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ABSTRACT

SPATIAL MODELING AND VISUALIZATION OF HABITAT RESPONSE TO 

HYDROLOGIC RESTORATION IN NEW ENGLAND SALT MARSHES

by

Raymond A. Konisky 

University of New Hampshire, May 2003

Anthropogenic alterations that restrict tidal flows negatively impact 20% of New 

England salt marshes, but management attempts to restore tides to these sites can be met 

with unexpected or less than optimal results. Restoration planners may be hindered by a 

lack of synthesized information regarding important biotic and abiotic factors that 

determine the distribution of dominant salt marsh plants and invasive species. An 

ecosystem model was developed to better predict salt marsh habitat response to 

hydrologic modification as a synthesis of existing models for biomass production, marsh 

elevation, tidal hydrology, and plant succession. A field experiment was conducted to 

provide the ecological basis for estimating plant responses to physical stresses and 

interspecific competition. Six plant species common to New England salt marshes were 

examined: halophyte species Spartina altemiflora, Spartina patens, and Juncus gerardii, 

and brackish invasive species Phragmites australis, Typha angustifolia, and Lythrum 

salicaria.

The model was applied to spatial grids representing marsh area at four salt marsh 

sites with past or current impacts due to restricted tidal flows. At each site, field data for

xi
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model parameterization was acquired according to a regional data-collection protocol. 

To assess model performance, the spatial distribution of marsh plants was predicted using 

specifications from past hydrologic and ecological conditions at two sites. Aggregated 

model predictions of halophyte-dominated and invasive-dominated marsh areas were 

within 4% of observed totals. The model was then run for each of the four study sites to 

generate 20-year simulations of plant composition changes resulting from current and 

possible hydrologic scenarios. Scenarios included changes in culvert shape, dimensions, 

and placement. Model simulations in response to tidally-restricted conditions predicted 

gradual replacement of halophytes by brackish invasive species, especially P. australis. 

Simulations involving tidal restoration strongly favored halophyte species. Based on 

spatial model outputs, realistic visualizations of marsh scenario results were designed and 

rendered. Use of this technology may provide new ways for resource managers to assess 

potential restoration outcomes, and to communicate the expected results of marsh 

improvement projects to non-technical audiences.

xii
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INTRODUCTION

SPATIAL MODELING AND VISUALIZATION OF HABITAT RESPONSE TO 

HYDROLOGIC RESTORATION IN NEW ENGLAND SALT MARSHES

Problem Statement

Large tracts of New England salt marsh have been altered or destroyed as a direct 

consequence of agriculture, road and rail building, residential and commercial 

development, and insect control (Niering and Bowers 1966). Today, as little as 50% of 

coastal wetlands present before colonial times remain in the New England states of 

Massachusetts, Maine, and New Hampshire (Cook et al. 1993). Although salt marshes 

are now protected, negative impacts from roads, bridges, and undersized culverts (see 

Figure 1.1) persist in the form of reduced upstream tidal exchange, a condition commonly 

known as tidal restriction (Niering and Warren 1980). In New England, tidal restrictions 

are found in every coastal state, and may affect as much as 20% of remaining salt marsh 

habitat (Roman et al. 1984, USDA SCS 1994, Neckles and Dionne 2000). Tidal 

restrictions also occur in other parts of the US, particularly on the west coast (Race 1985,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Beare and Zedler 19S7, Simenstad and Thom 1996), but the magnitude of the problem 

appears to be most acute in New England. A NOAA survey of the Coastal States 

Organization recently identified estuarine habitat degradation and salt marsh loss, much 

attributable to tidal restriction, as the highest priority management issue in the Northeast 

US (Frankie 1999).

Tidal restrictions lead to long-term salt marsh habitat degradation through various 

pathways and processes. Over time, sediment salinities diminish and salt marsh plant 

communities convert to brackish and freshwater wetlands dominated by invasive species 

(Roman et al. 1984, Sinicrope et al. 1990, Burdick et al. 1997). Organics in marsh 

sediments dry and oxidize, leading to anoxic conditions and poor water quality within 

marsh creeks and pannes (Portnoy 1991, Portnoy and Giblin 1997). Sedimentation rates 

diminish and marsh elevations subside, impounding freshwater (Sinicrope et al. 1990, 

Burdick et al. 1997, Anisfeld et al. 1999, Burdick 2002), and decoupling natural salt 

marsh sedimentation processes from sea level rise (DeLaune et al. 1983, Boumans and 

Day 1994). In addition, culverts and dikes create physical barriers that limit access to 

nursery, refuge, and forage resources for fish (Dionne et al. 1999), disrupting the 

estuarine food chain and impacting other trophic levels (Reinert and Mello 1995, Kneib 

1997, Minello and Webb 1997).

Collectively, the net impacts of tidal restrictions are to reduce or eliminate critical 

salt marsh ecosystem functions, and ultimately, important societal values that salt 

marshes provide (see Table 1.1, from Short et al. 2000, for a summary of salt marsh

2
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functions and values). Fortunately, some degraded coastal marsh habitats can recover 

lost functions if the appropriate hydrologic regime is restored (Sinicrope et al. 1990, 

Roman et al. 1995, Burdick et al. 1997, Burdick et al. 1999, Roman et al. 2002, Warren et 

al. 2002). As a result, hydrologic restoration of restricted salt marshes is a common 

management practice today (New Hampshire Office of State Planning 1996, Save the 

Sound 1998, US Army Corps of Engineers 1999).

Predictive tools, based on well-known hydraulic engineering methods, are now 

widely available to assess and model the hydrologic aspects of potential salt marsh 

restoration projects (Roman et al. 1995, US Army Corps of Engineers 1999, Boumans et 

al. 2002). These programs are calibrated to existing flow conditions and reconfigured 

with new specifications to model culvert replacement, creation or expansion of tidal 

creeks, removal of tidal gates, or other hydrologic changes. Based on modeled output, a 

set of specifications are selected to produce a flood regime that best meets the objectives 

of the resource managers (i.e., increases tidal exchange and/or alleviates storm flooding, 

but does not affect cellars, lawns, or wells of residents).

As a result of hydrologic analysis, the new flood regime of a restoration site can 

be predicted with considerable accuracy. But, it does not necessarily follow that the 

proposed changes will result in recovery of marsh habitat health or lost biodiversity. In 

fact, while hydrologic regime is certainly crucial to wetland restoration, it appears that 

hydrology is only one of many interrelated factors that ultimately determine the success 

or feilure o f a wetland restoration project. Zedler (2000), in a review of wetland

3
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restoration progress, pointed out that “it takes far more than water to restore wetlands”, 

and that it was not possible to anticipate long-term results without also considering a 

myriad of ecological factors, including plant biology, community succession, and 

sediment-plant interactions. Inability to account for these complex interactions, even if 

tidal exchange is adequately restored, may have lead to unintended and less than optimal 

results for many salt marsh hydrologic restoration projects (Race 1985, Rozsa 1988, Moy 

and Levin 1990, Frenkel and Moran 1991, Simenstaa ana Thom 1996). It was therefore 

proposed that a synthesized model of interrelated salt marsh processes would improve the 

predictive capability o f resource managers faced with salt marsh restoration options.

Project Goal and Objectives

The goal of this project was to integrate a set of critical ecological factors, 

including biotic and abiotic processes, into a synthesized ecosystem simulation model to 

predict long-term salt marsh habitat response to hydrologic restoration. A number of 

important project objectives were identified in order to accomplish this goal, and to make 

the project as useful as possible for coastal resource managers:

A. Standard Data Requirements. The model considered four general categories of 

interrelated factors: hydrology, coastal geology, plant biology, and plant succession. 

Simulations o f critical processes associated with each of these factors required field data 

that adequately characterized potential marsh restoration sites. To make the model useful 

for a wide range of users and locations, an important objective of the project was to use

4
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standardized, commonly-collected field specifications. In support of this objective, 

model inputs were based on the field collection variables identified by the Programme of 

Action Coalition for the G ulf of Maine (GPAC) Protocol (Neckles and Dionne 2000). A 

summary of model categories, key components, and data requirements are listed in Table

1.2. As an assessment of model and data collection transferability, project 

implementation sites included four diverse New England salt marsh locations (see Study 

Sites).

B. Marsh Plant Ecology. An additional objective of the project was to provide 

resource managers with synthesized information regarding salt marsh plant species of 

concern. In undisturbed New England salt marshes, perennial plant species are found in 

zones of smooth cordgrass (Spartina altemiflora), salt hay (Spartina patens), and black 

grass (Juncus gerardii), from the seaward to the landward borders of the marsh (Niering 

and Warren 1980). However, these native species are often replaced by the brackish 

invasive species common reed (Phragmites australis), narrow-leaf cattail (Typha 

angustifolia), and purple loosestrife (Lythrum salicaria) when disturbances like tidal 

restrictions occur (Roman et al. 1984, Sinicrope et al. 1990, Burdick et al. 1997). To 

gain a better understanding of plant succession dynamics under changing hydrology, a 

field experiment was conducted to transplant each species across a gradient of tidal 

flooding and salinity conditions. The experiment was based on the testable hypothesis 

that physical stress tolerance varied by species, as measured by transplant survival and 

growth at each gradient location. In addition, transplants were arranged in pair-wise 

interspecific combinations to assess relative competitive rankings. The experiment

5
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provided species-specific and combination-specific results that formed the predictive 

basis for plant succession dynamics in response to changing hydrologic conditions.

C. Hvdrologic Scenario Assessment. A further objective o f the project was to 

support scenario modeling for marsh hydrologic restoration options. Restoration 

planners are required to perform “what-if” analysis before initiating construction 

activities to expand an undersized culvert, add a new culvert, excavaie tidai creeks, or 

alter hydrology in other ways. In support of scenario modeling, a tidal hydraulics 

component was developed to simulate current flow conditions and potential hydrologic 

regimes for each considered site. Hydrologic data was used by the ecosystem model as a 

critical determinant of plant community response to marsh hydrologic restoration.

D. Spatial Technology. A final project objective was to develop and use 

technology that delivered results in a spatial format. Most models are based on 

parameters that change over time, but are spatially aggregated (Costanza and Sklar 1985). 

This approach, however, fails to discern ecologically significant spatial patterns that 

result from important landscape-level processes, and ignores key interactions between 

spatial elements (e.g., tidal flooding and plant recruitment). Spatially explicit models 

therefore provide a more complete and rigorous simulation of critical ecosystem 

processes (Sklar et al. 1985, Turner et al. 1989). For this project, model outputs included 

spatial maps and image sequences that animated changes of key outputs (i.e., plant 

species cover) over time. Spatial animation has now emerged as a software technology 

with great potential for wetland restoration modeling (Maxwell and Costanza 1997,

6
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Voinov et al. 1998, Voinov et al. 1999). As an extension of the spatial output objective, 

the project also included the development of photo-realistic visualization video images 

from spatial model results. Visualizations expand interpretative capabilities for a wide 

audience of technical and non-technical interests, and offer new communication options 

for resource managers and stakeholder groups involved in wetland restoration decisions. 

Collectively, these new spatial technologies are hoped to provide a comprehensive 

decision-suppori environment for the assessment of salt marsh conditions and restoration 

scenarios associated with tidal restriction.

Modeling Approach

As a general technical approach, selected component models o f key salt marsh 

processes were acquired from published sources and reconfigured with New England salt 

marsh specifications. Existing models leverage current scientific knowledge, and provide 

a tested and documented foundation for model development. For each component model, 

specifications were identified for New England salt marsh habitat, based on 

experimentation and literature searches of parameter values. The models were 

configured and implemented individually, subjected to a formal sensitivity analysis, and 

validated with independent data sets as available.

Three process-specific models were selected to simulate the hydrodynamics, plant 

biomass production, and marsh elevation dynamics of New England salt marshes. The 

Marsh Response to Hydrological Modification (MRHM) model was developed

7
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specifically to calibrate tidal flow through culvert structures, and to simulate hydrologic 

restoration scenarios (Boumans et al. 2002). MRHM has been implemented at several 

New England salt marsh locations, and has been shown to accurately predict upstream 

tidal range, water discharge, and flood potential. The Generalized Ecosystem Model 

(GEM) is a process model for plant biomass production and carbon allocation (Fitz et al. 

1996). GEM was developed primarily as a wetland ecosystem model, and it has been 

used to estimate plant production for diverse wetland plant communities, including the 

Florida Everglades (Voinov et al. 1998), Maryland coastal marshes (Voinov et al. 1999), 

and New Hampshire eelgrass beds (Short et al. 1998). Simulation of coastal geologic 

processes controlling marsh sediment formation, including organic and inorganic 

sediment deposition, accretion, and subsidence, was based on a relative elevation model 

from Rybczyk et al. (1998). This model has been used to predict elevation response to 

geomorphologic conditions in a Louisiana coastal wetland, and in the Po River delta of 

Italy (Day et al. 1999). A fourth component model, for simulating salt marsh plant 

succession, was developed independently for this project based on the work of J.B. Grace 

(1987) and Bertness and Ellison (1987).

After individual assessment, component models were linked to form a single 

synthesized model of salt marsh ecosystem processes. This integrated collection of 

inputs and commands formed the project unit model. For spatial implementation, marsh 

areas were organized into grids of square cells, and spatial databases were developed to 

maintain cell-specific values (e.g., coordinate location, plant cover, elevation, flood and 

salinity regime, sedimentation rate, etc.). The unit model was then run for an individual

$
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cell, or spatially for entire marsh grids (Maxwell and Costanza 1997). When 

implemented spatially, exchanges between cells were used to simulate plant recruitment 

from one location in the marsh to another.

A conceptual model o f process flows and interdependencies is presented in Figure

1.2. As a first step to model processing, a two-week time series of water volume and tidal 

heights was generated according to selected hydrologic scenario specifications. For each 

cell, tidal height was compared with elevation to determine the percent time flooded. A 

composite of all marsh elevations, ordered as a hypsometric curve, was used to produce 

an estimate of total marsh surface area flooded for each tide. Site-specific measures of 

substrate salinity and marsh sedimentation rates were used in conjunction with cell 

elevation and spatial position to estimate salinity regime and sediment deposition. Plant 

biomass production for each cell was determined by plant species composition and 

species-specific production rates.

Over the long-term, the accumulation of plant biomass and inorganic sediment 

deposits, combined with the rate of sea level rise, resulted in net sediment accretion or 

erosion, and therefore changes in relative elevation. Modeled plant species assemblages 

responded differentially to physical stresses associated with changes in flood and salinity 

regime, based on experimentally-derived gradient growth factors. In addition, 

interspecific plant competition (also based on experimental results) and recruitment from 

neighboring cells combined with gradient growth factors to influence succession of plant 

communities. Since changes in species composition affect biomass accumulation and

9
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therefore sediment accretion, the model included a feedback loop to simulate long-term 

marsh self-maintenance processes.

Overall ecosystem response to changes in hydrologic conditions was measured in 

terms of changes to plant species assemblages over time. Since relevant marsh processes 

occur over a wide range o f time scales (see Figure 1.3, from Burdick et al. 1997), all 

model simulations were conducted over extended timeframes. Morgan and Short (2002), 

studying man-made constructed salt marshes, estimated that these new marsh areas could 

reach functional levels comparable to native marshes within 5-20 years. It seemed 

reasonable, then, to assume that existing marshes would adjust to hydrologic alterations 

within similar timeframes. As a standard approach, all model simulations were run for 

durations o f 20 years.

Study Sites

Four New England salt marsh sites were selected from coastal and estuarine 

locations in Massachusetts, New Hampshire, and Maine (Figure 1.4). All four marsh sites 

have a history o f impacts from tidal restriction, and therefore represent past or present 

candidates for hydrologic restoration. The marshes represent a diversity o f salt marsh 

habitat and salinity regimes, including oligohaline (<5 ppt), mesohaline (5-18 ppt) and 

polyhaline (>18 ppt) marsh conditions (Odum et al. 1984). In addition, the sites are well- 

known field locations that have been studied for a variety of ecological projects (Kelley
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et al. 1995, Burdick et aL 1997, Dionne et al. 1999, Burdick et al. 1999, Burdick et al. 

2001, Boumans et al. 2002, Burdick 2002).

Oak Knoll Marsh. Oak Knoll Marsh (Figure 1.5) is adjacent to the Massachusetts 

Audubon Society’s Rough Meadows Wildlife Sanctuary, located in Rowley, 

Massachusetts (42°45'00"N, 70°45'00"E). The 15-hectare study site is an isolated section 

o f back barrier salt marsh formed landward of Plum Island, separated from the extensive 

Great Marsh of Rowley by Route 1A Tidal inputs from the Mud Creek, a tributary of 

the Parker River, flow into the study site through two undersized culverts (north culvert 

0.69 m diameter, south culvert 1.03 m diameter) installed under Route 1A ca. 1930. The 

site has a long history of impacts from agriculture and insect control, and artifacts o f its 

past can be seen today in wooden staddles (staked platforms for salt hay storage) and 

mosquito-control ditches. A section of marsh seaward from the study site is still 

harvested annually for salt hay production. Despite the obvious nature o f tidal restriction 

at Oak Knoll, there are no current management plans for hydrologic restoration at the 

site.

Marsh vegetation at Oak Knoll is dominated by salt marsh species (Spartina spp.), 

but brackish species (Phragmites australis, Lythrum salicaria, Typha angustifolia) and 

woody plants (Iva frutescens, Juniperus virginina) have a substantial and growing 

presence (Burdick et al. 2001, Boumans et al. 2002). Sediment field elevation stations 

(Boumans and Day 1994) monitored since 1996 indicate low levels of sediment accretion 

(-1.5 mm/yr) on the marsh, and possible sediment subsidence (D.M. Burdick, personal
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communication). The salinity regime at Oak Knoll is polyhaline near Mud Creek, but 

rpeasnramftnts from salinity wells located in a Phragmites australis stand in the western 

portion of the marsh indicate mesohaline conditions (Burdick et al. 2001).

Little River Marsh. The Litter River Marsh (Figure 1.6) is a large back barrier 

system that covers an expanse of approximately 70 hectares along Route 1A in the towns

ui jtiaai^iuu auu i^uiua liflinyjauw yni -/v * \ j  tr«' wv juy. xuv

natural tidal flow of the marsh has been altered for at least a hundred years, with a series 

of undersized culverts installed under Route 1A in 1890, 1929, and 1948 (US Army 

Corps of Engineers 1999). By 1994, New Hampshire coastal resource managers 

identified Little River as a candidate for hydrologic restoration (USDA SCS 1994). 

However, the 1948 culvert (1.2 m diameter) was still in place when a > 100-year rainfall 

in October 1996 caused major flooding of the marsh, the roadway, and bordering 

residential structures. In 1997, a decision was reached by public officials to significantly 

expand tidal flow capacity under Route 1A  The US Army Corp of Engineers designed 

a twin 6-by-12 ft box culvert system for Little River, and after several years o f hearings 

and permits, the box culverts were installed and opened to the tides in November 2000.

Vegetation surveys at Little River Marsh indicate that, at the time of hydrologic 

restoration, the marsh was dominated by brackish species (Lythrum salicaria, Phragmites 

australis, and Typha spp.), with only sparse patches of salt tolerant species like Spartma 

patens (Burdick 2002). Elevation measurement stations were not installed at Little River 

until October 2000, but elevation data collected at a nearby reference marsh suggest that
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sediment accretion rates will be moderate (~ 4 mm/yr) following hydrologic restoration 

(Awcomin Marsh downstream, Burdick et al. 1999). The salinity regime of Little River 

is polyhaline at mid-marsh, but growing season salinities diminish to levels as low as 2 

ppt with increasing distance from the tidal source (Burdick 2002).

Mill Brook Marsh. Located in Stratham, New Hampshire (43°00'00"N, 

70°52 30*E) hdill Brock Marsh (Figure 1.7) was formed in a minor fluvial valley near the 

mouth of the Squamscott River at the southwest comer of the Great Bay. The small 6- 

hectare marsh follows along M il Brook, adjacent to the agricultural fields of Stuart 

Farm. Mill Brook is separated from the Squamscott River by an access road to the farm, 

and in the mid-1960s a culvert with a flap gate was installed under the road. As a result, 

the marsh became a freshwater meadow with little or no tidal input. In October 1993, as 

part of a coordinated private-public restoration effort, the flap gate was removed and a 

large (2.1 m diameter) arched culvert was installed to recreate the natural tidal flows of 

the marsh.

At the time of hydrologic restoration, marsh vegetation included Typha 

angustifolia, Lythrum salicaria, and remnant patches of salt tolerant species, but salt 

marsh perennials (Spartina spp.) have rebounded strongly since 1993 (Burdick et al. 

1999). Elevation stations, installed at the site in 1996, indicate high levels of sediment 

accretion (-19 mm/yr) following restoration (Burdick et al. 1999). With a location far 

into the Great Bay Estuary, the salinity regime at Mill Brook Marsh is low polyhaline 

(-18 ppt) and mesohaline (Burdick et al. 1999).
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Drakes Island Marsh Drakes Island Marsh (Figure I.S) is part of the Wells 

National Estuarine Research Reserve in Wells, Maine (43°15'00"N, 70°30'00'E), formed 

landward of a barrier beach about 4,000 years ago (Kelley et al. 1995). The study she is 

a 31-hectare tidal marsh, separated from the larger Webhannet estuary to the south by 

Drakes Island Road. The marsh has a history o f use as a cow pasture, dating from 1848
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culvert and flap gate to accommodate Drakes Island Road, and in the 1950s, the current 

culvert was installed with a flap gate. Repairs to the culvert over the past 50+ years have 

led to a current undersized culvert diameter of l.2 meters. In March 1988, the flap gate 

broke away and was not replaced, and as a result, partial tidal hydrology was restored. In 

recent years, the need for solutions to local storm water management issues has led a 

public-private coalition to evaluate potential new culvert designs and further hydrologic 

restoration options for the marsh.

Vegetative cover at Drakes Island continues to be dominated by cattail (Typha 

spp.) in the upper reaches of the marsh, with salt marsh vegetation (Spartina spp.) along 

the creek-banks and in low areas of tidal flooding (Burdick et al. 1999). Marsh 

elevations appear to be slowly subsiding, with low sediment accretion rates (~ 2.4 

mm/yr) observed at field elevation stations since 1996 (Burdick et al. 1999). The marsh 

soil water salinity regime is polyhaline near the tidal culvert, but mesohaline and 

oligohaline levels are observed in the cattail zones of the upper marsh (Burdick et al. 

1999).
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Dissertation Organization

This dissertation is presented in six chapters, following the introductory chapter. 

In addition, an Appendix containing original field data and a program listing is provided. 

The dissertation chapters are organized as follows:

Chapter I. A Field Experiment to Determine Physical Stress Tolerance and 

Relative Competitive Rankings for Six Common Plant Species Inhabiting and Invading 

New England Salt Marshes: This chapter describes a transplant experiment designed to 

identify the relative tolerance o f common New England marsh plants to physical stresses 

of salt water flooding, and to assess interspecific competitive rankings.

Chapter EL A Biomass Production Model for Common Plant Species of New 

England Salt Marshes: Above and belowground biomass production and annual growth 

curves are estimated for six common New England salt marsh species.

Chapter HI. A Relative Elevation Model for New England Salt Marshes: Long 

term elevation changes are predicted for New England salt marsh locations, based on 

sedimentation rates, plant biomass production, and sea level rise.

Chapter IV. A Hydraulic Model for Predicting Tidal Flows in Hvdrologicallv- 

Altered Salt Marshes: Tidal flows through culverts and channels are calibrated to current
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conditions in four New England salt marshes, and modeled results are used to analyze 

potential new scenarios for hydrologic changes.

Chapter V. A Model of Plant Succession Following Hvdrologic Disturbance in 

New England Salt Marshes: Community-level changes in plant species composition, 

following hydrologic disturbance, are predicted using experimental measures of physical 

stress tolerance and interspecific competitive rankings

Chapter VI. Spatial Simulation Model and Visualization of Habitat Response to 

Hvdrologic Restoration of New England Salt Marshes: Spatial maps and time-series 

animations of plant community changes are generated for four New England salt marshes 

with past or potential hydrologic restoration, including photo-realistic 3-D visualization 

scenarios.
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Functions Values
Primary production Support of food webs, fisheries, wildlife
Canopy structure Habitat, refuge, nursery and settlement for support of 

fisheries
Organic matter 
accumulation

Support of food webs, counter sea level rise

Seed production and 
vegetative expansion

Maintenance of plant communities and biodiversity

Sediment filtration and 
trapping

Counter sea level rise, improve water quality, and support 
of fisheries

Epibenthic and benthic 
production

Support of food webs, fisheries, and wildlife

Nutrient and contaminant 
filtration

Improve water quality and support of fisheries

Nutrient regeneration and 
recycling

Support of primary production and fisheries

Organic export Support of estuarine, offshore food webs, and fisheries
Wave and current energy 
dampening

Protect upland from erosion and reduce flood-related 
damage

Self-sustaining ecosystem Recreation, aesthetics, open space, education, landscape 
level biodiversity, and historical value

Table 1.1. List of important salt marsh ecosystem functions and values to human society 
(Short et al. 2000).
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Process
Category

Key Components Model Input Sources 
* requires field data

Hydrology Tidal hydrology 
Culvert/creek hydraulics 
Marsh surface flood regime 
Sediment salinity regime 
Sea level rise

Local tidal signal * 
Culvert dimensions * 
Elevation survey * 
Salinity well measures * 
Publications

Geomorphology Sediment deposition 
Sediment accretion/subsidence 
Labile/refractory allocation 
Decomposition

Marker horizon accretion * 
Publications 
Publications 
Publications

Plant Biology Biomass production 
Above/belowground allocation 
Litter accumulation in soil

Plant cover survey * 
Field experiment 
Publications

Plant
Succession

Stress tolerance 
Interspecies competition 
Recruitment

Field experiment 
Field experiment 
Plant cover survey *

Table 1.2. General categories, key process components, and model input sources for the 
integrated salt marsh ecosystem model.
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Figure 1.1. Conditions leading to salt marsh tidal restriction: (Top) Road crossing at Oak 
Knoll Marsh in Rowley, Massachusetts; (Bottom) Tidal culvert at Little River Marsh in 
North Hampton, New Hampshire before replacement in 2000.
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Bn»Cnfrî X(int

% k rlM
(Ebb Tide)

W tfcrGan
(FloodTSie)

Sea Lewi Rbe

Wader
Yahoae

Or—mpWfeqrfHypecmety)

LragTem

aitonajbra

Figure 1.2. Conceptual model of key salt marsh ecosystem processes. Tidal cycle 
determines marsh water volume. Water flow across marsh geomorphologic features (as 
described by a hypsometric curve) determines local water level, hydroperiod, and 
influences substrate salinity. Plant species grow in response to physical stress (flooding 
and salinity), compete for resources, and recruit from neighbors. Net plant production 
combines with sedimentation and subsidence processes to influence long-term elevation 
and marsh geomorphology.
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Figure 1.3. Hypothesized time scales of processes related to indicators of salt marsh 
functions (Burdick et al. 1997).
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Figure 1.4. Locator map for the four study sites.
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Figure 1.5. Site map of Oak Knoll Marsh in Rowley, Massachusetts.
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Figure 1.6. Site map of Little River Marsh in North Hampton, New Hampshire.
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Figure 1.7. Site map of Mill Brook Marsh in Stratham, New Hampshire.
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Figure 1.8. Site map of Drakes Island Marsh in Wells, Maine.
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CHAPTER I

AN EXPERIMENT TO DETERMINE PHYSICAL STRESS TOLERANCE AND 

RELATIVE COMPETITIVE RANKINGS FOR SIX COMMON PLANT SPECIES 

INHABITING AND INVADING NEW ENGLAND SALT MARSHES

Experimental Objectives

Barriers that restrict tides negatively impact many New England salt marshes, and 

often result in the replacement of native salt marsh plants with brackish invasive species 

(Sinicrope et al. 1990, Burdick et al. 1997). Resource managers can reintroduce tides at 

these sites by reducing or removing tidal barriers, a management option known as 

hydrologic restoration, but these efforts are often met with unexpected or less than 

optimal results (see Introductory Chapter). Restoration planners would benefit from a 

synthesized ecosystem model based upon important salt marsh processes. Abiotic and 

biotic processes, especially those related to tolerance of physical disturbance (i.e., 

saltwater flooding) and interspecific competition, are key determinants o f spatial pattern 

in marsh plant communities (Bertness and Ellison 1987). Therefore, in order to predict
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plant community response to hydrologic restoration, it is essential to obtain detailed 

knowledge of physical stress tolerance and competitive rankings among dominant salt 

marsh plant species.

Field observations show that physical stresses associated with saltwater flooding 

play an important role in the distribution of common salt marsh plants. For example, 

black grass (Juncus gerardii) is commonly found in upland marsh elevations, but not in 

frequently flooded locations. While observations can be used to determine general 

distribution zones for Juncus and other salt marsh species, only a few experiments have 

examined the specific effects of saltwater flooding on marsh plants, and these findings 

apply only to a subset of edaphic conditions and dominant plant species found in 

northeastern US salt marshes (Bertness and Ellison 1987, Burdick et al. 1989, Bertness 

1991b, Hellings and Gallagher 1992).

In New England salt marshes, especially those with altered tidal hydrology, native 

perennial species such as cordgrass (Spartina altemiflora), salt hay (Spartina patens), 

and black grass (.Juncus gerardii) are often displaced by invasive species like common 

reed {Phragmites australis), narrow-leaf cattail {Typha angustifolia), and purple 

loosestrife {Lythrum salicaria) (Roman et al. 1984, Sinicrope et al. 1990, USDA SCS 

1994, Burdick et al. 1997, Burdick et al. 1999). An experiment to identify the relative 

stress tolerance of these six dominant New England salt marsh species, across a wide 

range of natural conditions, would fill a considerable gap in our knowledge of plant 

response to changing marsh hydrology. In addition, since competition for resources is
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assumed to increase when brackish species invade native marsh vegetation, the relative 

competitive rankings among these six plant species would provide new information to 

help predict changes in species assemblages at salt marshes with restricted or restored 

tidal hydrology.

To address the needs of salt marsh resource managers, an experiment was 

conducted to transplant six common New England plant species across a natural physical 

gradient of three tidal flooding and three salinity regimes. A schematic diagram of the 

three-by-three factorial design is provided in Figure 1.1. Transplanting is a fairly 

common experimental technique, involving the relocation o f established plants into 

controlled locations. For this study, plants were moved into marsh zones with different 

flood and salinity regimes to simulate the effects of changing hydrologic conditions on 

marsh plants in restricted or restored sites. The experiment tracked single-season 

survival and growth o f transplanted shoots across a range o f marsh elevations (low: 

below mean high water, mid: around mean high water, and high: above mean high water) 

and salinity regimes (low: mesohaline 5-18 ppt, mid: meso-polyhaline 18 ppt, and high: 

polyhaline >18 ppt, per Odum et al. 1984). At the end of the growing season, live 

biomass was measured for each species at each of the nine gradient locations to 

determine the relative species tolerance to physical stress factors.

In addition to stress tolerance, the experiment also measured relative competitive 

ability among the study species. To create competitive interactions, plant shoots were 

transplanted into open bottom pots and arranged pair-wise with different species
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(interspecific combinations) or with shoots o f the same species (intraspecific 

combinations). This design was based on the theory that, when resources are limited, the 

best competitor utilizes the limiting resource most efficiently (Tilman 1982, Tilman 

1988). In this experiment, the use of small open pots limited expansion space for 

belowground structures, and since salt marsh sediments are thought to have limited 

availability o f nitrogen (Valiela and Teal 1974), the design was expected to force 

belowground competition. In addition, close arrangements of transplant shoots in the 

pots were likely to create shading conditions and aboveground competition for light. 

Growth comparisons between intra and interspecific combinations were used to test the 

assumption that competitive interactions had occurred. Also, transplant growth was 

measured for each participant in interspecific combinations (Spartina altem iflora- 

Spartina patens, Phragmites-Juncns, Lythrum-Typha, etc.) as a quantitative measure of 

relative competitive ranking. The experiment was not designed to test significance of 

differences between these measures, but to provide averaged combination-specific results 

that could be used as a starting point for assessing relative competitive effects among the 

important plant species o f tidally-restricted salt marshes.

In summary, the field experiment was used to provide species-specific measures 

of physical stress tolerance across a wide range of marsh conditions, and measures of 

relative competitive rankings. These measures were used as input parameters for an 

ecosystem model o f plant community response to hydrologic restoration. In addition, 

experimental results were used to test the underlying hypotheses that physical stress
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tolerance and competitive interactions were determinants of marsh plant distribution and 

growth.

Hypotheses o f Physical Stress Tolerance

A general hypothesis of physical stress tolerance for the experiment would state 

that growth of transplanted individuals would be influenced by physical stress, as 

determined by the location of the transplants within a gradient of saltwater flooding 

conditions. Expressed in null form, the hypothesis asserts that transplant growth would 

not vary across gradient locations. However, dominant salt-tolerant plants o f New 

England salt marshes are known to form into distinct zones along the tidal gradient, with 

monocultures of Spartina altemiflora in the low marsh, Spartina patens at mid 

elevations, and Juncus along the landward borders of the marsh (Niering and Warren 

1980, Nixon 1982, Bertness and Ellison 1987). Considering these distinct distribution 

patterns, it was expected that the relocation of plant species into nine gradient elevation 

and salinity marsh zones would produce very different rates of growth. Since tolerance 

of saltwater flooding is a key determinant of salt marsh species distribution (Bertness and 

Ellison 1987, Bertness 1991b), and since salinity stress was present at all study gradient 

locations, it was reasonable to expect that flood stress (elevation) would be the 

controlling gradient factor for the salt-tolerant species. Therefore, null and alternate 

hypotheses of physical stress tolerance for native halophyte species are as follows:
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Ho Spartina attermflora'. Spartina altemiflora growth will be similar across all nine 

gradient locations.

Ha Spamna altemiflora: Spartina altemiflora growth will vary by elevation, decreasing 

from low to high elevation gradient locations.

Ho Spartina patens : Spartina patens growth will be similar across all nine gradient 

locations.

Ha spamna patem: Spartina patens growth will vary by elevation, decreasing from 

high to low elevation gradient locations.

HojamM: Juncus growth will be similar across all nine gradient locations.

Ha juncus’- Juncus growth will vary by elevation, decreasing from high to low 

elevation gradient locations.

The distribution patterns o f plant species invading tidally-restricted marshes in 

New England are less well understood, but salinity intolerance has been identified as an 

important factor for Typha (Beare and Zedler 1987), Lythrum (Dzierzeski 1991) and 

Phragmites (Hellings and Gallagher 1992, Bart and Hartman 2000, Warren et al. 2001). 

Evidence of flood intolerance for these species is minimal, although Hellings and 

Gallagher (1992) found that Phragmites growth was lower in soils with high water tables 

than in well-drained sediments. For this experiment, it was therefore expected that 

salinity stress would be the controlling gradient factor for the salt-intolerant invasive 

species. Physical stress hypotheses for the brackish invasive species are as follows:

Ho phragmites: Phragmites growth will be similar across all nine gradient locations.
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H-APhragmites'. Phragmites growth will vary by salinity regime, decreasing from low 

to high salinity gradient locations.

Kq Lythrum'- Lythrum growth will be similar across all nine gradient locations.

Ha Lythrum'- Lythrum growth will vary by salinity regime, decreasing from low to 

high salinity gradient locations.

Ho Typha- Typha growth will be similar across all nine gradient locations.

Ha Typha. Typha growth will vary by salinity regime, decreasing from low to high 

salinity gradient locations.

To test these hypotheses, a statistical model was developed for each species that 

analyzed the relationship between growth and physical stress. It was an assumption of 

this model that the potential effects of interspecific competition were equal across study 

gradient locations. Some researchers have found that competitive plant interactions 

become increasingly important as physical stress diminishes (Bertness and Ellison 1987, 

Pennings and Calloway 1992, Keddy et al. 1994, Huckle et al. 2000, Emery et al. 2001). 

For the current experiment, this suggested that transplants at gradient locations with 

lower salinities and higher elevations might be more influenced by competition than 

transplants at locations with higher salinities and lower elevations. However, with 

salinity stress present throughout the experimental gradient (mesohaline and polyhaline), 

potential differences in competitive influence might be lessened. In any case, the species 

hypotheses for stress tolerance were tested without regard to transplant combination, 

although the potential influences of competition were useful in explaining some 

experimental results.
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Hypotheses of Competitive Interactions

A general hypothesis of plant competition for the experiment would state that 

transplant growth was influenced by competitive interactions, as determined by 

intraspecific or interspecific pair-wise combinations. Expressed in null form, the 

hypothesis asserts that transplant growth would not vary between combinations. 

However, plant competition theory suggests that, since plants occupy ruches based on 

species-specific resource requirements (Tilman 1988), individuals competing for limited 

resources may experience diminished growth if all competitive participants required the 

exact same level o f resources. If this was true, then intraspecific combinations would 

have lower growth than interspecific combinations (the selected alternate hypothesis). 

On the other hand, if interspecific competition was predominantly negative and produced 

lose-lose interactions (Keddy 1989), intraspecific combinations would experience higher 

growth. Without a strong indication of expected response, the null hypothesis, as stated 

below, was selected for statistical analysis. To test the null hypothesis, a one-way 

ANOVA was run for transplant growth results, with the interspecific and intraspecific 

grouping as the main effect. Generalized competition hypotheses for the experiment are 

as follows:

H« competition: Transplant growth will be similar between intraspecific and 

interspecific transplant combinations.

H a  competition : Growth of transplants in intraspecific combinations will be different 

than in interspecific combinations.
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For species-level interactions, competitive hierarchies are thought to exist among 

the native salt-tolerant marsh plants of New England. Juncus is usually considered the 

top competitor, since it dominates the most desirable marsh habitat (i.e., the low-stress 

upper marsh), followed by Spartina patens, and then Spartina altemiflora, the low-marsh 

dominant. In fact, some experimental evidence supports this hypothesized ranking in the 

high marsh (Bertness and Ellison 1987, Emery et al. 2001). However, since the current 

experiment was conducted across a gradient of elevation, generalized competitive 

rankings among halophytes would likely be determined by the best overall tolerator of 

physical stress conditions. Experimental results of transplant growth for each participant 

in halophyte-only interspecific combinations were analyzed by graphic analysis to 

determine relative rankings for salt-tolerant species.

Little is known regarding relative ranks of interspecific competition between the 

invasive and salt-tolerant species. Typha, Lythrum, and especially Phragmites enjoy 

notorious reputations as aggressive, monoculture-forming competitors, so it might be 

expected that these invasive species would out-compete native salt marsh plants in the 

experiment. But again, since all experimental interactions occurred in salt-stressed 

locations, it was possible that plant response to salinity stress would mask, or even 

counter, anticipated competitive interactions. Competitive rankings among the invasive 

species are also poorly understood, although Keddy et al. (1994) found that Lythrum was 

competitively dominant over Typha in freshwater habitats. However, with little 

corroborating experimental evidence, and the possible confounding influences of physical 

stress, it was difficult to set specific expectations for halophyte-invasive and invasive-
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only competitive interactions. Experimental results o f transplant growth for participants 

in each combination were also analyzed by graphic analysis to determine relative 

rankings of competitive ability.

Methods

Plant shoots were collected from on-site or nearby sources and transplanted into 

open-bottom pots (3.2 L food cans with both lids removed) at nine experimental sites. 

Sites were established in May 2000 at Oak Knoll Marsh (high salinity regime) in Rowley, 

Massachusetts (42°45'N, 70°45'E), and in May 2001 at Mill Brook Marsh (mid and low 

salinity regimes) along the Squamscott River in Stratham, New Hampshire (43°00'N, 

70°52'E). The Introductory Chapter includes site maps of the Oak Knoll and Mill Brook 

study locations (Figures 1.5 and 1.7, respectively).

Within each salinity regime, three sites were located in sparsely vegetated areas 

(presumably disturbed by ice erosion or wrack burial) at high, mid, and low elevations, 

based observations of surrounding vegetative cover. At Mill Brook Marsh, where areas 

of disturbance were small and scattered, plots were covered with black plastic sheets two 

weeks before study start to inhibit growth of existing vegetation. Elevations (NGVD 

1929) for each gradient location were determined by rod-and-level survey, and combined 

with NGVD-adjusted local tide gauge records to compute percent time of tidal 

inundation. Two replicate plots were established at each site. Within a plot, open pots 

were forced into the substrate and all existing aboveground biomass was removed with
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clippers. PVC pipe wells, with pore-water input holes at depths 5 cm to 20 cm below the 

marsh surface, were installed at each site to collect interstitial water and to characterize 

the salinity regime.

In May, individual shoots and root-soil clumps of the study species were taken 

from nearby areas with saltwater flooding, and transplanted two at a time into the open 

pots. Spartina patens individuals consisted of small groups of 5-7 shoots each. Three 

additional plant pairs of each species were also collected, separated, dried (65° C) and 

weighed for estimates of initial aboveground and belowground dry weight biomass. 

Shoots were randomly assigned to an interspecific or intraspecific pairing (21 total 

combinations per plot), and transplanted into open pots with a hand-spade. Every two 

weeks during the growing season, plant heights were measured, non-assigned 

aboveground biomass was removed with clippers, and well-water salinity was measured 

with a hand-held refractometer. In mid-September, plants were exhumed, washed, 

separated, dried, and weighed for final aboveground and belowground biomass.

To determine relative species growth, ending biomass values were standardized to 

take into account initial plant weights at the Oak Knoll and Mill Brook sites. The 

standard measure was based on aboveground biomass, rather than below, because o f 

greater potential inaccuracies in separation and measurement of live belowground 

biomass (Mitsch and Gosselink 1993). The experimental growth metric, relative 

aboveground biomass growth (RABG), was computed live standing aboveground
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biomass (dry-weight) at the end of the experiment, divided by the site-specific estimate of 

initial live aboveground biomass (dry-weight) at the start of the experiment.

RABG results were used to produce standardized estimates of physical stress 

tolerance (tolerance factors) and relative competitive rankings (competition factors). 

These quantifiers were used to parameterize an ecosystem model of plant succession 

following changes in salt marsh tidal hydrology. Tolerance factors (TF) for each species 

at each gradient location were calculated as mean species relative growth (RABG) 

multiplied by survival rate, expressed as a percentage of the maximum species value 

observed for all nine locations. Competition factors (CF), for each interspecific 

combination with both participants surviving, were calculated as the overall mean of 

individual species RABG values versus a competitor, divided by mean species RABG at 

the location of the competitive pairing.

