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ABSTRACT

EVALUATION OF BACTERIOPHAGE AND VIRAL PERSISTENCE DURING 
ALKALINE STABILIZATION IN SLUDGE AND BIOSOLIDS INTENDED FOR

LAND APPLICATION

by

Jacqueline J. Brabants 
University of New Hampshire, May, 2003

The use of lime to reduce or eliminate pathogen content is a cost-effective 

treatment method currently being employed in many Class B biosolids production plants 

in the United States. A bench scale model of lime stabilization was designed to evaluate 

pathogen persistence. The survivability of poliovirus type 1, fecal coliforms, Salmonella, 

adenovirus type S, rotavirus Wa, and the male-specific bacteriophage MS-2 was 

evaluated under lime stabilization conditions in various matrices. Salmonella and fecal 

coliforms were evaluated at 28’C and poliovirus and MS-2 were evaluated at both 28°C 

and 4°C for survivability under lime stabilization conditions in a sludge matrix. All 

microorganisms evaluated were discovered to be below detectable levels following 

twelve hours of liming for all temperatures evaluated. Adenovirus type 5, rotavirus Wa, 

and MS-2 were evaluated in water, biosolids, previously limed and raw sludge and 

biosolids matrices at 28“C and 4°C. In all matrices evaluated, adenovirus type 5, rotavirus 

Wa and MS-2 were below detectable levels following a twenty-four hour incubation with 

lime, with inactivation rates varying depending on the sample matrix evaluated.

xii
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Evaluation of reliable and cost effective treatment processes to demonstrate 

sufficient inactivation of pathogens provides valuable information for implementation of 

treatment technologies. This research has demonstrated that lime stabilization is effective 

at reducing fecal coliforms and Salmonella in a sludge matrix at 28°C, poliovirus in a 

sludge matrix at 28°C and 4°C, and adenovirus type 5, rotavirus Wa and male-specific 

bacteriophage in sludge and biosolids matrices at 28°C and 4°C when calcium hydroxide 

was added to achieve a pH of 12 for 2 hours and 11.5 for 22 hours. The similar 

inactivation of MS-2 under lime stabilization conditions, and prevalence and ease of 

recovery in sludge samples, combined with the need for a representative indicator in the 

absence of adequate methodology for recovery and detection of enteric viruses in sludge 

and biosolids makes male specific bacteriophages a suitable indicator as an index for 

enteric viruses, to be used for the monitoring of biosolids to determine treatment 

effectiveness following lime stabilization.

xiii
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CHAPTER ONE

AN OVERVIEW OF LEGISLATION AND PATHOGEN STANDARDS FOR THE 
TREATMENT AND LAND APPLICATION OF BIOSOLIDS

INTRODUCTION

In the United States, an estimated six million dry tons of sewage sludge are 

generated every year (NRC, 2002). This exorbitant amount is primarily due to the 

establishment of the Clean Water Act of 1972. The objectives of this legislation were to 

reduce the amount of biosolids discharged into our rivers and seas, establish minimum 

treatment requirements for municipal wastewater, and restore the physical, chemical and 

biological integrity o f the nation’s waterways. The implementation of the Clean Water 

Act resulted in enormous improvements in industrial effluent discharge and control of 

point source pollutants. Prior to enactment of the Clean Water Act, it was believed that 

dilution of waste in waterways was sufficient. This philosophy changed in the 1970’s, 

bringing a shift in focus towards protection of the environment and ecology, and 

development of the modem day wastewater treatment that protects our nation’s 

waterways. Yet, a new issue emerged as a result of the success of the Clean Water Act, 

that of sludge disposal (NRC, 2002).

Sewage sludge is a by-product of wastewater treatment processes and is defined 

as the solid, semi-solid, or liquid residue generated during the treatment of domestic

1
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sewage. The goal of sewage sludge treatment processes is to minimize the volume and 

organic content of waste, in addition to reducing the presence of pathogens, thereby 

generating biosolids. Biosolids are the primary organic solid product from sewage sludge 

that has been treated to meet the regulatory requirements for land application. Biosolids 

are a complex mixture of organic, inorganic, and biological components obtained from 

the wastewaters of households, commercial businesses, and industrial facilities, combined 

with additional compounds that may be implemented or generated during treatment 

(NRC, 2002) (Straub et aL, 1993).

