Our results also provide partial support for our second hypothesis that forest-to-

silvopasture conversion would alleviate water stress and negative effects of drought on water 

use. Conversion to silvopasture alleviated the effect of drought on P. strobus as indicated by 

greater sap flux density in the silvopasture at low soil water content. Greater tree density in the 

reference forest likely resulted in greater competition for soil water, restricting water use for P. 

strobus. Similar to our findings, Skubel et al. (2017) observed an increase in P. strobus whole-

tree water use after thinning (30% of trees removed) even during a severe drought in Ontario, 

Canada. In this study, thinning appeared to alleviate competition for soil water in the silvopasture 

for P. strobus.   

While treatment effects were most evident for P. strobus, vapor pressure deficit and soil 

water content were important variables that explained seasonal variation in sap flux density for 

all three species. Vapor pressure deficit appeared to be the driving factor for sap flux density for 

all species earlier in the summer when soil moisture was not limiting. During the drought period 

for all species, sap flux density was less responsive to vapor pressure deficit (VPD) and appeared 

to more sensitive to declining soil moisture. Similarly, Bovard et al. (2005) observed a 

diminished response of transpiration to VPD in a northern hardwood forest during a drought, 

indicative of reduced stomatal aperture.  

We detected a decline in sap flux density for all species as soil water content decreased, 

but these declines were not consistent among species. Pinus strobus displayed greater sensitivity 

to drought than T. canadensis in the reference forest and greater sensitivity than Q. rubra in the 
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silvopasture and reference forest. Our results suggest that the three species displayed different 

strategies for avoiding drought stress and dehydration. Pinus strobus may use more conservative 

strategies such as reducing stomatal aperture to avoid critical thresholds in leaf water potential 

(i.e., isohydric response). Tsuga canadensis was intermediate in drought sensitivity with respect 

to sap flux density, suggesting that this species may be intermediate along the isohydric-

anisohydric gradient. Anisohydric species follow a riskier strategy that allows leaf water 

potential to decline as drought intensifies, subsequently sustaining stomatal conductance of water 

vapor. Quercus rubra is a ring porous species that tends to display anisohydric response to 

drought (Roman et al., 2015). Consistent with our results, transpiration of Quercus species, 

including Q. rubra, was found to be less responsive to drought than other species (Oren and 

Pataki, 2001; Bovard et al., 2005). Quercus species also tend to be more deeply rooted compared 

with co-occurring tree species (Lyford, 1980; Abrams, 1990), which may allow this species to 

sustain transpiration during drought. 

Radial growth over a 3-year period immediately following conversion for T. canadensis 

and Q. rubra was greater in the silvopasture than in the reference forest. Previous work has 

found that thinning or selective logging increases radial growth for P. strobus (Bebber et al., 

2004), T. canadensis (Marchand and Filion, 2014), and Q. rubra (Schuler, 2006). Bebber et al. 

(2004) found that increased stem growth was first detectable 3 years following thinning and 

continued to increase 8 years following harvest in a mature P. strobus stand. A delayed response 

to thinning may have also occurred for P. strobus in this study, which may partially explain why 

we did not detect greater ring width in the silvopasture 1-3 years following thinning. It is worth 

noting that 3 years of tree growth data is a short time to detect effects and draw conclusions 

about the growth and response of the three tree species.   
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4.2. Evapotranspiration 

 Consistent with our third hypothesis, we observed greater evapotranspiration in the 

reference forest as compared with the silvopasture. Our results are consistent with several studies 

that have observed decreased evapotranspiration following forest thinning (Simonin et al. 2006; 

Sun et al., 2017; Roche et al., 2018). Increases in streamflow following harvest has been widely 

reported across many forest types (Hornbeck et al., 1993; Stednick, 1996; Grace et al., 2006; 

Dung et al., 2012; Hawthorne et al., 2013). The greater evapotranspiration in the reference forest 

was primarily a result of greater transpiration and canopy interception. Greater canopy cover, 

basal area, and tree density, in the reference forest all contributed to greater stand-level 

transpiration and more interception of precipitation. While a shadier and cooler microclimate in 

the reference forest resulted in lower rates of soil evaporation, transpiration and interception 

were sufficiently large to maintain higher ET in the reference forest than in the silvopasture.   