T F  species at location [ R A B G s p c c ie s  at location *SU T V lV al% species at lo ca tio n ]/l F mairimiim

C F  species 1 vs. species2 M ean[R A B G speciesl vs. species2/RABGspeciesl location mean]

Analysis of variance (ANOVA, alpha = .05) was used to detect statistical 

significance of differences between salinity regimes, and between RABG results for 

gradient location and competitive groupings. Data were tested for assumptions of 

parametric testing; RABG values were cube-root transformed to increase homogeneity of 

variance and normality (Helsel and Hirsch 1997, Underwood 1997); salinity data met the 

parametric assumptions without transformation. All graphs show untransformed values.
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Statistical analyses were conducted with JMP statistical software (SAS Institute 1997). A 

one-way ANOVA for salinity data was run for polyhaline (HIGH), meso-polyhaline 

(MED), and mesohaline (LOW) salinity regimes (Student’s t-test). To examine the effects 

of physical stress on RABG, ANOVA was run for salinity regime (SAL) and elevation 

(ELEV) as main effects, with two-way interactions (SAL*ELEV), using the Tukey- 

Kramer HSD test) ANOVA to assess the effects of competitive grouping on RABG was 

run as a one-way test between interspecific (INTER) and inixaspecific (INTRA) 

combinations (Student’s t-test).

Results

Site Characteristics

Salinity and elevation measures showed a gradient of physical conditions, ranging 

from low salinity-low elevation to high salinity-high elevation locations (Table 1.1). 

Pooled mean salinity values (mean ± standard error) for the low, mid, and high salinity 

regimes were 14+1 ppt, 18+1 ppt, and 23+1 ppt, respectively, and differences between 

regimes were all significant (ANOVA: low-mid p  =.039; mid-high p = .002; low-highp  < 

.001). Site characteristics for elevation and percent time of tidal inundation fell into 

discrete ranges. The low elevation locations were < 1.00 m NGVD and flooded > 22% of 

the time, mid locations were at 1.13-1.21 m NGVD elevation and 11-16% inundated, and 

high elevation locations were above 1.27 m NGVD and < 5% inundated (Table 1.1).
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Survival and Growth

Survival. Plant survival was achieved if at least one individual of the assigned 

transplant pair was found alive in the pot at the conclusion o f the experiment. Table 1.2 

and Figure 1.2 show the number o f surviving transplant pairs (n^ .i= 14) for each species 

at each of the nine gradient locations. As expected, since study locations were 

mesohaime or polyhalise, the salt-tolerant species survived at a much higher overall rate 

than the invasive species (81% versus 46%). Spartina patens transplants had the best 

study survivorship (90%), followed by Spartina altem iflora (79%) and Juncus (75%). 

For the invasive species, Typha achieved the best survival rate (54%), followed by 

Phragmites (44%). Lythrum had the lowest survival o f any study species (10%), 

suggesting poor tolerance of the saline study conditions. Spartina altemiflora, Spartina 

patens, and Phragmites had at least one surviving transplant pair at each location. 

Species survival appeared to differ by location (Figure 1.2), suggesting that physical 

stress was variable and contributed to the mortality o f some transplants.

Biomass. At the end of the experiment, total aboveground and belowground live 

biomass (g dry weight) was measured for each transplant pair assigned to each pot. It 

was possible for non-transplanted individuals to become established in the pot, either 

through belowground rhizomes or by seeds. Species not assigned to a pot were clipped 

bi-weekly, but all individuals of assigned species were left alone and harvested at the end 

of the study. Species-specific means for gross final aboveground and belowground dry- 

weight biomass (live transplants only) are presented in Table 1.2 and Figure 1.3. In
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addition, results were pooled across all study locations to compute mean aboveground-to- 

belowground ratios for each species (Table 1.2). Weights o f pre-study specimens used to 

estimate initial biomass are presented in Table 1.3.

Gross final biomass results appeared to be highly variable across species, with 

Spartina altemiflora achieving the largest maximum value of any species for 

aboveground production (19 g), followed by Typha (16 g) and Phragmites (9 g). By 

comparison, the shorter high marsh perennials Spartina patens (6 g) and Juncus (4 g) 

produced much lower maxim um  biomass values. Spartina altemiflora also produced 

five of the highest belowground biomass measures (69 g peak), with Typha (33 g), 

Lythrum (29 g) and Phragmites (19 g) achieving other top values. In addition, biomass 

production appeared to be highly variable across the study gradient. Spartina altemiflora 

aboveground biomass varied ten-fold from the high salinity-high elevation location to the 

mid salinity-low elevation location, and other species followed similar variable patterns. 

These results, combined with survival data, strongly suggested that species were 

impacted differentially at gradient locations. In some locations, physical stress levels 

appeared to produce death, in others, plants survived but grew poorly, and in some cases, 

plants seemed unaffected by stress (Figure 1.3).

Above-to-belowground ratios identified larger live belowground structures than 

aboveground for all species. Ratio values ranged from 0.15 (Lythrum) to 0.66 

(Phragmites), and all species except Phragmites had more than twice as much live 

belowground biomass than aboveground. In general, these results indicated the dominant
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nature of belowground biomass for hardy perennial species of marshes (Mitsch and 

Gosselink 1993).

Relative Growth. Relative aboveground biomass growth (RABG) provided a 

standardized experimental metric for comparative analysis o f species growth. Mean 

RABG values for each species at each gradient location, and combined measures by 

elevation and salinity level are presented in Table 1.4. RABG values o f 1 or greater 

indicated that net growth was achieved at a location, values 0-1 showed that the species 

survived but lost biomass over the course of the study, and a value of 0 indicated no 

survival at a location. Species RABG results by location showed that all species 

experienced significant differential growth across the gradient (Figure 1.4). Therefore, 

the null hypotheses of physical stress tolerance (similar growth for all locations) were 

rejected for the study species.

Overall RABG measures were highest for Spartina altemiflora, with four 

gradient location measures of 8 or greater, followed by Typha with five-fold or better 

growth at two locations. Spartina patens and Juncus shared similar profiles, with relative 

growth of 3-4 times starting aboveground biomass at their best growth locations. Spartina 

altemiflora was the only study species with net growth (RABG > 1) across all nine 

gradient locations, indicating the greatest range of tolerance for study conditions. 

Spartina patens and Phragmites were the next most successful study species, with net 

growth at seven out of nine locations. Among the other species, Typha grew at five
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locations, Junats at four, and Lythrum at only two, suggesting that overall tolerance of 

environmental stresses present in the experiment was relatively low for these species.

Effects of Physical Stress. ANOVA results for relative aboveground biomass 

growth (RABG) across gradient locations showed that a statistical model with salinity 

and elevation as main effects, and salinity*elevation interactions, explained 40%-75% of 

the variability in species growth (Table 1.5). Whole model results were highly 

significant (p < .0001) for all species, except Lythrum (p = .03). The relative influences 

o f main effects and interactions were variable across the study species. Elevation had the 

largest effect on growth for the salt tolerant species Spartina altemiflora, Spartina 

patens, and Juncus. Therefore, alternate hypotheses of physical stress tolerance for 

halophyte species were accepted. Salinity was the larger of the main effects for the salt- 

intolerant species Phragmites, Lythrum, and Typha, leading to acceptance of alternate 

hypotheses of physical stress tolerance for brackish invasive species. Overall, these 

results supported the ecological concept of elevation and salinity zonation for common 

plants of the salt marsh.

The interaction of elevation and salinity was the greatest effect for only 

Phragmites (Table 1.5). Surprisingly, Phragmites performed well at the high elevation of 

the low salinity site, but also at the low elevation of the high salinity site (Figure 1.4). In 

addition, the elevation and salinity interaction term was significant for all species, except 

for Lythrum which survived only at high elevations and therefore could not be tested.
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Tolerance factors (TF), a combined measure of relative growth and survival for 

each species at each gradient location, are presented in Table 1.6. These factors are 

useful as predictors of species response to changes in edaphic conditions associated with 

altered tidal hydrology. For each species, tolerance factors identified the optimal study 

gradient location (TF = 1), locations with survival but reduced growth (0 > TF < 1), and 

locations with no survival (TF = 0). Results showed that Phragmites, Typha, Lythrum,

a u u .  m p c I X u i u i w u  u p u m a i i )  a t  u u g u  g i C v a i i u u S ,  w u i i  i  r u U g / t t i i c S  a i i u  jL y y t iu  u c S t  a t

low salinity, Lythrum at mid salinity, and Juncus at the high salinity regime. Spartina 

patens preferred mid elevation-high salinity, and Spartina altemiflora did best at the low 

elevation-mid salinity location. For each gradient location, the tolerance factors also 

identified the species that best tolerated physical stress conditions there (Table 1.6, bold 

values). Spartina alterruflora, with four location values in bold, was the overall best 

stress tolerator in the study, followed by Typha (two locations).

Effects of Competition. One-way ANOVA results were run to detect differences 

between intraspecific and interspecific competition groups. ANOVA detected no 

significant differences between the groups (rVdf = .01/318, t-test = 1.795, p  = .07). 

However, the interspecific group appeared to produce higher relative growth (3.06+.26, 

mean + 1 SE) than the intraspecific group (2.61+.21), indicating that intraspecific 

competition for resources may have been important.

For each interspecific combination, competition factors (CF) were computed as 

measures o f relative competitive capability (Table 1.7). These factors were useful to
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predict plant interactions when species invaded new areas of the salt marsh. Factor 

values less than one indicated a negative impact by the competitor; values greater than 

one indicated that the species did better in the presence o f the competitor. For example, 

the Typha-on-Phragmites factor was 0.59, meaning that Phragmites was reduced to 59% 

of its average relative growth when paired against Typha. The Phragmites-on-Typha 

factor was 1.29, indicating that Typha achieved 129% of its average relative growth in the

p i6 S 6 u v o  u i  jl t u

When related CF values were plotted as single coordinates (e.g., Phragmites- 

Typha [0.59, 1.29]), the nature of the competitive relationship between two species can 

be inferred from the plot quadrant; lower left: negative impacts to both species, upper 

left: positive for the competitor, negative for the target species, upper right, positive for 

both species, and lower right: positive for the target species, and negative for the 

competitor. Species plots of pair-wise competition factors are presented in Figure 1.5. 

Note that coordinate points are absent in cases of interspecific combinations with no 

mutually surviving participants {Spartina altemiflora-Lythrum and Typha-Lythrum).

General inferences of relative competitive capability can be made for each species 

by comparing the distribution of head-to-head coordinates. Competitors paired with 

Spartina altemiflora all experienced lower growth in its presence, except for Phragmites. 

Transplants paired with Spartina patens also showed mostly reduced growth. 

Conversely, all combinations with Juncus produced better than average species growth. 

Transplants with Phragmites showed lower growth for Spartina altemiflora, Juncus, and
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Lythrum, but Typha was improved. Lythrum interspecific pairings only survived with 

Spartina patens, Phragmites, and Juncus, but these species achieved equal or better than 

average growth. Results for Typha combinations were about average for Spartina 

altemiflora, Spartina patens, and Juncus, but Phragmites growth was reduced in its 

presence.

Discussion

Site Characteristics

Measures of substrate salinity, elevation, and flooding regime at study locations 

indicated that the experiment was conducted over a diverse range of salt marsh gradient 

conditions. The low salinity regime for the study was saltier than anticipated (14 ppt), 

although the regime was still mesohaline. These results were possibly due to drier than 

normal rainfall during the study period. Study findings are therefore interpretable for 

mesohaline and polyhaline estuarine systems, and for marsh elevations from the creek- 

bank to the upland extent of the tide. This range of coverage appears adequate to 

represent a wide range of New England salt marsh habitat, including study sites of 

concern at Little River Marsh in North Hampton, New Hampshire (Burdick 2002) and 

Drakes Island Marsh in Wells, Maine (Burdick et al. 1997).

Effects of Physical Stress
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As noted, native species transplants Spartina altemiflora, Spartina patens, and 

Juncus survived at nearly twice the rate o f invasive species Phragmites, Lythrum, and 

Typha, likely due to the effects o f mesohaline and polyhaline conditions on salt-intolerant 

species (Beare and Zedler 1987, Hellings and Gallagher 1992, Dzierzeski 1991). 

However, other factors beyond the control of the experiment may have also impacted 

survival results, including highly localized differences in soil conditions and species 

differences in tolerance to physical transplant stress.

In particular, local variability in marsh soil conditions (density, drainage, and 

substrate salinity) can inhibit salt marsh plant growth (Bertness and Ellison 1987). For 

the current experiment, two locations (mid and low elevations at the high salinity site) 

produced surprises in survival results. At the mid elevation location, Spartina 

altemiflora transplants experienced exceptionally high mortality (>70%, Figure 1.2), 

despite the obvious presence o f native cordgrass individuals adjacent to study plots. It 

was noted during study set-up that sediments in this area appeared to be very dense, and 

open pots sometimes reached a point of refusal when forced into the sediment. It may be 

that compacted soils, perhaps with high peat density, differentially prevented cordgrass 

transplants from establishing here (Bertness 1988). At the low elevation-high salinity 

location, an opposite effect was observed, as survival was unexpectedly high for Spartina 

patens, Juncus, and Phragmites. For these species, survival was higher here than at 

comparable elevations with lower salinities. As a further complication, this site had the 

highest mean salinity (24 ppt) and most flooding (32% of the time) o f any study location 

(Table 1.1). Although only speculation, it appeared that sediments here may have been
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better drained, and therefore less stressful than other low-elevation locations (possibly 

due to lower sulfide levels, Chambers 1997, Mendelssohn and Morris 2000).

Differential transplant stress tolerance was another potential influence on 

experimental results. Other salt marsh researchers have used blocks of turf with multiple 

plants as a basic transplant unit (see Bertness and Ellison 1987, Levine et al. 1998, Emery 

et al. 2GG1). In this experiment, plants were excavated and relocated into pots 

individually, in an attempt to increase competitive interactions. While care was taken to 

preserve roots and rhizomes, the excavation of individual plants may have damaged these 

organs. As a result, it may be that the physically smaller species with fine, shallow root 

structures (Spartina patens and Juncus) had an advantage over larger species like 

Phragmites, Typha and Lythrum which had relatively few tap-roots. Future transplant 

experiments with these larger plant species should probably use small turf plugs (-10 cm 

diameter) to minimize transplant stress.

Still, since the potential impacts of local soil conditions and transplant stress 

could not be quantified, it was assumed that observed results of mortality and growth 

were due substantially to the differences in edaphic factors measured over the course of 

the experiment (i.e., salinity and flooding). Survival and relative aboveground growth 

results in response to these physical stress factors are discussed individually for each 

study species.
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Spartina altemiflora. Transplants of smooth cordgrass survived and grew across 

the entire study gradient, with best overall performance at the low elevation site of the 

mid salinity regime (Table 1.6). Spartina altemiflora growth decreased from low marsh 

to high marsh elevations (RABG of 8.51, 7.88, and 3.11 for low, mid and high elevation, 

respectively, Table 1.4). This result was unique among study species and suggested that 

tidal subsidies were critical to Spartina altemiflora growth. In feet, McKee and Patrick 

(1988) summarized cordgrass distribution patterns in eight New England salt marshes, 

and found that the species was typically limited to the intertidal zone between mean high 

water and the half-tide line. However, despite observations that Spartina altemiflora was 

not often found in the high marsh, results of this experiment showed that the species was 

physiologically capable o f survival and growth outside o f its realized niche in the low 

marsh, although it may be excluded from high marsh habitats by competition (Bertness 

and Ellison 1987, Bertness 1991b).

Spartina altemiflora growth was also reduced with increasing salinity (RABG of 

7.34, 7.03, and 4.24 for low, mid and high salinity, respectively, Table 1.4). This finding 

agreed with reports of Spartina altemiflora growth limits in response to high salinity 

regimes (Nestler 1977, Webb 1983). In addition, the interaction between salinity and 

elevation was significant (p = .03, Table 1.5), indicating the combination o f higher 

salinity and less flooding was a factor in cordgrass growth, possibly an indication of 

drought stress. Overall, the experiment showed that Spartina altemiflora was very well- 

adapted to mesohaline and polyhaline marshes in New England (Redfield 1972, Niering 

and Warren 1980, Nixon 1982).
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Spartina patens. Like cordgrass, salt hay transplants survived at all gradient study 

locations (Figure 1.2). Top overall performance for Spartina patens was achieved at the 

mid elevation of the high salinity regime, but biomass was lost at the low elevations of 

the low and mid salinity regimes (Table 1.6). In addition, salt hay growth increased with 

reduced flooding (RABG of 1.00, 2.43, and 2.44 for low, mid and high elevation 

locations, respectively, Table 1.4). This finding agreed with reports of Spartina patens 

physical exclusion from the low marsh due to stresses associated with flooding (Burdick 

et al. 1989, Bertness 1991b). Spartina patens growth increased with rising salinity, 

(RABG of 0.82, 1.47, and 2.98 for low, mid and high salinity, respectively, Table 1.4). 

Spartina patens is known to be well-adapted to salinity stress (Bertness and Ellison 1987, 

Burdick et al. 1989, Bertness 1991b), but it is unclear how salinity could stimulate 

growth. For this experiment, it was likely that competition for light was reduced at high 

salinity locations, due to high mortality (Figure 1.2) and low growth (Figure 1.3) among 

other species. Spartina patens, a relatively short-stemmed species, may have benefited 

from increased light availability at these locations (Bertness and Ellison 1987, Bertness 

1991b), resulting in a highly significant salinity and elevation interaction (p < .0001, 

Table 1.5). Experimental results therefore showed that Spartina patens was a salt- 

tolerant species with sensitivity to flood stress, but well-adapted to dominate the mid and 

high elevations of New England salt marshes (Niering and Warren 1980, Nixon 1982, 

Bertness 1991b).

Juncus serardii. Transplants of black grass did not survive at the low elevation 

sites of the low and mid salinity regimes (Figure 1.2), and lost biomass at the low
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elevation -  high salinity site (Table 1.4). Juncus individuals performed best at the high 

elevation-high salinity gradient location (Table 1.6). lik e  Spartina patens, Juncus 

growth increased with reduced flooding (RABG o f0.97,1.26, and 1.95 for low, mid and 

high elevation, respectively) and grew best at the high salinity locations (RABG of 1.36, 

0.60, and 2.23 for low, mid and high salinity, respectively, Table 1.4). These results 

indicated that black grass was highly sensitive to flooding (Bertness and Ellison 1987),

A «/yl* U /1 O01 t«A 4 I V A/t
oiuiuugu uuu iC bd  \ x > * s  x a j  <u2>u iu u u u  uiot «yu/M^uj majr uw uuuiwu u y  baiinity duCdd ad w u i

(especially hypersaline conditions above 40 ppt). For this experiment, the improved 

performance of Juncus at high salinity may have been due to reduced competition. Like 

Spartina patens, Juncus is a relatively short-stemmed species that appears to be strongly 

influenced by competition for light (Bertness 1991a). This influence may have also 

contributed to the significance o f the ANOVA interaction term for elevation and salinity 

(p = .02, Table 1.5).

Phraemites australis. Phragmites, along with Spartina altemiflora and Spartina 

patens, survived at all study locations (Figure 1.2) and showed surprising tolerance of 

both salinity and flood stress. As expected, Phragmites achieved top overall performance 

at the high elevation -  low salinity gradient location (Table 1.6). However, Phragmites 

growth did not decrease consistently with increased salinity (RABG of 2.17, 1.18, and 

1.66 for low, mid and high salinity, respectively, Table 1.4), suggesting that influences 

besides salinity were important determinants of growth. In fact, other researchers have 

found that, although salinity stress may limit Phragmites distribution in some locations 

(Hellings and Gallagher 1992, Chambers et al. 1998), the species is also known to
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colonize mesohaline (Chambers et al. 1999, Meyerson et al. 2000) and polyhaline salt 

marshes (Warren et al. 2001, Burdick et al. 2001).

ANOVA results showed that the influence of elevation was not significant for 

Phragmites, (p = .26, Table 1.5), although growth did increase with reduced flooding 

(RABG of 1.56, 1.62, and 1.97 for low, mid and high elevation, respectively, Table 1.4).

W o  r  4 a  o o  q I c A  l A A A C f a / 1u iu  w uiaji uv ck/uiw v x i .y  tu  auuu iii^  iv/i ± t u  uo aioO du^vokvu

by Hellings and Gallagher (1992). However, Warren et al. (2001) reported that 

Phragmites was found along frequently flooded creek-banks in Connecticut, indicating 

tolerance of flood conditions. The survival results from this experiment also showed that 

Phragmites was capable of survival in areas o f frequent flooding (Figure 1.2), although at 

low growth levels (Figure 1.3). ANOVA results indicated that the Phragmites 

salinity*elevation interaction was a large effect and appeared to govern Phragmites 

response to physical stress, but additional research may be needed to identify the specific 

mechanisms involved. Still, overall findings from this experiment indicated that 

Phragmites was capable of survival and growth across the entire range of flood and 

salinity gradient conditions, suggesting that Phragmites is well-adapted to invade most 

mesohaline and polyhaline salt marshes found along the New England coast (Warren et 

al. 2001).

Lythrum salicaria. Purple loosestrife experienced the highest mortality rate of the 

six study species, with survival o f only 10% of transplants (Figure 1.2). Survivorship 

was limited to high elevations only, indicating a strong intolerance to saline flood stress.
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Lythrum is known as a pervasive invader of freshwater wetlands (Whigham et al. 1978), 

but tolerance to tidal flooding regimes is not well known. Growth of Lythrum transplants 

was best at the low salinity site (Figure 1.3), but survival was best at mid-salinities 

(Figure 1.2). Results showed that Lythrum growth was reduced with increasing salinity 

(RABG of 2.68, 1.07, and 0.62 for low, mid and high salinity, respectively, Table 1.4), 

indicating a strong sensitivity to salinity stress. Dzierzeski (1991) also found that purple 

loosestrife was intolerant of mesohaline and polyhaline marsh conditions, and very high 

seedling mortality was observed at salinities of 10 ppt or higher.

Tvpha anyustifolia. Typha transplants survived at seven gradient locations, but 

survivorship was very low (14%) in the high salinity regimes, and appeared to diminish 

with increased levels o f flooding (Figure 1.2). Like Phragmites, top overall performance 

for Typha was achieved at the low salinity - high elevation location (Table 1.6). Typha 

growth was reduced with increased salinity (RABG of 5.77, 1.16, and 0.07 for low, mid 

and high salinity, respectively, Table 1.4), indicating intolerance to salinity stress. Beare 

and Zedler (1987), studying Typha domingensi, found similar intolerance of salt stress, 

with growth diminished above 5 ppt and mortality at 25 ppt salinity.

Although Typha survival increased with elevation (Table 1.2), growth was best at 

mid elevation (RABG of 2.79, 4.22, and 2.37 for low, mid and high elevation, 

respectively, Table 1.4). These results, together with the significance of the salinity and 

elevation interaction (ANOVA, p  = .006, Table 1.5), suggested that complex interactions 

of physical stressors, similar to the Phragmites response, may also be important for
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Typha. Ia general, experimental results compared favorably with reports o f narrow-leaf 

cattail distribution in mid marsh and upland regions of mesohaline and polyhaline salt 

marshes (Warren et al. 2001, Burdick et al. 1999).

Competition

Generalized Competition. Results of the generalized test between intraspecific 

and interspecific combinations indicated that relative growth was not significantly 

different between groups (p = .07). The null hypothesis for interspecific competition 

(HOcompetitioii) therefore must be accepted. Although the test lacked significance at 

alpha=.05, growth did appear to be greater for interspecific rather than intraspecific 

combinations. This suggested that competition for resources among evenly-matched 

individuals (intraspecific combinations) may have reduced experimental plant growth 

(Tilman 1988). In addition, it may be that not all interspecific interactions were 

negative. In fact, Schat (1984) found that some plant interactions, especially those with 

Juncus, provided benefits to other plant species, an effect known as facilitation. In the 

current experiment, competition factors for Juncus and possibly Typha suggested that 

facilitations had occurred (Table 1.7), and if so, these positive interactions might have 

also contributed to improved growth performance of the interspecific combinations.

To test for the possibility of facilitative effects, relative growth values were 

isolated for pairings versus each species, and compared with growth results from the 

remaining pool of interspecific combinations (Figure 1.6). It was expected that relative
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growth would be greater for pairings with facilitative species than with other interspecific 

combinations. In fact, results of these comparisons showed that combinations with 

Juncus (t-test p=. 04) produced greater growth for the other species. Positive associations 

among salt marsh plants have been shown to be important in the colonization of disturbed 

areas. Juncus has been found to enhance growth of the marsh elder (Iva frutescens) by 

oxygenating soils, and by reducing substrate salinities through shading (Bertness and 

Hacker 1994, Bertness and Yeh 1994). In addition, Bertness (1991a) found that shading 

from spikegrass (Distichlis spicata) and Spartina patens allowed Juncus to colonize 

disturbed patches. Therefore, facilitative interactions among the study species may have 

contributed to increased growth of neighbors in some interspecific combinations.

Results from Figure 1.6 also indicated that negative competitive influences were 

present in the experiment. Growth was lower for plants paired with Spartina altemiflora 

(p < .001, Figure 1.6), but no other species produced this negative effect. These results 

suggested that competitive intensity varied with species pairings, or alternatively, that the 

single-season duration of the study may have been insufficient to produce strong 

competitive interactions. While the impacts of saltwater flooding on plant mortality and 

growth can be rapid (Sinicrope et al. 1990, Burdick et al. 1997), competition operates on 

longer time scales and may require multiple growing seasons to detect significant 

differences between competing species (Bertness and Ellison 1987, Bertness 1991a, 

Levine et al. 1998). Nonetheless, it is widely accepted that competition is the most 

important biotic stress in determining salt marsh community structure (Bertness and 

Ellison 1987, Pennings and Callaway 1992, Hacker and Bertness 1999, Emery et al.
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2001). Results from this experiment also suggested that competition was an important, 

but variable, influence on plant growth.

Interactions Among Halophvtes. Competition factors for each interspecific 

combination provided the basis for analysis of relative competitive rankings among the 

study species (Table 1.7 and Figure 1.5). Combinations of Spartina altemiflora and 

Spartina patens produced growth results about 20% lower than average for both species, 

suggesting that competitive interactions were negative but equal. Conversely, the 

Spartina patens-Juncus combination was slightly positive for both Spartina patens (+4%) 

and Juncus (+14%), although these results also suggested competitive parity. However, 

the Spartina cdtemiflora-Juncus pairing showed an overall competitive advantage for 

cordgrass, with Juncus reduced 30% below average and Spartina altemiflora improved 

by 20%.

These results conflicted with reports from longer term studies that found that 

Spartina patens was competitively inferior to Juncus, and that Spartina altemiflora was 

inferior to both species in natural salt marsh settings (Bertness and Ellison 1987, Emery 

et al. 2001). However, Levine et al. (1998) conducted fertilization experiments with 

these species and found that the Spartina altemiflora<Spartina patens<Juncus 

competitive rankings were reversed when nutrient limitations were removed. Emery et 

al. (2001) found similar results in an additional fertilization experiment, concluding that 

competitive hierarchies were nutrient-dependent among native New England salt marsh 

species. Further, Emery et al. determined that competition switched from belowground
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to aboveground interactions when resources were abundant. Therefore, Spartina patens 

and Juncus may be out-competed by taller Spartina altemiflora individuals in high- 

marsh regions with elevated levels o f nutrient runoff and accumulation.

It was possible that the results from the current experiment supported findings 

from fertilization experiments o f Levine et al. (1998) and Emery et al. (2001). The

Avnonmantol of \Xi11 P faaIt X^orctt Ka«*/4a**asJ lira
W t f v p  W  U J U V A U U *  W W U M V i i j  C M  M l W U I k  1 » 1 U 1  J U  I S W A V tW A W * *  U ^ U V W  U g i l V U A i l U U A  A A S 'A K A O }  4 *

although sediment nutrients were not measured, it was likely that some level o f fertilizer 

runoff accumulated here. The site was selected primarily to take advantage of its salinity 

gradient, and potential impacts of nutrient additions were not considered. It was 

therefore possible that increased nutrient loads at Mill Brook shifted competition from 

below to aboveground structures, and contributed to the unexpectedly strong competitive 

performance of Spartina altemiflora. Nutrient enrichment of coastal marshes from rivers 

and atmospheric deposition appears to be on the rise everywhere in the northeastern US 

(Jaworski et al. 1997), and increasingly elevated nutrient loads may prevail in many New 

England salt marshes.

Interactions Between Halophvtes and Invasive Species. Even though halophytes 

were tolerance-advantaged in combinations with the invasive species, this experiment 

sought to identify relative competitive rankings under natural mesohaline and polyhaline 

conditions, and not to isolate the differential (and potentially confounding ) effects of 

competition and stress tolerance. In fact, the interactions between physical stress and 

competition are difficult to separate and poorly understood. Pennings and Callaway
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(1992) attempted to determine the relative importance of these factors, and concluded 

that stress and competitive impacts varied with changing edaphic conditions, but in 

unpredictable ways. Without salinity as a factor, Keddy et al. (1994), found that 

competitive rankings for twenty wetland plant species were generally consistent across 

different flood regimes, suggesting that competitive ability was unchanged across 

physical stress gradients. Whatever the case, the current experiment attempted to control 

for differential stress by standardizing head-to-head competitive results at each gradient 

location (see the Experimental Objectives section). So, despite these limitations and 

unknown influences, experimental competitive results for halophyte-invasive 

combinations are presented here to provide some level o f insight into key species 

interactions that are not yet understood.

Competition factors for Spartina altemiflora- Typha combinations (Table 1.7 and 

Figure 1.5) indicated that Spartina altemiflora achieved slightly better than average 

growth, but Typha growth was diminished (44% lower) compared to its location 

averages. The relative strength of cordgrass was again somewhat surprising, although 

Spartina altemiflora has been observed to rapidly replace Typha when hydrology was 

restored to tidal-restricted salt marshes (Sinicrope et al. 1990, Burdick et al. 1997, 

Burdick et al. 1999). It is not known, however, to what extent these cases reflect 

competitive interactions, or simply Typha die-back and subsequent Spartina altemiflora 

colonization of bare regions. In addition, Typha can apparently invade Spartina 

altemiflora regions under increasingly oligohaline conditions (Beare and Zedler 1987),
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suggesting that physical stress levels may accelerate or reduce relative competitive 

impacts between these species.

In Spartina akemiflora-Phragmites combinations, study results suggested that 

Phragmites was competitively superior to cordgrass. For these pairings, Phragmites 

achieved growth 18% above its averages, while Spartina altemiflora growth was 47% 

lower (the poorest relative performance for cordgrass in any combination). Tolerance 

factors (Table 1.6) indicated that Phragmites was relatively more stress tolerant than 

Typha and Lythrum, so if physical stress did influence competitive rankings, improved 

tolerance for Phragmites may have been important. In any case, reports of Phragmites 

invasion in cordgrass stands within mesohaline and polyhaline estuaries are common 

(Sinicrope et al. 1990, Meyerson et al. 2000, Burdick et al. 2001, Warren et al. 2001) and 

these findings supported study results of Phragmites as a strong head-to-head competitor 

versus Spartina altemiflora.

There were no surviving combinations of Spartina altemiflora and Lythrum. For 

computation of competition factors, the Spartina altemiflora-Lythrum combination was 

scored 1-0 in favor of Spartina altemiflora, based on a tally o f survivorship in Spartina 

altemiflora-Lythrum  pairings (a 13-0 advantage for Spartina altemiflora).

Spartina patens, like cordgrass, also appeared to be a good competitor against 

Typha, achieving 7% higher growth while cattail was reduced to 71% of its average. The 

Spartina patens-Phragmites combination suggested that the two species were evenly
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matched. Sinicrope et al. (1990) reported that Spartina patens had replaced Typha and 

Phragmites in 3% o f a Connecticut marsh 10 years after tidal hydrology was restored, 

also indicating that Spartina patens can achieve minor competitive gains against these 

species. In Spartina patens-Lythrum combinations, salt hay appeared to be strongly 

dominant, with 35% improved growth and a 66% reduction in Lythrum. Specific reports 

of Spartina patens-Lythrum interactions are not known, but remnant populations of salt 

hay can apparently persist in tidal-restricted salt marshes dominated by purple loosestrife 

(Burdick et al. 1997), suggesting possible competitive strength versus Lythrum.

For Juncus-Phragmites interactions, Juncus growth was reduced (13%), and 

Phragmites growth was substantially higher (51% greater than average). Juncus growth 

was improved slightly in the presence of Typha and Lythrum (5% and 6%, respectively), 

but these invasive species were improved considerably (42% and 94%) in combinations 

with Juncus. In the Connecticut marsh restoration reported by Sinicrope et al. (1990), 

Juncus had replaced Typha and Phragmites in 2% of the marsh, suggesting that Juncus, 

like Spartina patens, can be competitive against these species under the right edaphic 

conditions. Experimental results with Juncus, however, are most notable for the 

improved relative performance of the salt-intolerant species. I f Juncus is a facilitator of 

plant growth under stressful marsh conditions (Figure 1.6, Hacker and Bertness 1994, 

Bertness and Yeh 1994), then it was reasonable to expect that associations with Juncus 

should incrementally benefit the most highly stressed species. In fact, enhanced growth 

for Juncus-mvasive pairings (+51%, +94%, and +42% for Phragmites, Lythrum, and 

Typha, respectively, Table 1.7) did appear to be elevated relative to the positive response
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of salt-tolerant species (+14% and +20%, for Spartina altemiflora and Spartina patens, 

respectively). These results added further support to the finding that Juncus had 

facilitated growth of neighboring plant species in this study.

Interactions Among Invasive Species. Interspecific combinations among invasive 

species suffered from high transplant mortality, and therefore competitive results were 

difficult to interpret or absent. There were only three surviving combinations for 

Phragmites- Typha, one for Phragmites-Lythrum, and none for Typha-Lythrum (scored 1- 

0 in favor of Typha, based on a 9-0 survivorship advantage). In Phragmites-Typha 

combinations, Phragmites relative growth was reduced to 59% of its average, and Typha 

was improved by 29%, suggesting the possibility of a Typha competitive advantage. The 

one surviving Phragmites-Lythrum combination was in favor of Phragmites. Other 

reports of relative competitive rankings among these species are unknown, although 

Keddy et al. (1994) reported that Lythrum out-competed Typha in freshwater habitats. In 

general, however, the low counts of surviving experimental combinations for these 

species severely limited interpretations, and specifics o f competitive standings among 

Phragmites, Typha, and Lythrum remain a clear research opportunity for future studies.

Conclusions

The experimental transplant of common salt marsh plant species across a natural 

gradient of salinity regimes and elevations clearly demonstrated that plant species have 

different tolerances of physical stress associated with saltwater flooding. Species
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survival, biomass production, and relative growth all appeared to be strongly influenced 

by physical factors. In addition, marsh plants varied in response to physical conditions, 

with halophyte species growth largely controlled by flood levels, and brackish invasive 

species controlled by salinity regime. Complex interactions between elevation and 

salinity may have been important determinants of growth for some species (especially 

Phragmites). Interspecific competition also appeared to influence species growth, 

although these effects were statistically weaker than the impacts of physical stress, and 

the direction of impact varied with species. Negative competitive effects were found in 

combinations with Spartina altemiflora, but interactions with Juncus were facilitative. 

Relative competitive rankings among the species suggested that Spartina altemiflora, 

Phragmites, and Spartina patens were the strongest study competitors, although low 

survival o f some other species limited confidence in interpreting competitive results.

Nonetheless, the experiment provided important new clues about how existing 

communities of salt marsh plants might respond to changes in marsh hydrologic 

conditions. Species-specific tolerance factors for a range of marsh gradient conditions 

identified favorable and unfavorable habitat sites for common plant species, and provided 

a qualitative basis for predicting plant community succession in response to hydrologic 

changes. Estimates of competitive rankings provided another useful set of metrics to 

gauge the longer-term effects of competition following an initial hydrologic disturbance. 

Together, tolerance and competition measures combined to form a valuable new dataset 

that improved our abilities to understand, simulate, and predict plant community response 

to hydrologic salt marsh restoration.
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Characteristics
Mean Substrate Elevation Flooding

Site Locations Salinity (ppt±SE) NGVD(m) (% time flooded)
Low Salinity

Low Elevation 14+2 1.00 22
Mid Elevation 14+2 1.13 13
High Elevation 15+2 1.28 5

Mid Salinity
Low Elevation 16+2 1.00 22
Mid Elevation 19±2 1.16 11
High Elevation !9±2 1.41 1

High Salinity
Low Elevation 24+2 0.81 32
Mid Elevation 23+2 1.21 16
High Elevation 21±2 1.51 1

Table 1.1. Physical characteristics of study gradient locations.
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She Locations

Spartina altemiflora 
Above/Below: .31+.01

Spartina patens 
Above/Below: .46+.02

n Above Below n Above Below
Low Salinity

Low Elevation 12 8.12+1.39 34.77+8.48 7 0.65+.12 2.83+.63
Mid Elevation 14 14.88+2.36 69.19+8.80 14 2.21+.35 7.42+1J29
High Elevation 13 14.54+2.72 45.27+6.20 14 3.46+. 40 15.00+1.81

Mid Salinity
Low Elevation 13 19.04+1.55 61.56+6.41 12 5.73+.48 15.72±1.64
Mid Elevation 14 13.82±1.24 60.71+6.50 14 5.78+.46 15.88+1.53
High Elevation 14 4.11+.42 14.49+1.64 14 6.02+.47 16.41+1.51

High Salinity
Low Elevation 12 7.60+.81 15.86+1.94 10 2.81+.38 4.35+.45
Mid Elevation 2 2.53+1.51 8.91±5.60 14 4.25+.36 8.49+.69
High Elevation 6 2.11±.81 4.58+1.58 14 2.84+.43 4.46+.85

She Locations

Juncus gerardii 
Above/Below: .38+.02

Phragmites australis 
Above/Below: .65+.06

n Above Below n Above Below
Low Salinity

Low Elevation 0 5 3.97+1.37 18.80+.66
Mid Elevation 13 0.79+.13 10.07+.64 8 5.65+.92 18.15+2.34
High Elevation 14 3.86+.73 9.94+2.04 13 8.70+.98 18.28+3.13

Mid Salinity
Low Elevation 0 6 3.77+.53 7.16+1.81
Mid Elevation 12 0.65+.10 1.40+.15 7 4.86+2.45 10.94+4.02
High Elevation 14 1.40+.16 5.21+.84 6 2.35+.49 4.44+1.35

High Salinity
Low Elevation 13 0.27+.05 0.76+.14 6 4.06+.81 4.42+1.20
Mid Elevation 14 0.79+.25 2.65+.52 3 2.58+.78 4.78+1.28
High Elevation 14 0.81±.18 2.11±.36 2 1.01+.99 4.94+3.21

She Locations

Lythrum salicaria 
Above/Below: .15+.03

Typha angustifolia 
Above/Below; .33+.03

n Above Below n Above Below
Low Salinity

Low Elevation 0 7 8.55+1.78 22.63+3.68
Mid Elevation 0 9 16.04+4.17 32.11+8.74
High Elevation 3 4.56+.85 29.05+4.90 13 11.89+1.57 33.46+8.05

Mid Salinity
Low Elevation 0 7 3.41+.68 17.63+3.29
Mid Elevation 0 12 3.82+.41 17.40+2.85
High Elevation 8 1.82+.43 13.71+3.04 14 0.90+.14 4.95+.78

High Salinity
Low Elevation 0 0
Mid Elevation 0 0
High Elevation 2 0.29+.02 2.90+.66 6 0.16+.03 1.94+.33

Table 1.2. Surviving number of transplants (n), final aboveground and belowground 
biomass (mean g dry weight + SE) and aboveground-to-belowground biomass ratio 
(mean ± SE) for six study species at elevation and salinity gradient locations.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Species

Low and Mid Salinity Sites High Salinity Sites

n Above Below n Above Below

Spartina altemiflora 3 1.73±.02 2.33±.15 3 1.29±.14 1.86±.67
Spartina patens 3 1.98±.08 2.35±.17 3 1.13±.13 1.58±.21
Juncus gerardii 3 1.75+.02 1.82+.06 3 0.29+.09 0.41+.09

Phragmites australis 3 3.16±.17 3.19+.42 3 1.87+.30 0.68±.16
Lythrum salicaria 3 1.70+.02 5.67+1.23 3 0.47+.15 1.63+.39
Typha angustifolia 3 2.14±.03 2.91±.29 3 2.12+.33 2.52±.44

Table 1.3. Number of pairs (n) and initial aboveground and belowground biomass (mean 
g dry weight ± SE) for pre-study sample specimens by salinity regime location. 
Aboveground values were used to derive relative aboveground biomass growth (RABG).
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Species

Gradient Spartina Spartina JimctiS Phragmites Lythrum Typha
Location altemiflora patens gerardii australis salicaria angustifolia
Low Salinity

Low Elev 8.41±1.57 0.33+0.06 0 1.26+0.43 0 3.99+0.83
Mid Elev 8.61±1.36 1.12±0.17 0.45+0.07 1.79±0.41 0 7.48+1.94
High Elev 4.70+0.80 1.75±0.20 2.21+0.42 2.76+0.53 2.68+0.50 5.54+0.73

Mid Salinity
Low Elev 11.0!±0.89 0.14+0.03 0 1.19±0.17 0 1.59+0.32
Mid Elev 7.99+0.72 2.41+0.28 0.37+0.06 1.54+0.78 0 1.78+0.19
High Elev 2.37±0.24 3.05±0.24 0.81±0.09 0.75+0.16 1.07+0.25 0.42+0.06

High Salinity
Low Elev 5.91+0.82 1.50±0.40 0.97+0.18 2.17+0.43 0 0
Mid Elev 1.97+1.18 3.78±0.32 2.77+0.87 1.38±0.41 0 0
High Elev 1.64+0.63 2.52±0.39 2.85+0.64 0.54+0.53 0.62+0.04 0.07+0.02

By Salinity
Low 7.34+0.70 0.82±0.14 1.36±0.28 2.17+0.23 2.68+0.50 5.77+0.73
Mid 7.03±0.69 1.47±0.23 0.60+0.06 1.18+0.29 1.07+0.25 1.16+0.15
High 4.24+0.70 2.98±0.23 2.23±0.39 1.66+0.32 0.62+0.04 0.07+0.02

By Elevation
Low 8.51+0.74 1.00+0.24 0.97+0.18 1.5640.22 0 2.79+0.54
Mid 7.88+0.77 2.43±0.23 1.26+0.36 1.62±0.32 0 4.22+1.03
High 3.11+0.40 2.44+0.19 1.95+0.28 1.97+0.30 1.37+0.28 2.37+0.53

Table 1.4. Species mean relative aboveground biomass growth (RABG) at each gradient 
location, and for salinity and elevation treatments (mean + SE).
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Species

ANOVA
Spartina

altemiflora
Spartina
patens

Juncus
gerardii

Phragmites
australis

Lythrum
salicaria

Typha
angustifolia

Whole Model
R2/df .52199 .75/112 .40/93 .40/55 .49/12 .74/67
F ratio 12.4 1.4 9.8 3.9 4.9 29.6
p value <.0001 <0001 <.0001 .0001 .03 <0001

Salinity
Df 2 2 0 2 2 1
F ratio 11.8 50.7 - 4.0 4.9 79.6
p value <0001 <.0001 - .03 .03 <.0001

Elevation
Df 2 2 1 2 0 0
F ratio 30.8 64.6 15.9 1.4 - -

p value <0001 <0001 .0001 .26 - -

Salinity*elevation
Df 4 4 2 4 0 2
F ratio 2.8 21.0 4.0 4.8 - 5.6
p value .03 <0001 .02 0.002 - 0.006

Table 1.5. Results from two-way ANOVA comparing mean relative aboveground 
biomass growth (RABG) of study species by salinity, elevation, and salinity*elevation 
interaction.
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Species

Gradient Spartina Spartina Juncus Phragmites Lythrum Typha
Location altemiflora patens gerardii australis salicaria angustifolia

Low Salinity
Low Elevation 0.76 0.04 0.00 0.18 0.00 0.39
Mid Elevation 0.84 0.30 0.15 0.40 0.00 0.93
High Elevation 0.39 0.47 0.79 1.00 0.94 1.00

Mid Salinity
Low Elevation 1.00 0.72 0.00 0.20 0.00 0.15
Mid Elevation 0.78 0.77 0.11 0.30 0.00 0.30
High Elevation 0.23 0.81 0.29 0.13 1.00 0.08

High Salinity
Low Elevation 0.49 0.47 0.32 0.36 0.00 0.00
Mid Elevation 0.03 1.00 0.98 0.12 0.00 0.00
High Elevation 0.07 0.67 1.00 0.03 0.14 0.01

Table 1.6. Species tolerance factors (TF) of growth and survival for study gradient 
locations (bold values identify best species performance for each gradient location).
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Species

Competitor
Spartina

altemiflora
Spartina
patens

Juncus
gerardii

Phragmites
australis

Lythrum
salicaria

Typha
angustifolia

Spartina
altemiflora 0.81 (14) 1.20 (14) 0.53 (4) 0.00 (0) 1.08 (9)

Spartina
patens 0.80 (14) — 1.14(14) 1.02 (6) 1.36(2) 1.07(7)

Juncus
gerardii 0.70 (11) 1.04(14) — 0.87 (7) 1.06(2) 1.05(5)

Phragmites
australis 1.18(4) 1.13 (6) 1.51 (7) — 1.96 (1) 0.59 (3)

Lythrum
salicaria 1.00(0) 0.34(2) 1.94(2) 0.63 (1) — 1.00(0)

Typha
angustifolia 0.56 (8) 0.71 (8) 1.42(6) 1.29(3) 0.00 (0) —

Table 1.7. Competition factors (CF) for interspecific combinations (number of pairings 
with both participants surviving in parentheses). Row values show the percent of average 
growth achieved for the species; column values are for the competitor.
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Increasing salinity stress with Salinity Regime

Figure 1.1. Schematic diagram o f experimental elevation and salinity gradient locations. 
Salinity locations were Oak Knoll Marsh for polyhaline (>18 ppt), and Mill Brook Marsh 
for poly-mesohaline (—18 ppt) and mesohaline (5-18 ppt) regimes. Elevation sites within 
were in low marsh (tidally flooded > 20% of time), mid marsh (flooded 10-15% of the 
time) and high marsh (flooded < 5% of time). At each gradient location, shoot pairs of 
six plant species were transplanted into open pot units and assigned to interspecific or 
intraspecific combinations (twenty-one units per plot with two replicates).
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Figure 1.2. Transplant pairs surviving the experiment for six plant species at nine 
gradient locations (out of 14 initial pairs).
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Figure 1.4. Relative aboveground biomass growth (RABG) for species at nine gradient 
locations (mean + SE). Vertical axis scale 0-12 for Spartina altemiflora and Typha, 0-6 
for others. Bar labels in common were not significantly different (p > .05).
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Figure 1.5. Species plots of paired competition factors for interspecific combinations 
with both participants surviving (x-axis for species; y-axis for labeled competitors).
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Figure 1.6. Relative growth (mean + SE) for interspecific pairings versus species and 
versus all others (results from t-test for differences, * indicates significance at alpha=.05).
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CHAPTER n

A BIOMASS PRODUCTION MODEL FOR COMMON PLANT SPECIES OF 

NEW ENGLAND SALT MARSHES

Introduction

Salt marshes are extensively studied ecosystems that have intrigued researchers 

since at least the late 1950s. Recently, our understanding of complex salt marsh 

ecosystem processes has been enhanced by computer-based simulation models. In an 

effort to build upon this knowledge, the current project synthesizes key elements of 

existing computer models into a single ecosystem model to predict plant community 

response to hydrologic restoration of tidal-restricted salt marshes (see Introductory 

Chapter). The ecosystem model simulates salt marsh processes associated with tidal 

hydrology, coastal geology, plant biomass production, and plant community succession.