Ideally, wastewater treatment processes will minimize pollutants while 

maintaining the beneficial properties of biosolids, making the material desirable for soil- 

amendment and land-reclamation purposes (Dumontet et al., 2001). The land application 

of biosolids represents a practical means of managing the large volume of sewage sludge 

generated at wastewater treatment plants by recycling nutrients and organic matter while 

avoiding the environmental and economic costs of land filling, incineration, surface site 

disposal and ocean dumping (Strauch, 1991) (Lasobras et al., 1999) (Wong et al., 2000). 

Today, approximately fifty percent of the sewage sludge generated annually in the United 

States is land applied, with the remaining material being disposed of by incineration, 

landfilling, or advanced treatment methods, to generate material that can be marketed and 

distributed as fertilizer (Figure 1) (Jager, 2000). The dramatic increase in the use of 

sewage sludge as soil amendments, fertilizer, or for land reclamation is in part due to the 

ban on ocean disposal of wastewater residuals in 1992 (NRC, 2002).

The land-application of biosolids for the purpose of soil amendment occurs on 

both agricultural and nonagricultural land, and to reclaim severely disturbed land such as

2
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strip mines and gravel pits. Agricultural land includes sites where food crops (for human 

or animal consumption) and non-food crops are grown. Nonagricultural land includes 

forests, rangelands, and public contact sites such as public parks, golf courses and 

cemeteries. The Environmental Protection Agency estimates that sewage sludge is only 

applied to approximately 0.1% of the available agricultural land in the United States on 

an annual basis (Figure 1) (EPA, 1999a). Therefore, land application as a means of 

disposal of biosolids is an alternative that is not being exploited to its full potential (Jager, 

2000).

Biosolids have been demonstrated to improve the chemical and physical 

properties of soils because biosolid material contains important nutrients and trace 

elements such as phosphorus and nitrogen, that enhance plant growth; however, 

hazardous pollutants potentially present in biosolids material may include inorganic 

contaminants, such as metals, pharmaceuticals and pesticides; organic contaminants, such 

as polychlorinated biphenyls (PCB’s) and dioxins; as well as pathogens such as bacteria, 

viruses and parasites (Strauch, 1991) (Dumontet et aL, 2001) (Lewis et aL, 2002) (Straub 

et al., 1993). The presence of these pollutants creates a public health risk due to the 

potential for direct exposure to workers and community populations as well as the 

potential for runoff creating surface water contamination or movement through the soil 

column resulting in groundwater contamination (NRC, 2002) (Gaby, 1981) (NIOSH, 

2000).

The potential hazards present in biosolids material, combined with their use as a 

soil amendment in areas where human contact may occur, inspired the U.S.

Environmental Protection Agency to create an amendment to the Clean Water Act in

3
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1993. The goal of this amendment was to establish regulations to protect the public health 

and the environment from pollutants that may be present in sewage sludge biosolids. This 

amendment, commonly known as the Part 503 rule, is contained within Title 40 of the 

Code of Federal Regulations under section 405 (d) of the Clean Water Act (EPA, 1996).

The Part 503 rule dictates the standards for the use and disposal of sewage sludge, 

including management practices for the land application of sewage sludge (EPA, 1996) 

(EPA, 1999b). This rule establishes minimum quality standards for land-applied sludge 

that dictate concentration limits and loading rates for chemicals, as well as providing 

treatment and use requirements to control and reduce pathogens and attraction of disease 

vectors. The pathogen standards are focused on reducing the presence of pathogens and 

potential exposures by treatment or a combination of treatment and use restrictions. The 

standards are not based on risk analysis, as are chemical standards (EPA, 1996) (EPA, 

1999b). This is due to unreliable methods for the assay of pathogens combined with 

insufficient and inconsistent data on both the fete and transport of pathogens in the 

environment (Lewis et al., 2002). As a result of the lack of current scientific data on the 

range and persistence of pathogens in treated biosolids, the pathogen standards require 

the monitoring of indicator organisms. There are a large variety of pathogens potentially 

present in sewage sludge and it is seemingly impractical to monitor for them individually 

(NRC, 2002) (Baker and Hegarty, 1997).