As a result of the forest-to-silvopasture conversion, we observed a decrease in the 

contributions of interception and transpiration to evapotranspiration and an increase in the 

contribution of soil evaporation to evapotranspiration. Similarly, Sun et al. (2017) observed 

similar trends in relative contributions to evapotranspiration as a result of thinning (i.e., 50% 

strip thinning) in a Chamaecyparis obtusa plantation in Japan. The increase in soil evaporation 

as a result of thinning was generally consistent with findings of microclimate and soil moisture. 

Greater absorption of shortwave radiation would increase soil temperature in the upper soil layer, 

which, in combination with higher VPD of the air would contribute to greater soil evaporation in 

the silvopasture. This interpretation can also be extended to the soil evaporation trends observed 

in the pasture.   
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The in situ measurements and modeled estimates of soil evaporation were similar except 

for the pasture where measured soil evaporation was greater. There are many potential sources of 

error associated with in situ measurements, including diameter and depth of microlysimeters, 

timing of core extraction and replacement of those cores used in the microlysimeter relative to 

the timing of a rain event, and material used for the microlysimeter (Daamen et al., 1993; 

Verhoef and Campbell, 2005). In our study, the microlysimeter diameter and depth was small 

compared with other studies (Daamen et al., 1993; Verhoef and Campbell, 2005), which may 

partially explain the greater soil evaporation rate as compared with modeled estimates in the 

pasture. Also, we used a simplified modeling approach to estimate soil evaporation. For 

example, we did not incorporate components of the soil surface energy balance or changes in the 

thickness of dry surface layer, both of which influence the conductance of water vapor from the 

soil to the air (Duursma and Medlyn, 2012). Regardless, our estimates of soil evaporation with 

respect to evapotranspiration agree with other studies. In this study, soil evaporation was 10% 

and 35% of evapotranspiration in the reference forest and silvopasture, respectively. Sun et al. 

(2017) estimated soil evaporation to be 13% and 31% of annual evapotranspiration and 14 to 

28% of growing season evapotranspiration in an unthinned and thinned (50% strip thinning) 

Chamaecyparis obtusa plantation in Japan.  

 

5. Conclusions 

Our results suggest that conversion of a forest to a silvopasture through thinning may 

reduce the risk of losing important forest ecosystem services that mitigate the impacts of climate 

change. Forest-to-silvopasture conversion appeared to alleviate drought stress for P. strobus and 

increased radial tree growth for T. canadensis and Q. rubra in both drought and non-drought 
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years. Our results suggest that forest-to-silvopasture conversion can be an important land 

management strategy that improves overall tree health and vigor in the face of future climate 

change, which will likely include more frequent drought in the northeastern U.S. Our results also 

highlight the importance of identifying which tree species to retain during a conversion. In this 

study, one objective of the forest-to-silvopasture conversion was to increase light availability to 

the ground to promote forage production, while retaining overstory tree species with a high 

timber value (P. strobus and Q. rubra). Following conversion and substantial removal of T. 

canadensis, P. strobus was the dominant tree species, which greatly benefitted from the 

conversion in terms of its sensitivity to drought. Thus, the forest-to-silvopasture conversion 

applied in this forest will also help to mitigate drought effects on tree function.   