Aboveground and belowground biomass production by salt marsh plants, a 

critically important salt marsh function, is the focus of this chapter. Biomass from marsh
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plants supplies the food web, and largely influences competitive outcomes (Tilman 

1988). Furthermore, plant biomass contributes to sediment formation through 

decomposition (Hatton et al. 1983, Gosselink and Hatton 1984), and by trapping 

suspended solids in the water column (Stumpf 1983). Sediment formation is of 

particular interest to the current project, since sediment-building processes directly 

influence changes in relative marsh elevation and tidal regime. Therefore, a simulation 

model o f annual plant biomass production is an important input component of an 

ecosystem model that predicts marsh response to changes in tidal hydrologic conditions.

A number of computer models for plant biomass production have already been 

published. CENTURY (Parton et al. 1993) is a well-known plant production model 

based on grassland ecology, developed to model soil-plant dynamics for homogeneous 

terrain-based ecosystems at regional spatial coverage and at long-term temporal scales. 

FOREST-BGC (Running and Coughlan 1988) is a carbon-allocation model, driven 

primarily by forest canopy leaf-area index estimates, that considers the impact of water 

and nutrient limitations on plant production. TEM (Raich et al. 1991, Melillo et al. 1993, 

McGuire et al. 1997) provides process-based estimates of production and carbon 

allocation in conjunction with water-balance dynamics. PnET (Aber et al. 1995, Aber et 

al. 1996) is a process-based terrestrial model that estimates water, carbon, and nitrogen 

ecosystem balances (gross and net) at a wide range of spatial scales, ranging from forest 

stands and watersheds, to entire geographic regions. These models are similar in their 

highly aggregate lumped-parameter approach to water balance dynamics and ecosystem 

production estimates, and, while this approach is necessary for scaled-up global
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scenarios, it is not well suited to the very fine, species-level response scales required for 

the current project

The plant production unit model selected for this project is the General Ecosystem 

Model (GEM) developed by Fitz et al. (1996). GEM is best known as a wetland plant 

community model, with uses that include a Louisiana cypress swamp (Fitz et al. 1996), 

the Florida Everglades (Voinov et al. 1998), a Maryland coastal wetland (Voinov et al. 

1999), and New Hampshire eelgrass beds (Short et al. 1998). The model has been shown 

to support spatial implementation (i.e., the exchange of key constituent values between 

grid cells), and to efficiently process grids with 1000+ cells (Maxwell and Costanza 

1997). GEM is also well documented, at least to the extent that model assumptions 

(equations, relationships and parameters) are explicitly and clearly stated. The original 

publication (Fitz et al. 1996) described a limited sensitivity analysis and validation of the 

model, based on comparisons of modeled plant production relative to measured results. 

GEM also includes component modules for subsurface and nutrient flux processing, but 

these factors are outside the scope of the current project.

For salt marsh use, this implementation of GEM followed closely the approach 

taken by Short et al. (1998) for estimation of eelgrass biomass productioa An overall 

rate o f gross photosynthesis was specified, and net production was estimated as a 

function of respiration, mortality, consumption, and physical growth limits (temperature, 

and in the case o f eelgrass, light). To parameterize GEM for salt marsh plants, the rates
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of gross photosynthesis, mortality, and consumption were determined by literature review 

and by model calibration.

Salt marsh plant respiration rates were based on a model developed by Dai and 

Wiegert (1996) to predict Spartina cdtermflora biomass production. The Dai and 

Wiegert model relied on an intensive one-year study of short and tall form salt marsh 

cordgrass in Georgia to provide specific measurements of Spartina above and 

belowground morphological characteristics. Gross photosynthesis was estimated as a 

function of photosynthetically active radiation (PAR), leaf surface area, leaf nitrogen 

content, and air temperature. By comparing gross photosynthesis with measured biomass 

at monthly intervals, Dai and Wiegert determined the specific rates of respiration for 

aboveground and belowground cordgrass structures, including growth and maintenance 

respiration.

For the current project, plant species other than Spartina altemiflora also needed 

to be considered. In New England salt marshes with tidal restrictions, native perennial 

species such as cordgrass, salt hay {Spartina patens), and black grass {Juncus gerardii) 

are often replaced by invasive species like common reed {Phragmites australis), narrow- 

leaf cattail {Typha angustifolia), and purple loosestrife {Lythrum salicaria) (Burdick et al. 

1997). Since these six common species are used to simulate typical New England marsh 

plant communities, the biomass model is needed to provide estimates of aboveground and 

belowground plant biomass for each species. To accomplish this, species values of peak 

aboveground biomass (from literature) and above-to-belowground ratios (from the field
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experiment, Chapter I) were used as target parameters to calibrate biomass production 

results. The calibration process produced species-specific rates for gross photosynthesis 

and above-to-belowground carbon translocation, and annual biomass curves for 

aboveground and belowground structures.

Methods

Approach. An existing software implementation of the GEM model for eelgrass 

biomass production (Short et al. 1998) was acquired in the Stella graphic programming 

format (High Performance Systems, Inc. Hanover, New Hampshire, USA) and re-written 

into the Microsoft (MS) Visual FoxPro procedural language (Microsoft Corporation, 

Redmond, Washington, USA). Development of the biomass production model followed 

this general approach: First, results from the re-written eelgrass model were compared 

with original model results to ensure that the translation process was complete and 

accurate. Then, the model was re-specified with salt marsh parameter values and, for 

each of six salt marsh species, calibrated with iterative model runs until simulated peak 

above and belowground biomass results agreed with target values. Lastly, the model was 

subject to a formal sensitivity analysis to assess relative importance of each model 

parameter.

Model Structure. The model used a weekly time-step and operated on a calendar 

year basis to produce running weekly estimates of plant production. The model 

generated aboveground and belowground biomass estimates for a hypothetical, single
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square meter plot, composed of up to six different common marsh species. Species 

composition of the cell was specified for Spartina altemiflora (cover spa), Spartina 

patens (coverjpp), Juncus gerardii (cover Jun), Phragmites australis (cover_phr), 

Lythrum salicaria (cover lyt), and Typha angustifolia (cover Jyp). Cover values 

represented the relative portion of the plot occupied by each species, with the totals of all 

six species adding up to one. For example, if vegetated cover of a plot was sparse but 

composed only of Typha individuals, cover Jyp  would equal one and values for the other 

five species values would be zero. If Typha and Phragmites were the only species 

present in a plot and each accounted for an equal area of cover, then cover jy p  and 

cover_phr would both equal 0.5 and the other species values would be zero.

Initial Biomass. Initial aboveground and belowground biomass values were 

specified for each o f the six plant species (kgCm*2). Since the model started all runs in 

winter (Jan 01), the initial aboveground biomass (icjphb) value was minimal (0.001 

kgCm'2) at the beginning of each model run. Species-specific initial belowground 

biomass values {icjiphb_spp) were based on the assumption that belowground biomass 

in early winter was roughly equal to belowground biomass at the end of the growing 

season. This has been shown to be the case for Spartina altemiflora and Spartina patens 

(Gallagher 1983, Gallagher and Howarth 1987), and other perennial marsh species were 

assumed to follow a similar pattern. Belowground biomass estimates for each species 

were based on peak aboveground species values from selected published reports, with 

emphasis on New England mesohaline and polyhaline marshes (Table 2.1). Initial 

belowground estimates (Table 2.2) were computed from the species ratio of above-to-
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belowground biomass (Chapter I), and converted from biomass to carbon with a 40% g- 

carbon to g-biomass ratio (Gallagher and Plumley 1979). Total initial belowground 

biomass for the hypothetical marsh plot (ic nphb) was determined by summing the 

multiples of species cover values by initial belowground biomass for all six species.

Aboveground Production. Aboveground production was determined by growth, 

respiration, and mortality rates, with all rates in units of kgCm^wk'1. Species-specific 

gross photosynthesis rates (phjnac gpp spp) were derived from model calibration and 

listed in Table 2.2 (see the Species Calibration Points section for details). Photosynthesis 

was only allowed from early April to mid-November (weeks 14-47) to simulate an 

average New England growing season. Total gross production for the plot (phjnac_gpp) 

was determined by summing the multiples o f species cover values by gross 

photosynthesis rates for the six species. Total gross production (gpptotal) was the 

annual total of accumulated weekly gross production. Gross production was reduced by 

28% for total aboveground respiration (phbio resp rate), based on the Dai and Wiegert 

(1996) model for Spartina altemiflora, and applied to all six species. It was assumed that 

respiratory costs associated with seed production were bundled into this aboveground 

respiration rate. Litterfall (litteTfall) was triggered on week 42 to simulate the first hard 

frost in late October. Aboveground biomass (mac_ph_biomass) was removed by an 

increasing percentage (4%, 12%, and 24%, respectively) for three weeks following week 

42, and then by 40% until year-end to deplete nearly all aboveground biomass. The 

aboveground mortality rate (phbio mortality) was 1%, reflecting physical stress due to
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drought, salinity, and salt water flooding (Bertness and Ellison 1987), storm-induced 

wrack burial (Hartman 1988), and herbivory (Teal 1962).

Carbon Translocation To Shoots. Belowground carbon reserves were transferred 

to emerging shoots and leaves early in the growing season, and replenished later in the 

year (Gallagher 1983, Hopkinson and Schubauer 1984, Gallagher and Howarth 1987, 

Lana et al. 1991). The model used exponential functions (Equations 1 and 2), based on 

Short et al. (1998), to provide a ramp-up of percent carbon reserve use (translocation) by 

aboveground structures in the first six weeks of the growing season (weeks 14-20), 

followed by reduced use for an additional six weeks (weeks 21-27). The functions were 

bounded from 0 - 99.5%, with x = week*(52/12) to provide point estimates of percent 

carbon reserves available for aboveground use:

C from reserveswedcs 14-20 = (3.04x3-15.95x2+26.01x-l 1.90)/100 (1)

C from reservesweda 21-27 =(-0.19*5+4.91x4-48.3 lx^+226.16x2-500.64x+417.25)/100 (2)

Since gross photosynthesis rates and above/below biomass ratios varied by 

species, model amounts o f carbon reserves used by aboveground structures were adjusted 

by species-specific calibration factors (see Species Calibration Points). Reserve use 

calibration factors (trans_spp) were multiplied by species cover values to produce a 

composite reserve use rate (transrate). The composite rate was multiplied by total 

belowground biomass (mac nophh biomass) and percent available reserves to determine 

weekly amounts of carbon allocated from reserves.
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Belowground Production. To replenish reserves, belowground structures 

received the results o f net photosynthesis (gross production less aboveground respiration) 

during the later stages o f the growing season, as gross belowground production 

(nphjnacjgpp) (Gallagher 1983, Hopkinson and Schubauer 1984, Gallagher and 

Howarth 1987, Lana et al. 1991). For three weeks prior to the week 28 seasonal mid

point, an increasing percentage of net photosynthesis (10%, 30%, and 60%, respectively) 

was moved into reserves. From week 28 until the end of the growing season, aii net 

photosynthesis was stored in belowground structures. Gross belowground production 

was reduced by belowground respiration for growth (nphbio resp rate_grow) and 

maintenance (nphbio_resp_rate_maint\ at 37% and 1.5% of gross belowground 

production, respectively, based on Dai and Wiegert (1996). Belowground maintenance 

respiration was reduced at cold water temperatures. Functions to estimate water 

temperature (h2oJemp, Eq. 3) and respiration reduction (mac temp resp lim , Eq. 4) 

were based on Short et al. (1998). Total belowground respiration (nphbio resp) was 

computed as growth respiration plus maintenance respiration. Belowground mortality 

(nhbiojnort rate) was estimated at 0.5% (based on Garver et al. 1988 for Typha 

angustifolia) to simulate over-wintering mortality of roots and rhizomes.

Water Temperaturewe* = 15-15(COS((2jt)*(week*7-31)/365)) (3)

Temperature Response = (0.0107*£AP(0.047*Water Temperature)) (4)

Annual Net Production and Biomass. Total net production (nppjotal) was the 

annual total of accumulated weekly gross production less above and belowground
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respiration and mortality. Aboveground biomass (mac_pk_biomass) was computed as 

starting aboveground biomass plus gross production and resave use, less aboveground 

respiration, litterfall, and mortality. Belowground biomass (mac noph biomass) was 

calculated as starting belowground biomass plus gross belowground production, less 

translocation to shoots, belowground respiration and mortality.

Species Calibration Points. Calibration exercises were performed to derive 

species-specific gross photosynthetic and reserve use rates. For each species, cover 

values were set to one, initial belowground biomass values were set to the species- 

specific value (Table 2.2), and the model was run for one year. The resulting annual 

biomass curves were fit to target values (Table 2.1) for peak aboveground biomass and 

peak belowground biomass by iterative adjustment of species gross photosynthesis rate 

(ph mac gpp spp) and belowground reserve use rate (Pm s spp). Table 2.2 lists results 

from the calibration exercise. Model calibration was considered complete when both 

above and belowground simulated peaks were within 5% of the target values for each 

species.

Sensitivity Analysis. The sensitivity o f biomass results to changes in model 

parameters was determined through a systematic sensitivity analysis. For purposes of 

this analysis, all species-specific parameters were set to Spartina altemiflora values, and 

accumulated biomass change (net primary production less total mortality) was used as the 

comparative metric. Non species-specific parameters were varied by ±5% and ±20%, 

and model results were compared with baseline conditions (based on original parameter

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



values) to assess relative sensitivity of each parameter. Relative sensitivity was 

calculated as the percent change in accumulated biomass divided by the percent change 

(either 5% or 20%) in the model parameter (Eq. 5). Higher relative sensitivity values 

indicated an increased sensitivity to a model parameter. Since simulated biomass 

production varied over time (for multi-year runs, ending belowground biomass values 

were not always exactly equal to Table 2.2 initial values), the sensitivity analysis was run

iOi Oiic o i a u  iw e n ry  yQcu u u i a u u i o  iu  Cn^uiC u iu u c i v u iiS iS lu i^  a n u  iv u ^ - ic n n  Slauuii^y.

Relative sensitivityparameter %  Changeaccumubtedtnomass I  %  Changeparameter (5 )

Results and Discussion

Biomass Production. Peak aboveground and belowground biomass model 

estimates for native and invasive salt marsh species are listed in Table 2.3. Calibration 

differences between model estimates and target biomass values ranged from 0% for 

Juncus to 5% for Lythrum, and the average difference was 2.5%, indicating acceptable 

overall calibration performance. Model results fpllowed the same patterns of relative 

biomass rankings as the target values, with largest aboveground biomass estimates for 

Typha, Phragmites and Spartina cdtemiflora, and largest belowground estimates for 

Lythrum, Typha, and Spartina altemiflora. Annual net production ranged from 3125 

g/m2 for Typha to 1950 g/m2 for Spartina patens and Juncus. Annual turnover rates (net
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production/peak aboveground biomass) were estimated between 1.4 (Juncus) and 2.1 

(Lythrum).

Published reports of salt marsh net primary productivity vary widely, making 

comparisons difficult. Divergent estimates, even for the same species in the same 

geographic region, can be attributable to differences in local edaphic conditions (salt 

water flood regime and substrate porosity), plant genotype (short or tall form Spartina 

altemiflora), and the method of estimation (Mitsch and Gosselink 1993). In addition, 

inter-annual variability in biomass production for salt marsh species has been linked to 

year-to-year climatic conditions, especially rainfall (Gross et al. 1990). As a result, 

estimated annual net production for Spartina altemiflora in New England has been 

reported across a wide range of values, from 1600 g m'2 yr'1 (Valiela et al. 1976) to 4200 

g m"2 yr"1 (Ellison et al. 1986). Cordgrass annual turnover rates have been measured at 

1.0 -  3.3 (Kaswadji et al. 1990). Model estimates for Spartina altemiflora, at 2800 g m'2 

yr'1 net production, and a 1.8 annual turnover rate, are therefore within the range of 

values from published sources.

When considering all six species, confidence in model results comes primarily 

from the calibration fit to observed peak aboveground measures. Aerial biomass is easily 

measured and commonly reported for most common species. Live belowground 

biomass, however, is difficult to separate from sediments and dead material (Dai and 

Wiegert 1996), and relatively few, if any, estimates of total plant production are reported 

for the majority of salt marsh species. Model results, therefore, are best interpreted in

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



relative terms. The predicted biomass production rankings for the six species are Typha 

> Spartina altemiflora > Phragmites > Lythrum > Spartina patens = Juncus, but the 

differences between highest and lowest production values are only a modest 60%. Even 

at the low end of the scale, native salt marsh species produce about 2 kg of plant material 

per square meter, a production rate that ranks salt marsh habitat among the most 

productive in the world (Mitsch and Gosselink 1993). Still, relative production 

differences are important for predictions of sediment dynamics. A monotypic marsh 

plant community dominated by Typha or Phragmites produces more biomass and 

contributes more to peat formation than a mix of native halophytic species. Over long 

time periods, these invasive species may build sediments faster than local sea level rise 

(Windham and Lathrop 1999), leading to terrestrialization of coastal wetlands and 

degradation of habitat for plant species dependent upon tidal subsidies for survival.

The biomass model was also used to generate annual curves of above and 

belowground biomass production for each species. Plots of weekly biomass estimates for 

native salt marsh species and brackish invasive species are presented as Figures 2.1 and 

2.2, respectively. A review of these plots showed that species annual biomass curves 

produced identical patterns of peak aerial biomass in week 27 and peak belowground 

biomass in week 47, an artifact of model algorithms for the timing o f carbon 

translocation. Since these curves were based on observations of carbon translocation 

patterns for cordgrass (Gallagher 1983, Hopkmson and Schubauer 1984, Gallagher and 

Howarth 1987, Lana et al. 1991), it was possible that seasonal biomass production 

patterns may differ among the six species. In fact, it is known that Juncus reaches peak
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aerial biomass about two-three weeks earlier in the growing season than other salt marsh 

species, a factor thought to contribute to the species relative strong competitive ranking 

versus Spartina spp. (Bertness and Ellison 1987). The extent to which other marsh 

species diverge from the modeled annual pattern is not known, although it appears that 

Typha (Garver et al. 1988) and Phragmites (Bart and Hartman 2000) may achieve 

maximum aerial biomass somewhat later than in the growing season than the model 

suggests. In any case, total estimates of aboveground and belowground biomass should 

be largely unaffected by differences in seasonal timing, and these values were the critical 

model outputs for subsequent ecosystem simulation use.

Sensitivity Analysis. The relative sensitivity of model parameters for model runs 

of 1 and 20 years are presented in Table 2.4. Since relative sensitivity was calculated as 

the percent difference in biomass change divided by percent difference in the parameter, 

this analysis indicated low overall model sensitivity to any one parameter (all values < 1). 

In addition, the analysis suggested a fairly consistent balance among model parameters 

(values ranged from 0.01-0.86). On a relative scale, the model was most sensitive to 

belowground mortality, aboveground respiration, belowground growth respiration, and 

above ground mortality, but less sensitive to changes in belowground maintenance 

respiration and translocation reserve use rates. General model sensitivity to mortality 

was not surprising, since mortality rates resulted in direct removal of biomass from the 

system. Except for translocation, parameter sensitivities were diminished from one year 

to twenty year model runs, presumably due to movement toward a model equilibrium 

state.
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Conclusions

Production of aboveground and belowground plant material is an important 

contributing factor to the self-maintenance capacity of salt marshes. Since plant species 

produce biomass at differential rates, estimates of species-specific annual biomass 

production are critical inputs to a fine-scale salt marsh ecosystem model that considers 

long-term elevation change. Results presented here showed that a computer model, 

calibrated to peak aboveground biomass, produced estimates of above and belowground 

biomass for six common salt marsh species in close agreement with observed values. 

Annual biomass production curves for each species, while based on Spartina altemiflora 

measures, appeared to reflect general patterns of observed annual growth for most salt 

marsh species. Model results of species-specific biomass estimates provide the basis for 

modeling organic material inputs to marsh sediment development. The formation of 

marsh sediments, and other aspects of marsh elevation change, are discussed and 

modeled in Chapter m .
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Species Site (salinity regime) 
and reference

Peak
aerial
crop
( g m 2)

Target 
AG 
(g m 2)

Above
Below
Ratio

Target 
BG 
(g n*'2)

Spartina
altemiflora

Massachusetts (polyhaline) 
Valiela et al. (1976)

Massachusetts (polyhaline) 
Gallagher and Howarth (1987)

1300

1800 1550 0.314 4900
Spartina
patens

Rhode Island (polyhaline) 
Bertness and Ellison (1987)

Louisiana (mesohaline) 
Burdick et al. (1989)

1300

1200 1250 0.470 2650
Juncus
gerardii

Rhode Island (polyhaline) 
Bertness and Ellison (1987)

Rhode Island (polyhaline) 
Bertness (1991b)

1350

850 1100 0.377 2900
Phragmites
australis

Connecticut (mesohaline) 
Warren et al. (2001)

New Jersey (oligohaline) 
Windham and Lathrop (1999)

1300

1900 1600 0.655 2400
Lythrum
salicaria

New Hampshire (mesohaline) 
Dzierzeski (1991)

Delaware (oligohaline) 
Whigham et al. (1978)

400

1600 1000 0.152 6600
Typha
angustifolia

Connecticut (mesohaline) 
Warren et al. (2001)

Texas (oligohaline)
Hill (1987)

1000

2600 1800 0.331 5400

Table 2.1. Selected peak live aboveground (AG) standing crop estimates for six common 
salt marsh plant species chosen to reflect conditions in mid and high salinity New 
England salt marshes. Average reported values provided target values for calibration of 
the biomass model. Above-below ratios (Chapter I) were used to determine peak 
belowground (BG) target value.
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Species Initial Belowground 
Biomass 
(kgCnf2)

Gross
Photosynthesis
(kgCm'2wk_1)

Belowground 
Reserve Factor 
(kgCnf2wk_1)

Spartina altemiflora 1.96 0.061 0.0050
Spartina patens 1.02 0.042 0.0150
Juncus gerardii 1.17 0.042 0.0050
Phragmites australis 0.96 0.048 0.0300
Lythrum salicaria 2.64 0.048 0.0001
Typha angustifolia 2.16 0.068 0.0050

Table 2.2. Species-specific biomass model parameters. Initial belowground biomass 
determined from published reports and measured above/below ratios. Gross 
photosynthesis and belowground reserve factors determined from model calibration to fit 
target peak above and belowground biomass estimates.
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Species

Peak 
Aboveground 

(kgC m 2 
and g dw m'2)

Peak 
Belowground 

(kgC m 2 
and g dw m‘2)

Annual Net 
Production
(gm V )

Annual 
Turnover 
(net prod 

/above peak)
Spartina altemiflora 0.61 /1525 1.99 / 4975 2800 1.8
Spartina patens 0.48 /1200 1.06/2650 1950 1.6
Juncus gerardii 0.41 /1025 1.24/3100 1950 1.9
Phragmites australis 0.62 /1550 0.99/2475 2225 1.4
Lythrum salicaria 0.42/1050 2.49 /  6225 2175 2.1
Typha angustifolia 0.68 /1770 2.21/5525 3125 1.8

Table 2.3. Model estimates of peak aboveground biomass, peak belowground biomass, 
annual net production, and annual turnover rate for six common salt marsh plant species. 
Peak biomass values provided in kg-Carbon and g-dry weight equivalents (40% carbon to 
dry weight ratio).
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Parameter ly r
+5%

1 yr
-5%

20 yr
+5%

20 yr
-5%

ly r
+20%

ly r
-20%

20 yr 
+20%

20 yr 
-20%

Aboveground 
respiration rate

0.772 0.768 0.456 0.456 0.770 0.770 0.456 0.456

Belowground
growth
respiration rate

0.639 0.634 0.172 0.172 0.636 0.636 0.172 0.172

Belowground 
maintenance 
respiration rate

0.061 0.061 0.016 0.017 .061 0.061 0.016 0.017

Aboveground 
mortality rate

0.263 0.263 0.258 0.261 0.257 0.270 0.253 0.266

Belowground 
mortality rate

0.832 0.845 0.236 0.239 0.819 0.859 0.201 0.270

Translocation 
reserve use

0.012 0.012 0.085 0.086 0.012 0.011 0.083 0.087

Table 2.4. Relative sensitivity of biomass change to ±5% and +20% adjustments in 
parameter values for 1 year and 20 model runs. Relative sensitivity was calculated as % 
change in biomass divided by % change in parameter.
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Figure 2.1. Modeled annual aboveground (AG) and belowground (BG) biomass 
estimates (kg C m'2) for native salt marsh plant species Spartina altemiflora, Spartina 
patens, and Juncus gerardii (40% carbon to dry weight ratio).
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Figure 2.2. Modeled annual aboveground (AG) and belowground (BG) biomass 
estimates (kg C m"2) for brackish invasive salt marsh plant species Phragmites australis, 
Lythrum salicaria, and Typha artgustifolia (40% carbon to dry weight ratio).
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CHAPTER m

A RELATIVE ELEVATION MODEL FOR NEW ENGLAND SALT MARSHES

Introduction

Salt marshes are often considered flat, featureless expanses of grass, but in fact, 

subtle differences in elevation are important determinants of salt marsh habitat formation 

(Niering and Warren 1980). Local microtopography relative to the tidal cycle determines 

the frequency and duration of tidal inundation, sediment deposition (Stumpf 1983), and 

the level o f physical stress on plant species (Bertness and Ellison 1987). Over the long 

term, salt marsh plant communities influence local geomorphologic through processes 

that build elevation, a critical self-maintenance capacity that has allowed salt marsh 

ecosystems to persist over thousands o f years in spite of sea level rise. Redfield (1965) 

first identified this pattern o f habitat migration in tidal marshes, and proposed a simple 

model o f salt marsh elevation change with rising sea level (Figure 3.1).
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This chapter describes a computer model that simulated changes in marsh surface 

elevation as a function of sediment formation processes, plant biomass production, 

biomass decomposition, and sediment deposition. Estimated marsh surface elevations 

were compared to sea level and tidal heights to determine the net direction of elevation 

change, and possible marsh emergence or subsidence. Results of the relative elevation 

model were used as critical inputs for a synthesized salt marsh ecosystem model, and 

ultimately for the prediction of plant community response to changes in hydrologic 

conditions (see Introductory Chapter).

A calibrated model of sediment dynamics in coastal wetlands, developed by 

Rybczyk et al. (1998), was used as the basis for the salt marsh relative elevation model. 

In the Rybczyk model, mineral deposits from suspended solids in the water column and 

organic carbon material from plants were combined to form marsh sediments (Figure

3.2). The marsh surface was modeled as a sediment column composed o f eighteen soil 

cohorts, each with its own composition of minerals, roots, labile organic matter, and 

refractory organic matter. The height of each cohort was calculated as a function of 

cohort depth, cohort material composition, decomposition rates for labile and organic 

matter, and sediment pore space, with cohort heights summed to compute total column 

height. To estimate relative elevation, the height of the column was reduced by eustatic 

sea level rise (ESLR) and deep subsurface subsidence. Year-to-year changes in relative 

elevation were used to determine if marsh surfaces were emerging (net elevation gain) or 

subsiding (net elevation loss).
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In order to implement the Rybczyk model, it was necessary to collect detailed 

specifications from marsh sediment core analysis. Soils were cored to depths of about 35 

cm, separated into eighteen sections (cohorts), and measured for bulk density, pore space, 

percent organic matter, and percent mineral matter to specify a matrix of input parameters 

for each cohort. The model was run for the initial cohort matrix with a generalized set of 

process rates (sedimentation, biomass production, deep burial, etc.) to create a simulated 

sediment column. Model calibration was used to identify a set of process rates that 

produced close agreement between simulated and actual sediment column composition. 

The model was then run with the calibrated rates and cohort specifications to estimate 

changes in relative elevation for the marsh of interest.

This approach to model implementation, while rigorous for a given marsh site, 

was calibration-specific and dependent upon extensive soil core collection and analysis. 

For spatial implementation, tens of thousands of calibration runs would theoretically be 

needed to pre-process the model for an entire spatial grid. In addition, soil core 

collection and cohort composition analysis was highly labor-intensive (Rybczyk, personal 

communication). Since data of this nature are not typically collected at New England 

marsh sites (Neckles and Dionne 2000), a more generalized, non-calibrated modeling 

approach was required to meet the objectives of the current project.

To simulate marsh sediment dynamics with a greatly reduced set of input 

specifications, a generalized model was developed to process the sediment column as a 

single entity, rather than as a set o f individual cohorts. Model focus was narrowed to
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sediment accumulation and soil formation, processes that could be parameterized with 

commonly collected field data. In addition, the calibration and data-intensive processes 

associated with live root partitioning and soil compaction were handled with a 

simplifying set of model assumptions. The model was also standardized to simulate 

sediment accumulation and soil formation within a hypothetical square meter plot of 

vegetated salt marsh.

Sediments that accumulate on the marsh surface are composed of organic matter, 

inorganic mineral deposits, and pore space (Hatton et al. 1983, Turner et al. 2000). To 

parameterize the model, estimates for these sediment components were derived from a 

variety of sources, including direct field measurement, model output, and literature 

review. Of the three components, estimation of inorganic deposition was the most 

problematic, since complex processes like wave transport, particle re-suspension, and 

channel geomorphology are known to influence sedimentation patterns (see Table 3.1 for 

a more complete list of factors). Therefore, rather than modeling the sediment deposition 

process, measurements of sediment accretion were collected directly from marshes of 

concern. While sediment accretion levels were not part of the core field data standards 

proposed by Neckles and Dionne (2000), these measures are commonly made using a 

simple, low-cost field technique of feldspar marker horizons (Cahoon and Turner 1989).

Estimates of organic sediment inputs were determined as a function of plant 

biomass production (Rybczyk et al. 1998). It was also known that particulate carbon 

(Chalmers et al. 1985, Yang 1998) and wrack materials (Bertness and Yeh 1994) can be
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trapped by aboveground structures and contribute to overall sediment loads, but these 

influences were not specifically considered in the model. To estimate plant biomass, 

plant species composition was determined from field survey (Neckles and Dionne 2000). 

Plant cover values were then used to parameterize a model of plant biomass production 

(Chapter IT), and to determine annual above and belowground net production for the 

modeled marsh plot. The third sediment component, pore space, was estimated from 

reported measures o f sediment core analysis m the literature. The generalized salt marsh 

model also required parameter estimates for decomposition rates and component fractions 

of labile and refractory biomass, which were also obtained from published results.

Based on these parameters, salt marsh sediment dynamics processes were 

simulated as a single soil column, rather than as a series of cohorts. In the original 

model, belowground fractional specifications were used to estimate incremental changes 

in cohort height due to compaction processes and live root partitioning. Since root 

presence increased elevation and compaction processes reduced elevation (Rybczyk et al.

1998), the net effect of ignoring belowground dynamics would be negligible if  the 

relative impacts of roots and compaction were fairly equal. This simplifying assumption 

was tested by comparing cohort-based versus column-based model results for a coastal 

marsh with a complete set of belowground matrix specifications.

To validate the results o f the generalized model, the model was run for four New 

England salt marshes with past or current tidal restrictions and known measures of 

sediment elevation change (see the Study Sites section in the Introductory Chapter).
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These sites all have field stations that included marker horizon plots for measures of 

sediment accretion rates, and surface elevation tables (SETs) for measures o f elevation 

change (Boumans and Day 1993). For each site, model estimates (using marker horizon 

data only) were compared with SET measures of elevation change. Since SET devices 

required specialized equipment for installation and monitoring, data collection for 

regional marsh assessment might be simplified if the model could predict elevation

^ iio u ^ c  uaSw u u i i  u iS  lu w -u tw . utaiN C i iiO ii^O u tCCiuni^ucS. ivjiOuci eSuiiuue&  Ox c ic v a u O u

were an important component of an ecosystem model that predicted marsh plant response 

to changes in hydrologic conditions (see Introductory Chapter).

In addition to validation exercises, the model was run for hypothetical monotypic 

plots of six common salt marsh plant species (see Chapter II) to identify species-specific 

organic contributions to marsh sediment accretion rates. These results were used to 

provide insights into the relative rankings o f plant species for building sediments and 

tracking sea level rise. A formal sensitivity analysis of the model was also conducted to 

identify relative importance of each parameter in the determination of marsh relative 

elevation.

Methods

Approach. An existing software implementation of the original cohort model was 

acquired in Stella graphic programming format (High Performance Systems, Inc. 

Hanover, New Hampshire) and re-written into the Microsoft (MS) Visual FoxPro
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procedural language (Microsoft Corporation, Redmond, Washington, USA). The 

acquired version o f the cohort model was specified for use in the coastal wetlands of the 

Po River delta of Italy (Day et al. 1999). Development o f the salt marsh relative 

elevation model followed this general approach: First, results from the re-written cohort 

model were compared with original model results to ensure that the translation process 

was complete and accurate. Next, cohort-based model processes were generalized for 

single sediment column processing (see Introduction). The coiumn-oased model was 

then run with inputs exactly the same as the cohort model, except for the initial matrix of 

belowground sediment cohort components. Twenty-year model run comparisons of 

cohort versus column results were conducted to assess the validity o f the generalized 

approach. The generalized model was then parameterized for New England salt marsh 

use and run for the site-specific and plant species-specific model scenarios. Lastly, the 

model was subject to a formal sensitivity analysis to assess relative importance of each 

model parameter.

Model Structure. The model used a weekly time-step and operated on a calendar 

year basis to produce running weekly estimates of plant biomass production, plant litter, 

and sediment deposition. Relative elevation was computed once per year and reported at 

the end of each calendar year. The simulated marsh sediment column was a hypothetical 

square meter plot (35 cm deep) composed of six salt marsh species common to New 

England salt marshes (see Introductory Chapter). Species composition of the plot was 

specified for smooth cordgrass Spartina altemiflora (coverspa), salt hay Spartina 

patens (cover_spp), black grass Juncus gerardii (cover Jim ), common reed Phragmites
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australis (cover_phr), purple loosestrife Lythrum salicaria (cover Jyt), and narrow-leaf 

cattail Typlna angustifolia (cover Jyp). Cover values represented the relative proportion 

of the plot occupied by each species, with the totals o f all six species adding up to one.

Global Elevation Parameters. The model used two global rates to determine 

relative elevation: eustatic sea level rise (eslr) and deep subsidence rate (surate). Sea 

level has risen since the last glacial maximum (20,000 years 5.F.) and continues to rise 

today (Peltier 1998). Recent estimates of sea level rise this century, based on tide gauges 

and altimeter data from satellites, indicated a global mean sea level rise rate of 

approximately 2 mm/yr and no significant acceleration in rate detectable in the past 

decade (Nerem 1999). Global warming scenarios, however, have predicted increases in 

sea level rise by the year 2100 (Gomitz 1995). Recent sea level rise rates from tide 

gauge data varied by coastal location, with reports of 4.0 mm/yr in Chesapeake Bay 

(Ward et al. 1998), 2.7 mm/yr at New York City (Donnelly and Bertness 2001), 1.65 

mm/yr in Connecticut (Anisfeld et al. 1999), 1.1 mm/yr in New Hampshire, and 2.3 

mm/yr in mid-coast Maine (Wood et al. 1989 for New Hampshire and Maine). Based on 

these reports, mean sea level rise rate for the New England coast was estimated at 1.5 

mm/yr (.00002285 mm/wk). Deep subsidence, a function o f varying surface loads due to 

glacial retreat, exacerbates sea level rise and is a major concern in some areas o f the US 

Gulf Coast (Turner 1991). In New England, however, isostatic adjustment appeared to be 

negligible (<0.5 mm/yr for the southernmost NE coast, Donnelly and Bertness 2001), and 

therefore deep subsidence was ignored in the model.
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Model Inputs. The model separated total deposited marsh sediments into organic 

and inorganic components. Total organic matter in the plot (netbio, kgC/m2wk) was 

estimated as gross weekly biomass production less respiration and non-litterfall mortality 

(see Chapter II). The inorganic sediment component (sedinput, m/m2wk) was based on 

site-specific measures of sediment accretion obtained by field marker horizon (Table

3.2).