The indicator organisms utilized in the Part 503 rules for determination of 

pathogen presence were chosen based on the scientific and technical information 

available prior to legislation. When the Part 503 rule was enacted, it was believed that the 

proposed treatment methods, coupled with biosolids management practices, would be

4
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effective in preventing harmful exposure to biosolids components. It is now necessary to 

re-evaluate the pathogen-reduction requirements established in the part 503 rules in light 

of current scientific data and risk assessment methods. The effectiveness of treatment 

methods must be verified with regard to specific pathogens that were not cuhivatable or 

even considered human pathogens at the time the 503 rules were enacted. Currently, there 

are enormous gaps in the scientific data available on reduction of pathogens during 

commonly employed treatment processes (Lewis et al., 2002). The lack of data makes 

developing accurate risk assessment models, for the purpose of evaluating the risk of land 

application of biosolids to the public health and the environment, extremely difficult if 

not impossible.

Formidable challenges exist with regard to biosolids management and legislation. 

The use of management practices is the primary means of controlling the exposure of 

human pathogens potentially found in biosolids (EPA, 1996). However, the 

Environmental Protection Agency’s biosolids program has a low priority and as a result 

there is a lack of available resources to adequately monitor management practices and 

enforce existing legislation. There are inconsistencies in how states manage biosolids and 

no formal process for tracking health complaints associated with land application of 

biosolids. One of the most difficult challenges for the EPA’s biosolids program is the 

burden of creating regulations that will adequately protect public health, when there is a 

deficit o f scientific data on pathogen persistence. As a result of these shortfalls, the 

general public has expressed concern regarding the effects of biosolids on health, quality 

of life and natural resources. The perceived risks associated with land application of 

biosolids, including presence of heavy metals and pathogens, negative public perception,

5
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odor complaints, and an increase in contaminants in the water supply, outweigh the 

economic incentives and soil improvement benefits realized by farmers (Krogmann et al., 

2001). At present, the public perception of land application of biosolids is poor and this 

has had a significant negative effect on the successful implementation of the biosolids 

land application program.

The evaluation of cost-effective treatment technologies to determine the 

persistence of pathogens of public health importance is necessary to determine treatment 

effectiveness and begin to ease uncertainties associated with the land application of 

biosolids. Evaluation of reliable and cost-effective treatment processes to demonstrate 

sufficient inactivation of pathogens would provide valuable information for utilities 

looking to implement treatment technologies. Ultimately, the elucidation of effective 

treatment technology and identification of representative indicator organisms for 

pathogen monitoring in sewage sludge will help to ensure public health and safety, and 

promote the sustainable practice of biosolids land application.

6
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Biosolids Management throughout the United States

■41%  Land Application 

■  12% Advanced Treatment 

□  1% Other Disposal 

B17%  Landfill 

■22%  Incineration 

I I 7% Other Beneficial Use

Figure 1: Biosolids Management Throughout the United States: Adapted from the 
Journal of the New England Water Environment Association, November 2000, Vol. 34. 
Approximately 60% of the biosolids generated in the United States are beneficially used 
with land application representing the primary method of managing biosolids in the 
country. In the chart legend, land application refers to the traditional practice of applying 
treated biosolids, including lime stabilized material, to permitted fields. Advanced 
treatment includes heat drying and advanced alkaline stabilization to generate a Class A 
product which is generally used as a fertilizer and soil amendment on lawns and gardens. 
Landfill refers to all forms of sludge disposal in landfills. Incineration refers to 
incineration of material generally in incinerators that are reserved exclusively for 
biosolids. Other beneficial use represents unidentified management practices and disposal 
methods.