Evapotranspiration decreased as a result of forest-to-pasture conversion, primarily a 

result of reduced transpiration and interception of rainfall. If high forest cover corresponds with 

greater evapotranspiration, which plays an important role in hydrologic regulation by increasing 

soil water storage capacity and reducing runoff (Duku et al., 2015), then land-use conversion to 

silvopasture rather than open pasture may offer added ecosystem services. For example, greater 

water uptake by vegetation during periods of high soil water availability in silvopastures 

compared to pastures may be particularly important in regulating streamflow dynamics and 

reducing flooding given the projected increases in extreme precipitation events in the 

northeastern U.S. Given our limited ability to make inferences beyond these specific treatment 

plots, additional research will be necessary to determine the generality of these results and the 

longer-term impacts of silvopasture conversions on the components of evapotranspiration 

described here.   
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Table 1. Attributes of stand structure, sample trees, and light conditions of the reference forest 

and silvopasture (±SE).   

Parameter Reference Forest Silvopasture 

Stand basal area 49.5 m2 ha-1 20.5 m2 ha-1 

Stand density 977 trees ha-1 245 trees ha-1 

Mean DBH    

Pinus strobus 39.0 ± 1.7 cm 41.9 ± 1.8 cm 

Tsuga canadensis 19.2 ± 0.6 cm 20.8 ± 1.4 cm 

Quercus rubra 31.2 ± 5.2 cm 27.3 ± 1.6 cm 

Stand 17.0 ± 0.5 cm 25.0 ± 0.9 cm 

Mean DBH – sample trees (sap flux)   

Pinus strobus 47.5 ± 4.0 cm 44.4 ± 4.8 cm 

Tsuga canadensis 38.3 ± 3.4 cm 40.0 ± 2.5 cm 

Quercus rubra 39.5 ± 5.9 cm 31.7 ± 0.4 cm 

All sample trees 42.3 ± 2.6 cm 40.4 ± 2.7 cm 

Gap fraction 0.072 ± 0.011 0.234 ± 0.013 

Indirect site factor 0.084 ± 0.014 0.304 ± 0.016 

Direct site factor 0.036 ± 0.004 0.385 ± 0.026 

 

 

 

 

 

 

 

 

 

 

 



Coble et al.  doi.org/10.1016/j.agee.2020.106916 
 

33 
 

Table 2. Slopes (±SE) of the relationship between sap flux density (SFD) and natural log-

transformed (ln) vapor pressure deficit (VPD) for P. strobus, T. canadensis, and Q. rubra for the 

reference forest and silvopasture. Slopes are shown for the pre-drought (30 June – 22 August), 

drought (23 August – 18 September), and post-drought period (19 September – 01 October). 

Different letters within each row indicate significant (p < 0.05) differences in slopes. *Significant 

(p < 0.05) difference in slopes between the reference forest and silvopasture within a given time 

period. 

Species Treatment 

Slopes of SFD-ln(VPD) relationship (± SE) 

Pre-Drought Drought Post-Drought 

Pinus strobus Reference Forest 58.72 ± 3.47a* 23.02 ± 4.57b 34.68 ± 6.99b 

 Silvopasture 74.24 ± 5.26a 37.86 ± 6.73b 37.61 ± 10.46b 

Tsuga canadensis Reference Forest 36.37 ± 2.50a 12.95 ± 3.29b 18.69 ± 5.04b 

 Silvopasture 36.81 ± 3.00a 12.40 ± 3.84b 11.99 ± 5.97b 

Quercus rubra Reference Forest 37.29 ± 2.75a 16.82 ± 3.62b 18.14 ± 5.54b 

 Silvopasture 36.33 ± 2.40a 15.79 ± 3.08b 14.82 ± 4.78b 
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Table 3. Differences in 3-yr mean ring width (mm) between pre- and post-conversion for the 

silvopasture (i.e., silvo) and reference forest (i.e., for), differences in 3-yr annual increment 

between silvopasture and reference forest for pre- and post-conversion, and differences of the 

differences described above.  The lower and upper confidence limits of the 95% confidence 

intervals, based on the linear mixed-effects model, are also displayed. Bold numbers with 

asterisks indicate a significant difference in 3-yr mean annual increment (mm). 

*p < 0.05, **p < 0.01 

§The confidence limits did not straddle zero, but the model output indicated non-significance.    