Model Parameters. Model parameters included generalized processing rates and 

fractional percentages associated with sediment constituents. To estimate organic 

sediment inputs, a net accumulation parameter (netaccum) of 20% was applied to total 

plant biomass (netbio), accounting for loss of biomass due to decomposition in the water 

and air, and direct biomass removal by tides and storms (Chalmers et al. 1985). For 

simulation of biomass decomposition in the soil, net accumulated plant biomass was 

fractionalized into aboveground and belowground labile and refractory carbon 

components. Aboveground biomass was estimated as 80% labile (llabfrac), based on an 

analysis of Spartina altemiflora and Spartina patens aboveground biomass 

decomposition in a New England salt marsh (Valiela et aL 1985). For belowground 

structures, Hemminga and Buth (1991) found that the labile fraction of Spartina angilca 

roots from a Netherlands salt marsh was 20%, and this value was used for the 

belowground labile fraction (rlabfrac) of New England salt marsh plants. Weekly 

decomposition rates for labile (klabsurf) and refractory (krefr) components were 

estimated to be 2% and 0.2%, respectively, also from Valiela et al. (1985). For inorganic
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inputs, the mineral volumetric component (surfmm) of total sediment accretion (sedinput) 

was estimated as 5% (Gosselink and Hatton 1984, Turner et al. 2000).

Sediment pore space, a highly sensitive model parameter, was specified in the 

original model for maximum (surface cohort) and minimum (deepest cohort) percentages 

(93% and 58%, respectively, from Rybczyk et al. 1998). Sediment pore space was 

combined with organic and inorganic sediment components to compute the volume and 

height of each cohort. For the generalized salt marsh model, an average value of pore 

space for the single 35 cm simulated sediment column was estimated at 70%. The 

average was based on maximum and minimum pore space percentages of 53%-96% 

respectively, from 10 cm sediment cores collected in four salt marshes in New Hampshire 

and Maine (Burdick et al. 1999). This dataset was of particular interest since these 

marshes represented a diversity o f hydrologic conditions found in New England 

(unaltered, tidally-restricted, and hydrologically-restored), and hydrologic conditions are 

known to influence physical and chemical characteristics of salt marsh sediments 

(Portnoy and Giblin 1997, Anisfeld et al. 1999).

Sediment Processing. All sediment processing functions were from Rybczyk et 

al. (1998). Total accumulated organic sediment inputs were fractionalized into 

aboveground (llitter) and belowground litter (rlitter) components, based on the blended 

plant species composition above-to-below (abovebel) biomass ratio (Equations 1 and 2). 

Labile fraction of above (titterm ) and below (Ibiri) litter (Eqs. 3 and 4), and refractory 

fraction of above (rlitteriri) and below (rbiri) litter (Eqs. 5 and 6) were derived from labile
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and refractory ratios. Net labile input to sediment (labbelowl, gC/cm2wk) was computed 

as the fraction of above and below labile biomass from litter, less labile decomposition 

(klabsurf) and an annual allowance (at week 30) for deep burial (Eq. 7). Similarly, net 

refractory input to sediment (refbelawl, gC/cm2wk) was computed as above and below 

refractory litter, less refractory decomposition (krefr) and deep burial (Eq. 8).

Aboveground litter = {miaccumrnetbicr.0001nwcm2*IGGGgTKg)*aoovebei (i)

Belowground litter = {netaccum*netbio*.0001m2/cm2*1000g/kg)*( 1 -abovebel) (2) 

Aboveground labile = Uabfrac*llitter (3)

Belowground labile = rlabfrac*rlitter (4)

Aboveground refractory = (\-llabfrac)*Hitter (5)

Belowground refractory = ( l-rlabfrac)*rlitter (6)

Labile Organic Input = MAX(0,labbelow+{(lbin+litterin)*.l)-{klabsurf*c(labbelow))- 

(JF(weekcount=30Jlabbelow,0))) (7)

Refractory Organic = M AX(QjeJbelowl^(rbin±r!itterin)*A)-(kref*(refbeIow))- 

(JF(weekcount=30,refl)eIow,0))) ( 8)

The mineral contribution to sediment column height (mincm, cm/wk) was 

computed as the mineral component of the total sediment input (Eq. 9). The organic 

contribution (orgcm, cm/wk) was the total organic input (labbelowl+refbelowl, g dw) 

with volumetric conversion of 1.14 g dry weight/cm3 (DeLaune et al. 1983, Eq. 10). The 

pore space contribution to sediment column height (porecm, cm/wk) was computed as 

mineral plus organic input increased by the column pore space multiplier (Eq. 11).
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Mineral Contribution = \Q(k^m*{sedinput*suTjmiTi)l52vMyi (9)

Organic Contribution = ((labbelow+rejbelow)*2.5giw/^,)ll. 14gdw/cm3 (10)

Pore space Contribution = (porespacel 1 -porespace)* (mincm+orgcm) (11)

Elevation of the modeled plot (cell el, Eq. 12) was computed annually as starting 

elevation (<cell el imi) plus total accumulated weekly contributions. Relative elevation 

(rel el, Eq. 13) was calculated as plot elevation less sea level rise (eslr) and deep 

subsidence (surate).

Plot elevation = cell_el_init+((mincm,̂ +orgcmtn,̂ +porecm,^?{)* .01 m/cm) (12)

Relative elevation = cell_el-(eslr*52wk/yf)-{surate*52v/kJyr) (13)

Model Exercises. Three modeling exercises were conducted to validate the 

generalized model, and to make predictions o f sediment-building capacity for common 

salt marsh plant species. All model runs were twenty years in duration. First, the 

generalized model was configured with specifications from the Po River delta (Day et al.

1999) to compare results with the original cohort model. Next, the model was 

parameterized with independent data from four New England salt marsh sites (from 

Burdick et al. 1999) to compare model predictions with estimates from field data. For 

these validation exercises, the model predicted changes in relative elevation based only 

on site-specific rates of sediment accretion rates from marker horizon data (Table 3.2). 

Plant composition of the plot was modeled as 50%-50% Spartina altemiflora and

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Spartina patens to reflect typical plant species composition at the field data collection 

stations (10 m landward o f major creeks). For each site, model predictions were 

compared with elevation results from SET data (Table 3.2, adjusted for sea level rise) for 

standard measures o f relative elevation. As an additional set of simulations, the model 

was used to estimate organic contribution to sediment formation for monotypic stands of 

the six common salt marsh species. To determine the impact of organic inputs only, the 

model was specified for 100% cover of each plant species, with no inorganic sediment 

input and no sea level rise.

Sensitivity Analysis. The sensitivity of relative elevation results to changes in 

model parameters was determined through a systematic sensitivity analysis. For purposes 

of this analysis, plant species composition of the plot was 50%-50% Spartina altemiflora 

and Spartina patens, and the sediment accretion was 4 mm/yr. Model parameters were 

varied by ±5% and +20%, and model results were compared to baseline conditions 

(based on original parameter values) to assess relative sensitivity of each parameter. 

Relative sensitivity was calculated as the percent change in relative elevation change 

divided by the percent change (either 5% or 20%) in the model parameter (Eq. 14). 

Higher relative sensitivity values indicated an increased sensitivity to a model parameter. 

The sensitivity analysis was run for one and twenty year durations to assess model 

consistency and stability at extended timeframes.

Relative sensitivityparamete-= % Changerd*™ elevation/ % Changepanmeter (14)
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Results and Discussion

Cohort versus Column Model Comparison. Cohort model calibration for relative 

elevation change in the Po River delta (Day et al. 1999) produced results indicative of a 

subsiding coastal marsh. Figure 3.3 shows twenty years o f predicted relative elevation 

change for the marsh, with a cohort model estimation of -4.17 cm net change. The 

generalized column model, parameterized exactly as the original model except for cohort- 

level specifications, estimated net change of -3.99 cm for a comparative difference of 

4.4%. Close agreement between the models supported the assumption that the net 

impacts of root expansion and compaction on relative elevation were fairly equal, at least 

for this particular coastal marsh. Further analysis, however, was required in order to 

assess the potential applicability of these results to New England salt marsh habitat.

To investigate this issue, model determinants of root expansion and soil 

compaction processes were identified and analyzed. For cohort processing, root 

expansion was modeled as a function of litter biomass, with an exponential root 

distribution function to decrease root presence with sediment depth. Annual litter 

biomass for the Po River model was 522 g dry weight/m2yr. By comparison, modeled 

litter input for monotypic stands of New England salt marsh species ranged from 758 g 

dry weight/m2yr {Typha) to 490 g dry weight/m2yr {Juncus). A typical 50%-50% mix of 

Spartina altemiflora and Spartina patens produced 593 g dry weight/m2yr, about 14% 

more litter than the Po River input. For compaction processes, the key cohort model 

determinant was pore space, with greater pore space resulting in more elevation loss. 

Average pore space from the Po River was 60%, less than the pore space value used for
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New England salt marshes (70%). By comparison, then, New England salt marshes were 

modeled with greater organic inputs and a higher percentage of pore space than the Po 

River wetland. In fact, porosity is known to increase with the proportion of organic 

matter in marsh sediments (Anisfeld et al. 1999, Turner et al. 2000). Therefore, the 

coupled processes o f root expansion and soil compaction may vary in magnitude with the 

organic matter fraction, but still demonstrate a canceling effect. An exception may be 

found in highly oxidized soils associated with some tidal restricted salt marshes, where 

compaction processes are greatly accelerated due to elevated decay rates of organic 

matter (Portnoy and Giblin 1997). Nonetheless, this analysis suggested that a column- 

based model, with generalized parameters, was a viable alternative to the calibration 

exercises and field measurements required by the original cohort model.

New England Salt Marsh Estimates. The model was parameterized with site- 

specific sediment accretion rates from four salt marshes to predict annual rates of relative 

elevation change at each she. Model results were then compared to elevation change 

from SET measurements, less 1.5 mm/yr sea level rise to estimate relative elevation 

change (Table 3.2). Figure 3.4 shows modeled and measured SET annual rates of 

relative elevation change (mm/yr) for each study site. Results indicated that the model 

estimates of elevation change agreed with the general direction of elevation change from 

SET measures at each site (positive values indicate emergence, negative values 

subsidence). However, in all cases, model estimates were diminished in magnitude 

relative to SET results and relative differences varied from she to she.
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At Oak Knoll, the model predicted a slight loss of elevation (-.3 mm/yr), about 

one-third o f the annual rate of -1 mm/yr estimated from SET data. Similarly, results from 

Drakes Island also predicted slight marsh subsidence (-.2 mm/yr), although SET 

estimates there were much higher at -2.9 mm/yr. Both of these marshes currently 

experience restricted tidal flows due to undersized culverts (Burdick et al. 1999, 

Boumans et al. 2002), and these results concurred with reports of marsh sediment 

subsidence relative to sea ievei in other restricted salt marshes (Portnoy and Giblin 1987, 

Anisfeld et al. 1999, Burdick et al. 1999).

At Mill Brook, the model and SET estimates both predicted net gains in relative 

elevation and marsh emergence. The Mill Brook site has a past history o f tidal 

restriction, but an undersized tidal culvert was replaced in 1993 to remove the restriction. 

As a result of hydrologic restoration, tidal exchange has been greatly increased at M il 

Brook (Boumans et al. 2002). Since it was likely that the marsh surface had subsided 

during tidal restriction, it was expected that the return of tidal flows would result in high 

levels of sediment accretion (Anisfeld et al. 1999). In fact, sediment accretion at the 

marsh was measured at 19 mm/yr following restoration, and SET estimates indicated 

elevation gains of >30 mm/yr (Table 3.2). Model results for Mill Brook also predicted a 

rise in relative marsh elevation (2.6 mm/yr), but this rate was <10% of the SET estimate.

Model results for the Little River Marsh were based on field data from the nearby 

reference site at Awcomin Marsh, since the elevation field station at Little River had only 

been monitored for one field season. Data from Awcomin Marsh suggested that
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sediment accretion levels and elevation change at Little River would be moderate to low 

(4 mm/yr accretion, 0.8 mm/yr elevation change, Table 3.2). The model also predicted a 

slight positive elevation gain (0.1 mm/yr) for the site. However, since the Little River 

tidal culvert was expanded by more than three-fold flow capacity in late 2000 (see 

Introductory Chapter), it may be that sediment accretion rates there will follow a similar 

pattern as Mill Brook and increase significantly.

In general, it appeared that the generalized model predicted the general direction 

of elevation change, but underestimated the magnitude o f the response. Since the 

elevation model used long-term averaged conditions (biomass production, 

decomposition, pore space, etc.), and field measurements varied with physical and biotic 

conditions, it may be that the model missed short-term but important changes in sediment 

dynamics. For example, the estimated increase in relative elevation at Mill Brook was 17 

mm/yr greater than the measured contribution from sediment accretion (Table 3.2), 

suggesting that a surge in belowground plant growth may have occurred to account for 

this increase in elevation (Burdick et al. 1999). In addition, the 19 mm/yr measured rate 

of sediment accretion at Mill Brook appeared to reflect a temporary flush of creek 

sediments and not a sustained level o f sediment deposition (Anisfeld et al. 1999). At 

Drakes Island and Oak Knoll, SET estimates of accelerated subsidence may be due to 

elevated organic decomposition rates, possibly associated with year-to-year increases in 

temperature or low soil moisture (Valiela et al. 1985). However, despite the potential 

influences of short-term phenomena on specific marsh sites, overall marsh emergence or

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



subsidence was correctly modeled using averaged rates and a minimal set of parameters, 

even if estimates were not entirely consistent with results based on SET data.

Plant Species Predictions. Figure 3.5 shows the results of model scenarios for 

species-specific estimates o f organic contribution to sediment accretion. Modeled 

organic accretion, based on species biomass production, ranged from 0.72 mm/yr for 

Juncus to 1.15 mm/yr for Typha. The results indicated that invasive species, especially 

Typha and Phragmites, build sediments faster than native high marsh species like 

Spartina patens and Juncus, and may possibly out-compete these species by reducing 

flood levels over the long term (Windham and Lathrop 1999).

In addition, results from the species model scenarios can be considered in light of 

projected future sea level rise. Assuming that organic and inorganic contributions to 

vertical accretion are roughly equivalent (Anisfeld et al. 1999, Turner et al. 2000), the 

model estimated average long-term vertical accretion rate of 2.1 mm/yr for low marsh 

habitat dominated by Spartina altemiflora. This value compared favorably with long

term salt marsh accretion rates of 1.1-5.9 mm/yr for Connecticut (Anisfeld et al. 1999), 

and 2.0-4.9 mm/yr for Rhode Island (Donnelly and Bertness 2001X based on isotopic 

dating of deep sediment cores. These results suggested that rapid sea level rise in excess 

o f 2 mm/yr (Gomitz 1995), especially without increases in sediment loads, may inundate 

coastal marshes and convert high marsh habitat to low marsh (Donnelly and Bertness 

2001).
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Sensitivity Analysis. The relative sensitivity of model parameters for model runs 

of 1 and 20 years are presented in Table 3.3, with relative sensitivity calculated as the 

percent difference in relative elevation change divided by percent difference in the 

parameter. This analysis indicated that pore space was the most sensitive model 

parameter (Rybczyk et al. 1998). Pore space sensitivity resulted from model use as a 

multiplicative factor for computation of sediment column height (Eq. 11). The next most 

sensitive parameter was the rate o f sea level rise, since this rate was directly applied to 

plot elevation (Eq. 13). In addition, the model was sensitive to changes in the inorganic 

(mineral fraction) and organic (net production accumulation) input rates. These rates 

controlled the relative contribution of inorganic and organic inputs to sediment formation. 

Processing rates for above and belowground carbon components were generally minor 

influences on elevation results. Parameter sensitivities were diminished from one year to 

twenty year model runs, presumably due to movement toward a model equilibrium state.

Conclusions

The elevation of New England salt marsh habitat changes constantly in response 

to physical and biotic factors. A model that considers these factors can be used to 

estimate long-term relative elevation change and marsh habitat response. A generalized 

relative elevation model for New England salt marsh habitat, based on sediment dynamic 

relationships specified in a calibrated model, produced elevation results in agreement 

with the calibrated model. The model was implemented for four New England salt 

marshes with diverse hydrologic conditions, and produced results consistent with field
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measures for long-term direction o f elevation change. The magnitude of predicted 

elevation change, however, was in all cases less than estimates from field measures, 

possibly due to model reliance on general-case parameters that missed short-term 

extremes in physical and biotic conditions. Despite this lack of precision (compared to 

surface elevation table measurements), the generalized model appeared adequate to 

predict overall emergence or subsidence of New England salt marsh habitat. In addition, 

the model identified relative rankings of elevation-building capacity, and flooding risk 

associated with potential sea level rise, for common marsh plant species.
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Factor Impact
Relative elevation change (from 
deep subsidence, sea level rise, 
accretion and subsidence)

Higher elevations are inundated less frequently and 
receive lower sediment supplements

Tidal regime Frequent and long lasting tidal inundation often results 
in higher sedimentation rates

Sediment source Presence o f significant river-borne or near shore 
inorganic sources increases sedimentation rates

Relative distance from open 
water

Sediment settling reduces suspension with increasing 
distance from open water

Sediment particle size, density, 
and organic/inorganic mix

Larger, heavier inorganic particles have lower settling 
velocities and deposit closer to sediment source

Ground cover Plant stems reduce water flow and turbulence, 
increasing sediments

Tidal water velocity and 
channel turbulence

Faster water and more turbulence re-suspends 
particles, often leading to sedimentation across larger 
spatial areas

Wind direction and velocity Winds create wave action and turbulence, especially 
during storms, causing sediment re-suspension and 
redistribution of sediments

Erosion Ice erosion remove plants and reintroduce sediments 
to the water column

Tidal channel geomorphology Meandering processes, and associated changes in 
channel depth, width, and velocity, add to inorganic 
sediment loads

Anthropogenic effects Causeways can limit sediment loads; filling, dredging 
and some agricultural practices increase re-suspension 
and sedimentation

Table 3.1. Determinants of salt marsh sedimentation patterns.
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Study Site
Sediment Accretion 

(mm y r 1 ± SE)
Elevation Change 

(mm y r 1 ± SE)

Relative 
Elevation Change 

(mm yr'1)
Oak Knoll Marsh 1.61+0.17 0.50+0.06 -1.00
Little River Marsh* 4.26±1.83 2.30+5.40 0.80
Mill Brook Marsh 19.02±1.81 36.00+10.00 34.50
Drakes Island Marsh 2.38+0.34 -1.40+0.20 -2.90

Table 3.2. Sediment elevation measures for the four study sites. Oak Knoll data from 
unpublished sources, all others from Burdick et al. (1999). Sediment accretion data used 
marker horizon techniques (Cahoon and Tinner 1989); elevation change data used SET 
measures (surface elevation tables, Boumans and Day 1993). Relative elevation values 
are computed as elevation change less sea level rise (1.5 mm/yr). *Little River data from 
Awcomin Marsh downstream reference marsh (Burdick et al. 1999).
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Param eter ly r
+5%

ly r
-5%

20  yr
+5%

20  yr 
-5%

ly r
+20%

l y r
-2 0%

20  yr 
+20%

20  yr 
-20%

Eustatic sea 
level rise

16.50 16.36 15.20 15.23 16.45 16.41 15.22 15.22

Belowground 
labile fraction

0.15 0.15 0.14 0.14 0.15 0.15 0.14 0.14

Aboveground 
labile fraction

0.39 0.37 0.36 0.36 0.39 0.39 0.36 0.36

Decomposition 
rate labile

0.55 0.53 0.49 0.50 0.52 0.54 0.48 0.51

Decomposition 
rate refractory

0.09 0.09 0.08 0.08 0.09 0.09 0.08 0.08

Column pore 
space

46.05 36.43 42.85 33.89 76.26 27.73 70.96 25.81

Mineral
fraction

7.78 7.78 7.20 7.20 7.78 7.78 7.20 7.20

Net production 
accumulation

9.64 9.66 9.02 9.02 9.65 9.65 9.02 9.02

Table 3.3. Relative sensitivity of estimated elevation change to ±5% and ±20% 
adjustments in model parameters at 1 year and 20 year durations. Relative sensitivity is 
calculated as % change in relative elevation divided by % change in parameter.
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Figure 3.1. Conceptual model of salt marsh self-maintenance, showing migration of salt 
marsh as high water boundary increases from HW0 to HW3 (from Redfield 1965).
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Figure 3.2. Conceptual model of sediment dynamics (Rybczyk et al. 1998), based on 
eighteen sediment cohort levels.
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Cohort Model ■■ “ Column Model

s

29

28

Years

Figure 3.3. Results of model comparison between calibrated cohort model (Rybczyk et 
al. 1998) and generalized column model. Model specifications are from the Po River 
delta (Day et al. 1999). Chart shows differences between modeled elevation changes 
over twenty years.
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■ Model Estimate a SET Estimate

Drakes Island Mill Brook

Figure 3.4. Comparison of changes in relative elevation from model estimates and 
surface elevation table (SET) measures at four New England salt marsh locations (* Little 
River estimates based on measures from Awcomin Marsh downstream reference marsh, 
Burdick et al. 1999).
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1.2

Spartina Spartina Juncus Phragmites Lythrum Typha
attemHlora patens gerartS australis salicaria angustifoBa

Figure 3.5. Modeled estimates of relative organic contribution to  sediment accretion for 
monocultures of six common New England salt marsh plant species (inorganic sediment 
inputs and sea level rise excluded). Results are partly based on species annual biomass 
production (Chapter IT).
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CHAPTER IV

A HYDRAULIC MODEL FOR PREDICTING TIDAL FLOWS 

IN HYDROLOGICALLY-ALTERED SALT MARSHES

Introduction

Roads, bridges, dredge-spoil berms, and culverts often become barriers to natural 

tidal flows in salt marshes, and these tidal restrictions negatively affect as much as 20% 

of remaining salt marsh habitat in New England (Roman et al. 1984, USDA SCS 1994, 

Neckles and Dionne 2000). Over time, salt marshes with tidal restrictions may 

experience reduced plant biodiversity (Roman et al. 1984, Sinicrope et al. 1990, Burdick 

et al. 1997), degraded water quality (Portnoy 1991, Portnoy and Giblin 1997), diminished 

ability to keep pace with sea level rise (DeLaune et al. 1983, Boumans and Day 1994), 

and disrupted food webs for fish and birds (Dionne et al. 1999, Reinert and Mello 1995). 

Fortunately, these damaged habitats can recover lost functions if the appropriate 

hydrologic regime is restored (Sinicrope et al. 1990, Burdick et al. 1997, Roman et al. 

2002, Warren et al. 2002), and as a result, hydrologic restoration o f restricted salt
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marshes is a common management practice today (New Hampshire Office of State 

Planning 1996, Save the Sound 1998, US Army Corps of Engineers 1999).

Planning and implementing an optimal hydrologic regime for a coastal ecosystem 

is not a trivial task, however, and goes beyond a simple accounting o f water in and water 

out with the tides. Engineering options for modifying tidal flow need to consider the 

specific impacts of culvert and creek design on public safety, project costs, and property 

protection. In terms of ecological considerations, potential new flood regimes need to be 

understood in terms of tidal heights, frequency of flooding, and duration of flooding 

(Burdick et al. 1997), and therefore require a site-specific knowledge of tidal signal, 

culvert and creek dimensions, and marsh elevations. When tides are reintroduced to an 

altered salt marsh, failure to accurately account for these physical factors can lead to open 

mud flats from too much flooding (Race 1985, Rozsa 1995, Williams and Orr 2002), or 

unplanned brackish and upland habitats from too little flooding (Moy and Levin 1991, 

Burdick et al. 1997). Therefore, a model that considers these hydrologic factors and 

predicts salt marsh flood regime would be beneficial to coastal resource managers as a 

decision-support tool.

This chapter describes a hydraulic model for hydrologically-altered salt marshes, 

based on the Marsh Response to Hydrological Modification calibrated model (MRHM) 

developed by Boumans et al. (2002). MRHM predicted upstream water level and water 

volume flow through tidal culverts, based on measured records of downstream tidal 

signal and culvert pipe dimensions, and calibrated parameters (Figure 4.1). In addition,
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the model used a profile o f surface elevations for each marsh, known as a hypsometric 

curve, to estimate the area of a marsh flooded by each tide. For this project, the MRHM 

model was expanded to consider other common inflow culvert and channel structures 

found in New England, including box culverts, and open channel flows. Further, new 

calibration parameters were added to MRHM for better performance across a wider range 

of tidal-restriction conditions.

The expanded MRHM model was used at four New England salt marshes with 

current or past tidal restrictions (see Introductory Chapter, Study Sites). The salt marshes 

at Little River (North Hampton, New Hampshire) and Mill Brook (Stratham, New 

Hampshire) were hydrologically restored in the past ten years, after many years of tidal 

restrictions. At Drakes Island (Wells, Maine) and Oak Knoll (Rowley, Massachusetts), 

long-term tidal restrictions persist today due to undersized culverts beneath roadways. 

For each of these sites, hydrodynamic model implementations were developed based on 

specifications and data sources collected in the field. Model requirements for field data 

were based on the recommendations of a regional protocol for standardized data 

collection in coastal marshes along the Gulf of Maine (GPAC, Neckles and Dionne

2000), to meet an important project objective for transferability.

The general approach for use of this model was to calibrate predictions of 

upstream tidal heights to observed conditions, and then to use the calibrated model as the 

basis for conducting hydrologic scenario analysis. In particular, marshes with current 

tidal restrictions were modeled with hypothetical new culvert designs to simulate
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hydrologic restoration, and marshes with restored hydrology were modeled with the 

dimensions of past undersized culverts. Results from this exercise provided new 

information about the restoration capacity of restricted marshes, and a basis for 

comparison for those marshes improved by hydrologic restoration. In addition, model 

results were evaluated with published reports of hydrologic conditions at each marsh to 

assess relative performance of the model under diverse situations, and to gauge the 

usefulness o f the model as a general purpose decisron-support tool. The hydraulic model 

was also used as a component of an integrated salt marsh ecosystem model that predicted 

plant community response to changes in tidal hydrology (see Introductory Chapter, 

Figure 1.2).

Methods

Model Approach. An existing software implementation o f the MRHM model 

(Boumans et al. 2002) was acquired in the Stella graphic programming format (High 

Performance Systems, Inc. Hanover, New Hampshire) and re-written into the Microsoft 

(MS) Visual FoxPro procedural language (Microsoft Corporation, Redmond, 

Washington, USA). Development of the hydraulic model followed this general 

approach: First, results from the re-written model were compared with original MRHM 

model results to ensure that the translation process was complete and accurate. Then, for 

each of the four salt marsh study sites, the model was specified with the dimensions of 

the local tidal culvert or culverts, and estimates o f tidal heights upstream of the culvert 

were generated based on the measured downstream tidal signal. As with the original
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MRHM model, freshwater inputs of surface and groundwater were not considered. For 

each model run, estimates of upstream tidal heights were correlated with measures from 

the upstream gauge. Model parameters were iteratively adjusted until the highest 

coefficient of determination (r2) was achieved, at which point model calibration was 

considered complete. The r2 values were derived by comparing time-series of water 

levels generated by the model and observed water levels (Boumans et al. 2002). Lastly, 

the model was subjected to a formal sensitivity analysis to assess the relative importance 

of each model calibration parameter.

Model Structure. The model used a 6-minute time step over a complete two-week 

tidal cycle to estimate total water volume (m3), water height (m NGVD), and area flooded 

(%) for the upstream portion of each study site. Model inputs were downstream tidal 

signal, culvert dimensions, and a summary of marsh survey elevations. Results were 

saved to a hydrologic-scenario table of upstream water heights for each time step (3360 

total estimates).

Marsh Surveys. For each site, marsh elevations were sampled with rod-and-level 

survey equipment along random transects. Five or six transects were identified 

perpendicular to the main creek, each one at a random distance along a creek centerline 

determined from aerial photographs. Transects ran from upland edge to upland edge, as 

determined by vegetation and slope. For each transect, between 7 and 48 elevation points 

were measured at 15-meter intervals. In addition to elevation, percent species cover was 

recorded for each plant species found in a 0.50 m2 quadrat at the survey point, and
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locations of major plant zones were noted on field maps. Since the random transects 

included creeks, survey results could be used to plot the relationship between elevation 

and total marsh area at each site (hypsometric curve, Neckles and Dionne 2000). 

Elevation points were adjusted to NGVD (1929) by including an NGVD benchmark in 

the survey at each site. Existing NGVD benchmarks were available at Drakes Island and 

Mill Brook, but not Oak Knoll, Little River, and Awcomin Marsh (Little River 

downstream reference site), so temporary benchmarks were established at these locations 

by closed-circuit elevation survey from the nearest known benchmark.

Tidal Cycle. At Drakes Island and Mill Brook, pressure-transducer devices (YSI, 

at 15-minute data intervals) were used to record water levels on both sides o f the tidal 

culvert (4/23/96-5/6/96 at Drakes Island, 4/22/98-5/8/98 at Mill Brook, Boumans et al. 

2002). For the Little River site, a sonic datalogger mounted on a metal platform 

(Infinilog, at 6-minute data intervals) was used to record water levels upstream of the 

culvert from 10/24/01-11/13/01. Since a datalogger could not be safely deployed 

downstream of the culvert (open ocean), the Little River downstream signal was based on 

an Infinilog datalogger record collected at nearby Awcomin Creek over the same time 

period. At Oak Knoll, Infinilog dataloggers were used upstream and downstream of the 

Mud Creek (north) culvert from 11/14/01-11/28/01. Datalogger records were 

downloaded to an IBM PC laptop and imported into MS FoxPro table format for analysis 

and standardization. Water levels were examined to select a complete two-week record 

of values with a minimum of out-of-range values (an intermittent condition apparently 

caused by accumulation of wrack around the sensor). Out-of-range values in the selected
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dataset were estimated by linear interpolation from the nearest known data points. For 

Drakes Island and Mill Brook, values were converted from 15-minute to 6-minute 

intervals by linear interpolation. Tidal heights were adjusted to NGVD by a site-specific 

datum correction factor determined from the marsh elevation survey.

Inflow Channel Dimensions. The model considered three types of inflow 

channels: open creeks, pipe (barrel) culverts, and box culverts. At each site, culverts or 

creeks were measured to determine physical dimensions (e.g., length and diameter, with 

open creek bottoms assumed to be semi-circular in cross section). In addition, elevations 

were surveyed for culvert invert elevation (culvert bottom), and estimates o f creek 

bottom and marsh surface at the upstream culvert entrance. The culvert and tidal creek 

dimensions for each study location are presented in Table 4.1.

Flow Estimates. The model was configured with current culvert and creek 

dimensions for each site, and run through a two-week cycle of downstream tidal heights 

to generate estimates o f baseline upstream water flows. Results for water discharge, 

based on hydraulic equations with English measures (cubic ft/sec), required metric 

conversion prior to output at 6-minute time step intervals. Water level at the start of the 

model run was estimated as the elevation of the creek bottom (creek_el) plus a calibrated 

initial water level (w leveljnit, Equation 1). Hydraulic head was computed as the 

absolute value o f the difference between upstream and downstream water level (Eq. 2), 

and the direction of tidal flow was determined as +1 for inflow into the marsh, or -1 for 

outflow to the open ocean (Eq. 3), based on Boumans et al. (2002).
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Water Level s . !  = creek el+wJevel init (1)

Head = ABS(WaterLevels*iiraun-W ater Leveldownaraam)/.3048 ft/m (2)

Direction = ((Water Leveldownareun -  Water Levelupstream)/.3048 ft/m)/Head (3 )

For each inflow channel, the model computed water discharge based on running

estimates o f hydraulic head and channel-specific discharge formulae. Flows were

combined for multiple culverts as a model assumption of hydrologic connectivity. The 

open creek discharge formula was based on an estimate of creek diameter (Eq. 4, 

Chanson 1999). For culvert flows, the hydraulics formulae used different surface 

roughness factors for concrete (0.012) and corrugated metal (0.024), depending on the 

culvert material (hitters, from Simon 1976). Barrel culvert discharge was estimated 

using culvert diameter and length (Eq. 5, Simon 1976), and box culvert discharge used 

width and height (Eq. 6, Chanson 1999).

DischargeCreekK-432*SQRT(32.2)*HeadA1.9)/(cttZifa7tfA.4)*cnMa/n)*3600 sec/hr (4)

Dischargebaird- 10*SQRT(Head/(((2.5204+l ,2))/culdiam^Ay-

((466.18*kutter^2)*cuIIen)/(culdiamAl 6/3))))))*3600 sec/hr (5)

Discharge^ = (cutwidth* cn/fee/<g*r*SQRT(2*32.2)*(Head/1.5)))*3600 sec/hr (6 )

Discharge estimates were maximum values, based on the assumption of culverts 

or creeks flowing full (Simon 1976, Chanson 1999). These values were re-adjusted with 

calibration to reflect observed measures during partial flow conditions. A calibrated
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upstream conductivity factor (vpcond) was used to simulate reduced inflows when the 

upstream creek was not filled on the incoming tide, and when the upstream creek bank 

was overtopped at the peak of incoming tides (Eq. 7). Water flow for each inlet was 

computed as discharge reduced by the calibration factor, except when water height was 

below the culvert invert elevation (thresh) or if a flap gate (flap, O=off l=on) was in 

place (Eq. 8, Boumans et al. 2002).

Conductivity Factor = IF((Water Level, ^ ^ . ^ marshel AND Direction<0) OR

(Water L evelUpsaream<  marshel AND Direction>0), 1 ,vpcond) (7)

Flow= upcond*IF(thresh>=MAX(Waler Leveldownstream,Water Levelupstream),

0, IF(/Zap>0,MIN(0,Direction*Discharge*.028317*.lhr/6 min),(Direction*Discharge 

*.028317*.l hr/6  min» (8)

Water Level Estimates. Upstream water level was estimated by adding flows for 

each tidal inlet, and adjusting results with model calibration factors. To simulate 

observed conditions of upstream water retention (impoundment), a flooding effect 

parameter (floodeffect) was used with an exponential function to increase upstream water 

volume during the build-up of spring tides (Eq. 9). This calibration result was multiplied 

by the sum o f volumetric flow through one or more channels to generate incremental 

upstream water gain (Eq. 10). An additional calibration factor was used to simulate a 

similar condition associated with spring tides, when upstream water levels lagged behind 

the downstream signal. To model this response, upstream flows were reduced as a
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function of total flows (Eq. 11), based on a comparison of hydraulic head and a calibrated 

threshold level (headthresti). Water volume was computed as the sum o f incoming flows 

for one or more channels, plus or minus any adjustments for water gain or water loss (Eq. 

12). Lastly, upstream water level was computed as water volume multiplied by a 

calibrated geomorphologic factor {creek s!) that served as a generalized estimate of creek 

slope in the upstream terrain (Roman et al. 1995, Boumans et al. 2002).

Flood Effect = EXP((Water Levelupstrom, -  marshe!)lmarshel) (9)

Water Gain =floodeffect*(jr FloWchanndi-2) (10)

Water Loss= W(Head<headthresh,1,0) *(£ FloWchanneii-2) (11)

Water Volume- ( J  Flowduundi-2 + Water Gain -  Water Loss)* . 1 hr/6  min (12)

Water Level = Water Volume*creek_sl (13)

Area Flooded Estimates. Upstream water levels were compared with marsh 

elevation survey results to estimate the area of marsh surface flooded at each point in the 

tidal cycle. Composite estimates of area flooded were used to determine the frequency 

and duration of flooding (hydrologic regime) for each study locatioa To compute area 

flooded, marsh elevation points from random transect surveys at each location were 

sorted from high to low values. The total number of points was divided by 100 to 

determine the percent of the survey represented by each point, and each sorted point was 

ranked for cumulative percentage (point ranking*percent). Since the survey was a 

random sampling, the cumulative percentage associated with each elevation point was 

assumed to represent the portion of the marsh at that elevation. The result of this

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



exercise, a table of related elevations and percentages known as a hypsometric curve, was 

used to determine the percentage of the marsh flooded for any specified upstream water 

level. At each time step, the model performed a table-lookup with water level as the 

matching key, returning the percent of total marsh area flooded from the hypsometric 

data. It should be noted that this simulation approach assumed that water was 

instantaneously distributed across the entire upstream marsh surface with each change in

wotCi acvca. in  ico iitjf, iisAM iug iS  S i u w c u  O y  u iu u u u  w iu i u k u S u  ^ c u l u i c u t  a u u

vegetation (Stumpf 1983), and natural variations in marsh geomorphology cause 

irregularities in flood patterns (Wood et al. 1989, Gardner et al. 2002). However, flood 

scenarios based on hypsometry are thought to provide reasonable estimates of marsh 

hydroperiod (with a minimum of field survey work) and this approach has been accepted 

as a regional standard for assessment of marsh flood regime in the Gulf o f Maine 

(Neckles and Dionne 2000).

Model Scenarios For each study location, the site-calibrated model was used to 

generate hydrologic scenarios for baseline (current) conditions, and for hypothetical 

conditions associated with altered hydrology. Marsh locations with existing tidal 

restrictions (Drakes Island and Oak Knoll) were modeled with various culvert expansion 

scenarios to simulate the potential impacts o f tidal restoration on marsh hydrology. 

Based on these scenario results, specific recommendations for hydrologic changes were 

made for these restricted study sites. Marsh locations with restored tidal hydrology (Mill 

Brook and Little River) were modeled with culvert specifications from before hydrologic 

restoration to simulate potential impacts of long-term continued tidal restriction.
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Sensitivity Analysis. The sensitivity of predicted upstream water level to changes 

in calibration parameter values was determined through a systematic sensitivity analysis. 

For purposes o f this analysis, the model was configured with the downstream signal and 

baseline calibration values of Little River Marsh (a site that used all four of the primary 

model calibration parameters). Model calibration parameters were varied by ±5% and 

±20%, and new upstream water levels were generated. The analysis compared original 

(baseline) peak upstream water level with new values o f peak upstream water level to 

assess relative sensitivity of each calibration parameter. Relative sensitivity was 

calculated as the percent change in peak upstream water level divided by the percent 

change (either 5% or 20%) in the model parameter (Eq. 14). Higher relative sensitivity 

values indicated an increased sensitivity to a model calibration parameter.

Relative Sensitivitypanuneter= % Changepeakupsfream water level/Changeparameter (14)

Results and Discussion

Model results for current hydrologic conditions at each of the four study sites 

were presented as two-week tidal hydrographs of water elevations from the observed 

record downstream of the culvert (downstream record), the observed record upstream of 

the culvert (upstream record), and the predicted upstream water elevation record 

(upstream model). For each site, the coefficient of determination (r2) between observed 

and predicted upstream water levels was used as the standard measure of model
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performance. Marsh elevation results were presented as hypsometric curves for each 

study site. Observed upstream water levels were used together with the hypsometric 

curve to show the percent of marsh area flooded over the two-week tidal cycle. In 

addition to current hydrologic conditions, model scenarios were developed for each study 

site to predict tidal hydrology associated with site-specific changes of inflow structures.

Drakes Island Marsh Current Conditions. Tidal hydrographs for Drakes Island 

Marsh (Figure 4.2a upper chart) clearly showed the restricted nature of upstream tidal 

hydrology at the site due to the undersized 0.91 m (3 ft) culvert. For all tides, the 

upstream response was diminished in comparison with the downstream signal, with lower 

peaks and higher troughs. During spring tides (Days 9 to 13), the downstream record 

showed a tidal range o f 2  meters, but the upstream tidal range was only about 1/6 of the 

downstream signal (~ 35 cm). Impoundment of tidal waters at the site was obvious, with 

a minimum o f 1 meter o f water in the upstream channel at all times. The area of marsh 

flooded (Figure 4.2a lower chart) showed that impounded water covered from 17 -  30% 

o f the marsh at low tide, with the height of impounded water increased with tidal range 

during building spring tides. In addition, flooded marsh area reached a peak of only 85% 

during spring tides, indicating that 15% of the marsh would not be flooded during a 

typical tidal cycle. The hypsometric curve for Drakes Island (Figure 4.2b) revealed three 

tiers of surface elevation. The lowest 20% of the marsh surface (0.7 to 1.0 m NGVD) was 

the impounded area around the culvert, an additional 15% was creek-bank and low marsh 

area (1.0 to 1.45 m NGVD), and the remaining 65% of the surface was high marsh at 

1.45 m NGVD or higher.
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The calibrated model produced results in agreement with the upstream record 

(Figure 4.2a upper chart), although r 2 of 0.92 for Drakes Island was the lowest value of 

the four study sites. The divergence between model and observed was most evident 

during spring tides (Days 9 to 13). For these tides, the model predicted a steeper rise in 

water level on the incoming tide and higher levels of impoundment than observed. A 

close examination o f the upstream record indicated that observed upstream tidal heights 

were not always correlated with downstream tidal heights, and in fact, it appeared that 

upstream water levels experienced a delayed response to the highest tides. This effect 

was best seen around Day 11 (Figure 4.2a upper chart) when a 2.00 m downstream high 

tide produced a 1.47 m upstream water level, but the following 2.38 m high tide produced 

only a 1.44 m upstream water level. It appeared that increased upstream impoundment 

with building tides prevented downstream water from flowing into the marsh. In 

addition, the restricted upstream channel has been subject to stormwater flooding 

(ATTAR Engineering 1996), a factor not considered in this model. At Day 5, the 

upstream water levels increased by 5 cm although downstream tidal heights were 

receding, possibly a response to precipitation. In feet, National Climate Data Center 

rainfall records from Portland, Maine (approximately 30 miles north) indicated that a 

total of 0.8  inches of rain fell on Days 1, 2, and 3 (April 23-25 1996). Therefore, model 

agreement with upstream water levels may have been reduced at Drakes Island due to 

rainfall runoff and possibly in connection with impoundment conditions that greatly 

reduced channel outflow during spring tides.
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Drakes Island Hvdrologic Scenarios The persistence of brackish plant species 

and subsidence of marsh surface elevations (Burdick et al. 1999, Boumans et al. 2002), as 

well as storm water flooding (ATTAR Engineering 1996), indicated that Drakes Island 

Marsh was a good candidate for hydrologic restoration. However, residential 

encroachment around the periphery of the marsh raised concerns that increased tidal 

flows might increase the potential for flooding (see Introductory Chapter, Study Sites). 

Therefore, the model was configured with two hydrologic scenarios that did not consider 

full tidal restoration of the site: Option_l simulated the installation o f a second culvert 

adjacent to the original one, with an identical diameter of 0.91 m (3 ft) but 50 cm lower in 

elevation and with a flap gate to prevent tidal inflows; Option_2 modeled the installation 

o f a second culvert also 0.91 m in diameter and 50 cm lower in elevation, but without a 

flap gate. Simulations for these scenarios and comparisons with current conditions are 

presented in Figure 4.2c.