7
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Biosolids Management in New Hampshire

■  11 % Land Application 

B 20% Advanced Treatment 

□  22% Incineration 

B 47% Landfilling

Figure 2: Biosolids Management in New Hampshire: Adapted from the Journal of the 
New England Water Environment Association, November 2000, VoL 34. In the state of 
New Hampshire, landfilling predominates as the primary method for biosolids disposal. 
Beneficial use of biosolids, especially land application, is a very controversial issue in 
New Hampshire where many communities have adopted local ordinances severely 
restricting or outright banning biosolids land application. In the chart legend, land 
application refers to the traditional practice of applying treated biosolids, including lime 
stabilized material, to permitted fields. Advanced treatment includes heat drying and 
advanced alkaline stabilization to generate a Class A product which is generally used as a 
fertilizer and soil amendment on lawns and gardens. Landfill refers to all forms of sludge 
disposal in landfills. Incineration refers to incineration of material in the state’s one 
incinerator which is located in Manchester, NH.

8
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Pathogen Standards for Biosolids

Pathogens are microorganisms capable of establishing an infection and causing 

disease in a susceptible host (Ryan, 1994). Pathogens are able to survive in soils from 

hours to years depending on the specific pathogen, biosolids application methods and 

rates (injection, incorporation, or surface application), initial pathogen concentrations, 

and environmental conditions such as soil composition, and meteorological and 

geological conditions (Jager, 2000) (NRC, 2002) (Straub et al., 1993). The pathogen 

standards contained within the Part 503 regulations were developed in an effort to reduce 

the presence of pathogens by treatment or a combination of treatment and use 

restrictions; however, risk assessments were not conducted in the development of the 

1993 pathogen standards due to a lack of adequate technical data (NRC, 2002) (Lewis et 

al., 2002) (EPA, 1996). The pathogen standards dictate treatment requirements, site 

restrictions, and monitoring requirements. The specific criteria for regulatory compliance 

with land-application guidelines is determined by the biosolid classification desired. The 

U.S. Environmental Protection Agency categorizes biosolids as Class A or Class B. This 

classification is based on several parameters including organic, metal and microbial 

content (EPA, 1999a) (EPA, 1996).

Class A Pathogen Requirements

Class A sludge has pathogen densities which are greatly reduced or are below 

detectable levels using the EPA assay for the specific pathogen. Class A sludge is
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generated using a process to further reduce pathogens (PFRP). Class A certification 

requires demonstration of pathogen reduction by using one of several prescribed 

strategies combined with screening to verify reduction of bacteria, enteric viruses, 

Salmonella and viable helminth ova. Class A biosolids are treated to reduce the presence 

of pathogens to below detectable levels as well as meeting the high-quality pollutant 

concentration limits for metals. As a result, Class A products can be used without any 

restrictions at the application site (EPA, 1999a) (EPA, 1999b) (EPA, 1996).

To achieve Class A certification, a utility must meet treatment-process control 

criteria as well as pathogen reduction for either fecal coliform or Salmonella density. The 

fecal coliform density must be less than one thousand most probable number (MPN) per 

one gram (g) of total solids (TS) analyzed. Salmonella density must be less than three 

MPN per four grams of TS analyzed. In addition to satisfying pathogen reduction 

requirements for treatment control, one of a variety of treatment processes must be met in 

order to designate the product Class A. The goal of the available processes is to reduce 

pathogen densities to below specified detection limits for Salmonella (less than three 

MPN per four grams TS), enteric viruses (less than one plaque forming unit (PFU) per 

four grams TS), and helminths (less than one viable helminth ova per four grams TS).