 
Difference in 3-yr mean annual increment (mm) 

(lower, upper confidence limits) 

Defined contrast 
Pinus strobus Tsuga canadensis Quercus rubra 

Postsilvo - Presilvo 0.74§ 

(0.01, 1.46) 

0.24 

(-0.15, 0.64) 

1.35** 

(0.54, 2.16) 

Postfor - Prefor -0.24 

(-0.96, 0.48) 

-0.38 

(-0.77, 0.01) 

0.19 

(-0.70, 1.10) 

Presilvo - Prefor -0.08 

(-1.36, 1.20) 

0.18 

(-0.52, 0.88) 

0.45 

(-1.04, 1.93) 

Postsilvo- Postfor 0.89 

(-0.39, 2.17) 

0.80* 

(0.10, 1.51) 

1.60* 

(0.12, 3.08) 

(Postsilvo - Presilvo) - (Postfor – Prefor) 0.97 

(-0.05, 1.99) 

0.62* 

(0.07, 1.18) 

1.16 

(-0.05, 2.37) 
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Figure 1. Daily photosynthetic photon flux density (PPFD, mol m-2 day; A), mean daily vapor 

pressure deficit (kPa, B), daily precipitation (mm; C), and soil volumetric water content at 0-15 

cm (m3 m3; D) for the reference forest, pasture, and silvopasture at 1.5 m above the ground.  The 

grey boxes represent the drought period.   
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Figure 2. Net precipitation (Pn, mm) versus gross precipitation (Pg, mm) for the forest and 

silvopasture. Net precipitation was measured with throughfall collectors in the silvopasture and 

gross precipitation was measured with collectors in the pasture. Regression models: reference 

forest,  Pn = 0.83Pg – 1.29; silvopasture, Pn = 0.92Pg – 0.64. 
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Figure 3. Measured and modeled mean daily soil evaporation (mm) of the reference forest, 

pasture, and silvopasture. Mean values represent soil evaporation for six 24-hr estimates. The 

error bar represents the standard error of the mean.   
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Figure 4. Daily sap flux density (SFD; cm3 cm-2 day-1) at the reference forest and silvopasture 

plot from June 30th to September 30th for P. strobus (A), T. canadensis (B), and Q. rubra (C). 

The grey boxes represent the drought period.   
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Figure 5. Daily sap flux density (SFD; cm3 cm-3 day-1) versus vapor pressure deficit (VPD; kPa) 

during the pre-drought, drought, and post-drought periods for P. strobus (A, B), T. canadensis 

(C, D), and Q. rubra (E, F) in the reference forest (A, C, E) and silvopasture (B, D, F).   
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Figure 6. Daily sap flux density (SFD) versus soil volumetric water content (VWC, m3 m-3) for 

P. strobus (A), T. canadensis (B), and Q. rubra (C) during days with above-average PPFD (> 

429 mol m-2 day-1). Piece-wise linear regression models are fit to the data. Breakpoints (m3 m-3 ± 

SE): P. strobus, forest = 0.15±0.01, silvopasture = 0.16±0.01 (A); T. canadensis, forest = 

0.15±0.01, silvopasture = 0.16±0.01 (B); Q. rubra, forest = 0.18±0.02, silvopasture = 0.16±0.02 

(C). 
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Figure 7. Ring widths of P. strobus (A), T. canadensis (B), and Q. rubra (C) for the reference 

forest and silvopasture prior to and after forest-to-silvopasture conversion. The vertical dashed 

line corresponds with the forest-to-silvopasture conversion.   



Coble et al.  doi.org/10.1016/j.agee.2020.106916 
 

42 
 

 

 

Figure 8. Evapotranspiration (ET; mm) and components of evapotranspiration (mm) for the 

reference forest and silvopasture over the study period (90) days. Components of 

evapotranspiration include interception (Ei), transpiration (Et), and soil evaporation (Es). Soil 

evaporation for the pasture is also included.   
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