Scenario hydrographs (Figure 4.2c upper chart) showed that impoundment would 

be reduced with both options, but only Option_2 produced tidal heights higher than 

current upstream conditions (peak heights were 1.58, 1.54, and 1.74 m NGVD for current 

conditions, Option_l, and Option_2, respectively). Reduction in impoundment during 

spring tides was best with the tide-gate option (O ptionl), with low water levels at 1.33, 

1.01, and 1.21 m NGVD for current conditions, Option l, and Option_2, respectively, at 

the height of the spring tide cycle (Day 13, Figure 4.2c upper chart). However, both 

scenario options reduced impoundment, with identical minimum low water levels of 0.89 

m NGVD (compared with 0.95 m NGVD under current conditions).
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Area of marsh flooded (Figure 4.2c lower chart) indicated that the tide gate for 

Option l would reduce marsh flooding, with only the four highest tides flooding 50% or 

more of the marsh surface and a maximum of 63% of the marsh area flooded. This was a 

substantial reduction in flooding compared to current conditions, with ten of the highest 

tides flooding 50% or more of the marsh and a peak of 85% area flooded. The non-gated 

scenario, however, would greatly improve tidal exchange in the marsh, with 2/3 of the

1̂4 /1 Q tl» 41mm M»MW* m4 *t«M M«»«) 4ImM J MM«»MMM<»Mu i^ u  u u 6 »  ( iO  ^cT  tw v w c C ft.  u u a i  w y u c ;  i iu u u lu ^  muM. ux u ic  u id ia n ,  o u u  u u u u  u O v c ia ^ c

for 97% of the marsh area. Since this configuration also reduced impoundment, 

Option_2  would be recommended as the best management option of the two scenarios. 

This analysis, however, did not consider the potential impacts of stormwater flooding at 

the site, a factor outside the current scope of the modeL Based on results found here and 

the ATTAR Engineering Report (1996), marsh response to stormwater should be 

examined closely before proceeding with hydrologic changes at Drakes Island.

Little River Current Conditions. Hydrographs for the Little River Marsh (Figure 

4.3a upper chart) indicated that the recent installation of twin 1.83 m by 3.66 m (6  by 12 

ft) box culverts at the site successfully restored natural tidal flows to the marsh (see 

Introductory Chapter, Study Sites). Upstream tides were closely aligned with the 

downstream signal, and achieved heights within -15 cm of downstream high tides. On 

the ebb tide, residual water in the creek was about 20 cm deep, although as much as 50 

cm of water stayed in the creek during the spring tide cycle (Days 0 to 4, Figure 4.3a 

upper chart). Marsh area flooded showed that 90% or more of the marsh surface was 

inundated on spring tides (about six tides per two-week tidal cycle), but most high tides
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barely flooded above the creek banks (Figure 4.3a lower chart). Figure 4.3b showed that 

this was due to the steepness of the creek banks at the site (0 to 1.2 m NGVD) and the 

mostly flat topography o f the marsh surface (90% of the marsh at 1.4 to 2.0 m NGVD). 

As a result, most of the marsh surface was either totally inundated or totally dry, 

depending on the height o f the high tide.

T U a  VM /N /Ia I  a K c A«*« r A / )  A A o f y  A p  A A  ^A *» T  << ♦I a  D « « rA « *  FA <1 A  0 ^ 7
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indicating strong agreement between the upstream record and the model predictions 

(Figure 4.3a upper chart). Tidal peak estimates were within 3 cm of observed heights for

all high tides except at Day 1 when the model was 20 cm low. Model low water

estimates were also close to observed levels, but the model consistently predicted faster 

drainage on the ebb flows, especially during spring tides (Days 0 to 4, Figure 4.3a upper 

chart). This was likely due to the large expanse of tidal marsh at Little River Marsh (70 

ha), a surface that clearly required a long time to drain after inundation by spring tides. 

The model attempted to simulate this condition with the flood effect calibration 

parameter (notice the slower drainage predictions during spring tides), but the very large 

marsh drainage area apparently caused more water to flow into the creek during the ebb 

tides than could be predicted by the model as formulated. In the past, the Little River 

Marsh was known to impound stormwater during rainfall events, a major impetus for the 

culvert expansion project (US Army Corps of Engineers 1999, Burdick 2002). It 

appeared, however, that this condition was improved with the new box culverts. During 

data collection at Little River, a single day 0.8-inch rainfall was recorded in the region 

(National Climate Data Center station at Portland, Maine, approximately 50 miles from
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the site). However, observed upstream water levels showed little additional water on that 

date (Day 6  Figure 4.3a upper chart). In general terms, except for the timing o f drainage 

after high tides, the calibrated model produced excellent results for the Little River 

Marsh.

Little River Hydrologic Scenarios. Little River Marsh was hydrologically

I c S u / i c a  u t  i \ u v 6 u i u c i  u iC i C iu i w  u i u u c t  S i m u i a t i u u S  w c i c  u S c u  lU  g A a m m c  u iC

historic conditions o f tidal restriction at the site. This type of analysis was used to 

provide a basis of comparison between past and current conditions, and as an assessment 

tool to measure the benefits of hydrologic restoration (i.e., “what-if” no changes were 

made). To configure this scenario, the model used the dimensions of the pre-restoration 

culvert (1.22 m diameter culvert pipe at 0.24 m NGVD invert elevation, US Army Corps 

of Engineers 1999). Scenario results are presented in Figure 4.3c.

The model indicated that past hydrologic conditions at Little River were severely 

restrictive of tidal flows, with peak tidal heights of only 1.32 m NGVD, and tidal ranges 

limited to 15-40 cm between ebb and flood tide (Figure 4.3c upper chart). These results 

were generally in agreement with the pre-restoration hydrologic studies conducted at the 

site that recorded low upstream tidal ranges (-50 cm by the US Army Corp of Engineers 

1999, 20 to 66  cm by Burdick 2002). In addition, considerable impoundment of tidal 

water was predicted, with about 50 cm of retained water in the tidal creek at all times. 

Burdick (2002) recorded minimum low tide water levels of about 20 cm during neap 

tides, thus the predicted level of impounded water appeared to be overestimated by about
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30 cm. However, the channel was dredged as part of the restoration effort, likely 

accounting for some of these differences since model predictions were based on 

calibrated results from current (dredged) conditions. In addition, increased water velocity 

through the channel following restoration had probably scoured sediments from the creek 

bottom (Williams et al. 2002) and produced areas of pooling at low tide.

The predicted area o f marsh flooding (Figure 4.3c lower chart) suggested that pre- 

restoration spring tides only flooded about 10% of the total marsh area (7 ha) during the 

highest spring tides. Burdick (2002) reported that high tides rarely flooded the marsh 

surface, although rainfall events (especially in conjunction with spring tides) were 

capable of flooding most o f the marsh. Overall, results from this scenario concurred with 

published reports that pre-2000 Little River Marsh was severely restricted in tidal 

flooding, and an excellent candidate for hydrologic restoration.

Mill Brook Current Conditions. Results for Mill Brook Marsh indicated that the 

project to expand the tidal culvert to 1.83 m (6 ft) in diameter had successfully returned 

natural tidal flows to the marsh. Tidal hydrographs for Mill Brook showed that upstream 

tidal heights typically reached downstream levels (maximum difference of 13 cm on Day 

7, Figure 4.4a upper chart). Upstream drainage on the ebb tide was also closely matched 

with downstream results, indicating that impoundment was not an issue at Mill Brook 

following restoration. The area of marsh flooded during high tides showed a strong 

diurnal pattern throughout the tidal cycle (Figure 4.4a lower chart) and achieved 90% 

flooding during spring tides (Days 1 to 5). Hypsometry of Mill Brook indicated that the

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tidal creek had steep banks (-0.5 to 1.0 m NGVD, Figure 4.4b), but the majority of the 

marsh surface was along a gradual slope from 1.0 to 1.6 m NGVD, until a sharp elevation 

break at the upland edge. The gradual slope in elevation accounted for the incremental 

changes in flooded area with the tidal cycle at Mill Brook (as opposed to the flat surface 

at Little River which was basically all flooded or all dry).

l v i u u c i  I c S u t i S  x u a  lvjLiii u i u O a .  u i u i u u S  S u O u g  p c u u i u u u i ^ c  u i  u i c  u u i Dk u c u  n i G u c i

(r2 = 0.97). High tide peaks were very closely related, with differences less than 1 cm 

(Figure 4.4a, upper chart). However, the model consistently overestimated the amount of 

water left in the tidal creek on the ebb tide, by about 13 cm. Measures of creek water 

depths taken at low tide during the elevation survey in 2001 showed that about 25 cm of 

water were always in the creek (data not shown), suggesting that flow conditions have 

continued to change since the tidal signal was measured in 1998. Like Little River, it 

appeared that increased current velocity following culvert expansion had eroded the creek 

bottom and allowed more water to pool around the culvert entrance at low tide. In 

addition, Burdick et al. (1999) reported that sediments were deposited on the marsh at a 

very high rate between 1996 and 1998 (1.9 cm/yr). Evidence of channel erosion and 

sediment redistribution appeared similar to the geomorphic responses of hydrologically 

restored tidal marshes along the US west coast. Simenstad and Thom (1996), at the Gog- 

Le-Hi-Te estuarine site in Washington state, found extensive accretion of inorganic 

sediments on the marsh immediately following introduction o f tides, with fine sediments 

moved from the marsh surface into tidal channels during later years. Williams and Orr 

(2002) also found that sediment re-suspension and deposition followed tidal restoration in
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San Francisco Bay marshes, and concluded that these geomorphic processes were critical 

determinants o f habitat development and re-vegetation for tidal mudflats. Since post 

restoration changes in channel morphology (as suspected at Mill Brook and Little River) 

can influence long-term marsh tidal prism and sediment formation, hydrogeomorphology 

would appear to be another important consideration for planners of tidal restoration 

projects (Simenstad and Thom 1996, Williams et al. 2002).

M il Brook Hvdrologic Scenarios. A hydrologic scenario for Mill Brook was 

configured with pre-restoration conditions to provide a basis for assessing changes due to 

hydrologic restoration at the site, similar to the scenario provided for Little River. This 

model run, however, simulated the use of a tidal flap gate at Mill Brook (Burdick et al. 

1997), M ich prevented tides from flowing onto the marsh surface. Scenario results for 

pre-restoration Mill Brook water levels and tidal flooding are presented in Figure 4.4c.

Model simulations from pre-restoration showed no upstream tidal signal, with the 

model preventing all tides from flowing through the culvert (Figure 4.4c upper chart). 

Burdick et al. (1997 and 1999), however, reported that remnant populations of halophyte 

plant species were found near the culvert prior to 1993, suggesting that some tidal flows 

were passing through the flap gate. Since specifications for tide gate flows were not 

available, the model assumed that the marsh was completely shut off from tidal sources. 

Area of marsh flooded (Figure 4.4c lower chart) predicted that only a few centimeters of 

water would cover the creek bottom. Upstream flooding at the site prior to restoration 

has not been documented, although floods following snow melt were observed in early
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spring (D. Burdick, personal communication). In any case, the model predicted a 

complete elimination of tidal flows at Mill Brook before the tide gate was removed in 

1993.

Oak Knoll Current Conditions. Tidal hydrographs for Oak Knoll Marsh in 

Rowley, Massachusetts (Figure 4.5a upper chart), showed that the upstream tidal range 

was reduced in comparison with downstream levels due to undersized culverts of 0.61 m 

(24 in) in the north and 1.03 m (40 in) in the south. Upstream tidal heights were as much 

as 50 cm less than downstream heights during spring tides (Days 0 to 4), although this 

difference was reduced to -10 cm at neap tides. Water was not severely impounded 

upstream, however, and creeks were generally drained on the ebb tide except for the 

highest spring tides. The area of tidal flooding was 90% or more during the four highest 

spring tides, although a large area of the marsh surface (>90%) remained above water for 

more than 2/3 of high tides (Figure 4.5a lower chart). The hypsometric curve at Oak 

Knoll (Figure 4.5b) indicated that the marsh contained few creeks (-5% of the marsh 

from 0 to 1 m NGVD) and a large portion of the marsh was very flat (1 to 1.3 m NGVD). 

Also, Boumans et al. (2002) found that the upstream high marsh was 16 cm lower than 

downstream high marsh, suggesting that the Oak Knoll marsh surface was subsided in 

response to long term tidal restriction at the site (DeLaune et al. 1983, Boumans and Day 

1994, Chapter HI).

Calibrated model estimates for upstream water heights strongly agreed (r*= 0.97) 

with the upstream measures at Oak Knoll. Differences between model and observed
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results were most evident at the tidal peaks (Figure 4.5a upper chart). During the highest 

of the spring tides (Days 0 to 4), the model overestimated the peak heights by - 1 0  cm. 

As the tidal cycle diminished, the model underestimated peak heights by a similar 

amount. These inconsistencies were most likely due to the presence o f two separate 

culverts at the site (-100 m apart, Introductory Chapter, Figure 1.5), which may have 

invalidated the model assumption of hydrologic connectivity among all inflows. The 

model pooled together nows from both culverts, but comparative upstream water ieveis 

were recorded only at the north culvert (see Methods). To achieve an optimal t2, model 

peak flows were calibrated to an average set of tidal conditions that were representative 

of most tides but missed the extremes of the tidal cycle. Despite these differences, the 

model appeared to capture the nature of the tidal restriction at Oak Knoll, and provided 

an adequate basis for scenario modeling.

Oak Knoll Hvdrologic Scenarios. Habitat degradation associated with tidal 

restriction at Oak Knoll was indicated by expansion of brackish plant species and 

reduction in substrate salinities (Burdick et al. 2001), and by subsidence o f marsh surface 

elevations (Boumans et al. 2002, Chapter III). To assess potential hydrologic 

improvements in the marsh, the model was configured with two hydrologic restoration 

scenarios: Option_l simulated expansion of the north culvert diameter to 1.22 m (4 ft); 

Option_2  modeled expansion of both north and south culvert pipes to the approximate 

width of the tidal creeks, 1.52 m (5 ft). Simulations for these scenarios and comparisons 

with current conditions are presented in Figure 4.5c.
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Scenario hydrographs (Figure 4.5c upper chart) showed that upstream tidal 

heights would be increased with both options, especially during spring tides (Days 0 to 

4). Peak tidal heights were 1.27, 1.32, and 1.39 m NGVD for current conditions, 

Option l, and Option_2, respectively. In addition, no water was retained in the creeks on 

the ebb tide, even for spring tides. The area of marsh flooded (Figure 4.5c lower chart) 

was increased with both options, with 90% or more of the marsh flooded by five 

(Option_2) or six (Option !) high tides, a modest increase from four tides under current 

conditions. However, both scenarios added substantially (5% to 20% increases) to the 

percent of area flooding during spring tides. The scenario for expansion of both culverts 

(Option_2) also increased area flooding for several non-spring tides (Days 5 to 8). Based 

on these results, hydrologic restoration appeared to be a good management option for 

improving salt marsh habitat at Oak Knoll. Since increases in peak flooding during 

spring tides were similar for both scenarios, the lower-cost option (Option l, expansion 

o f the north culvert only) appeared to be a reasonable management recommendation for 

potential restoration work at the site.

Sensitivity Analysis. The results of model sensitivity analysis for calibration 

parameters are presented in Table 4.2. Since relative sensitivity was calculated as the 

percent difference in peak upstream water level divided by percent difference in 

parameter value (5% to 20%), this analysis indicated low overall model sensitivity to any 

one calibration parameter (all values < 1). In addition, the analysis suggested a fairly 

consistent balance among model parameters, with maximum sensitivity values ranging 

from 0.195 to 0.336. On a relative scale, the model was slightly more sensitive to peak
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tide head threshold than the other calibration parameters. This parameter adjusted 

upstream water volume during spring tides, and therefore would have a direct effect on 

the sensitivity metric, peak upstream water level. Overall, however, results from this 

analysis indicated that the calibration parameters were useful to fine-tune the model, but 

model output was largely determined by site-specific inputs from field data sources (i.e., 

downstream signal, culvert dimensions, and marsh elevations).

Conclusions

Tidal hydrology is of critical importance in salt marshes, and marshes with 

restricted tidal flows are often characterized by lost or degraded natural habitat. Since 

restoration of tidal hydrology can lead to habitat recovery, management options for 

tidally-restricted salt marsh sites include hydrologic alteration of tidal culverts and 

channels. A calibrated model was used to simulate current flow conditions and marsh 

flooding over a two-week tidal cycle, at four New England salt marshes with past or 

present tidal restrictions. The model used recorded measurements of the downstream 

tidal signal, culvert dimensions, and elevation survey results as inputs, and a set of 

calibration parameters were used to fine-tune the model for each location. Calibrated 

model results for upstream tidal heights were compared with recorded upstream 

measurements to assess model performance. At three sites, the predicted-observed r  was 

0.97, and 0.92 was achieved at the other site (Drakes Island). Differences between 

predictions and observations were likely due to model limitations in handling extreme 

impounding conditions and stormwater runoff (Drakes Island), and conditions that may
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have invalidated the model assumption of hydrologic connectivity (Oak Knoll). In 

general, however, the calibrated model produced estimates in strong agreement with 

observations across a range of marsh hydrologic conditions.

Based on the calibrated upstream model, inflow conditions were manipulated in a 

series of hydrologic scenarios to assess the potential impacts of altered tidal hydrology 

for each site. Tidal restoration sites (Little River and Mill Brook) were configured with 

culvert dimensions prior to restoration, and the model generated upstream results with 

greatly diminished (Little River) or non-existent (Mill Brook) tidal water levels and 

marsh flooding, as appropriate for each site. At the tidally-restricted sites (Drakes Island 

and Oak Knoll), restoration scenarios were conducted for each site based on practical 

considerations of site-specific hydrologic options. For both sites, the model identified 

restoration scenarios that improved tidal exchange, reduced impoundment, and increased 

marsh flooding. These results suggested that the model would be beneficial as a 

decision-support tool for coastal resource managers considering multiple options for 

hydrologic restoration of degraded marshes. In addition, model projections of flood 

regime could be used, together with salinity regime, to produce estimates of salt marsh 

gradient conditions that are critical determinants of plant community structure.
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Param eter
Name

Drakes
Island

Little
River

Mill
Brook

Oak
Knoll

Marsh Parameters
Creek elevation at culvert (m) creek el 0.870 0.041 -0.280 -0.450
Marsh elevation at culvert (m) marsh el 1.580 1.500 1.20 1.000
Calibrated creek slope creek si .00020 .00006 .00060 .00012
Calibrated initial water level (m) wlevel init 0.20 1.00 0.45 0.00
Calibrated flood effect (m) floodeffect 0.00 1.60 0.00 0.00
Calibrated peak threshold reduction headthresh 0.00 0.52 0.40 1.00
Culvert I Parameters
Type cultype 1 Barrel Box Barrel Barrel
Diameter (ft) culdiam 1 3.00 N/A 6.00 2.00
Width (ft) culwidth 1 N/A 6.00 N/A N/A
Height (ft) culheight 1 N/A 12.00 N/A N/A
Length (ft) cullen 1 63.00 252.00 60.00 70.90
Invert elevation (m) thresh 1 0.947 0.250 -0.400 -0.428
Kutters roughness coefficient kutter 1 0.024 0.012 0.024 0.012
Flap gate flap 1 0 0 0 0
Calibrated upstream conductivity upcond 1 0.32 1.00 0.32 0.80
Culvert 2 Param eters
Type cultype 1 N/A Box N/A Barrel
Diameter (ft) culdiam 2 N/A N/A N/A 3.38
Width (ft) culwidth 2 N/A 6.00 N/A N/A
Height (ft) culheight 2 N/A 12.00 N/A N/A
Length (ft) cullen 2 N/A 252.00 N/A 70.90
Invert elevation (m) thresh 2 N/A 0.250 N/A -0.428
Kutters roughness coefficient kutter 2 N/A 0.012 N/A 0.024
Flap gate flap 2 N/A 0 N/A 0
Calibrated upstream conductivity upcond 2 N/A 1.00 N/A 1.00

Table 4.1. Hydrologic and elevation parameter values for current conditions at study 
sites.
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Calibration Param eter +5% -5% +20% -20%
Creek slope 0.005 0.195 0.051 0.149
Upstream conductivity 0.113 0.238 0.001 0.019
Flood effect 0.007 0.001 0.216 0.027
Peak tide head threshold 0.190 0.007 0.203 0.336

Table 4.2. Relative sensitivity of peak upstream water level to ±5% and +20% 
adjustments in baseline calibration parameter values. Relative sensitivity was calculated 
as % change in model-observed peak upstream water level divided by % change in 
parameter.
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The Marsh Response to Hydrologic Manipulation Model (MRHM)

(Geomorphology Upstream
Water
Level
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Water
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Flow
through
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ater gain

Figure 4.1. Conceptual diagram of water level change in salt marshes, including marshes 
with tidal restrictions, from Boumans et al. (2002).
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Figure 4.2a. Drakes Island current hydrologic conditions for 14-day tidal cycle; Upper chart: tidal hydrograph o f water elevations (m
NGVD) for downstream record, upstream model, and upstream record; Lower chart: tidal flooding of marsh area.
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Figure 4.2b. Drakes Island hypsometric curve, showing cumulative marsh area (%) by elevation (m NGVD).
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Figure 4.2c. Drakes Island restoration scenarios (Option l added 0.91 culvert 50 cm below current w/flap gate, Option_2 added 0.91
culvert 50 cm below current w/out flap gate). Upper chart: Upstream water levels; Lower chart: Area of marsh flooded.
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Figure 4.3a. Little River current hydrologic conditions for 14-day tidal cycle; Upper chart: tidal hydrograph o f water elevations (m
NGVD) for downstream record, upstream model, and upstream record; Lower chart: tidal flooding o f marsh area.
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Figure 4.3b. Little River hypsometric curve, showing cumulative marsh area (%) by elevation (m NGVD).
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Figure 4.3c. Little River hydrologic scenario for pre-restoration conditions (1.22 m diameter culvert at 0.24 m NGVD invert
elevation). Upper chart: Upstream water levels; Lower chart: Area of marsh flooded.
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Figure 4.4a. Mill Brook current hydrologic conditions for 14-day tidal cycle; Upper chart: tidal hydrograph of water elevations (m
NGVD) for upstream record, downstream record and upstream model; Lower chart: tidal flooding o f marsh area.
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Figure 4.4c. Mill Brook hydrologic scenario for pre-restoration conditions (0.91 m diameter culvert with flap gate to prevent tidal
inflow). Upper chart: Upstream water levels; Lower chart: Area o f marsh flooded.
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Figure 4.5a. Oak Knoll current hydrologic conditions for 14-day tidal cycle; Upper chart: tidal hydrograph of water elevations (m
NGVD) for upstream record, downstream record and upstream model; Lower chart: tidal flooding of marsh area.
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Figure 4.5c. Oak Knoll hydrologic restoration scenarios. Option_l: expand north culvert to 1.22 m diameter; Option_2: expand north
and south culverts to 1.52 m diameter. Upper chart: Upstream water levels; Lower chart: Area of marsh flooded.
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CHAPTER V

A MODEL OF PLANT SUCCESSION FOLLOWING HYDROLOGIC 

DISTURBANCE IN NEW ENGLAND SALT MARSHES

Introduction

Anthropogenic alterations that restrict tidal flows negatively impact many New 

England salt marshes, and attempts to restore tides to these sites are often met with 

unexpected or less than optimal results (see Introductory Chapter). Restoration planners 

may be hindered by a lack of synthesized information regarding important salt marsh 

factors that control the response of marsh plant species to hydrologic changes. These 

factors include physical processes like marsh sediment dynamics (Chapter HI) and tidal 

hydrology (Chapter IV), but also biotic processes such as plant biomass production 

(Chapter II), stress tolerance, and plant competition. This chapter describes a computer 

model that simulates the response of common salt marsh plant communities to physical 

stress and interspecific competition. The model is an important component of an
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integrated ecosystem model that predicts changes to plant community species 

composition in response to hydrologic modification.

In New England, native marsh halophytes like cordgrass (Spartina cdterruflora), 

salt hay (Spartina patens) and black grass (Juncus gerardii) are often replaced by the 

invasive species common reed (Phragmites australis), purple loosestrife (Lythrum 

salicana) and narrow-lcsf cattail (JTypha csigusiijGlta) as udaliy-restncied salt marshes 

convert to less-saline habitats (Roman et al. 1984, Sinicrope et al. 1990, Burdick et al. 

1997). However, reintroduction of tidal flows to brackish marsh sites can reverse plant 

species replacement, causing die-back o f invasive species and promoting increased cover 

of salt-tolerant plants (Roman et al. 1984, Sinicrope et al. 1990, Burdick et al. 1997, 

Streever and Genders 1997, Roman et al. 2002, Warren et al. 2002). In either case, the 

alteration of marsh tidal hydrology is a disturbance event that leads to changes in 

community composition with respect to these six important plant species. To predict 

plant community response to changing hydrologic conditions, a detailed species-level 

understanding of plant succession dynamics must first be acquired.

Plant succession, the directional change of species composition over time, is a 

long-held concept and a fundamental ecological principle, dating back to two opposing 

views from the early part of last century: F.C. Clements’ “organismic” concept of plant 

communities as a single entity of interdependent units, and H.A. Gleason’s 

“individualistic” concept of communities as loose associations of species (Richardson 

1980). But despite nearly a century of scientific attention, the relative importance of
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processes that influence and control plant succession remain a topic of considerable 

debate. Of the potential factors that may influence species compositional change over 

time, differences in plant life-history strategies (growth and reproductive characteristics) 

have long been recognized as key determinants (Connell and Slayter 1977). Grime 

(1979) developed a theory o f succession based on a grouping of species with similar life- 

history strategies, and proposed that changes in species composition follow a progression 

from ruderal colonizers, to competitors, to stress tolerators. Tilman (1982, 1988), 

however, theorized that competition was always present, and, as resource availability 

shifted with stages of succession, relative allocations to above or belowground structures 

favored different species at different times. Huston (1979) pointed out that physical 

disturbance was the trigger mechanism that reset resource conditions and enabled the 

entire process.

Computers have long been used to simulate plant succession In fact, some of the 

earliest uses o f computer technology in the field of ecology were probabilistic models of 

forest succession (Shugart et al. 1973, Horn 1975, Shugart and West 1976). In 1977, 

Zieman and Odum developed a computer model of salt marsh plant succession for areas 

of dredge spoil, based on correlative measures of Spartina altemiflora growth as a 

function of physical factors (Mitsch and Gosselink 1993). Sklar et al. (1985) constructed 

a spatial model o f coastal wetland succession that switched between broad categories of 

habitat type (from upland to open water) with annual fluxes in freshwater inputs and 

sediment loads. Recently, Boumans et al. (2002) modeled marsh zones upstream of tidal 

culverts and plant response to hydrologic modification as a reflection of downstream
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plant communities at similar elevations. These models, however, failed to consider the 

specific impacts of disturbance and succession on plant communities, and the individual 

response of plant species to changes in physical stress and competitive conditions. 

Therefore, to meet the objectives of the current project (r.e., a spatially-explicit model o f 

plant community change, see Introductory Chapter), a fine-scale, species-driven approach 

to succession modeling was needed.

In New England salt marshes, experimental evidence strongly suggests that both 

life-history strategies and species interactions dictate the presence or absence of plant 

species assemblages, and changes in species composition over time. Bertness and 

Ellison (19S7), in a landmark study, found that New England salt marsh plant species 

were excluded from areas by physical stress or competition, and concluded that physical 

stress tolerance and interspecific competition were the key determinants of spatial 

vegetation patterns. Further investigations have shown that not all salt marsh plant 

species interactions are negative, and that positive interactions (facilitations) may also be 

very important following disturbance (Bertness 1991a, Bertness and Hacker 1994, 

Bertness and Yeh 1994). In addition, marsh species recruitment from neighboring plants 

through clonal expansion (Brewer et al. 1998, Chambers et al. 1999) and seed dispersal 

(Rand 2000) can also influence patterns of distribution. Other potential factors, such as 

herbivory, disease, and allelopathy, have shown little evidence o f major roles (although 

Silliman and Zieman 2001 found that Spartina altemiflora consumption by periwinkles 

may have been important in a Georgia marsh). It appears, then, that New England salt 

marsh plant succession is primarily a function of three factors: physical stress tolerance,
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species interactions, and recruitment potential. These three factors were combined to 

model salt marsh plant succession following hydrologic disturbance.

Model Background

To develop a fine-scale succession model, relative measures of physical stress 

tolerance, competitive ranking, and recruitment potential were derived for six dominant 

plant species common to healthy and impacted New England salt marshes. Species- 

specific measures of physical stress tolerance and relative competitive rankings were 

determined in a transplant experiment conducted across a gradient o f salt marsh salinity 

and elevation conditions (see Chapter I). Recruitment potential was based on plant 

species composition in neighboring plots. To simulate hydrologic disturbance, a 

hypothetical marsh plot was assigned to one of nine marsh gradient locations for flood 

and salinity regime (Figure 5.1), according to a series of model scenarios. For example, 

to simulate the impacts of restored salt water flooding to low-lying marsh zones, the 

scenario would call for a low elevation and high salinity plot location. Similarly, a plot 

assignment of high elevation and low salinity would be used to model the impacts of tidal 

restriction at a location adjacent to the upland edge. Within a plot, the model tracked the 

percent of marsh area occupied by each o f the six plant species. Changes in species 

composition percentages over time were used as the model metric for quantifying plant 

succession.
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For each species in the hypothetical plot, the model estimated the specific 

tolerance of physical stress conditions and the likelihood that the species would continue 

to exist at the gradient location. To simulate the likelihood of persistence at a gradient 

location, a portion o f each species cover value was determined to be “at-risk” for 

replacement by another plant species. If a species had demonstrated poor survival and 

growth at the location, the model designated a high percentage of species cover to the at- 

risk pool (up to 100% if no survival was measured). For a species that did well at the 

location, only a minimal percentage (5%) of cover was assigned to the at-risk pool. With 

this scheme, a species that performed well at a gradient location was highly resistant to 

replacement, based on the preemptive advantage of established wetland plants identified 

by Grace (1987).

Species performance at each gradient location was determined by a relative 

tolerance factor, derived from a field experiment (Chapter I). Tolerance factors were 

standardized values, ranging from 0 to 1, that reflected species growth and survival at a 

gradient location (0=no survival, l=best growth and survival among all locations, Table 

1.6). These factors produced an array of best-performance locations distributed across 

the study gradient, with only one plant scoring best for most gradient locations. The one 

exception was the low salinity - high elevation location, which was best for both Typha 

and Phragmites. Therefore, algorithms developed using these tolerance factors were 

used to control the distribution of plant species across a matrix of marsh gradient 

locations, with only minor adjustments needed to break the Typha-Phragmites tie (see 

Special Handling for Low Salinity-High Elevation Location, Methods).
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The model simulated succession by allocating the at-risk pool to all o f the plant 

species present in the plot. For each species, the likelihood of receiving an allocation 

from the at-risk pool was based on three succession factors: stress tolerance of plot 

conditions, competitive ranking versus other species in the plot, and the species 

composition o f neighboring plots. As described, stress tolerance was quantified by

ATT a  1 T  «»1 » ■ ■» « p» ■> Atv tc ia iiv C  lo v iU id  ^ io u ic  xSj ) .  lvaOiouvC l a t i u id ,  v u m ^ C tiu v c  ta u M iig S  a iu u i i^  uiC

species were identified by a set of combination-specific competition factors, based on the 

results of a field experiment (Chapter I). Interspecific arrangements of plant species were 

analyzed to determine, for each combination, reduction in growth (competition factor < 

1) or improved growth (competition factor > 1) in the presence of a competitor. 

Differences in competition factors for each species combination were used to allocate 

from the at-risk pool. In addition, the species composition of neighboring marsh plots 

was used as a measure of recruitment. If neighboring plots were, for example, dominated 

by Phragmites, a portion of the at-risk plot area would be allocated to common reed as a 

simulation of clonal expansion and seed dispersal. In this maimer, the three succession 

factors (tolerance, competition, and recruitment) were combined to predict changes in 

species composition for each modeling scenario that was considered.

Within the processing logic o f the model, the relative importance of the three 

succession factors was varied by gradient location, based on the concept that the relative 

importance of physical stress tolerance and competition changes with salt marsh 

environmental conditions. Bertness and Ellison (1987) found that physical tolerance of
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flood and salinity was most important in the high-stress areas of low marsh, but 

interspecific competition was the key determinant of species presence in the low-stress 

areas adjacent to uplands. Since 1987, subsequent experiments in the salt marsh have 

supported these general findings (Bertness 1991a, Pennings and Callaway 1992, Levine 

et al. 1998, Brewer et al. 1998, Dormann et al. 2000, Van Der Wal et al. 2000, Emery et 

al. 2001). To simulate this observed response, the model used a weighting scheme to

fa am/) imA«%oujudl uiv ivwuvw uu^/miqiivv ui duCdO ivawiouwv ouu wumpvuuua uv^wuuiii^ uj /̂va uiv

overall stress level at each gradient location. Tolerance factors were favored over 

competition at the three highest stress locations (80% - 10%), competition factors were 

favored over tolerance at the three lowest stress locations (80% - 10%), and the factors 

were weighted equally at the three mid-stress locations (45%-45%, Figure 5.1). Since 

most of the literature identified stress tolerance and competition as the key determinants, 

recruitment was deemed less influential and weighted consistently across the gradient at 

10%.

As a result of this succession modeling scheme, plant species assemblages 

changed over time in response to shifts in hydrologic conditions. Multiple modeling 

scenarios were used to predict changes to plant species assemblages under simulated 

hydrologic conditions associated with tidal restriction (reduced salinities and tidal 

inundation) and tidal restoration (increased salinities and tidal inundation). In addition, a 

sensitivity analysis was conducted to assess relative sensitivity o f model predictions to 

changes in factor weights.
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Methods

Model Structure. The model program was developed in the Microsoft (MS) 

Visual FoxPro software environment (Microsoft Corporation, Redmond, Washington, 

USA), with all model specifications, parameters, and procedures included in a single 

program file. The model used a weekly time-step and operated on a calendar year basis 

(Jan-Dee) to produce annual estimates of plant species cover for a hypothetical marsh 

plot. All model runs were twenty years in duration.

Model Inputs. Species cover values for Spartina altemiflora (cover spa), 

Spartina patens (coverspp), Juncus gerardii (cover Jim ), Phragmites australis 

(cover_phr), Lythrum salicaria (cover Jyt), and Typha angustifolia (cover Jyp ) were 

assigned for each modeling scenario. Cover values represented the relative portion of the 

plot occupied by each species, with the totals o f all six species adding up to one. The 

simulated plot was also assigned to a salinity regime and an elevation relative to the tidal 

cycle (according to the model scenario requirements), to determine the location of the 

plot within the marsh gradient of salinity and flood regimes.

Delimiters o f Marsh Gradient Locations. The model considered nine gradient 

locations, from low to high marsh elevations, and from mesohaline to polyhaline salinity 

regimes (Figure S.l). Gradient delimiters were based on literature review and specific 

measures of flooding and salinity at experimental locations (Table 1.1). Assignment of 

flood regime was determined from plot elevation relative to the tidal cycle as follows:
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low elevations were below mean high water, mid elevations were between mean high 

water and an elevation that was flooded by no more than 15% of the tides, and high 

elevations were above this 15% tidal flooding elevation. Use of mean high water as the 

low marsh delimiter was based on many field observations o f this elevation as the general 

boundary between Spartina altemiflora and Spartina patens plant zones (Niering and 

Warren 1980, Bertness and Ellison 1987, McKee and Patrick 1988, Bertness 1991b, 

Bertness 1992).

Delineation of an elevation to separate mid from high marsh, however, was not 

readily available from known sources. Instead, a useful delimiter of high marsh boundary 

was inferred from published reports of marsh vegetation borders and tidal heights. In 

New England salt marshes, high marsh areas are often include tracts of black grass 

(Niering and Warren 1980). Bertness and Ellison (1987) measured tidal heights at the 

low boundary of the black grass (Juncus gerardii) zone in a Rhode Island marsh, and 

found that 15% of tides flooded this area. These results were consistent with an earlier 

analysis o f the Spartina altemiflora-Juncus roemerianus border from US Gulf Coast salt 

marshes (13% of tides flood, Eleuterius and Eleuterius 1979). In addition, Warren et al. 

(2001) analyzed tidal flood levels of Phragmites stands in Connecticut, and found that a 

vegetation break occurred at the 15% tidal flooding elevation, with Phragmites 

significantly reduced and Typha more common at the highest marsh elevations. It 

appears, then, that an elevation flooded by 15% or fewer high tides may be ecologically 

significant for salt marsh plants o f concern in New England. This elevation was used by
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the model to delineate the landward extent of the mid marsh, and plots with elevations 

above this line were considered upper marsh.

To assign salinity regime, three categories of salinity levels were modeled: low 

(mesohaline 5-14 ppt), mid (meso-polyhaline 14-18 ppt) and high (polyhaline >18 ppt). 

Specific salinity ranges for each category were based on readings taken during the

— r~i —■ - m ^ ■ m w v a I I m  A A  ^  A 1 1 ̂  A A  4 4 A /"TP a  1  1 \ *
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polyhaline categories were based on Odum et aL (1984). Growing season salinity levels 

were specifically assigned for each model scenario.

Plant Succession. Model processing logic for plant succession was based on 

plant cover values, gradient location, species-specific tolerance factors, interspecific 

competition factors, and species composition of neighboring plots. The first step in the 

succession modeling process was to determine the at-risk pool for each species 

(atriskspedes Equation 1), computed as the percent cover o f the species multiplied by 1 

minus the tolerance factor (TF) for the species at the gradient location (Table 1.6, with a 

minimum of 5% to simulate random disturbance).

The next step allocated the at-risk pool to species present in the plot Re

allocation from recruitment was based on species cover o f neighboring plots, which, for 

these (non-spatial) scenarios, was assigned to the same species cover values as the plot. 

The at-risk pool for each species in the plot was multiplied by the neighbor cover values 

and summed across species, with the product multiplied by the recruitment weighting
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factor { r e c r u i t jw f )  to determine recruitment re-allocations (Eq. 2). Next, all interspecific 

combinations in the plot were analyzed to compute pair-wise reallocations. For each 

pairing, re-allocation was computed as the difference in species competition factors (CF, 

Table 1.7) multiplied by the product of the at-risk pool and the competition weight factor 

at the location (compjwf), plus the difference in tolerance factors (TF, Table 1.6) 

multiplied by the product of the at-risk pool and the tolerance weight factor at the 

location (tol_wf, Eq. 3). Fair-wise reallocation amounts were standardized by the relative 

cover percentage of each species so as not to exceed the total percentage of occupied area 

in the plot. Cover values for each species in the plot were then adjusted according to the 

standardized re-allocation values for each species combination present in the plot The 

model computed plant succession changes once per year, at week 30.

A t-lisk sp e d e si-j COVeTspedes i- j* M A X (. 05,(1 -TFspecies i-j at location)) (1)

Recruit re-allocationspedes i-j = recru itw f *£(at-riskspecies i-j*neighbor cover^e. i-j) (2)

Pair-WlSe reallOCatlOnspeciesiftomj-  ((C F species i on j-C F species j  on i)*  A t-risk sp ecies i-j*

COOTp w /iocation)) ((T Fspecies i at location* TFspecies j  at locatjon)*A t“riskspecies i-j* ^^_ ^ ^ o ca tio n  ( 3 )

Special Handling for Tvpha and Phragmites. As noted earlier, best-performance 

gradient locations for the study plants were unique by species, except for Typha and 

Phragmites. Since the two species achieved top performance at the low salinity -  high 

elevation location (Table 1.1), special handling was needed to break the stalemate and to 

provide each species with a relative advantage under certain conditions within the 

gradient location. Advantages were based on the delineation of two high elevation sub-
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zones: below the elevation of the highest tide measured (regular, but infrequent tidal 

flooding), and above the highest tide measured (the greatest spring high tides and storm- 

related flooding). In the regularly-flooded sub-zone, Phragmites was given an advantage 

over Typha. This advantage was based on the findings o f Warren et al. (2001), who 

determined that Phragmites was much more likely to occur in salt marsh locations with 

infrequent but regular tidal flooding (even if Typha was present). Further, Typha was 

considered relatively less tolerant of salt water flooding (Beare and Zedler 1987) than 

Phragmites. Since the modeled low salinity regime was mesohaline (5-18 ppt, Chapter 

I), regular flooding o f mesohaline tidal water would likely inhibit Typha growth and 

survival along the seaward borders of the high marsh. To simulate this advantage, the 

Typha tolerance factor was reduced from 1 to 0.5 in regions of the high marsh with 

elevations below the maximum extent of regular tides, with the Phragmites tolerance 

factor left unchanged.

Model Scenarios. Modeling scenarios were conducted to simulate the impacts of 

changing hydrologic conditions (i.e., tidal restoration or tidal restriction) on marsh plant 

community composition. This was done by simply varying the marsh gradient location: 

higher salinities and tidal flood levels simulated hydrologic conditions associated with 

tidal restoration; lower salinities and tidal flooding reflected conditions in marshes with 

tidal restrictions. A hypothetical plant community was used to initialize each scenario, 

with the six study species each at 16.7% cover. Ten scenarios were modeled: one for the 

low-salinity high elevation gradient location at an elevation above the extent of regular 

tidal flooding (favoring Typha), another for the low-salinity high elevation location at an
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elevation receiving between 15% and 0% of regular tidal flooding (favoring Phragmites), 

and eight scenarios for each of the remaining elevation and salinity gradient locations.

Sensitivity Analysis. The sensitivity o f plant species cover to changes in weights 

of model succession factors (recruitment, competition, and physical stress tolerance) was 

determined through a systematic sensitivity analysis. For purposes o f this analysis, the

m r v H p l  w o e  P A n f i o i i r p H  ■ f r> r  f l i p  I a x w  c o 1 i r » i h r j A « ;  a l a x r o t i A n  < y r o / J « A n t  I a m + i a a  w i f f c  * 1 1
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species equally distributed (16.7% species cover). The comparative model result was 

plant species cover of Spartina altemiflora. Model weights were varied by ±5% and 

±20%, and model results were compared with baseline conditions (based on original 

weights) to assess relative sensitivity of each parameter. Relative sensitivity was 

calculated as the percent change in plant species cover divided by the percent change 

(either 5% or 20%) in the model weight (Eq. 4). Higher relative sensitivity values 

indicated an increased sensitivity to a model succession factor. Since plant cover varied 

over time, the sensitivity analysis was run for one and twenty year durations to ensure 

model consistency and long-term stability.