For biosolids to be categorized as Class A with respect to pathogen content, they must 

meet one of the following criteria: time and temperature requirements based on 

percentage of solids in the material, pH adjustment accompanied by high temperature and 

solids drying, monitoring of enteric viruses and helminths after a treatment process to 

ensure below-detectable concentrations, monitoring of enteric viruses and helminths in 

the biosolids at the time they are distributed or applied to land, treatment by a process for
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the further reduction of pathogens (PFRP) or treatment in a process deemed equivalent to 

a PFRP which may include one of several processes. Processes considered to be 

equivalent to a PFRP include composting with minimum time and temperature 

conditions, heat drying with specified temperature and moisture conditions, high- 

temperature heat treatment, thermophilic aerobic digestion at specified time and 

temperature, beta irradiation at specified dosage, gamma irradiation at specified dosage 

or pasteurization. See Table 1 for alternative treatment processes designated to achieve 

Class A certification (Jager, 2000) (NRC, 2002) (EPA, 1999a) (EPA, 1999b).
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Table 1: Class A Pathogen Requirements

To achieve Class A certification, treatment process control requirements and densities of 
either fecal coliform or <Salmonella must be met. Density criteria for fecal coliforms are 
less than 1,000 MPN per gram of total solids (TS). Density criteria for Salmonella are 
less than three MPN per four grams of TS. One of the following treatment processes must 
be met for Class A designation, the goal of which is to reduce pathogen densities to 
below specified detection limits for Salmonella (<3 MPN per four grams TS), enteric 
viruses (<1 plaque forming unit (pfu) per four grams TS), and helminths (<1 viable 
organism per four grams TS)

i
Temperature and Time Process: Sewage-sludge must be maintained at an 
increased temperature for a prescribed period of time according to set guidelines.

2

Alkaline Treatment Process: The sewage sludge pH must be raised to greater than 
12 for at least 72 hours. During this time, the sewage sludge temperature must 
exceed 52°C for at least twelve hours. Following the 72 hour period, the sewage 
sludge must be air dried to at least 50% total solids.

3

Prior Test for Enteric Virus and Viable Helminth Ova: The sewage sludge must 
be analyzed for the presence of enteric viruses and viable helminth ova. If the 
pathogen reduction requirements are met prior to processing, the sewage sludge is 
considered Class A with respect to enteric virus and viable helminth ova until the 
next monitoring event.

4

Post-Test for Enteric Virus and Viable Helminth Ova: If the sewage sludge Is 
not analyzed before pathogen-reduction processing for enteric viruses and viable 
helminth ova, the density of such organisms must meet pathogen reduction criteria 
at the time the sewage sludge is used, disposed of, or prepared for sale.

5 Processes to Further Reduce Pathogens

5a

Composting Process: When using within-vessel or static-aerated pile composting 
methods, the sewage sludge temperature must be maintained at 55°C or higher for 
three days. If windrow composting methods are used, the sewage sludge 
temperature must be maintained at 55°C or higher for 15 days or longer. During this 
period, a minimum of five windrow turnings are required.

5b

Heat drying Process: The sewage sludge must be dried by direct or indirect contact 
with hot gases to reduce the moisture content to 10% or lower. Either the 
temperature of the sewage-sludge particles must exceed 90°C or the wet bulb 
temperature of the gas in contact with the sewage sludge leaving the dryer must 
exceed 80°C.

5c
Heat Treatment Process: Liquid sludge must be heated to a temperature of 180°C 
or higher for 30 minutes
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5d
Thermophilic Aerobic Digestion Process: Sewage sludge must be agitated with air 
or oxygen to maintain aerobic conditions. The mean cell residence time for the 
sewage sludge must be 10 days at 55°C to 60°C.

5e
Beta Ray Irradiation Process: The sewage sludge must be irradiated with beta rays 
from an accelerator at a dose of at least 1.0 megarad at room temperature.

5f
Gamma Ray Irradiation Process: The sewage sludge must be irradiated with 
gamma rays from certain isotopes, such as cobalt 60 and cesium 137, at a dose of at 
least 1.0 megarad at room temperature.

5g
Pasteurization Process: The temperature of the sewage sludge must be maintained 
at 70°C or higher for 30 minutes or longer.