Relative sensitivitysuccession factor % Changepiant Species cover I %  C hangCsuccession weight factor (4)

Results and Discussion

Model scenario results are presented and discussed in groups arranged by marsh 

gradient location for elevation (low, mid, and high). Within each elevation group, figures
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are provided for the low, mid, and high salinity regimes. All figures are annotated with 

four-letter codes to designate salinity and elevation gradient locations (e.g., LSLE = low 

salinity -  low elevation; HSHE = high salinity -  high elevation, etc.).

Low Elevation Scenarios. Model succession scenarios are presented in Figure 5.2 

for hypothetical marsh plots in the three salinity regimes at low elevations (i.e., below

l l i u i n  tlU C ) .  lU W dQ  ill^U * 'liW A X  d O v H a ilU b  W C l3  UoCU IU b llllU K U C  ^lO U L  KAJlXllllLlllliy

response to reintroduction of tidal flows in low-lying areas of subsided marshes. Model 

predictions indicated that, for all three salinity regimes, Spartina altemiflora would 

quickly emerge as the dominant plant species and maintain plot control for the 20-year 

duration of the model run. At low and mid salinity, cordgrass achieved greater than 90% 

cover by year 20, with primary subordinate species Typha at low salinity and Spartina 

patens at mid salinity (Figure 5.2, LSLE and MSLE, respectively). At the highest salinity 

level, Spartina altemiflora dominance appeared to be more challenged, with only a 50% 

- 38% advantage over Spartina patens at year 20 (HSLE, Figure 5.2). Also at this 

location, Phragmites retained 11% plot cover at year 20, the only species besides 

Spartina altemiflora and Spartina patens to maintain more than 2% cover at low 

elevations.

Model predictions for low elevation scenarios were a direct result of species- 

specific physical stress tolerance rankings, reflecting overall best performance for 

Spartina altemiflora under high-flood conditions (Table 1.6), and also that plant 

succession at low marsh elevations was influenced mostly by stress tolerance (Figure 5.1,
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based on Bertness and Ellison 1987). Model outcomes favoring cordgrass were 

consistent with many field observations o f Spartina altemiflora dominance at elevations 

below mean high tide in mesohaline and polyhaline salt marshes (Niering and Warren 

1980, McKee and Patrick 1988, Bertness 1991b, Bertness 1992). The relative strength 

of Spartina patens was somewhat surprising, since the species is generally thought to be 

flood intolerant (Niering and Warren 1980, Bertness 1992), although occasional patches 

of salt hay are sometimes observed m the field at elevations below mean high tide 

(Bertness and Ellison 1987). For the model, results were based on the unexpectedly 

strong growth and survival performance of Spartina patens at the polyhaline low marsh 

location in the field experiment (Chapter I, Table 1.6). Predictions for Juncus, the other 

halophyte study species, indicated low succession potential at low elevations. Weak 

results for Juncus at this location were expected for a plant species typically found in the 

higher elevations of salt marsh habitat (Niering and Warren 1980, Bertness and Ellison 

1987, Bertness and Yeh 1994).

The relatively poor performance of Phragmites, Lythrum, and Typha at low 

elevations was also expected. Tolerance factors derived from flood-stressed locations of 

the field experiment were generally low for these species, especially Lythrum and Typha 

(Table 1.6). Field reports also indicated that Lythrum (Whigham et al. 1978) and Typha 

(Warren et al. 2001) were rarely found along creek banks in mesohaline and polyhaline 

marsh sites. However, Warren et al. (2001) observed Phragmites expansion in low- 

marsh areas, suggesting that common reed may be a better stress tolerator than other 

brackish invasive species. In fact, rapid die-back of Typha and Lythrum was reported
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when tidal flows were reintroduced to low-lying areas o f restricted marshes (Sinicrope et 

al. 1990, Burdick et al. 1997), but Phragmites stands may persist (although in stunted 

forms) for years following tidal restoration (Sinicrope et al. 1990, Roman et al. 2002). In 

general, however, low-marsh replacement of brackish invasive species by Spartina 

altemiflora and Spartina patens, as suggested by the model, was an expected plant 

community response to reintroduction of tidal flooding (Sinicrope et al. 1990, Burdick et

_ 1 1  A A H  T N . . .  J *  1 ,  _ a - 1  1  / W \  _ a . 1ai. iw /, dutqick ei ai. ivoman et ai. warren et ai. a w a ).

Mid Elevation Scenarios. Predictions for model scenarios at mid elevations, 

between the elevation of mean high tide and 15% tidal flooding, are presented in Figure 

5.3. These scenarios were useful to show plant response to intermediate hydrologic 

conditions along a transitional gradient from tidal restoration (high flooding) and tidal 

restriction (low flooding). Model predictions of dominant plant species for these 

scenarios varied by salinity regime, with Spartina patens performing best at the mid and 

high salinity locations (MSME and HSME, respectively), and Typha at low salinity 

(LSME). Spartina altemiflora was diminished from its dominant levels at lower 

elevations, but still performed well enough to maintain 20% and 40% cover in the 

understory at low and mid salinity (LSME and MSME, respectively). At the high salinity 

location, Juncus performance was greatly improved from the low elevation location 

(HSLE Figure 5.2) and was second only to Spartina patens (44% to 56%, respectively, 

HSME Figure 5.3).
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The relative strength of Spartina patens at higher-salinity mid-marsh elevations 

was consistent with many field observations of salt hay distribution in New England 

(Niering and Warren 1980, Bertness and Ellison 1987, Bertness 1991a, Bertness 1991b), 

and suggested that Spartina patens would out-perform brackish invasive species at these 

elevations under conditions where high-salinity tidal flooding was reintroduced 

(Sinicrope et al. 1990, Burdick et al. 1997, Roman et al. 2002). However, the overall mix 

of dominant halophyte and brackish invasive species at mid elevations (as opposed to 

Spartina altemiflora dominance at all low elevations) suggested an important shill in 

marsh edaphic conditions, and therefore plant community composition, with reduced 

flooding. In terms of the model, changes in elevation triggered the use of a new set of 

tolerance factors (mid-elevation factors, Table 1.6), and also a transition in determinants 

of succession from tolerance-based to more competition-based control (Figure 5.1, with 

competition factors listed in Table 1.7). The result of this shift was especially evident at 

the low salinity locations: Spartina altemiflora beat Typha at low elevation (96% to 3%, 

respectively LSLE Figure 5.2) but dominance was reversed at mid elevation (Typha 72% 

to Spartina altemiflora 19%, LSME Figure 5.3). In feet, field reports appeared to 

support this prediction, with strong indications that Typha distribution in mesohaline and 

polyhaline marshes is typically limited to elevations above mean high water (Sinicrope et 

al. 1990, Warren et al. 2001). These findings, together with model results, suggested that 

multiple stresses associated with the combination of flooding and salinity may interact in 

complex ways to exclude relatively stress-intolerant species (i.e., Typha) from certain 

regions of the salt marsh gradient (Beare and Zedler 1987, Pennings and Callaway 1992, 

Warren et al. 2002).
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High Elevation Scenarios Model scenarios for high elevation marsh habitat 

(elevations above the 15% tidal flood level) are presented in Figure 5.4. Scenarios at the 

low salinity regime simulated plant community response to tidal restriction, with higher 

salinity scenarios simulating non-impacted salt marsh conditions. At mid and high 

salinity, marsh halophyte species were predicted to dominate, with Spartina patens at mid 

salmity and Juncus at high salinity (MSHE and HSKE respectively, Figure 5.4). Best- 

performing subordinate species for these higher salinity scenarios varied, with Lythrum 

achieving 20% cover at mid salinity and Spartina patens reaching 30% at high salinity. 

However, for upland-edge marsh regions at low salinity, the model predicted dominance 

of the salt-intolerant species. At elevations above the extent o f regular tidal flooding, 

Phragmites and Typha both performed well, with Typha eventually dominating (LSHEa, 

Figure 5.4). At upland-edge regions with infrequent but regular tidal flooding, 

Phragmites was predicted to be the dominant species (LSHEb, Figure 5.4). This scenario 

showed the impact of model adjustments designed specifically to favor Phragmites over 

Typha in this elevation sub-zone of the high marsh.

Overall model results for low-flood scenarios indicated that changes in salinity 

regimes were the most important determinants of species dominance. This was expected, 

since stress due to flooding was low or absent in these locations, and therefore salinity 

was the sole source of physical stress. Because competition was thought to be a stronger 

determinant of species composition than physical tolerance in these low-stress regions 

(Bertness and Ellison 1987, Pennings and Callaway 1992, Streever and Genders 1997,
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Emery et al. 2001), competition factors were used to control plant succession here 

(Figure 5.1).

Model predictions of Spartina patens and Juncus dominance at the mid and high 

salinity areas of the high marsh were in line with field observations of known species 

distribution in pristine New England salt marshes (Niering and Warren 1990, Bertness 

and Ellison 1987). In addition, these halophytes are known to replace brackish plant 

species in impacted marsh sites restored to high salinity regimes, although the modeled 

rate of species replacement appeared to be slower in the high marsh than in the low 

marsh. As an indicator of this delayed response, Spartina altemiflora achieved 90% 

dominance in 20 years at low elevation (Figure 5.2, LSLE and MSLE), but the dominant 

halophyte species at high elevations only reached 65% cover in 20 years (Figure 5.4, 

MSHE and HSHE). The persistence of brackish species in less-flooded areas has been 

noted in the field, even at high salinities (Sinicrope et al. 1990, Burdick et al. 1997, 

Warren et al. 2002), suggesting that species composition changes due to competition may 

be slower than changes associated with physical stress in these systems.

At the low salinity regime, model predictions clearly favored brackish species 

Typha and Phragmites over the halophytes. These predictions were consistent with 

observations of long-term brackish species replacement of halophytes in tidally restricted 

salt marshes (Roman et al. 1984, Chambers et al. 1999, Windham and Lathrop 1999, 

Burdick et al. 2001, Burdick et al. 2002, Roman et al. 2002, Warren et al. 2002). 

Notably, succession scenarios did not identify a gradient location of dominance for
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Lythrum. Model results for Lythrum were a reflection of poor overall species growth, 

survival, and competitive performance in the field experiment (Chapter I), likely 

associated with low species tolerance of mesohaline and polyhaline salinity levels 

(Dzierzeski 1991). Purple loosestrife, however, was observed in regions of high marsh 

at three of the tidal-restricted study sites (Little River, Mill Brook, and Oak Knoll, 

Introductory Chapter), indicating that the succession model was somewhat lacking in

a-P T ApnoKfliHf OAmA prooc nntVtm 00I+ mprcV» Arp/’lionf Tf
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be that zones of very low salinity exist in some areas, possibly due to the intrusion of 

groundwater (Gardner et al. 2002). At best, the model suggested that Lythrum would 

persist if already entrenched along the upper elevations of mesohaline marshes, perhaps 

in regions isolated from competitive dominant species like Phragmites and Spartina 

patens. In any case, even though model results were clearly explained by field 

experiment measures, it appeared that the model was generally underestimating Lythrum 

potential in some of the lower salinity regions of salt marsh habitat.

Sensitivity Analysis. The relative sensitivity of parameters for model runs of 1 

and 20 years is presented in Table 5.1. Since relative sensitivity was calculated as the 

percent difference in species cover divided by percent difference in succession parameter 

weight, this analysis indicated low overall model sensitivity to any one succession 

parameter (all values < 1). In addition, the analysis suggested a fairly consistent balance 

among model parameters (values ranged from 0.01-0.37). On a relative scale, the model 

was most sensitive to tolerance and competition weights and less sensitive to changes in 

the recruitment rate. These sensitivity results were expected, since the model recruitment
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rate was kept constant at 10%, while the tolerance and competition weights varied 

between 10% and 80%. All parameter weight sensitivities increased from one year to 

twenty year model runs, but since overall sensitivity was low, these increases were 

negligible and did not indicate model instability at extended timeframes.

Conclusions

Human alterations to tidal hydrology of salt marshes result in directional changes 

in plant species composition over time. Hydrologic conditions that restrict natural tidal 

flows, and the reintroduction of tides to restricted sites, are disturbances that trigger plant 

succession changes. For New England salt marshes, the most important processes that 

control plant succession are physical stress tolerance, interspecific competition, and 

recruitment from neighboring plants. A model of plant succession for common species of 

New England salt marshes was developed to predict the response of plant communities to 

hydrologic conditions based on the influences of these three processes. The model was 

parameterized with species-specific stress tolerance factors, and combination-specific 

competition factors derived from a field experiment that measured growth and survival 

across a physical gradient of flood and salinity regimes. Model results supported the 

findings that, for marshes with tidal restriction, salt marsh halophytes are replaced by 

brackish invasive species, and further, that these brackish species will persist under 

restricted-flow conditions. However, when the model simulated the reintroduction of 

tidal flows, brackish species were succeeded by salt-tolerant plants native to salt marsh 

habitats, and, especially in the low marsh, these changes were sometimes rapid. Model
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predictions appeared to follow observed changes across a range of marsh gradient 

conditions, from mesohaline to polyhaline salinities, and from creek-bank to the upland 

border. As a result, this succession model was expected to provide valuable estimates of 

plant species composition change in response to hydrologic modification of salt marsh 

habitats.
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Parameter ly r
+5%

ly r
-5%

20  yr
+5%

20  yr 
-5%

ly r
+20%

ly r
-20%

20 yr 
+20%

20  yr 
-20%

Recruitment
weight

.061 .061 .042 .042 .031 .031 .010 .010

Tolerance
weight

.061 .123 .333 .374 .031 .123 .317 .120

Competition
weight

.061 .123 .333 .374 .031 .123 .317 .120

Table 5.1. Relative sensitivity of species cover values to ±5% and ±20% adjustments in 
parameter values for 1 year and 20 year model runs. Relative sensitivity was calculated 
as % change in species cover divided by % change in model parameter weight.
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Figure 5.1. Diagram of succession factors for salt marsh gradient locations. Gradient 
location codes identify salinity (LS: low salinity, MS: mid salinity, HS: high salinity) and 
flood regime (LE: low elevation, ME: mid elevation, HE: high elevation), from field 
experiment (Chapter I). Shading indicates locations with similar physical stress levels. 
Relative influence of stress tolerance and competition assignments for plant succession 
model based on Bertness and Ellison (1987).
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Figure 5.2. Low elevation (LE) plant succession model scenarios for three salinity 
regimes (LS: low, MS: mid, HS: high).
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CHAPTER VI

SPATIAL MODELING AND VISUALIZATION OF HABITAT RESPONSE TO 

HYDROLOGIC RESTORATION IN NEW ENGLAND SALT MARSHES

Introduction

Today, as little as 50% of coastal wetlands present before colonial times remain in 

the New England states of Massachusetts, Maine, and New Hampshire (Cook et al. 

1993). An estimated 20% of this salt marsh habitat is negatively impacted by roads and 

culverts that form barriers to natural tidal flows, a condition commonly known as tidal 

restriction (Roman et al. 1984, USDA SCS 1994, Neckles and Dionne 2000). Salt 

marshes with tidal restrictions may experience reduced plant biodiversity (Roman et al. 

1984, Sinicrope et al. 1990, Burdick et al. 1997), degraded water quality (Portnoy 1991, 

Portnoy and Giblin 1997), diminished ability to keep pace with sea level rise (DeLaune et 

al. 1983, Boumans and Day 1994), and disrupted food webs for fish and birds (Dionne et 

al. 1999, Reinert and Mello 1995). Fortunately, these marshes can recover lost functions 

if  the appropriate hydrologic regime is restored (Sinicrope et al. 1990, Roman et al. 1995,
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Burdick et al. 1997, Boumans et al. 2002, Roman et al. 2002, Warren et al. 2002), and as 

a result, hydrologic restoration of restricted salt marshes is a common management 

practice today (New Hampshire Office of State Planning 1996, Save the Sound 1998, US 

Army Corps of Engineers 1999, Warren et al. 2002). However, lack of synthesized 

information regarding important salt marsh processes, including plant biology, 

community succession, and sediment-plant interactions, may lead to unintended and less

t .n a t i  u p L ii i-u u  I c S u i o  i u i  l i t o u j f  h a il , t u a i b u  u j f u i u i u ^ t v  i w S l u i a u o u  y i y j c c i d  \ I v a o C  i > o J ,  ±*x\jy

and Levin 1990, Sinicrope et a l 1990, Frenkel and Moran 1991, Rozsa 1995, Simenstad 

and Thom 1996, Zedler 2000, Warren et al. 2002, Williams and Orr 2002).

In order to improve the predictive capability of resource managers faced with salt 

marsh restoration options, a synthesized computer model o f interrelated salt marsh 

processes was developed. Past efforts with computer modeling have advanced our 

understanding and ability to predict salt marsh succession (i.e., the directional change of 

plant species composition over time). In 1977, Zieman and Odum developed a 

correlative model to predict salt marsh plant succession in areas of dredge spoil (Mitsch 

and Gosselink 1993), and Sklar et al. (1985) constructed an early spatial model that 

tracked physical processes associated with habitat succession in coastal wetlands. To 

specifically address the needs of restoration planners, Roman et al. (1995) developed a 

hydrologic model that simulated changes in tidal regime for a tidally restricted New 

England salt marsh. Boumans et al. (2002) advanced this approach with a model that 

estimated flood regime, but also connected hydrologic change to plant community 

succession through comparisons of observed plant distributions at similar relative
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elevations. None of these models, however, considered the specific impacts of 

hydrologic disturbance on individual plant species’ tolerance of physical stress and 

competitive ability, factors recognized as the key determinants of spatial vegetation 

patterns in New England salt marshes (Bertness and Ellison 1987). Vegetation of 

disturbed salt marshes is an especially important concern for resource managers 

attempting to restore native halophyte communities to areas dominated by brackish marsh

xixwiviuiw, roiu w xMigv u i m<uiS>u picuiL ouvvwoi^iiai a tu iuuu^ ,

coupled with a fine-scale model applied over a spatial domain, should provide a novel 

and valuable simulation tool for coastal resource managers considering hydrologic 

restoration.

This chapter describes a project that integrated diverse ecological factors, 

including biotic and abiotic processes, into a synthesized ecosystem model. The specific 

goal of the project was to develop, test, and use this synthesized model as a predictor of 

long-term salt marsh habitat response to hydrologic restoration. A conceptual diagram of 

the ecosystem model components and processes is provided in Figure 1.2 (Introductory 

Chapter). As a first step, the model estimated water volume for marsh areas upstream of 

tidal barriers, based on two-week measures of tidal heights and physical dimensions of 

the tidal inflow channel or culvert. Tidal water volume estimates were combined with 

site-specific factors of marsh geomorphology (including a composite of marsh elevations 

ordered as a hypsometric curve) to predict local water depths, hydroperiod, and general 

salinity level. Flooding and salinity regimes were used as the primary determinants of 

plant succession processes, which considered physical stress tolerance, competitive
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ability, and recruitment potential to predict changes in plant species composition. 

Further, plant species composition determined the rate of plant biomass and litter 

production, which combined with inorganic deposits to form new marsh sediments. In 

this manner, the ecosystem model included a feedback loop among biotic and abiotic 

marsh components that influenced the long-term self-maintenance capacity of salt marsh 

habitat in relation to rising sea level.

Beyond the specific predictions of the ecosystem model, major project objectives 

were four-fold. First, standardized, widely available field specifications were chosen as 

inputs to make the model more easily transferable to potential restoration sites. Second, 

important ecological datasets that identified physical stress tolerance and competitive 

rankings among important salt marsh plant species were provided by a field experiment. 

Third, new software tools for design and assessment o f hydrologic restoration scenarios 

were developed, tested, and refined. Finally, advanced spatial technologies were 

employed to provide rigorous fine-scale simulations o f salt marsh ecosystem functions, 

and to develop assessment tools for management. Spatial models and outcomes are the 

focus o f this chapter, including the development, validation, use, and evaluation of spatial 

simulations and visualizations for tidal restoration of New England salt marshes.

Four project sites were selected for study because of past or present hydrologic 

conditions of tidal restriction (see Introductory Chapter, Study Sites). Drakes Island 

(Wells, Maine) and Oak Knoll (Rowley, Massachusetts) are sites with continued tidal 

restriction due to undersized culverts. Little River (North Hampton  ̂ New Hampshire)
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and Mill Brook (Stralham, New Hampshire) are marsh locations with past tidal 

restrictions and restored hydrology. Collectively, these sites provided a diversity of 

marsh conditions and habitat types that added depth to the range of evaluated conditions 

for model use. In addition, Drakes Island and Mill Brook represented sites with past 

hydrologic modifications that were the subject of prior research, and therefore useful as 

test sites for validating spatial results.

At each site, the model considered six dominant plant species of the salt marsh. 

In New England salt marshes, native perennial species occur in monotypic zones of 

cordgrass (Spartina altemiflora), salt hay (,Spartma patens), and black grass (.Juncus 

gerardii) (Niering and Warren 1980). Where tidal restrictions are present, these native 

plants are often replaced by invasive species like common reed (Phragmites australis), 

narrow-leaf cattail (Typha angusti/olia), and purple loosestrife (Lythrum salicaria) 

(Sinicrope et al. 1990, Roman et al. 1995, Burdick et al. 1997, Roman et al. 2002, Warren 

et al. 2002).

An underpinning of the simulation model was the concept that salt marshes exist 

across a physical gradient of elevation and salinity conditions (Niering and Warren 1980, 

Odum et al. 1984). Subtle differences in gradient conditions are known to favor or to 

disadvantage a plant species based on relative tolerance of stressful physical conditions 

and the changing influence of competitive interactions (Bertness and Ellison 1987). 

Since these conditions change when tidal hydrology is modified, a detailed understanding 

of changes to gradient regimes was central to the prediction of plant response. To
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simulate the marsh gradient, observed elevation and salinity regimes wore subdivided 

into nine different zones (high-mid-low elevation regimes by high-mid-low salinity 

regimes). The assignment of gradient location to a specific marsh plot was a critical 

modeling function. To assign salinity regime, the model considered the salinity o f the 

tidal inflow, the plot elevation, and the location o f the plot in relation to the tidal source, 

the upland, and the nearest creek. Elevation regime assignments were based on flood 

conditions (a combination o f tidal signal and plot elevation). The common element for 

these key assignments was elevation, arguably the most important of all model 

descriptors. In an effort to obtain the best, high-resolution (sub-decimeter accuracy) 

estimates of elevation, the model included statistical subroutines to estimate elevation of 

non-sampled marsh area based on kriging algorithms

Since model components required arrays of spatial information, specialized 

database structures were developed to store relevant information for each site. The 

elemental model processing unit was the cell, a  square plot o f fixed dimensions and 

known relative spatial coordinates [x,y] that, when combined on a grid, described the 

entire surface area o f a study site. Spatial databases were constructed for each site with 

one observation per cell. The first set of observations in a spatial database contained 

information about the baseline, or current conditions for each cell (elevation, salinity 

regime, plant cover, etc.). Baseline information was based on field survey data collected 

at the site and mathematical techniques that provided parameter estimates for every cell 

in a marsh grid. For each year in the model run, the program created an additional annual 

entry for each cell. The standard timeframe for model simulation was twenty years, a
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duration that appeared to reasonably approach the observed timescale over which many 

important marsh functional processes occur (Morgan and Short 2002).

For modeling exercises, a first set of tasks involved the validation of model 

performance for spatial and aggregated simulation results. Prediction of a dominant plant 

species for each cell was the primary output of the model. At the Drakes Island and Mill 

Brook sites, marsh conditions were simulated at the time of past hydrologic modification 

(based on published records). Comparisons of observed-versus-predicted plant cover 

from these validation exercises provided a rigorous set of metrics with which to assess 

spatial and composite model predictive performance. Validation exercises were 

conducted in addition to formal sensitivity analysis at the process component level of the 

model (biomass processes based on Fitz et al. 1996, Chapter II; relative elevation 

processes based on Rybczyk et al. 1998, Chapter HI; hydrologic processes based on 

Boumans et al. 2002, Chapter IV; and plant succession processes based on Grace 1987, 

and Bertness and Ellison 1987, Chapter V).

Following validation exercises, the model was used to predict anticipated changes 

in plant cover for each site over the next twenty years. These simulations were based on 

current marsh hydrologic conditions. In addition, scenario simulations were conducted 

based on hypothetical hydrologic conditions selected for each site (see Chapter IV). For 

Drakes Island and Oak Knoll, the scenarios considered hydrologic restoration of tidal 

flows associated with culvert expansion. At Little River and Mill Brook (sites with 

recently restored tidal flows) scenarios were selected to simulate the past regimes of
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restricted tides. Output from model simulations were analyzed for ecological impacts 

associated with changes in marsh plant cover, and rendered as time-sequence animations. 

In addition, spatial model output was transferred to a 3-dimensional imaging package for 

the construction of high-level (non-technical) visualizations of marsh scenario results.

Methods

General Approach and Processing. An integrated salt marsh ecosystem model 

program was developed in the Microsoft (MS) Visual FoxPro software environment 

(Microsoft Corporation, Redmond, Washington, USA), as a synthesis of process models 

for biomass production, relative elevation, and plant succession. The model used four 

sources of inputs: 1) generalized model parameters, 2) scenario-specific upstream tidal 

record, 3) rite-specific model parameters and 4) a spatial database containing cell-specific 

information for each study site.

All standard model runs were 20 years in duration, except for certain validation 

exercises. Model processing proceeded according to the following procedures in a loop 

of specified duration: First, a marsh cell was selected from a site spatial database, and 

baseline (year 0) information about the cell was provided (elevation, salinity, cover type, 

plant species composition, etc.). Only cells with cover types for marsh plant vegetation 

or bare area were processed. Next, the model determined the gradient location for the 

cell based on elevation, salinity, tidal heights, and spatial distances from tidal sources and 

open water (see Assignment of Elevation Regime and Assignment of Salinity Regime
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sections). The model also determined the sedimentation rate for the cell at this time (see 

Estimation of Sedimentation Rate).

With an estimated cell gradient location, the model cycled through a 52-week 

annual processing loop. First, annual above and belowground biomass for the cell was 

computed according to the specifications of the biomass production process model 

(Chapter II). Biomass results were then passed to the relative elevation process model to 

determine any changes in cell elevation (Chapter El). Next, the model estimated any 

changes in plant species composition based on the plant succession process model 

(Chapter V). The spatial implementation of the plant succession model also included a 

function for computing aggregate species composition of neighboring cells as a measure 

of recruitment potential (see Estimation of Neighbor Species Composition). At the 

conclusion of the 52-week loop, the model created a new entry in the spatial database for 

the cell (year 0+x, where x  was the year of the annual loop). The model then repeated the 

process for the next cell in the spatial database (ordered sequentially by coordinate 

location, from [1,1] to [200 ,200]), and repeated the annual loop until the specified total 

number of years were reached.

Generalized Model Parameters. Model parameters that were used for all cells, 

sites, and scenarios are identified in Table 6.1. These parameters included values that 

controlled model processing for determination of plant biomass (Chapter II), relative 

elevation (Chapter £□), and plant species succession (Chapter V). Species-specific 

measurements of physical stress tolerance and combination-specific measures of
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interspecific competitive capability are provided in Tables 1.6 and 1.7, respectively (from 

Chapter I).

Scenario-Specific Upstream Tidal Record The model used a two-week table of 

upstream tidal heights (m NGVD at 6 minute intervals) in the determination of flood 

regime, salinity regime, and sedimentation rate for each spatial cell. For each site, the

a1 1»a«a1»*a £>a «m a* i4a  a /1 J a^auxuiC s a ju u lu .iCu iwu duS ui Ic^iuS . uuiCiii upbugaui uuai uci^utd num auiuiuaigu uata

collection in the field, and scenario upstream tidal heights as estimated by the tidal 

hydraulics model (Chapter IV). Model scenarios varied by site. For the tidal-restricted 

sites of Drakes Island and Oak Knoll, the scenarios predicted new water levels based on 

expanded culvert designs (Chapter IV, Figures 4.2c and 4.5c, respectively). For 

restoration sites Little River and Mill Brook, the scenarios estimated upstream water 

levels in the marsh if historic tidal restrictions were still present (Chapter IV, Figures 4.3c 

and 4.4c, respectively).

Site-Specific Model Parameters Parameters o f required model inputs for each 

study site location are listed in Table 6.2. Area parameters identified the cell size for site 

spatial grids, total number of cells, and total marsh area. Elevation parameters identified 

the elevation of mean high water, the elevation that was flooded by only 15% of high 

tides (a high marsh delimiter), and the maximum tidal height for current and scenario 

upstream conditions. In addition, site values for an average elevation of upland edge and 

creek bottom were required. Elevation parameters were primarily used as delimiters for 

determination of cell flood regime. The model also required two site-specific measures
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to estimate cell salinity regime; maximum distance from the tidal inflow culvert to the 

furthest extent of the marsh, and the salinity level (high, mid, or low) of the incoming 

tidal flow (see Assignment of Cell Salinity Regime in this section). Lastly, an average 

she measure of sediment accretion at field elevation stations (Chapter m , Table 3.2) were 

provided to estimate marsh surface sedimentation rates for each cell.

Spatial Baseline Map Development. For each study site, mapping techniques 

were used to construct spatially-explicit cell grids that described cover type (marsh plant, 

upland, or water), elevation, and salinity regime. Map development was based on aerial 

photographs (standard 3.75-minute digital orthophoto quadrangles from the U.S. 

Geologic Survey). For the Little River site, a geographic information system (GIS) cover 

map from the New Hampshire Office of State Planning was used in addition to the 

orthophoto. Photos were scanned, and a section of the photo that included the marsh she 

was expanded to a frill page and printed. This page was further expanded by about l-to-4 

using a copy machine, pages were edge-matched, and the marsh outline was delineated 

by differences in appearance between upland and marsh vegetation. The final image was 

overlaid on a drafting worksheet separated into 40,000 2 mm x 2 mm cells (a total grid of 

200 rows by 200 columns). The orientation o f the grid image was always placed north- 

to-south along the column axis; scale was determined by comparing image dimensions to 

known distances in the field (typically, culvert length). The resulting grid image was 

used to identify the upland boundary o f the marsh, including roadways and upland islands 

within the marsh, and flooded areas o f tidal creeks, deep ditches, and salt marsh pannes.
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Baseline maps were developed by drawing marsh transects and plant community 

zones on the grid image from field notes taken during the elevation survey (see Chapter 

V, Marsh Elevation Surveys, Methods). To delineate transect lines, the main creek 

centerline was established on the grid and transects were drawn perpendicular to the 

centerline at randomly chosen intervals. Transect starting locations were located on the 

grid, and survey points were numbered from start to finish at the map scale interval that 

represented 15 m on the ground. The dominant plant community type (species with the 

highest percent cover) for each survey point was recorded on the grid by color-coding the 

cell with an ink marker. Individual cells were expanded to entire zoned regions of 

dominant plant communities based on field notes, and produced a complete color-coded 

grid of cover types for each marsh. A total of nine cover types were used; six for specific 

plant community types, and one each for non-vegetated marsh, upland, and constantly 

submerged cell areas.

Translation of paper-based grid images to computer-based databases was 

accomplished using drafting tools and custom software. Grid images were secured to an 

18’ x 24’ drafting table with a moveable T-bar guide. Row by row, images were 

‘scanned’ by moving the T-bar guide to the row and recording the cover type, start 

column, and end column for blocks of cells with the same cover. Results were entered 

into custom software that generated one record in a database for each grid cell (40,000 

total cells per site, although some cells represented bordering uplands). Each cell was 

identified by a row and column coordinate and coded with cover type. For cells that also 

occurred on elevation survey points, the observed elevation (adjusted to m NGVD) was
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added to the cell record. In this manner, a spatial database was developed for each study 

site that identified the baseline cover type for each cell in the marsh grid, and the known 

elevation of survey points. Procedures used to assign percent cover for each plant 

species, elevation for non-sampled locations, and flood and salinity regimes are described 

in the following sections.
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cover type for each vegetated cell (indicating the dominant species) but the model 

required numerical estimates of individual species percentages for predictions of plant 

species composition changes. Results from the marsh vegetation survey (Chapter IV, 

Methods) were used to derive these estimates. Since the field survey recorded actual 

species or bare ground percent cover, and the model required the relative portion of the 

plot occupied for each species, survey data required standardization prior to model use. 

For plots with 5% or more vegetated cover, bare ground cover was allocated to each of 

the six species found in the sample quadrat according to the observed proportions of 

species percent cover. Samples with less than 5% vegetated cover were coded as bare 

ground. In addition, if a sample quadrat had less than 5% study species, and trees, 

shrubs, or other upland plants were present, the plot was coded as upland.

Percent cover for several common non-study plant species found in the surveys 

were added to study species based on observed plant associations. Salicomia europaea 

(glasswort), a succulent annual halophyte, is typically found in disturbed areas or bare 

patches of New England low marsh and high marsh habitat (Niering and Warren 1980).
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Ellison (1987) studied the distribution of Salicomia europaea, and found that it was most 

common beneath the canopy of short-form Spartina altermjlora, therefore glasswort 

percent cover was assigned to Spartina altemiflora. Distichlis spicata (spikegrass), 

another halophytic colonizer, is often found in disturbed areas of high marsh. Reports 

indicated that, although spikegrass was common in both Spartina patens and Juncus 

gerardii zones, the species was most often found in the wetter (lower-elevation) areas of

u i c  u i ^ u  4 x ia i5 u  i j f ^ i u u i )  a S S O o i d i c u  w i u x  t jy C u J ifiU  y G ic -itS  ^ iN iC iiU g  < u iu  v v a i i C u  l ^ o u ,

Bertness and Ellison 1987). Therefore, occurrences o f Distichlis from the field surveys 

were added to Spartina patens cover percentages. Lastly, Spartina pectinata and Scirpus 

spp. were frequently observed in the brackish marsh regions o f study sites. These species 

are often associated with stands of Typha angustifolia and sometimes Phragmites 

australis (Burdick et al. 1999, Warren et al. 2001). For this model, observations of 

Spartina pectinata and Scirpus spp. were assigned to Typha. Occurrences of other 

species were noted in the field, but ignored in the computation of species cover 

percentages.

Species cover values were used to construct average species assemblages for each 

cover type at a site. This was done by grouping samples according to dominant plant 

species, and computing the mean cover of all six species within the group. These 

averages were then applied to all of the cells for that site sharing a common cover type. 

For example, if Junci/s-dominated samples for a site were evenly split between 80-20% 

and 60-40% Juncus-Spartina patens cover percentages, then all Juncus cells were 

assigned to 70% Juncus and 30% Spartina patens. Initial species cover proportions for
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each site, grouped by dominant plant association, are presented in Table 6.3. The mean 

cover percentages for the dominant species ranged from 60% (Juncus) to 90% {Typha), 

with an overall mean o f 77%, indicated that all o f the six study species were capable of 

dominating marsh regions and forming exclusive stands in New England salt marshes 

(Niering and Warren 1980, Dzierzeski 1991, Bertness 1992, Warren et al. 2001). The 

added contributions o f associated plant species cover to the six study species were

^cuciaiijr iiAimiiiai p  ^ /o ) .  HXvcpuOiid wclc i j  /o  o y tifitttu  fj^Citiiuiu  auucu lO ly jjr tu  at

Drakes Island, 10% Distichlis spicata added to Spartina patens at Oak Knoll, 6% Scirpus 

spp. added to Typha at Mill Brook, and 5% Salicomia europaea added to Spartina 

altemiflora at the Little River study site (data not shown).

Estimates of Elevation. Survey point sampling represented only a small fraction 

of the total grid cells in a marsh, but all cells required a measure of elevation to determine 

flood regime. For this project, the statistical technique known as ordinary kriging (Isaaks 

and Srivastava 1989) was used to estimate elevations for non-sampled cells. Kriging, a 

method that produced statistically optimal estimates for unobserved locations using a 

small but spatially-explicit sample, has been shown to be a robust estimation technique 

for geospatial estuarine applications (Little et al. 1997, Porter et al. 1997). The technique 

was based on a statistical analysis of differences between observed values at varying 

distances (spatial continuity), and assumed that autocorrelation between points depends 

only on distance. To use an example from the current project, elevation at one salt marsh 

location was likely to be very similar to the elevation at another point only one meter 

away (unless a creek or ditch was encountered). But it would be expected that this
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similarity would decrease with distance from the first location, up until a point where all 

elevation similarities were simply random. The identification of this maximum distance, 

and a function that estimated changes in autocorrelation ova* distance, was developed 

through the process of semivariogram analysis, a mandatory first step in the use of 

kriging techniques.

Semi vanogKuu analysis was based on a plot o f differences between point 

elevations as a function o f distance between survey points. The statistical measure for 

differences between point elevations was the moment o f inertia (half of the squared 

difference between elevation point values, Isaaks and Srivastava 1989). The analysis 

combined survey elevation points from all four marsh sites. The key statistical measure 

from the semivariogram, the range, was computed as the distance at which 95% of the 

maximum difference between points (a value known as the sill) was observed. 

Semivariogram results were then compared with estimates from basic statistical functions 

to select a transition model for kriging algorithm use. Three common functions were 

evaluated for this project: spherical, exponential, and Gaussian (Isaaks and Srivastava 

1989). Estimates from these functions were compared with observed results, and least- 

squares analysis was performed to find the model with the best fit.

Ordinary kriging algorithms were developed in a separate software program (see 

Program Listing 1) according the specifications provided by Isaaks and Srivastava 

(1989). Computer instructions for matrix inversion were based on Ayers (1962). For this 

project, kriging algorithms used the three nearest known elevation points to estimate an
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unknown value (a search function found the three nearest survey points based on cell 

coordinates and cell size). If the upland edge was found to be nearer than any of the three 

survey points, the upland edge elevation (uplandel, Table 6.2) was used as one o f the 

three kriging points (replacing the furthest survey point). The kriging utility produced 

elevation estimates for each marsh cell that was not coded as upland or water area.

To assess the accuracy of elevation estimates, kriging was used to generate 

estimates for each known survey point. PRESS statistics were computed as the measure 

of error for each estimate (prediction sum of squares, Equation 1, Little et al. 1997). 

PRESS results from kriging were also compared with results from an exercise using 

linear interpolation to estimate elevation of known points (a simple average o f the 

elevation measured before and after each point along the transect). For this exercise, 

estimates were not made for the first and last points of each transect, or when one of the 

nearest survey points was located in a creek or ditch.

PRESS = 2p o i m i - j ( O b s e r v e d  E levation^ i-j-Estimated Elevationpohni-j)2 (1)

Assignment of Flood Regime. The model determined the flood regime (low 

marsh, mid marsh, or high marsh) for each cell by comparing the elevation of the cell to 

site and scenario-specific water elevation delimiters identifying mean high water and 

high marsh elevations (mhwater and hiwater, respectively, Table 6.2). Model use of 

these delimiters was based on reports of ecological significance at these relative 

elevations for common salt marsh plant species (see Chapter V, Delimiters of Marsh 

Gradient Locations). Specific elevation values were identified from an analysis o f tidal
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heights in a complete two-week tidal cycle of current conditions, and a selected 

hydrologic scenario for each site (Chapter IV). Mean high water was the average of all 

high water elevations in the tidal cycle record, and cell elevations below this level were 

assigned to the low elevation regime. The high marsh elevation began at the height of the 

4th highest high tide in the tidal cycle record (flooded by 15% of 27 high tides in two- 

weeks). Cell elevations between mean high water and the high marsh elevation 

(inclusive) were assigned to the mid elevation regime. Cells with elevations above the 

high marsh line were assigned to the high elevation regime.

Assignment of Salinity Regime. Model determination of cell salinity regime was 

based on five factors: cell elevation, maximum high water elevation, creek salinity at the 

tidal source, relative location of cell between the nearest open water and upland, and 

relative location of cell between the nearest tidal source (culvert or creek mouth) and 

upland. These factors were processed by a salinity submodel to assign a low, mid, or 

high salinity regime to each cell. These regimes generally corresponded to levels of 

mean substrate salinity measured during the field experiment described in Chapter I (low: 

mesohaline 5-18 ppt, mid: meso-polyhaline 18 ppt, and high: polyhaline >18 ppt, per 

Odum et al. 1984). Site-specific field data required to parameterize the salinity submodel 

(elevation, tidal signal, substrate salinity at the tidal source) were based on regional data 

collection standards (Neckles and Dionne 2000), supplemented with scale measurements 

from USGS orthophotos and spatial grid computation.
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Under field conditions, observed marsh substrate salinity levels have been related 

to a number of physical and biotic factors, among them marsh proximity to open ocean 

(Odum et al. 1984, Warren et al. 2001), distance from tidal creek (Pearlstine 1993, 

Gardner et al. 2002), marsh plant shading (Bertness 1991a), rainfall and 

evapotranspiration (Gardner et al. 2002), and soil hydraulic properties (Harvey et al.

1987). In fret, it seems the more we know about the spatial distribution of salt marsh

c o lm i+ s r  1 ox r o le  ■flio m A r o  / l i 'P K / 'i iU  i f  ttos»s\rvxoc fA  /^oxrol/’xrx o  n ra < 4 i/* fix ra  wi/%s4o1 ( o o o  CX*%rAr\air
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et al. 2002 for a discussion of observed salinity anomalies). However, two generalities 

can be stated with some confidence. First, overall marsh salinity levels are diminished 

with increased distance away from the open-ocean source. Many estuarine researchers 

attribute this effect to the upstream dilution of intruding tidal saltwater (Odum et al. 1984, 

Pearlstine et al. 1993, Warren et al. 2001, Gardner et al. 2002). Second, within a marsh 

system, salinity levels are generally reduced with movement away from the tidal creek 

toward the upland edge, likely due to interactions of relative elevation, substrate 

hydraulics, tidal signal, and the tidal pressure wave (Harvey et al. 1987, Pearlstine et al. 

1993, Gardner et al. 2002). So, a spatial scheme that considered the distances from tidal 

sources and creeks, combined with relative elevation, should be able to capture the 

essence of general shifts between broad (but ecologically-important) salinity regimes.