6

Process Equivalent to Process to Further Reduce Pathogens (PFRP): The
sewage sludge must be treated in a process that is equivalent to PFRP, as approved 
by the permit authority. To obtain a class A biosolid rating, the process must reduce 
Salmonella species or fecal coliforms to below Class A criteria and must operate 
under the specified conditions used in its application demonstration to the EPA 
Pathogen Equivalency Committee.

Table adapted from National Research Council: "Biosolids Applied to Land, Advancing Standards and 
Practices," 2002

Class B Pathogen Requirements

Class B sludge is generated by rising one or a combination of prescribed processes 

to significantly reduce pathogens (PSRP), or a process equivalent to a PSRP. 

Demonstration of pathogen reduction to achieve Class B certification requires monitoring 

of fecal coliform levels (EPA, 1996). Class B sludge is known to contain pathogens 

because it is treated to a lesser extent than Class A sludge. Class B biosolids are 

permitted to contain detectable concentrations of pathogens and therefore site restrictions 

and management practices are recommended to minimize exposure with potentially 

harmful constituents until environmental degradation (heat, sunlight, desiccation) has 

further reduced the presence of pathogens (NRC, 2002). Currently, there are no
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requirements for measurement of pathogen density during on-site application. Class B 

sludge is less expensive and therefore most highly desired. Class B sludge is spread in 

great quantities on land as fertilizer and is also mixed with other material to use for gravel 

pit reclamation and landfill closures; however, restrictions exist with regard to public use 

sites. Due to the presence of pathogens contained within sludge treated to meet class B 

requirements, site restrictions exist with regard to land application of this material and are 

based on the time required to reduce the levels of pathogens to below detectable 

concentrations at the time of public exposure (EPA, 1996).

Fecal coliforms are the only microbiological parameter evaluated for Class B 

biosolids. In addition to complying with the fecal coliform limitations for Class B 

biosolids, which dictate that the geometric mean of seven samples must be less than two 

million MPN or colony forming units (CFU) per gram of total solids analyzed, treatment 

requirements may be satisfied by performing one of a variety of processes. Processes to 

significantly reduce pathogens include aerobic digestion at defined time and temperature 

combinations, air drying for three months with at least two months at average ambient 

daily temperatures above freezing, anaerobic digestion under defined time and 

temperature conditions, composting under defined time and temperature conditions, or 

lime stabilization to maintain the pH above twelve after two hours of contact. The 

aforementioned processes are believed to result in fecal-coliform concentrations of less 

than two million per gram of totals solids analyzed and reduce the concentrations of 

Salmonella and enteric virus (NRC, 2002) (Table 2).

There exists a need for data demonstrating rates of pathogen survival in soil or on 

crops following the land application of biosolids. It is necessary to evaluate the reliability
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of the Environmental Protection Agency’s prescribed treatment techniques using current 

pathogen detection technology, and to examine the potential for regrowth of pathogens. 

The indicators (fecal coliforms, enteric virus, and helminth ova) appear to be present in 

very low densities in biosolids and in raw sewage sludge. This is a problem because as 

representative pathogens, these organisms are routinely screened for and used to measure 

presence and treatment efficiency for Class A biosolids. In addition, it is necessary to 

determine whether to use indicator organisms to predict pathogen survival and 

recontamination, and if so which organisms are adequate and most representative. Such 

data will be useful for development of quantitative microbial risk-assessment models to 

more accurately determine the risk associated with land application of biosolids (NRC, 

2002) (Jager, 2000) (EPA, 1999a) (EPA, 1999b).
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Table 2: Class B Pathogen Requirements

To achieve Class B certification, management-practice requirements, including site 
restrictions, and pathogen control requirements for densities of fecal coliforms must be 
met. The geometric mean of fecal coliform densities for at least seven separate samples 
must be less than two million MPN (most probable number) or CFU (colony forming 
units) per gram of total solids (TS) analyzed.

i
Aerobic Digestion: The sewage sludge must be agitated with air or oxygen to 
maintain an aerobic condition for a mean cell residence time and temperature 
between forty days at 20°C and sixty days at 15°C.