In concept, salinity model processing created a matrix of salinity subzones within 

each marsh spatial grid. These subzones were delineated by modeled breakpoints that 

grouped collections o f cells with common spatial properties (i.e., closeness to open water 

and tidal source). Two sets o f delimiters were used. First, the model computed the
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distance from a cell to the tidal source, and divided this distance by the site maximum 

distance from the tidal source as a relative measure o f closeness to the tidal source (0-1, 

sdist). Next, the model determined the distance from the cell to the nearest open water 

and divided this value by the distance to the nearest upland edge as a relative measure of 

closeness to tidal water (0-1, wdist). Cell values were then grouped into three equal sized 

categories for relative distance from source (Sl:sd£sP\67, S2:.67>scSst >.33, and

Cl r a  mW-a ** AIM Sj  uiiu iu i iviouvv uibuuiwv uurn  yvoi î

and VJ3:wdist<.33). As a result, each marsh was separated into nine subzones: high 

salinity cells were S3 and W3, S3 and W2, or S2 and W3; mid salinity cells were S3 and 

W l, S2 and W2, or SI and W3; and low salinity cells were S2 and W l, SI and W2, or SI 

and W l (Figure 6.2). An exception to this scheme was made for cells with elevations 

above the maximum high water marie for the marsh (maxwater, Table 6.2), in which case 

the cell salinity was always low. This accounted for the occurrence of high marsh 

vegetation in high elevation islands near the tidal source for some marsh sites (notably, 

Drakes Island and Oak Knoll). In addition, if the salinity of the incoming tidal water 

(salinity, Table 6.2) was mid or low (not the case for any study site), the model would 

shift the salinity regime to a reduced level, as appropriate.

Estimates of Cell Sedimentation Rate. For each cell, the model estimated the 

sedimentation rate based on three factors: cell elevation, upstream tidal heights, and site- 

specific sediment accretion rates. Estimates were based on Stumpf (1983), who found 

that sedimentation on a marsh surface was a function of the settling of suspended solids, 

and therefore the highest rates were on the levees that formed along tidal creeks. Further,
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Stumpf determined that the rate of deposition diminished from creek bank to high marsh 

as the water-borne particles settled out, but this was more a function of tidal flooding than 

distance from the creek. In particular, it was found that the level of tidal inundation 

accounted for the observed levels o f sedimentation at mid and high marsh locations. 

Stumpf attributed this phenomenon to storm-flooding events and regular tides. Other 

researchers have also found that flood level was an important determinant of

>a m c  / W T o f  «*t l O O Q  A o f i s l / I  A f  a1  l O O O ^  +1%
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other complex physical and biotic factors that present serious challenges to modelers (see 

Chapter HI, Table 3.1).

For the study sites of this project, average sediment accretion rates were measured 

at field elevation stations located near (10 m) main creeks at each site, according to the 

regional data collection protocol (Neckles and Dionne 2000). These values (sedmax, 

Table 6.2) were therefore considered the maximum sedimentation rates for each site. To 

simulate the distribution of sediments across the marsh surface, the model compared the 

elevation of each cell to the upstream tidal record (see Chapter IV) and computed the 

percent of time the cell was flooded by the tide. Since the model considered only 

flooding from typical (non-storm) tides, the percent of time flooded for each cell was 

used to estimate a reduction in sediment accretion from the measured maximum value at 

the creek bank. An analysis of tidal inundation levels recorded during the field 

experiment (Chapter I, Table 1.1) showed that the study mid-marsh areas were flooded 

13-16% of the time by tides. Therefore, flood levels above 16% inundation were 

considered representative of the low marsh conditions at field elevation stations (10  m
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from creek). Cells with 16% or higher flood inundation were assigned to the maximum 

sedimentation rate; cells with flooding less than 16% received a reduced fraction of 

maximum sediments according to percent of time flooded (Eq. 2). Estimates o f sediment 

deposition were used as inputs to the relative elevation processing model (Chapter II).

Sediment Input= sea6jMx*(l-(MAX(0,16-Flood Percent/16))) (2)

Estimation of Neighbor Species Composition. Modeled processes associated with 

plant succession required an estimate of neighboring plant species composition as a 

measure of recruitment potential (Chapter V). The model estimated neighbor 

composition once per annual cycle, at week 30. To compute these estimates, the model 

first located all neighbor cells in the spatial grid (cells sharing a border, with a total o f up 

to eight). The model then averaged the percent cover values for the six study species 

across all neighbor cells to compute an aggregate profile o f neighbor species 

composition. Neighbor species composition was stored to the spatial database, and used 

in conjunction with a recruitment weight factor to compute the portion of plant 

succession change attributable to recruitment (Chapter V).

Model Validation. The spatial model was first used to establish performance 

benchmarks associated with model validation. The validation sites, Mill Brook and 

Drakes Island, were chosen as the two study sites with the longest record of observation 

following hydrologic modifications (9 to 14 years ago, respectively, see Study Sites, 

Introductory Chapter). To initialize validation conditions, the spatial databases for these

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sites were configured with estimates of marsh plant cover just prior to hydrologic 

restorations, based on Burdick et al. (1999). This report, however, was very limited in 

terms of specific plant cover and spatial distribution. At Drakes Island, a two-sample 

survey (2 m2) was conducted in 1988, the year of known hydrologic modification at the 

site (unplanned removal o f the tide gate). The survey indicated that the marsh was 

dominated by Typha spp. but no spatial information was recorded. Therefore, a pre- 

modification cover map was created for Drakes Island with each cell configured 

identically with 50% cover for Typha, and 10% cover for each for the other five species. 

At Mill Brook, a six-sample survey (6  m2) conducted in 1993, the year of planned tidal 

restoration, indicated that that marsh was dominated by mixed zones of Lythrum 

salicaria, Typha spp. and Phragmites australis, with remnant populations of Spartina 

patens and Jtmcus gerardii. A rough spatial map of Mill Brook was constructed that 

delineated these plant zones (D. Burdick, personal communication) and like Drakes 

Island, the dominant species in each zone was assigned 50% cover with the other five 

species receiving 10%.

In addition to plant cover, model validation runs required estimates of cell 

elevation prior to hydrologic modification. If current elevations were used, the model 

would incorrectly estimate elevations when new sediments and organic matter were 

applied, resulting in differences in elevation that might alter assignment of cell gradient 

location. Therefore, starting cell elevations for validation exercises were estimated as the 

current elevation plus or minus an adjustment factor. Adjustment factors were generated 

for each cell by running the model for the number of years since hydrologic modification

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(9 years for Mill Brook, 14 years for Drakes Island), and computing the net differences 

between modeled values and current cell elevations. As a result, cell elevations for the 

last year of validation runs (the current year) closely agreed with estimates based on 

recent survey results.

Validation model runs produced spatial databases that contained, for each marsh 

cell, one baseline record (year 0) and multiple prediction records (years 1-9 for Mill 

Brook, 1-14 for Drakes Island). Individual species results were analyzed, and a cell 

cover type was assigned to the species with the greatest cover value. For each year in 

the model run, annual spatial cover maps for each site were generated using an output 

utility that assigned different colors to cover types. An image of each map was copied 

into a standard image edit utility (Microsoft Photo Editor, Microsoft Corporation, 

Redmond, Washington, USA), and output into JPG file format. A complete series of 

annual images were then compiled with a shareware utility (Platypus Animator, C Point 

Pty, Ltd., Queensland, Australia) into AVI animation file format for playback as a time- 

sequence video.

To quantify the performance of the spatial model, plant cover results from the 

final year of the validation model runs were compared against current conditions. A 

utility program read through the validation database cell-by-cell and compared predicted 

cover type with the observed cover type from the same-coordinate cell in the baseline 

database. A summary matrix was generated that showed observed versus predicted cell 

counts for each species at each site.
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Two separate performance metrics were used to assess the model goodness-of-fit, 

based on Turner et al. (1989). To measure spatial error, an address goodness-of-fit metric 

(address error) was computed for each species by expressing the number of cells with 

matching (predicted = observed, Model Match) species cover type as a percentage of the 

total number of observed cells (Survey Total), subtracted from 100% (Eq. 3). To 

measure non-spatial accuracy, a composite goodness-of-fit metric (composite error) was 

computed for each species by expressing the total number of predicted cells (Model 

Total) as a percentage o f the total number of observed cells (Survey Total), subtracted 

from 100% and reported as an absolute value (Eq. 4). Site measures of accuracy and 

composite error were computed as the average error o f all species, weighted by the 

relative percent o f each species observed at the site. Error results were also combined for 

both sites to compute overall model performance metrics. Since restoration managers are 

mostly concerned with recovery o f natural plant communities, the six study species were 

grouped as native halophytes (Spartina altemiflora, Spartina patens, and Juncus) and 

brackish invasive species (Phragmites, Lythrum, and Typha) for an additional analysis of 

model error rates.

Address Errorspedes = 100-(100*(Model Matchspedes /Survey Totalises)) (3)

Composite Errorspedes= ABS(100-(100*(Model Totalgpedes/Survey Total^es))) (4)
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Model Scenarios For each study site, the model was run for twenty years 

configured with current hydrologic conditions and baseline spatial maps (elevation and 

salinity). For Drakes Island and Oak Knoll, the model predicted changes in species 

composition with continued tidal restriction (note that, even though Drakes Island was 

partially restored in 1988, it was still considered a tidally restricted site). For Little River 

and Mill Brook, the simulations showed the impacts predicted from tidal restoration. In 

auuiucn iC cuiient cuCuiuons, sne-speciiiC uyuioiOgiC scenanos w*ere useu ior a seconu 

set o f twenty year model runs. At Drakes Island and Oak Knoll, hydrologic scenarios 

were selected from an analysis o f tidal restoration options (Chapter IV). Simulations 

showed the predicted impact on plant species composition if  these restoration scenarios 

were implemented. At Little River and Mill Brook, model scenarios were used to show 

the predicted distribution of marsh plants if past tidal restrictions had remained in place. 

As with the validation model runs, spatial output for each year o f each model run was 

saved in image format, and compiled as part of a scenario animation file.

3-D Visualization. A software visualization tool, World Construction Set (WCS, 

3DNature, Inc., Arvarda, Colorado, USA), was used to render realistic animated images 

of marsh sites under current and hydrologic scenario conditions. Development of 

visualization images was based on the generation o f a fine-scale digital elevation map 

(DEM) for each study site. To generate these maps, a software utility was built to scan 

an entire marsh grid of current cell elevations and to output the grid as a single ASCII 

array of elevation values (200 rows by 200 columns). The ASCII array file was then 

imported into the WCS software to create a digital elevation map for each study site.
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From this starting point, standard features of the WCS program were used to assign 

images o f marsh vegetation types to regions of similar elevation, and to manipulate other 

factors such as lighting, perspective, aspect, and texture, hi this manner, a composite 

image of each salt marsh was designed. An additional feature of WCS allowed for the 

specification o f a maximum water elevations and timing sequences to simulate tidal 

flooding. Maximum water levels for current conditions and hydrologic scenarios (Table

.z .)  w c i c  u S c u  o S  v i  w  p a iO i i iC iC iS  i s j  g c i i a a i c  l u t a ^ C d  u i  u u a i  u u u u r n g  i u i  S T u u j

site. Lastly, these images were used to generate animation files (AVI format) for time- 

sequence visualizations of different hydrologic scenarios.

Results and Discussion

Spatial model and visualization output represented highly aggregated model 

results, based on many layers of internal model parameters and estimates. For purposes 

of clarity, results are presented in a stepwise approach that builds layer-by-layer toward 

the final model outcomes. Therefore, results were organized into sections that described 

model output in the following order: 1) cell estimates for elevation, 2) baseline site maps 

of plant cover, elevation, and salinity (current conditions), 3) plant cover site maps from 

validation exercises, 4) plant cover site maps for current and hypothetical hydrologic 

conditions at extended timeframes (+20  years), and S) site visualization images of 

restored conditions (current or hypothetical).
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Estimates of Cell Elevation. Semivariogram analysis, conducted prior to kriging 

estimation for cell elevations, generated a plot of point-to-point differences in marsh 

survey elevations over distance (Figure 6.2). The plot showed that differences between 

survey elevations increased with distance between points, until an asymptote was reached 

at a distance of about 45 meters between points (three intervals of 15 meters from the 

field survey). This 45 m distance was computed as the semivariogram range, the distance

A C O /  I / A  A / k C  I ***** £ , 0 \  ^1% A
<LL > J / 0  U1 UiW VOIU6 (V .u O j, CdUiiiOlCU iiU iii  r i g u i w  U .^ /. J-llkCipiCkOUUll U i U1W

graph meant that, along a transect survey, there was correlation between two consecutive 

points (15 meters apart), but this correlation was reduced with distance until, at 45 meters 

or more between points, all correlation was due to random effects. The diagram showed 

that, even at 15 meters, about 2/3 of the maximum error was reached (0.041 at 15 m to 

0.065 beyond 45 m). These findings were based on a sample size of only four marsh 

systems, but if other regional salt marshes exhibit similar elevation profiles, the analysis 

implied that elevation surveys conducted for purposes of estimating spatial grid 

elevations should use transects no more than 90 m apart. This would ensure that all non

sampled points were 45 m or less from known elevation points. A check of transect 

spacing for the current project indicated that, on average, survey transects were 85 m 

apart (data not shown), a distance that fell just within the limits of this new guidance.

Three transition models were tested for fit with observed results: spherical, 

exponential, and Gaussian. Sum of the squared differences between model predictions 

and the observed results were 0 .00020, 0.00006, and 0.00011 for the spherical, 

exponential, and Gaussian models, respectively. The exponential model achieved the
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best fit (least difference) and was therefore selected for kriging use. The expression for 

the exponential function (Eq. 6) was taken from Isaaks and Srivastava (1989).

Difference in Elevation = 1 -EXP(3 ̂ Distance to Nearest Survey Point/Range) (6)

An analysis of kriging error with the PRESS statistic (prediction sum of square, 

Little et al. 1997) was based on the comparison of kriging and linear interpolation 

estimates for known survey points. Results of the mean PRESS statistic for each of the 

four study sites are provided in Figure 6.3. In three of the four sites, the kriging error was 

less than the error from linear interpolation (and about the same at Little River). Error 

reduction was 5% at Mill Brook, 18% at Drakes Island, and 22% at Oak Knoll, 

suggesting that kriging was an improved estimation method over simple interpolation 

methods. Figure 6.3 also indicated that elevation estimates were more prone to error at 

Drakes Island, and less so at Little River. This result agreed with observations o f high 

variability in elevation at Drakes Island (many upland islands) and low variability at 

Little River (large flat expanses). The relative steepness at the center of the hypsometric 

curve at Drakes Island (Chapter IV, Figure 4.2b, from 20 -  80% of the marsh surface) 

was another indication o f elevation varying across much of the marsh area Overall, 

results from the PRESS analysis indicated that kriging produced reasonable elevation 

estimates and improvements over simpler interpolation methods.

Initial Spatial Database and Base Maps. Using estimates of elevation and other 

factors (see the Methods section for specific rules), the model examined each cell in each
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spatial database to assign flood and salinity regime categories. In addition, cell cover 

type was assigned from data recorded during the grid design process. Three separate 

cover maps were then generated for each site: cover type (six plant species, water, 

upland, or bare ground), salinity regime (high, mid, and low) and flood regime (high 

marsh, mid marsh, or low marsh). A species-by-species summary o f baseline plant cover 

at each site was also provided (Table 6.4, current conditions).

Initial maps for Drakes Island are presented in Figure 6.4. The cover map showed 

the distribution of Spartina altem iflora and Spartina patens around the impounded tidal 

creek, surrounded by primarily Typha toward the uplands. Typha was the dominant plant 

species at the site by a wide margin (58% cover, Table 6.4). In addition, several large but 

distinct colonies o f Phragmites were observed. An interesting feature of Drakes Island, 

the hilly islands of upland plant species, was evident throughout the marsh. The salinity 

map clearly showed the distribution o f high salinity cells clustered near the inlet of the 

tidal creek (left edge of map), with diminished salinity moving toward the upland and 

away from the creek entrance. The elevation map indicated the asymmetric variability of 

elevation at the site, and in particular, the many regions of low-lying areas scattered 

across the marsh surface. Close examination of the elevation map also revealed 

somewhat linear patterns o f elevation estimates that were artifacts of the kriging 

algorithms.

Baseline spatial maps for Little River are presented in Figure 6.5. The cover map 

indicated the distribution of halophyte species along the creek banks and toward the tidal
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source (right edge of map), but in general, the recently-restored ate was still dominated 

by brackish species. Lythrum, Phragmites, and especially Typha accounted for 56% of 

the current marsh cover, but Spartina patens presence was considerable as well (Table 

6.4). Little River also contained a number of large pannes throughout the marsh, more so 

than the other study sites. The salinity map showed that a high percent of marsh area was 

near enough to a creek and low enough in elevation to be assigned to high salinity levels, 

although large tracts of the marsh were also low salinity (left side o f map, away from 

tidal source). These assignments seemed to reflect the vegetative cover of the map, with 

Typha and Lythrum found in peripheral areas, and Spartina altemiflora and Spartina 

patens in the marsh flats and around the pannes. The elevation map showed that a 

majority of the marsh was mid elevation (above mean high water but flooded by at least 

15% of tides), suggesting that Little River might respond very well to the recent 

hydrologic restoration project. As with the Drakes Island map, intermittent linear 

patterns of elevation were likely artifacts of kriging, and probably not representative of 

actual elevations.

Figure 6.6  showed the base maps for Mill Brook. Plant cover at Mill Brook 

appeared to align well with the outline o f the tidal creek, with Spartina altemiflora and 

Spartina patens accounting for nearly half (49%, Table 6.4) of the total plant cover. 

Several patches o f Phragmites were also evident, but Typha was the most prevalent 

species (42%, Table 6.4) and occupied large tracts of the marsh toward the uplands and 

away from the tidal source (culvert at top edge of the map). The salinity and elevation 

maps for Mill Brook showed excellent agreement, with low elevations and high salinities
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along the creek toward the source, a middle region between creek and uplands, and low 

salinities at the upland borders.

Maps for Oak Knoll are presented in Figure 6.7. The cover maps showed a linear 

pattern of Spartina altemiflora along the creeks and large ditches, and large tracts of 

Spartina altemiflora and Spartina patens in the marsh flats. These two species combined 

for 69% of the total marsh cover (Table 6.4), the most of any study site. The marsh also 

contained substantial areas of Phragmites (-20% of the marsh), and several patches of 

Lythrum and Typha. The modeled salinity regime appeared to follow closely with the 

outline of the main creeks and ditches. In addition, the elevation map revealed very little 

low elevation terrain (below mean high water) at Oak Knoll.

Model Validation. Field specifications from the Drakes Island and Mill Brook 

sites provided independent datasets for the assessment of model performance. At Drakes 

Island, the model was configured for pre-1988 marsh conditions (prior to the inadvertent 

removal of the tide gate) and run for 14 years until the present. A time sequence of 

model predictions for marsh plant cover is presented in Figure 6 .8 . Initial plant cover in 

1988 was entirely Typha, but large tracts of the marsh surface were predicted to be 

dominated by Spartina altemiflora and Spartina patens within two years. It is important 

to note that the model selected a cover type based on relative plant cover, so if marsh 

areas were sparse following hydrologic disturbance, emerging vegetation would provide 

sufficient individuals to trigger a shift in plant cover type. Modeled timing of plant 

succession at Drakes Island following tidal restoration generally agreed with published
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reports of single-season die-back of invasive species like Typha and Phragmites in low 

and mid marsh areas, and re-colonization by halophyte species (Roman et al. 1984, 

Sinicrope et al. 1990, Burdick et aL 1997, Roman et aL 2002, Warren et al. 2002). 

Following the dramatic changes associated with the disturbance event, the model 

predicted only gradual differences in plant cover for the remaining years of the model 

run.

Time sequence model simulations for Mill Brook (Figure 6.9) produced spatial 

patterns of plant succession similar to those predicted at Drakes Island. By 1995 (two 

years following hydrologic restoration), Spartina altemiflora and Spartina patens had 

replaced Lythrum and Typha in low-lying areas near the tidal creek. However, species 

replacement in high marsh locations appeared to be a slow process even though the tidal 

restriction at Mill Brook was completely removed. This result suggested that plant 

habitat response to hydrologic restoration may follow different trajectories of recovery 

between low marsh and high marsh locations (Warren et al. 2002). If physical stress 

becomes less o f a determinant of plant succession in the high marsh and competition 

becomes more important (Bertness and Ellison 1987), then differences in low marsh and 

high marsh habitat recovery rates following hydrologic restoration may be attributable to 

the fundamental shifts between primary succession (rapid response to disturbance) and 

secondary succession (slow response to competition), as hypothesized by Tilman (1982,

1988).
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Analysis o f validation results were conducted to provide a quantified measure of 

model performance. Plant cover for the last year o f the validation model runs, percent 

cover for each species, and current conditions are shown for the Drakes Island and Mill 

Brook sites (Figures 6.10 and 6.11, respectively). The model produced reasonably good 

agreement between predicted and observed total species composition (figure pie charts), 

however, the spatial agreement for cell-by-cell cover was highly variable.

To quantify model agreement with observed conditions, spatial results were 

analyzed and error metrics computed (Tables 6.5 and 6 .6). Address error was a measure 

of cell-by-cell spatial agreement between observed and predicted plant cover for each 

species. At Drakes Island, address error ranged from a low of 21% {Typha) to a high of 

100% (Juncus). Since error computations were highly sensitive to the number of 

observed cells for each species, the least common species typically produced the highest 

margin of error. To correct for this bias, a weighted average of address error was 

generated for each site (Table 6.5, underlined value in Address Error). The 39% error at 

Drakes Island indicated that, on average, the model picked the wrong species in 39 out of 

each 100 cells (61% accuracy). For Mill Brook, address error ranged from a low of 27% 

for Spartina altem iflora to a high of 100% {Juncus and Lythrum), with a weighted 

average error of 55%.

When results from both sites were combined, the overall weighted average for 

address error was 46%, a reasonable result considering the very limited spatial 

information available for initial pre-restoration configurations. In addition, the
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assignment of initial plant cover values at 50% for dominant and 10% for all other 

species provided a big advantage to the dominant species that was (mathematically) 

difficult to overcome. Still, despite the long odds of picking a single correct species out 

of six from a nebulous starting point, the model managed to get it right more than half the 

time (54%). For individual species, combined spatial results were best for Typha (28% 

error), but this was expected since Typha was the most common dominant species at the 

start of the model runs at both sites, and, as noted, this species was awarded a five-to-one 

advantage in initial cover over other species. Overall results for Spartina altemiflora and 

Spartina patens were good (49% and 68% error, respectively), although the model was a 

poor predictor of Phragmites spatial distribution (only 4% correct). Phragmites results 

were likely associated with the species’ patch-like colonization pattern in marshes, rather 

than in predictable zonal pattern by elevation or salinity (Warren et al. 2001, Chapter I).

Address errors for aggregated halophyte and brackish species groups showed 

improved results relative to individual species totals, with error rates ranging from 19% 

to 35%, and average errors of 23% and 30% for Drakes Island and Mill Brook, 

respectively (Table 6 .6). For the sites combined, the weighted average of address error 

was 25%, indicating that 3 out o f 4 spatial cells were correctly predicted as either 

halophyte or brackish species.

Composite error was a measure of model performance in predicting the total 

number o f species cells for each site. Since the model could select more cells for a 

species than was observed and these values were percentages of observed counts, the
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measure was unbounded. At Drakes Island, the composite error ranged from a low of 2% 

for Typha to a high of >1000% for Juncus (Table 6.5). Like address error, these values 

were sensitive to the number of total cells observed. Even though the model predicted 

that Juncus would occupy 470 marsh cells (<1% of total marsh area at Drakes Island), the 

error computation used a basis of only 16 cells. Overall composite error at Drakes Island 

was 11%, meaning that the model, on average, deviated from observed species counts by

1 1 0 /. At* 9+ A+ X4i11 cnA/HAC A A m nA O tio a t t a t  ronAA/1 A*Am 9 Ia u f
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of 20% for Juncus to >1000% for Lythrum, with an average site composite error of 42% 

(Table 6.5). This error was nearly four times the rate at Drakes Island, a somewhat 

perplexing result. The Mill Brook site had the advantage of a slightly more detailed 

initial plant cover map than Drakes Island, but this obviously did not contribute to better 

model performance fr>r the site. Model error at Mill Brook was largely a result of 

predicted Lythrum occurrence along the upland edges o f the marsh (-10% of total marsh 

area, Figure 6 .11), a hold-over from the initial cover map. However, Lythrum is almost 

entirely absent from the marsh today, calling into question the accuracy of the initial 

distribution map, or model performance with regard to this species.

Combined model results for individual species counts showed that overall 

composite error was 12%. This weighted average was obviously more influenced by 

Drakes Island results than M il Brook, since Drakes Island had about twice as many total 

vegetated cells (Table 6.5). Composite species error rates were excellent for Spartina 

altemiflora (3%), Spartina patens (4%), and Typha (8%), but poor for Juncus and 

especially Lythrum (Table 6.5). Results for Juncus and Lythrum were, at least in part,
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attributable to low overall species counts. Phragmites error was intermediate (20%), and 

the model was conservative in predictions of cover (predicted cover was less than 

observed, Table 6.5). The better model performance for predicting species aggregate 

counts was expected, given the difficulties inherent in predicting exact spatial results 

from very limited initial data.

Composite error for aggregated halophyte and brackish species groups, like the 

address error results, showed improvements from individual species rates. Composite 

error ranged from 1% to 10%, with average errors of 1% and 9% for Drakes Island and 

Mill Brook, respectively (Table 6 .6). For the sites combined, the aggregated composite 

error was 4%, indicating an average model accuracy of 96% in predicting the total 

halophyte or brackish species area in a marsh following hydrologic disturbance. 

Aggregate estimates of general plant cover in response to hydrologic restoration has 

considerable value for management, since halophyte and brackish species cover appears 

to be the most common metric for monitoring and assessing impacted salt marshes 

(Neckles and Dionne 2000). Therefore, validation results strongly suggested that the 

model was capable of generating useful and accurate predictions of changes in salt marsh 

plant species composition following hydrologic modification.

Model Scenarios. Twenty-year model runs were conducted to predict changes in 

plant species composition under current hydrologic conditions at the four study sites. In 

addition, hydrologic scenarios were used to predict marsh habitat changes associated with 

specific hydrologic modifications at each site. Simulation results for Drakes Island are
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presented in Figure 6.12 and Table 6.4. Under current conditions of tidal restriction, the 

model predicted that halophyte species would be slowly replaced by brackish species, 

with the combined cover o f Spartina altemiflora and Spartina patens reduced from 38% 

to 28% of marsh area, and combined cover of Phragmites and Typha increased from 62% 

to 71% of the marsh (Table 6.4). The increase in brackish species was due entirely to a 

four-fold increase in Phragmites cover. These results were consistent with observed
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(Roman et al. 1984, Sinicrope et al. 1990, Burdick et al. 1997, Burdick et al. 1999). 

However, if a second 0.91 m (3 ft) culvert was added at an elevation 50 cm below the 

current culvert, the increase in tidal flow would double Spartina altemiflora cover from 

current levels, reduce Typha, and hold Phragmites in check (although Spartina patens 

habitat would be somewhat reduced, Table 6.4, Figure 6.12). These hydrologic 

restoration predictions were also in line with field observations, in this case re- 

colonization of halophytes and diminished vigor o f brackish species (Sinicrope et al. 

1990, Burdick et al. 1997, Burdick et al. 1999, Roman et al. 2002, Warren et al. 2002). 

Therefore, if management objectives were to control or reduce brackish plant species and 

increase overall cover of native salt marsh species, these results indicated that addition of 

a second culvert would be an effective strategy.

For Little River, model scenario summaries are presented in Figure 6.13 and 

Table 6.4. Model projections of the recently expanded tidal hydrology at Little River 

indicated that the restoration project would lead to significant changes in plant cover. 

Marsh regions of Spartina altemiflora, Spartina patens, and Juncus were all predicted to
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expand, to a combined total of 72% of the marsh surface area (Table 6.4). At the same 

time, cover percentages for the brackish species were all reduced, with Lythrum virtually 

eliminated from the marsh. Model results appeared to be in agreement with the 

conclusions of a pre-restoration study at Little River that predicted rapid retreat of 

brackish species and expansion of Spartina patens and other halophytes in response to 

hydrologjc change (Burdick et al. 2002). These predictions were in stark contrast to

a a n o x lA n  a 4  T «44l<S O  X  1
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Under this scenario, brackish species would dominate 93% of the marsh area, with 

Phragmites eventually becoming the principal plant species (56% cover, Table 6.4).

Model simulations conducted for Mill Brook indicated that the site had stabilized 

after almost ten years since hydrologic restoration (Figure 6.14 and Table 6.4). Spartina 

altemiflora and Spartina patens cover was predicted to slowly increase and dominate 

most of the marsh surface in twenty years (from 49% to 65%, Table 6.4). The model 

estimated that Phragmites cover would also continue to expand, although by only 3%. 

However, Typha was expected to lose significant amounts of cover, especially along the 

creek banks (Figure 6.14). On balance, these adjustments appeared to reflect fairly stable 

habitat conditions in the marsh, especially in relation to the dramatic changes reported to 

have occurred there from 1993 to 1996 (Burdick et al. 1997, Burdick et al. 1999). The 

scenario for return to pre-restoration conditions at the site indicated that, like Little River, 

these conditions would directly lead to the replacement of halophytes by Typha and 

especially Phragmites (54% cover, Table 6.4).
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Spatial model results for Oak Knoll, a site with current tidal restrictions, are 

provided in Figure 6.15 and Table 6.4. With the undersized tidal culverts remaining in 

place for the next twenty years, the model projected that Phragmites cover would nearly 

double (Table 6.4) and invade much current Spartina altemiflora habitat (Figure 6.15). 

In addition, an increase in Typha cover was predicted along the upland edges o f the 

marsh. Burdick et al. (2001) reported that Phragmites cover was expanding at Oak
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puzzling. This prediction appeared to be driven by elevation estimates for the site 

(Figure 6.7), which indicated that very little o f the site was at an elevation below mean 

high water. Therefore, most o f the marsh regions currently covered by Spartina 

altemiflora were considered by the model to be mid marsh. Since this was not the 

preferred habitat of Spartina altemiflora (McKee and Patrick 1988, Chapter I), the model 

considered cordgrass at a disadvantage at Oak Knoll. In fact, Spartina altemiflora 

individuals observed at the site were typically short-form, stunted, and growing in mixed 

communities with Spartina patens (Boumans et al. 2002), affirming model estimates that 

much cordgrass at the site was in less-preferred gradient locations for the species. 

Further predictions o f the model indicated that current stands of Lythrum would be 

replaced by Phragmites and Typha in future years if no changes were made at the site 

(Figure 6.15). The predicted eradication of Lythrum, similar to the pre-restoration 

scenario at little  River, conflicted with observations of long-term persistence of the 

species at these sites and indicated that the model may be underestimating Lythrum 

performance in high marsh areas where it is already well-established.
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Model results for the hydrologic restoration scenario at Oak Knoll (expansion of 

the north culvert from 0.61 to 1.22 m), predicted that Spartina patens would expand to 

dominate the marsh and replace Spartina altemiflora and Phragmites (reduced by about 

half), especially near tidal creeks (Figure 6.15, Table 6.4). Typha would become the 

dominant species along the upland marsh borders. These results, especially the predicted 

increase in Spartina patens and the decrease in Spartina altemiflora cover, again 

appeared to be related to the scarcity of low elevation habitat at the site. In addition, the 

hydrologic restoration scenario only increased peak tidal heights by about 5 cm (although 

the frequency of flooding during spring tides was increased 5-20%, Chapter IV), and this 

small increase was apparently not enough to trigger a shift in current Spartina 

altemiflora zones from mid marsh to low marsh gradient locations. As a result, the 

model predicted continued halophyte dominance at the site (59%, Table 6.4), but with 

Spartina patens replacing Spartina altemiflora across most of the marsh area. This 

prediction mirrored the observed presence o f Spartina patens throughout the surrounding 

environs of the Rough Meadows Sanctuary, a region well-known for its salt hay 

production (Burdick et al. 2001, Boumans et al. 2002). Therefore, the model indicated 

that hydrologic restoration at the site was a viable management option, especially if 

restoration objectives were to control the spread of Phragmites and to return the Oak 

Knoll marsh to its original state before tidal restriction.

Visualizations. Visualization image sequences for the four study sites were 

created with World Construction Set (3DNalure, Inc.), based on translation of elevation 

estimates from the spatial databases into a standard DEM (digital elevation model)
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format. Selected still images from these sequences are presented in Figures 6.16 to 6.19. 

At Drakes Island (Figure 6.16), the visualization showed an aerial view o f the marsh, 

looking north from the culvert at Drakes Island Road. Images were developed for flood 

tides during the spring tide cycle under current conditions (upper image) and restoration 

scenarios (lower image). For Little River (Figure 6.17), images showed a slightly 

elevated view o f the marsh as seen along the centerline of the main creek (due west) from 

above the culvert. The images projected spring tide flooding under current conditions 

(upper image), and for a similar tide under prior restricted conditions. Visualization 

scenes for Mill Brook were from above the expanded culvert, looking south, with the 

agricultural fields visible on the right side of the image (Figure 6.18). The scenes showed 

a current spring tide flood (upper image) and an empty creek to simulate conditions with 

the historic tide gate. For Oak Knoll, images were rendered for close-ups of the north 

creek, looking west from the culvert, to visualize differences in peak flood tides under 

current and restored conditions (Figure 6.19).

When viewed as animations, these images provided a new way to envision 

hydrologic changes for an impacted salt marsh system. Visualizations are particularly 

beneficial for people most connected and familiar with a marsh site (i.e., local residents), 

since the images are designed to show easily recognizable marsh topographic features, 

with changes only in plant cover and tidal flooding In particular, these images can be 

used to assure residents that proposed hydrologic changes will not impact their property, 

especially during the maximum extent of tidal flooding. Visualizations of expected 

habitat change also show that proposed changes to the marsh are often subtle, and that
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aesthetics will be preserved in the future. For these reasons, it is expected that 

visualization technology will be useful for coastal managers as an important new 

communications tool in the process o f consensus-building among local and regional 

resource stakeholders.

Conclusions

The spatial simulation model developed for this project was composed of four 

separate processing models for plant biomass production, marsh relative elevation, 

hydrodynamics, and plant succession. These models were based on published sources, 

and each component was independently implemented and validated. The integration of 

these process components into a single synthesized model brought together results from 

many years of field observations, theoretical studies, and experimentation in the area of 

salt marsh research. Outcomes from specific model exercises suggested that, in 

particular, marsh elevation was the most important determinant of model predictive 

ability. In support of this finding, kriging statistical estimation methods were used, based 

on field survey measures, to provide fine-scale spatial elevation maps. Kriging estimates 

were found to improve accuracy over simple interpolation techniques. The spatial 

elevation maps were used as the modeling basis for the assignment of marsh gradient 

location (flooding and salinity regime), and spatial schemes were devised that produced 

coherent assignments of gradient regime in comparison with observed vegetation cover.
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Spatial model results analyzed for two independent validation sites determined 

that the average error for total marsh area of individual plant species was 12%, and this 

rate was lowered to 4% when results were grouped as halophytes and brackish invasive 

species. Model outputs should therefore be valuable for restoration planners seeking to 

predict marsh habitat changes in response to proposed hydrologic changes. The model 

was used to make long-term predictions of plant species composition change at four New

T T v l / v l o t l / l  C o 1 +  m O i r K  rtr  f U a  ■ H if O  h h + U  a *
Saa i i iu ioa ditwo ^uiviuuiii^ uiw iw u vauuauuju oiiCo/ wi u i  pabi ut vuiivut. uuai

restrictions. When configured with existing hydrologic specifications, model results 

appeared to reflect conditions o f species stability or change appropriate for the history of 

hydrologic modifications at each site. The model was also used to simulate hydrologic 

restoration at tidally restricted marsh sites, based on scenarios likely to be proposed by 

resource managers. In these cases, model predictions were consistent with plant 

community responses observed at marshes with studied restoration activities. Lastly, 

realistic visualizations of marsh flooding under different scenarios were produced to 

explore new ways for managers to assess potential restoration outcomes, and as a 

communications tool aimed at informing (and reassuring) stakeholders faced with 

changes to a local natural resource.

In the final analysis, the real value of these technologies will be determined by 

those people directly involved in identifying, planning, and implementing hydrologic 

improvements in degraded New England salt marshes. We now have years of 

experience in designing and monitoring these projects, but results to date have suggested 

that there is still much to learn. Warren et al. (2002), in a summary o f Connecticut tidal
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restoration projects over the past twenty years, stated “The final form and function of 

[such] tidally restored wetlands cannot be forecast in detail [emphasis added] but will 

reflect biological, chemical, and physical changes associated with historical degradation 

of ecosystem functions and structures interacting with the restored tidal hydrology”. 

Maybe so. But the uncertainties and complexities inherent in these endeavors should not 

discourage us from working toward highly-specific predictions of salt marsh response, 

especially when those predictions are based on synthesized knowledge derived in large 

part from the teams o f researchers cited within these chapters. It is certain, however, that 

new tools based on advanced technologies will continue to advance the science, and 

perhaps the politics, of wetland restoration.
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Parameter Name Value and 
Unit

Source

Relative Elevation
Root labile fraction rlabfrac 0.2  unitless Hemminga and Buth 1991
Leaf labile fraction llabfrac 0.8  unitless Valiela et al. 1985
Surface labile 
decomposition rate

klabsurf 0 .2  week' 1 Valiela et al. 1985

Surface refractory 
decomposition rate

rlabsurf 0.002 week' 1 Valiela etal. 1985

Surface mineral volume 
fraction

surfinin 0.05 unitless Turner et al. 2000

Net biomass accumulation 
fraction

netaccum 0.2  unitless Chalmers et al. 1985

Pore space fraction porespace 0.7 unitless Burdick et al. 1999
Sea level rise rate eslr 1.5 mm year*1 Wood etal. 1989
Biomass Production
Initial above biomass ic phb 0.001 kgC m'2 Minimum value
Shoot respiration rate phbio_resp_

rate
0.28 week' 1 Dai and Wiegert 1996

Root growth respiration 
rate

nphbio_resp_ 
rate grow

0.37 week' 1 Dai and Wiegert 1996

Root maintenance 
respiration rate

nphbio_resp_ 
rate maint

0.015 week' 1 Dai and Wiegert 1996

Root mortality rate nphbio_ 
mort rate

0.005 week' 1 Garveret al. 1988

Shoot mortality rate phbio_ 
mort rate

0.01 week' 1 Bertness and Ellison 1987; 
Hartman 1988; Teal 1962

Week of peak aerial 
biomass

peakweek week 28 Gallagher 1983; Gallagher 
and Howarth 1987

Week of initial litterfall litterweek week 45 Calibrated
S. altemiflora initial roots ic nphb spa 1.96 kgC m'2 Calibrated
S. altemiflora maximum 
gross photosynthesis rate

macjpp_ 
rate spa

0.061 kgC m'2 
wk' 1

Calibrated

S. altemiflora 
translocation rate

transspa 0.005 kgC m'2 
wk' 1

Calibrated

S. altemiflora shootsiroots abovebel spa 0.314 unitless Chapter I
S. patens initial roots ic nphb spp 1.02 kgCm '2 Calibrated
S. patens maximum gross 
photosynthesis rate

mac_pp_ 
rate spp

0.042 kgC m' 2 
wk' 1

Calibrated

S. patens translocation rate transspp 0.015 kgCm '2 
wk' 1

Calibrated

S. patens shootsrroots abovebel spp 0.470 unitless Chapter I

Table 6.1. Generalized ecosystem model parameter values, units, and sources.
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Param eter Name Value and 
Unit

Source

Jimcus initial roots ic nphb ju n 1.17 kgCm '2 Calibrated
Juncus maximum gross 
photosynthesis rate

mac_pp_ 
rate jun

0.042 kgC m'2 
wk'1

Calibrated

Juncus translocation rate transjun 0.005 kgC m"2 
wk' 1

Calibrated

Juncus shootsrroots abovebeljun 0.377 unitless Chapter I
Phragmites initial roots ic nphb phr 0.96 kgC m'̂ Calibrated
Phragmites maximum 
gross photosynthesis rate

mac__pp_
rate_phr

0.048 kgC m'2 
w k1

Calibrated

Phragmites translocation 
rate

trans_phr 0.030 kgCm '2 
wk' 1

Calibrated

Phragmites shoots:roots abovebel phr 0.655 unitless Chapter I
Lythrum initial roots ic nphb lyt 2.64 kgC m'2 Calibrated
Lythrum maximum gross 
photosynthesis rate

mac__pp_ 
rate lyt

0.048 kgC m'2 
wk' 1

Calibrated

Lythrum translocation rate trans_lyt 0.0001 kgC 
m'2 wk' 1

Calibrated

Lythrum shoots:roots abovebel lyt 0.152 unitless Chapter I
Typha initial roots ic nphb_typ 2.16 kgCm'2 Calibrated
Typha maximum gross 
photosynthesis rate

mac_pp_ 
ratetyp

0.068 kgC m'2 
wk' 1

Calibrated

Typha translocation rate trans_typ 0.005 kgC m*2 
wk' 1

Calibrated

Typha rootsrshoots abovebel typ 0.331 unitless Chapter I
Plant Succession
Tolerance weight tfactor 0 .1-0.8 

unitless
Based on gradient location; 
Bertness and Ellison 1987

Competition weight cfactor 0 .1-0.8 
unitless

Based on gradient location: 
Bertness and Ellison 1987

Recruitment weight rfactor 0.1 unitless Chapter V
Species stress tolerance at 
gradient locations

tf_gradient_
species

0-1 unitless Chapter I, Table 1.6

Competitive effect of 
species 1 on species 2

cf_speciesl_
species2

unitless Chapter I, Table 1.7

Table 6.1 (continued). Generalized ecosystem model parameter values, units, and 
sources.
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Parameter
Name

Drakes
Island

Little
River

Mill
Brook

Oak
Knoll

Marsh Area
Cell size (m2) cellsize 19.36 25.81 7.84 12.96
Total number of cells celltotal 16,022 16,996 7,271 11,622
Total marsh area (m2) totalarea 310,186 438,606 57,005 150,621

Elevation (m NGVD)
Current mean high water mhwater 1.381 1.315 1.245 0.885
Scenario mean high water mhwater 1.535 1.068 0.010 0.873
Current high marsh hiwater 1.487 1.612 1.420 1.105
Scenario high marsh hiwater 1.720 1.687 1.693 1.228
Current maximum high water maxwater 1.577 1.920 1.459 1.128
Scenario maximum high water maxwater 1.740 1.318 0.010 1.318
Upland edge uplandel 1.748 1.687 1.693 1.228
Creek bottom creekel 0.910 0.000 0.400 0.016

Salinity Regime
Maximum distance to culvert (m) sdist 750 1060 550 450
Salinity of tidal inflow salinity high high high high

Sediment Accretion (mm/yr) sedmax 2.38 4.26 19.02 1.61

Table 6.2. Site-specific parameters for the four study sites. Hydrologic scenarios are 
culvert expansion for Drakes Island (additional 0.91 culvert 50 cm lower) and Oak Knoll 
(north culvert increased to 1.22 m diameter); pre-restoration conditions for Little River 
(1.22 m culvert) and Mill Brook (0.91 m culvert with tidal flap gate).
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Initial species cover proportions 
(dominant species in bold)

Drakes
Island

Little
River

Mill
Brook

Oak
Knoll

Spartina altemiflora .807 .772 .873 .718
Spartina patens .121 .139 .030 .277
Juncus .001 .007 .000 .000
Phragmites .037 .018 .000 .005
Lythrum .001 .001 .000 .000
Typha .033 .063 .097 .000
Spartina altemiflora .129 .081 .170 .142
Spartina patens .796 .869 .778 .796
Juncus .015 .029 .000 .036
Phragmites .001 .016 .000 .023
Lythrum .001 .001 .000 .002
Typha .058 .004 .052 .001
Spartina altemiflora .235 .050 .000 .060
Spartina patens .342 .230 .000 .297
Juncus 362 .714 .714 .627
Phragmites .001 .004 .000 .016
Lythrum .001 .001 .000 .000
Typha .059 .001 .286 .000
Spartina altemiflora .001 .034 .027 .000
Spartina patens .028 .119 .075 .227
Juncus .001 .032 .000 .000
Phragmites .968 .813 .721 .773
Lythrum .001 .001 .000 .000
Typha .001 .001 .177 .000
Spartina altemiflora .001 .001 .000 .000
Spartina patens .286 .286 .214 .214
Juncus .001 .001 .000 .000
Phragmites .001 .001 .000 .000
Lythrum .568 .568 .786 .786
Typha .143 .143 .000 .000
Spartina altemiflora .053 .096 .028 .028
Spartina patens .020 .007 .069 .069
Juncus .001 .001 .000 .000
Phragmites .001 .005 .009 .009
Lythrum .001 .001 .000 .000
Typha .924 .890 .894 .894

Table 6.3. Vegetation survey results of mean percentages of species cover for dominant 
plant associations (bold values). Species percentages for each site were used as baseline 
(initial) values of spatial cells for twenty-year model simulations.
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S. alter- 
rnflora

S.
patens Juncus Phrag

mites Lythrum Typha Bare
Area

Drakes Island
Cun-ent conditions 21 17 0 4 0 58 0
Current (predicted) 17 12 0 18 0 57 0
Current (+20 years) 16 12 0 18 0 53 0
Restored (+20 years) 45 7 0 9 0 39 0
Little River
Current conditions 7 35 2 14 6 37 0
Pnrronf ( troorc\
VWA A Vilk y • MW j  J f 12 57 3 7 o 22 0
Restricted (+20 years) 1 4 2 56 0 37 0
Mill Brook
Current conditions 27 22 2 8 0 42 0
Current (predicted) 38 16 1 4 10 31 0
Current (+20 years) 31 34 0 11 0 24 0
Restricted (+20 years) 1 1 0 54 0 44 0
Oak Knoll
Current conditions 23 46 5 20 3 2 1
Current (+20 years) 2 45 4 35 0 14 0
Restored (+20 years) 2 57 2 11 0 29 0

Table 6.4. Summary of observed and predicted marsh cover percentages for four study 
sites. Percentages consider only vegetated and bare areas (submerged areas excluded). 
Drakes Island and Mill Brook sites include results of validation model runs for prediction 
of current cover.
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S. alter- 
niflora

S.
patens Juncus Phrag

mites Lythrum Typha Model
Total

Composite
Error

Drakes
Island
S. altemiflora 1055 415 6 72 0 668 2216 21
S. patens 807 957 8 212 0 459 2503 10
/ uncus 232 148 0 24 0 66 470 2838
Phragmites 12 76 0 8 0 472 568 18
Lythrum 0 0 0 0 0 0 0 -

711 681 2 1 0 7
A V 4

n
V 7659 2

Survey Total 2817 2277 16 483 0 7823 13416 11
Address Error 63 48 100 98 - 21 39
Mill
Brook
S. altemiflora 1275 697 28 88 0 377 2465 41
S. patens 179 238 40 123 0 445 1025 28
Juncus 3 5 0 1 0 89 98 20
Phragmites 9 72 3 30 0 121 235 55
Lythrum 141 107 16 133 0 266 663 33050
Typha 142 295 36 151 0 1423 2049 25
Survey Total 1749 1414 123 526 2 2721 6535 42
Address Error 27 83 100 94 100 47 55
Sites
Combined
S. altemiflora 2330 1112 34 160 0 1045 4681 3
S. patens 986 1195 48 395 0 904 3528 4
Juncus 235 153 0 25 0 155 568 309
Phragmites 21 148 3 38 0 593 803 20
Lythrum 141 107 16 133 0 266 663 33050
Typha 853 976 38 258 2 7581 9708 8
Survey Total 4566 3691 139 1009 2 10544 19951 12
Address Error 49 68 100 96 100 28 46

Table 6.5. Matrices of address and composite goodness-of-fit for validation sites at 
Drakes Island, Mill Brook, and the two sites combined. Bold values show cell counts 
with species address agreement. Underlined values are weighted average of percent error 
for address and composite goodness-of-fit.
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Halophyte
Species

Brackish
Species

Model
Total

Composite
Error

Drakes
Island
Halophyte Species 3628 1561 5189 2
Brackish Species 1482 6745 8227 1
Survey Total 5110 8306 13416 1
Address Error 29 19 23
Mill
Brook
Halophyte Species 1 10-1 l 1 3588 8
Brackish Species 821 2126 2947 10
Survey Total 3286 3249 6535 9
Address Error 25 35 30
Sites
Combined
Halophyte Species 6093 2684 8777 5
Brackish Species 2303 8871 11174 3
Survey Total 8396 11555 19951 4
Address Error 27 23 25

Table 6 .6 . Aggregated matrices (halophyte and brackish species) of address and 
composite goodness-of-fit for validation sites at Drakes Island, Mill Brook, and the two 
sites combined. Bold values show cell counts with group address agreement. Underlined 
values are weighted average of percent error for address and composite goodness-of-fit.
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Figure 6.1. Conceptual schematic of salinity regime assignment. Marsh areas are zoned 
on two axes: distance from tidal source (S3, S2, and SI, from nearest to source to furthest 
from source), and distance from tidal creek water (W3, W2, and W l, from nearest to 
creek to furthest from creek). Salinity regime assignments (High, Mid, and Low) based 
on zone combinations, as indicated. Shading indicates relative salinity strength from high 
to low.
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Exponential FunctionA Elevation Survey Results
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Figure 6.2. Semivariogram analysis showing how difference in marsh elevation (half of 
the squared difference between points) varied with increasing distance between points, 
for all study sites combined. Curve shown is the best fitting function (exponential) used 
for kriging algorithms.
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Figure 6.3. Comparison of mean errors (PRESS is the prediction sum of squares) 
between estimation methods using kriging and linear interpolation for known survey 
elevation points at four study sites.
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Figure 6.4. Base maps for Drakes Island in 2002. Top: Plant Cover; Lower Left: Salinity; Lower Right: Elevation
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Figure 6.6. Base maps for Mill Brook in 2002. Top: Plant Cover; Lower Left: Salinity; Lower Right: Elevation
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Figure 6.8. Drakes Island validation sequence (1988-2002) showing predicted changes associated with partial hydrologic restoration.
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Figure 6.9. Mill Brook validation sequence from 1993-2002 showing predicted changes associated with full hydrologic restoration.
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Figure 6.10. Drakes Island results for observed and predicted plant species composition in 2002 (14 years after partial restoration).
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Figure 6.11. Mill Brook results for observed and predicted plant species composition in 2002 (9 years after full restoration).
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Figure 6.12. Drakes Island scenarios, plant cover results. A: Current conditions (2002), B: Prediction for 2022 if no changes made, C: 
Prediction for 2022 if hydrologic restoration (second 3’ culvert added).
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Figure 6.13. Little River scenarios, plant cover results. A: Current conditions (2002), B: Prediction for 2022 if no changes made, C: 
Prediction for 2022 if return to tidal restriction conditions with undersized culvert.
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Figure 6.14. Mill Brook scenarios, plant cover results. A: Current conditions (2002), B: Prediction for 2022 if no changes made, C: 
Prediction for 2022 if return to tidal restriction conditions with original flap gate.
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Figure 6.15. Drakes Island scenarios, plant cover results. A: Current conditions (2002), B: Prediction for 2022 if no changes made, C: 
Prediction for 2022 if hydrologic restoration (north culvert expanded to 4’).
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Figure 6.16. Drakes Island scenario visualizations. Top: View of marsh during spring tide 
under current conditions; Bottom: View of marsh during spring tide with proposed 
additional culvert (0.91 m diameter).
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Figure 6.17. Little River scenario visualizations. Top: View of marsh at high tide under 
current restoration conditions; Bottom: Marsh at high tide under pre-restoration 
conditions (1.22 m diameter culvert).
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Figure 6.18. Mill Brook scenario visualizations. Top: View of marsh creek pre- 
restoration (tide gate); Bottom: Marsh under current restoration conditions at high tide.
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Figure 6.19. Oak Knoll scenario visualization. Top: View of marsh at high tide under 
current conditions; Bottom: Marsh at high tide with expanded culvert (1.22 m diameter).
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Table A.1. Transplant experiment salinity measurements for three salinity regimes
(high, mid, and low), with three elevation locations (high, mid, low) within each regime.

DATE SALINITY (ppt)
High Mid Low 
Elevation Elevation Elevation

High Salinity
5/31/2000 14 18 20
6/2/2000 17 19 22

6/15/2000 18 15 16
6/29/2000 19 16 12
7/13/2000 22 26 28
7/26/2000 25 26 29
8/9/2000 25 24 25

8/23/2000 26 24 23
9/5/2000 30 30 30

9/20/2000 18 28 30
Salinity
4/29/2001 6 6 8
5/7/2001 11 9 9

5/21/2001 16 18 11
S/30/2001 18 17 13
6/15/2001 18 16 12
7/3/2001 18 20 18

7/12/2001 22 23 17
7/25/2001 24 24 18
8/8/2001 24 23 23

8/22/2001 28 27 26
9/1/2001 24 20 20

Salinity
4/29/2001 5 2 2
5/7/2001 9 9 9

5/21/2001 10 10 8
5/30/2001 16 12 12
6/15/2001 14 12 12
7/3/2001 8 9 8

7/12/2001 17 19 19
7/25/2001 23 20 20
8/8/2001 20 22 22

8/22/2001 27 25 24
9/1/2001 18 17 17
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Table A.2. Final above and belowground biomass (grams dry weight) for experimental
transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (g dw) Biomass (g dw)
HI HI Spartina altemiflor Phragmites australis 5.285 10.51
HI HI Spartina altemiflor Spartina altemiflor 0.09 0.665
HI HI Spartina altemiflor Spartina altemiflor 0.1 0.72
HI HI Spartina altemiflor Phragmites australis 3.12 7.445
HI HI Spartina altemiflor Spartina altemiflor 2.37 4.545
HI HI Spartina altemiflor Spartina altemiflor 1.68 3.6
HI MID Spartina altemiflor Spartina patens 1.02 3.31
HI MID Spartina altemiflor J uncus gerardii 4.04 14.5
Hi LO Spartina aftemifior Spartina paiens 10.725 16.42
HI LO Spartina altemiflor Juncus gerardii 2.415 8.8
HI LO Spartina altemiflor Typha angustifolia 15.04 23.5
HI LO Spartina altemiflor Spartina altemiflor 5.26 10.7
HI LO Spartina altemiflor Spartina altemiflor 3.51 9.65
HI LO Spartina altemiflor Spartina patens 4.645 8.465
HI LO Spartina altemiflor Juncus gerardii 10.83 17.505
HI LO Spartina altemiflor Phragmites australis 7.8 15.9
HI LO Spartina altemiflor Lythrum salicaria 8.96 30.08
HI LO Spartina altemiflor Typha angustifolia 5.815 10.145
HI LO Spartina altemiflor Spartina altemiflor 552 18.025
HI LO Spartina altemiflor Spartina altemiflor 10.22 21.1
HI HI Spartina patens Spartina altemiflor 2.48 288
HI HI Spartina patens Juncus gerardii 1.765 212
HI HI Spartina patens Phragmites australis 1225 1.015
HI HI Spartina patens Lythrum salicaria 3.35 3.5
HI HI Spartina patens Typha angustifolia 329 3.82
HI HI Spartina patens Spartina patens 1.785 2965
HI HI Spartina patens Spartina patens 2085 268
HI HI Spartina patens Spartina altemiflor 6.995 1215
HI HI Spartina patens Juncus gerardii 1.73 2335
HI HI Spartina patens Phragmites australis 1.47 285
HI HI Spartina patens Lythrum salicaria 4.62 10.48
HI HI Spartina patens Typha angustifolia 4.68 5.92
HI HI Spartina patens Spartina patens 245 5.5
HI HI Spartina patens Spartina patens 1.795 4255
HI MID Spartina patens Spartina altemiflor 5.85 7.865
HI MID Spartina patens Juncus gerardii 4.42 7.535
HI MID Spartina patens Phragmites australis 5.45 14.4
HI MID Spartina patens Lythrum salicaria 5.18 10.125
HI MID Spartina patens Typha angustifolia 1.81 7.71
HI MID Spartina patens Spartina patens 328 9.19
HI MID Spartina patens Spartina patens 3.9 6.805
HI MID Spartina patens Spartina altemiflor 289 5.77
HI MID Spartina patens Juncus gerarda 4.04 11.6
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (g dw) Biomass (g dw)
HI MID Spartina patens Phragmites australis 6.65 9.38
HI MID Spartina patens Lythrum salicaria 5.47 828
HI MID Spartina patens Typha angustifolia 4.41 10.14
HI MID Spartina patens Spartina patens 2.785 4.76
HI MID Spartina patens Spartina patens 3.345 525
HI LO Spartina patens Spartina altemiflor 1.69 3
HI LO Spartina patens Juncus gerardn 3.35 4.755
HI LO Spartina patens Typha angustifolia 4.445 6.9
Hi LO Spartina patens Spartina patens S J . t  * t

4  O ^ C
i . v i 3

HI LO Spartina patens Spartina patens 2.86 4.35
HI LO Spartina patens Spartina altemiflor 427 6.4
HI LO Spartina patens Juncus gerardii 287 3.645
HI LO Spartina patens Typha angustifolia 4.81 5.705
HI LO Spartina patens Spartina patens 1.51 3.16
HI LO Spartina patens Spartina patens 1.535 421
HI HI Juncus gerardii Spartina altemiflor 0.68 1.73
HI HI Juncus gerardn Spartina patens 0.505 1.135
HI HI Juncus gerardii Phragmites australis 0.41 1.82
HI HI Juncus gerardn Lythrum salicaria 0.165 1.62
HI HI Juncus gerardii Typha angustifolia 0.375 0.91
HI HI Juncus gerardn Juncus gerardu 0.42 0.77
HI HI Juncus gerardn Juncus gerardii 0245 0.775
HI HI Juncus gerardii Spartina altemiflor 0.045 0.555
HI HI Juncus gerardii Spartina patens 0.66 3.165
HI HI Juncus gerardii Phragmites australis 1.8 278
HI HI Juncus gerardii Lythrum salicaria 231 5
HI HI Juncus gerardn Typha angustifolia 0.79 236
HI HI Juncus gerardii Juncus gerardii 1.53 4.04
HI HI Juncus gerardu Juncus gerardii 1.44 288
HI MID Juncus gerardii Spartina altemiflor 0.12 0.91
HI MID Juncus gerardn Spartina patens 0.195 3.44
HI MID Juncus gerardii Phragmites australis 0.48 243
HI MID Juncus gerardii Lythrum salicaria 0.085 0.905
HI MID Juncus gerardii Typha angustifolia 1.015 3.515
HI MID Juncus gerardii Juncus gerardii 0.395 121
HI MID Juncus gerardii Juncus gerardii 0.185 2375
HI MID Juncus gerardii Spartina altemiflor 0.95 4.52
HI MID Juncus gerardii Spartina patens 0.15 0.66
HI MID Juncus gerardii Phragmites australis 0.99 2805
HI MID Juncus gerardii Lythrum salicaria 3.58 8.03
HI MID Juncus gerardn Typha angustifolia 028 1.1
HI MID Juncus gerardii Juncus gerardii 1.155 238
HI MID Juncus gerardu Juncus gerardii 1.49 2845
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (g dw) Biomass (g dw)
HI LO Juncus gerardii Spartina altemiflor 0.36 0.765
HI LO Juncus gerardii Spartina patens 0.19 0.41
HI LO Juncus gerardii Phragmites australis 0.145 0.85
HI LO Juncus gerardii Lythrum salicaria 0.04 0.21
HI LO Juncus gerardH Typha angustifolia 0.39 0.905
HI LO Juncus gerardii Juncus gerardH 0.615 0.825
HI LO Juncus gerardii Juncus gerardu 0.13 0.185
HI LO Juncus gerardii Spartina altemiflor 0.035 0.84
Hi LO Juncus gerardii Spartina patens 0.135 a

HI LO Juncus gerardii Lythrum salicaria 0.355 2.04
HI LO Juncus gerardu Typha angustifoHa 0.175 0.445
HI LO Juncus gerardii Juncus gerardii 0.375 0.79
HI LO Juncus gerardu Juncus gerardu 0.585 1.245
HI HI Phragmites australis Phragmites australis 0.02 1.725
HI HI Phragmites australis Juncus gerardu 2.005 8.15
HI MID Phragmites australis Juncus gerardH 2.72 7.335
HI MID Phragmites australis Phragmites australis 3.84 3.6
HI MID Phragmites australis Phragmites australis 1.165 3.41
HI LO Phragmites australis Phragmites australis 0.74 0.69
HI LO Phragmites australis Phragmites australis 2.905 2
HI LO Phragmites australis Juncus gerardn 5 4.82
HI LO Phragmites australis Lythrum salicaria 4.04 5.265
HI LO Phragmites australis Phragmites australis 6.15 9.16
HI LO Phragmites australis Phragmites australis 5.5 4.555
HI HI Lythrum salicaria Lythrum salicaria 0.31 3.555
HI HI Lythrum salicaria Lythrum salicaria 0.27 2.245
HI HI Typha angustifolia Phragmites australis 0.165 2.19
HI HI Typha angustifolia Typha angustifolia 0.05 0.855
HI HI Typha angustifolia Typha angustifoHa 0.105 1.01
HI HI Typha angustifolia Juncus gerardii 0.3 2.79
HI HI Typha angustifolia Typha angustifoiia 0.185 2.49
HI HI Typha angustifolia Typha angustifolia 0.145 2.3
MID HI Spartina altemiflor Spartina patens 1.63 10.95
MID HI Spartina altemiflor Juncus gerardii 5.94 19.51
MID HI Spartina altemiflor Phragmites australis 4.47 23.05
MID HI Spartina altemiflor Lythrum salicaria 5.22 18.17
MID HI Spartina altemiflor Typha angustifolia 5.5 27.64
MID HI Spartina altemiflor Spartina altemiflor 1.94 10.595
MID HI Spartina altemiflor Spartina altemiflor 1.94 10.595
MID HI Spartina altemiflor Spartina patens 3.97 13.51
MID HI Spartina altemiflor Juncus gerardH 3.34 7.52
MID HI Spartina altemiflor Phragmites australis 6.76 19.09
MID HI Spartina altemiflor Lythrum salicaria 4.98 14.52
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (g dw) Biomass (g dw)
MID HI Spartina altemiflor Typha angustifolia 2.84 729
MID HI Spartina altemiflor Spartina altemiflor 4.48 1022
MID HI Spartina altemiflor Spartina altemiflor 4.48 10.22
MID MID Spartina altemiflor Spartina patens 22.38 96.66
MID MID Spartina altemiflor Juncus gerardii 15.37 7321
MID MID Spartina altemiflor Phragmites australis 17.44 88.07
MID MID Spartina altemiflor Lythrum salicaria 15.88 77.91
MID MID Spartina altemiflor Typha angustifolia 22.37 98.76
MID MID Spartina altemiflor Spartina aitemiiior S.37 41.705
MID MID Spartina altemiflor Spartina altemiflor 9.97 41.705
MID MID Spartina altemiflor Spartina patens 6.82 27.43
MID MID Spartina altemiflor Juncus gerardii 9.7 46
MID MID Spartina altemiflor Phragmites australis 14.69 80.78
MID MID Spartina altemiflor Lythrum salicaria 9.94 3277
MID MID Spartina altemiflor Typha angustifolia 13.3 54.3
MID MID Spartina altemiflor Spartina altemiflor 1279 45.325
MID MID Spartina altemiflor Spartina altemiflor 1279 45.325
MID LO Spartina altemiflor Spartina patens 25.51 43.93
MID LO Spartina altemiflor Juncus gerardn 21.8 93.84
MID LO Spartina altemiflor Lythrum salicaria 26.53 86.11
MID LO Spartina altemiflor Typha angustifolia 21.56 9204
MID LO Spartina altemiflor Spartina altemiflor 19.54 61.24
MID LO Spartina altemiflor Spartina altemiflor 19.54 61.24
MID LO Spartina altemiflor Spartina patens 18.9 49.19
MID LO Spartina altemiflor Juncus gerardu 727 45.55
MID LO Spartina altemiflor Phragmites australis 17.95 49.89
MID LO Spartina altemiflor Lythrum salicaria 1228 29.82
MID LO Spartina altemiflor Typha angustifolia 25.96 98.67
MID LO Spartina altemiflor Spartina altemiflor 15.365 44.37
MID LO Spartina altemiflor Spartina altemiflor 15.365 44.37
MID HI Spartina patens Spartina altemiflor 7.8 19.01
MID HI Spartina patens Juncus gerardB 523 10.26
MID HI Spartina patens Phragmites australis 626 10.13
MID HI Spartina patens Lythrum salicaria 9.58 23.59
MID HI Spartina patens Typha angustifolia 4.88 9.42
MID HI Spartina patens Spartina patens 5.615 14.465
MID HI Spartina patens Spartina patens 5.615 14.465
MID HI Spartina patens Spartina altemiflor 5.13 22
MID HI Spartina patens Juncus gerardii 825 16.23
MID HI Spartina patens Phragmites australis 6.1 20.57
MID HI Spartina patens Lythrum salicaria 6.82 24.35
MID HI Spartina patens Typha angustifolia 6.42 23.45
MID HI Spartina patens Spartina patens 329 10.885
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (gdw) Biomass (gdw)
MID HI Spartina patens Spartina patens 329 10.885
MID MID Spartina patens Spartina altemiflor 4.31 11.55
MID MID Spartina patens Juncus gerardu 4.61 8.14
MID MID Spartina patens Phragmites australis 7.59 11.98
MID MID Spartina patens Lythrum salicaria 62 6.93
MID MID Spartina patens Typha angustifolia 8.45 9.18
MID MID Spartina patens Spartina patens 4.77 10.17
MID MID Spartina patens Spartina patens 4.77 10.17
MID MID Spartina patens Spartina aiternifior 4.53 8.54
MID MID Spartina patens Juncus gerardii 1.65 422
MID MID Spartina patens Phragmites australis 3.33 7.3
MID MID Spartina patens Lythrum salicaria 4.6 8.67
MID MID Spartina patens Typha angustifolia 7.46 14.57
MID MID Spartina patens Spartina patens 2.135 4.55
MID MID Spartina patens Spartina patens 2.135 4.55
MID LO Spartina patens Spartina altemiflor 0.84 2.17
MID LO Spartina patens Juncus gerardu 0.19 1.53
MID LO Spartina patens Phragmites australis 0.1 0.8
MID LO Spartina patens Spartina patens 0.11 1.48
MID LO Spartina patens Spartina patens 0.11 1.48
MID LO Spartina patens Spartina altemiflor 0.18 1.11
MID LO Spartina patens Juncus gerardu 0.57 1.01
MID LO Spartina patens Phragmites australis 0.26 0.79
MID LO Spartina patens Lythrum salicaria 0.28 1.35
MID LO Spartina patens Typha angustifolia 0.35 0.53
MID LO Spartina patens Spartina patens 0.15 0.22
MID LO Spartina patens Spartina patens 0.15 0.22
MID HI Juncus gerardii Spartina altemiflor 1.21 1.41
MID HI Juncus gerardii Spartina patens 1.87 8.38
MID HI Juncus gerardii Phragmites australis 0.82 2.78
MID HI Juncus gerardu Lythrum salicaria 0.81 £09
MID HI Juncus gerardii Typha angustifolia 0.96 £01
MID HI Juncus gerardii Juncus gerardii 1.025 £61
MID HI Juncus gerardii Juncus gerardii 1.025 £61
MID HI Juncus gerardii Spartina altemiflor 121 3£3
MID HI Juncus gerardii Spartina patens 1.67 9.4
MID HI Juncus gerardii Phragmites australis 3.14 10.99
MID HI Juncus gerardii Lythrum salicaria 1.76 6.87
MID HI Juncus gerardii Typha angustifolia 1.23 6.82
MID HI Juncus gerardii Juncus gerardii 1.46 6.895
MID HI Juncus gerardii Juncus gerardu 1.46 6.895
MID MID Juncus gerardii Spartina altemiflor 0.12 0.91
MID MID Juncus gerardii Spartina patens 0.7 £37
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (gdw) Biomass (gdw)
MID MID Juncus gerardii Phragmites australis 028 129
MID MID Juncus gerardii Lythrum salicaria 1.17 1.71
MID MID Juncus gerardii Juncus gerardn 021 1.435
MID MID Juncus gerardii Juncus gerardii 0.91 1.435
MID MID Juncus gerardu Spartina altemiflor 0.44 1.43
MID MID Juncus gerardii Spartina patens 0.69 1.94
MID MID Juncus gerardii Phragmites australis 023 0.58
MID MID Juncus gerardii Lythrum salicaria 0.43 0.82
MID MID Juncus gerardii Juncus gerardii 0.93 1.095
MID MID Juncus gerardii Juncus gerardii 0.93 1.095
MID HI Phragmites australis Spartina altemiflor 1.73 251
MID HI Phragmites australis Spartina patens 3.48 128
MID HI Phragmites australis Spartina patens 2.97 6.71
MID HI Phragmites australis Juncus gerardii 3.76 10.11
MID HI Phragmites australis Phragmites australis 1.085 3.02
MID HI Phragmites australis Phragmites australis 1.085 3.02
MID MID Phragmites australis Juncus gerardii 19.39 33.67
MID MID Phragmites australis Phragmites australis 2195 10.095
MID MID Phragmites australis Phragmites australis 2195 10.095
MID MID Phragmites australis Spartina patens 226 5.9
MID MID Phragmites australis Lythrum salicaria 4.63 11.33
MID MID Phragmites australis Phragmites australis 1.675 2755
MID MID Phragmites australis Phragmites australis 1.675 2755
MID LO Phragmites australis Spartina altemiflor 1.85 214
MID LO Phragmites australis Phragmites australis 5.11 1267
MID LO Phragmites australis Phragmites australis 5.11 1267
MID LO Phragmites australis Spartina altemiflor 4.3 5.06
MID LO Phragmites australis Phragmites australis 3.11 522
MID LO Phragmites australis Phragmites australis 3.11 522
MID HI Lythrum salicaria Spartina patens 0.34 1.01
MID HI Lythrum salicaria Juncus gerardii 3.15 23.44
MID HI Lythrum salicaria Phragmites australis 243 7.13
MID HI Lythrum salicaria Spartina patens 0.88 8.06
MID HI Lythrum salicaria Juncus gerardii 3.92 21.3
MID HI Lythrum salicaria Phragmites australis 1.39 7.72
MID HI Lythrum salicaria Lythrum salicaria 1225 20.495
MID HI Lythrum salicaria Lythrum salicaria 1225 20.495
MID HI Typha angustifolia Spartina altemiflor 023 0.91
MID HI Typha angustifolia Spartina patens 1.54 276
MID HI Typha angustifolia Juncus gerardii 1.91 6
MID HI Typha angustifolia Phragmites australis 1.08 6.52
MID HI Typha angustifolia Lythrum salicaria 1.47 3.53
MID HI Typha angustifolia Typha angustifolia 0.455 3.54
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (g dw) Biomass (g dw)
MID HI Typha angustifolia Typha angustifolia 0.455 3.54
MID HI Typha angustifoHa Spartina altemiflor 0.63 4.19
MID HI Typha angustifolia Spartina patens 0.41 033
MID HI Typha angustifolia Juncusgerardii 0.9 11.37
MID HI Typha angustifolia Phragmites australis 0.68 6.41
MID HI Typha angustifolia Lythrum salicaria 0.42 3.49
MID HI Typha angustifolia Typha angustifolia 1Z 8.02
MID HI Typha angustifolia Typha angustifolia 1Z 8.02
MID MID Typha angustifolia Spartina altemiflor 2.78 S.93
MID MID Typha angustifolia Spartina patens 1.11 11.01
MID MID Typha angustifofia Phragmites australis 3.88 15.77
MID MID Typha angustifolia Lythrum salicaria 3.99 8.71
MID MID Typha angustifolia Typha angustifolia 5.205 33.405
MID MID Typha angustifolia Typha angustifolia 5.205 33.405
MID MID Typha angustifolia Spartina altemiflor 2.47 3.73
MID MID Typha angustifolia Juncus gerardii 5.62 9.6
MID MID Typha angustifolia Phragmites australis 2.77 15.46
MID MID Typha angustifolia Lythrum salicaria 2.84 18.68
MID MID Typha angustifolia Typha angustifolia 5.005 25.03
MID MID Typha angustifolia Typha angustifolia 5.005 25.03
MID LO Typha angustifolia Spartina patens 1.43 30.53
MID LO Typha angustifolia Phragmites australis 6.4 1Z73
MID LO Typha angustifolia Typha angustifolia 3.805 17.2
MID LO Typha angustifolia Typha angustifolia 3.805 17.2
MID LO Typha angustifolia Spartina altemiflor 0.99 Z4
MID LO Typha angustifolia Typha angustifolia 3.725 21.69
MID LO Typha angustifolia Typha angustifolia 3.725 21.69
LO HI Spartina altemiflor Spartina patens 3.66 20.13
LO HI Spartina altemiflor Juncus gerardii 1Z58 40.98
LO HI Spartina altemiflor Phragmites australis 13.42 21.49
LO HI Spartina altemiflor Lythrum salicaria 6.61 24.55
LO HI Spartina altemiflor Typha angustifolia 2.48 1Z39
LO HI Spartina altemiflor Spartina altemiflor 9.635 4Z74
LO HI Spartina altemiflor Spartina altemiflor 9.635 4Z74
LO HI Spartina altemiflor Spartina patens 2.45 10.42
LO HI Spartina altemiflor Juncusgerardii 15.39 97.14
LO HI Spartina altemiflor Phragmites australis 1.91 11.03
LO HI Spartina altemiflor Lythrum salicaria 6.8 8.1
LO HI Spartina altemiflor Typha angustifolia 12.85 85.47
LO MID Spartina altemiflor Spartina patens 16.12 40.43
LO MID Spartina altemiflor Juncusgerardii 23.34 76.75
LO MID Spartina altemiflor Phragmites australis 20.53 98.87
LO MID Spartina altemiflor Lythrum salicaria 17.66 85.02
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (g dw) Biomass (g dw)
LO MID Spartina altemiflor Typha angustifolia 20.77 89.88
LO MID Spartina altemiflor Spartina altemiflor 3.985 18.315
LO MID Spartina altemiflor Spartina altemiflor 3.985 18.315
LO MID Spartina altemiflor Spartina patens 13.3 92.09
LO MID Spartina altemiflor Juncus gerardii 34.72 98.66
LO MID Spartina altemiflor Phragmites australis 11.2 96.2
LO MID Spartina altemiflor Lythrum salicaria 19.18 95.48
LO MID Spartina altemiflor Typha angustifolia 13.67 96.41
LO MID Spartina altemiflor Spartina altemiflor 4.94 31.085
LO MID Spartina altemiflor Spartina altemiflor 4.94 31.085
LO LO Spartina altemiflor Spartina patens 5.37 17.91
LO LO Spartina altemiflor Juncus gerardii 5.44 19.9
LO LO Spartina altemiflor Phragmites australis 22.42 58.8
LO LO Spartina altemiflor Lythrum salicaria 10.79 50.73
LO LO Spartina altemiflor Typha angustifolia 10.36 26.6
LO LO Spartina altemiflor Spartina altemiflor 17.415 49.56
LO LO Spartina altemiflor Spartina altemiflor 17.415 49.56
LO LO Spartina altemiflor Spartina patens 3.7 19.68
LO LO Spartina altemiflor Juncus gerardii 22.99 54.08
LO LO Spartina altemiflor Phragmites australis 11.27 62.29
LO LO Spartina altemiflor Lythrum salicaria 40.04 99.44
LO LO Spartina altemiflor Spartina altemiflor 10.955 40.005
LO LO Spartina altemiflor Spartina altemiflor 10.955 40.005
LO HI Spartina patens Spartina altemiflor 2.62 6.45
LO HI Spartina patens Juncus gerardii 5.43 8.13
LO HI Spartina patens Phragmites australis 5.95 12.74
LO HI Spartina patens Lythrum salicaria 5.53 8.98
LO HI Spartina patens Typha angustifolia 5.04 11.42
LO HI Spartina patens Spartina patens 3.245 13.86
LO HI Spartina patens Spartina patens 3.245 13.86
LO HI Spartina patens Spartina altemiflor 3.88 29.34
LO HI Spartina patens Juncus gerardii 1.51 13.5
LO HI Spartina patens Phragmites australis Z47 28.27
LO HI Spartina patens Lythrum salicaria 1.11 15.49
LO HI Spartina patens Typha angustifolia 2.97 20.63
LO HI Spartina patens Spartina patens 2.685 13.69
LO HI Spartina patens Spartina patens 2.685 13.69
LO MID Spartina patens Spartina altemiflor 1.61 12.85
LO MID Spartina patens Juncus gerardii 4.71 10.18
LO MID Spartina patens Phragmites australis 0.61 10.03
LO MID Spartina patens Lythrum salicaria 1.56 4.54
LO MID Spartina patens Typha angustifolia 1.36 1.94
LO MID Spartina patens Spartina patens 2.85 4.26
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (g dw) Biomass (g dw)
LO MID Spartina patens Spartina patens 2.85 426
LO MID Spartina patens Spartina altemiflor 242 9.32
LO MID Spartina patens Juncus gerardii 4.68 20.25
LO MID Spartina patens Phragmites australis 0.46 291
LO MID Spartina patens Lythrum salicaria 272 6.39
LO MID Spartina patens Typha angustifolia 1.26 5.9
LO MID Spartina patens Spartina patens 1.91 5.52
LO MID Spartina patens Spartina patens 1.91 5.52
LO LO Spartina patens Spartina patens 0.915 1.48
LO LO Spartina patens Spartina patens 0.915 1.48
LO LO Spartina patens Spartina altemiflor 0.65 218
LO LO Spartina patens Juncus gerardii 1.01 206
LO LO Spartina patens Lythrum salicaria 026 214
LO LO Spartina patens Spartina patens 0.385 5245
LO LO Spartina patens Spartina patens 0.385 5245
LO HI Juncus gerardii Spartina altemiflor 1.96 32
LO HI Juncus gerardii Spartina patens 3.85 828
LO HI Juncus gerardii Phragmites australis 1.68 10.7
LO HI Juncus gerardS Lythrum salicaria 10.76 14.75
LO HI Juncus gerardii Typha angustifolia 525 20.22
LO HI Juncusgerardii Juncus gerardii 1.005 3.825
LO HI Juncusgerardii Juncusgerardii 1.005 3.825
LO HI Juncus gerardii Spartina altemiflor 4.33 6.05
LO HI Juncusgerardii Spartina patens 8.01 9.49
LO HI Juncus gerardii Phragmites australis 263 5.42
LO HI Juncus gerardii Lythrum salicaria 235 10.75
LO HI Juncusgerardii Typha angustifolia 5.04 30.85
LO HI Juncus gerardii Juncusgerardii 3.095 5.885
LO HI Juncus gerardii Juncus gerardii 3.095 5.885
LO MID Juncus gerardii Spartina altemiflor 1.34 5.01
LO MID Juncus gerardii Spartina patens 1.64 5.48
LO MID Juncus gerardii Phragmites australis 0.21 0.39
LO MID Juncus gerardii Typha angustifolia 0.85 1.73
LO MID Juncusgerardii Juncusgerardii 1.035 3.585
LO MID Juncusgerardii Juncus gerardii 1.035 3.585
LO MID Juncusgerardii Spartina altemiflor 0.11 02
LO MID Juncus gerardii Spartina patens 1.14 8.5
LO MID Juncus gerardii Phragmites australis 1.09 3.04
LO MID Juncusgerardii Lythrum salicaria 0.37 52
LO MID Juncus gerardii Typha angustifolia 0.56 1.27
LO MID Juncus gerardii Juncus gerardii 0.415 3.365
LO MID Juncusgerardii Juncusgerardii 0.415 3.365
LO HI Phragmites australis Spartina altemiflor 6.55 8.2
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Belowground
Regime Regime Biomass (g dw) Biomass (g dw)
LO HI Phragmites australis Spartina patens 9.53 14.23
LO HI Phragmites australis Juncus gerardii 8.77 5.63
LO HI Phragmites australis Lythrum salicaria 17.01 38.78
LO HI Phragmites australis Typha angustifolia 9.08 13.76
LO HI Phragmites australis Phragmites australis 10.505 16.93
LO HI Phragmites australis Phragmites australis 10.505 16.93
LO HI Phragmites australis Spartina altemiflor 11.54 27
LO HI Phragmites australis Spartina patens 5.68 1Z74
LO HI Phragmites australis Juncus gerardii 2.09 1.92
LO HI Phragmites australis Lythrum salicaria 8.3 15.87
LO HI Phragmites australis Phragmites australis 6.785 32.825
LO HI Phragmites australis Phragmites australis 6.785 32.825
LO MID Phragmites australis Juncus gerardii 3.85 6.56
LO MID Phragmites australis Typha angustifolia 3.16 22.62
LO MID Phragmites australis Phragmites australis 5.9 1Z865
LO MID Phragmites australis Phragmites australis 5.9 1Z865
LO MID Phragmites australis Spartina patens 10.39 9.8
LO MID Phragmites australis Typha angustifolia 8.54 14.53
LO MID Phragmites australis Phragmites australis 3.71 Z845
LO MID Phragmites australis Phragmites australis 3.71 Z845
LO LO Phragmites australis Phragmites australis 5.015 7.56
LO LO Phragmites australis Phragmites australis 5.015 7.56
LO LO Phragmites australis Spartina patens 8 7.29
LO LO Phragmites australis Juncus gerardii 1.16 9.35
LO LO Phragmites australis Typha angustifolia 0.66 10.67
LO HI Lythrum salicaria Phragmites australis 2.86 19.25
LO HI Lythrum salicaria Lythrum salicaria 5.41 33.95
LO HI Lythrum salicaria Lythrum salicaria 5.41 33.95
LO HI Typha angustifolia Spartina altemiflor 9.41 20.41
LO HI Typha angustifolia Spartina patens 9.82 3Z12
LO HI Typha angustifolia Phragmites australis 24.17 38.09
LO HI Typha angustifolia Lythrum salicaria 12.1 32.91
LO HI Typha angustifolia Typha angustifolia 14.93 31.1
LO HI Typha angustifolia Typha angustifolia 14.93 31.1
LO HI Typha angustifolia Spartina altemiflor 4.56 6Z7
LO HI Typha angustifolia Spartina patens 8.32 91.19
LO HI Typha angustifolia Juncus gerardii 3.11 11.59
LO HI Typha angustifolia Phragmites australis 7.98 11.44
LO HI Typha angustifolia Lythrum salicaria 18.31 98.32
LO HI Typha angustifolia Typha angustifolia 13.44 15.2
LO HI Typha angustifolia Typha angustifolia 13.44 15.2
LO MID Typha angustifolia Spartina altemiflor 2.37 13.61
LO MID Typha angustifolia Spartina patens 6.76 2Z85
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Table A.2 (continued). Final above and belowground biomass (grams dry weight) for
experimental transplants.

Salinity Elevation Species Competitor Aboveground Bek)wg round
Regime Regime Biomass (g dw) Biomass (g dw)
LO MID Typha angustifolia Juncus gerardii 29.28 45.68
LO MID Typha angustifolia Phragmites australis 7.84 29.22
LO MID Typha angustifolia Lythrum salicaria 4.14 7.88
LO MID Typha angustifolia Spartina patens 9.05 11.14
LO MID Typha angustifolia Lythrum salicaria 36.31 94.22
LO MID Typha angustifolia Typha angustifolia 24.295 32.21
LO MID Typha angustifolia Typha angustifolia 24.295 32.21
LO LO Typha angustifolia Spartina altemiflor 9.35 19.1
LO LO Typha angustifolia Lythrum salicaria 3.21 8.03
LO LO Typha angustifolia Spartina altemiflor 11.48 38.4
LO LO Typha angustifolia Juncus gerardii 15.59 25.18
LO LO Typha angustifolia Phragmites australis 11.64 30.17
LO LO Typha angustifolia Typha angustifolia 4.295 18.76
LO LO Typha angustifolia Typha angustifolia 4.295 18.76
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