2

Anaerobic Digestion: The sewage sludge must be treated in the absence of air for a 
specific mean cell residence time at a specific temperature. Values for the mean cell 
residence time and temperature must be between 15 days at 35°C to 55°C and 60 
days at 20°C.

3 Lime Stabilization: Sufficient lime must be added to the sewage sludge to raise the 
pH to 12 for 2 hours of contact time.

4
Air Drying: The sewage sludge must be dried on sand beds or in paved or unpaved 
basins for a minimum of three months. During two of the three months, the ambient 
average daily temperature must be above 0°C.

5

Composting: The sewage sludge must be composted using either within-vessel, 
static-aerated pile, or windrow composting methods and the temperature raised to 
40°C or higher for five days. For four hours at some point during each of the five 
days, the temperature in the compost pile must exceed 55°C.

6
Process Equivalent to Process to Significantly Reduce Pathogens (PSRP): Treat 
the sewage sludge in a process that is equivalent to a PSRP, as approved by the 
permit authority. (i.e. N-viro alkaline stabilization, Synox OxyOzone process)

Table adapte< 
Practices," 20

from National Research Conncil: "Biosolids Applied to Land, Advancing Standards and 
02
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Biosolids Treatment Processes

Wastewater treatment generates effluent and sewage sludge. Wastewater 

originating from homes, businesses, and industries is combined in wastewater treatment 

plants where it is treated to allow effluent discharge into the surface and groundwater of 

the United States. The residual solid product is also treated, generally through 

stabilization, aerobic or anaerobic process, for specified time periods and temperatures. 

Sewage sludge is generated in several treatment processes including primary clarification 

and secondary clarification of sewage sludge. The process of treating wastewater and 

sewage sludge is illustrated in Figure 3.

One of the goals of biosolids treatment processes is to reduce pathogens in an 

effort to protect public health. There are a variety of techniques that exist to reduce 

pathogens. Techniques that combine physical, chemical and biological processes are 

employed to optimize pathogen reduction in biosolids. Physical means for pathogen 

reduction include heating and cavitation, which is a term for processes that impart high 

mechanical energy such as ultrasound and pulse power, to a fluid resulting in the creation 

of high temperature and pressure microenvironments (NRC, 2002) (Jager, 2000).

Chemical disinfection of biosolids is a technique that has been employed for over 

fifty years. The chemicals used for this purpose are classified on the basis of the mode of 

disinfection and stabilization. Alkaline stabilization is a method utilized extensively in 

the United States. Alkaline stabilization agents include quick lime (CaO), hydrated lime 

(Ca(OH)2), cement kiln dust, or lime kiln dust, which are added to liquid biosolids or 

dewatered cake. Alkaline stabilization processes produce Class B biosolids (Jager, 2000).
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To generate Class A biosolids, increased temperatures or addition of ammonia are 

necessary to achieve a higher level of treatment in an effort to inactivate highly resistant 

viruses, protozoan spores and helminth eggs (NRC, 2002).

Biological processing has been effective in the digesting, composting and storage 

of biosolids and involves mechanical or autothermal heating. To comply with current 

regulations for the use and disposal of sewage, treatment plants must meet a standard set 

of criteria for pathogen reduction and demonstration of process efficiency. This criterion 

differs depending on the classification of biosolids desired (NRC, 2002) (EPA, 1999a) 

(EPA, 1999b) (EPA, 1996).
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Municipal Wastewater

Conventional Wastewater Treatment
■ Screening and grit removal
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■ Surface disposal
■ Landfill
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Distribution

Figure 3: Schematic flow diagram of wastewater treatment and biosolids 
generation and disposal. Adapted from National Research Council “Biosolids 
Applied to Land: Advancing Standards and Practices,” 2002.
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Lime Stabilization

The use of lime to reduce or eliminate pathogen content in sewage sludge 

represents a simple and inexpensive method of treatment by which Class B sludge can be 

generated (Jager, 2000). Liming is a process where calcium hydroxide or calcium oxide 

is added and the pH elevated to 12 for 2 hours and then reduced to 11.5 for 22 hours. 

Lime has been in use for a number of years for the disinfection and odor suppression of 

solid wastes. Initial studies using lime were conducted to demonstrate the potential for 

phosphate removal During these studies it was observed that the high pH achieved 

during addition of calcium hydroxide inactivated bacteria in addition to creating a sludge 

that was essentially odorless (Sattar et al., 1976). It is now known that addition of lime to 

raw sewage or primary effluent results in the flocculation of organic matter and the 

sedimentation of this flocculated material creates a relatively clear supernatant with 

reduced amounts of phosphates and other pollutants (Sattar et al., 1976) (NRC, 2002). 

Therefore, addition of calcium hydroxide (lime) to wastewaters is a way to achieve 

phosphate removal; thereby allowing utilities to comply with regulations that previously 

existed to control the discharge of chemical pollutants such as phosphates into 

waterways.

Early lime stabilization studies conducted for the purpose of phosphate removal 

and assessment of viral inactivation, involved collection of the supernatant formed during 

liming and its subsequent evaluation for enteric virus (Sattar et al., 1976). Results 

indicated a 99.99% reduction of seeded virus. However, techniques for virus recovery 

from sludge were not available at the time and as a result the potential viral adsorption to
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particles found in the sedimented sludge was not taken into account (Sattar and Raima, 

1976). Additional research has demonstrated that maintaining a high pH over a period of 

time is very effective at reducing or eliminating the viral load from sludge. Studies 

conducted by Derbyshire and Brown in the late 1970’s revealed the inactivation of 

porcine strains of enterovirus and adenovirus in pig slurry treated with calcium hydroxide 

(Derbyshire and Brown, 1979). Deng and Cliver conducted additional research to 

evaluate inactivation of pathogens in sludge matrices and demonstrated the inactivation 

of poliovirus type 1 in mixtures of septic tank effluent and dairy cattle manure slurry 

(Deng and Cliver, 199S). Subsequent research conducted by this team demonstrated 

inactivation of hepatitis A virus in a similar matrix. Such inactivation was attributed to 

microbial activity, more specifically to proteolytic en2ymes produced by bacteria in the 

waste. Grabow et aL, demonstrated that the reductions in the numbers of enteric viruses 

were higher than those of coliphages, enterococci, total plate and coliform indicators, 

highlighting the potential use of coliphage and bacterial counts as indicators of pathogen 

survival (Grabow et al., 1978).

There are many benefits associated with the process of lime stabilization 

including elimination of pathogenic microorganisms and odor along with reduction of 

heavy metal movement (Wong and Fang, 2000); however, limitations do exist and 

include a loss of soluble phosphate, ammonia and nitrogen content that minimizes the 

potential benefits for soil amendment, especially when compared to alternatives such as 

digested sludge, where there is no reduction of organics. Lime addition significantly 

increases the quantity of material for disposal and treatment results in the generation of a
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high pH sludge liquor which must be treated or disposed of following dewatering of 

limed material (EPA, 1999a) (EPA, 1999b).

There has been very little research focusing on enteric virus survival in lime 

stabilized sludge since the 1970’s. Currently, there is little information available on the 

removal and inactivation of human pathogenic viruses, such as rotavirus and adenovirus, 

which were not cultivatable when original studies were conducted to evaluate the effects 

of high-pH lime treatment of sewage.

Evaluation of the lime stabilization technique to demonstrate that it is an effective 

method to inactivate bacterial, viral, helminth and protozoal pathogens that could not be 

evaluated at the time the Part 503 rules were enacted is necessary. The availability of 

such data will be useful in efforts to ease the uncertainties and minimize the risks 

associated with the application of Class B sludge to land.

Pathogens in Biosolids

There are four major types of pathogens that may be found in biosolids (Straub et 

a l, 1993). These pathogens are bacteria, viruses, protozoans and helminths. Since the 

promulgation of the Part 503 rule, many new pathogens have been recognized, and the 

importance of others has increased, yet it appears that research on the fete of 

microorganisms in biosolids ceased following the adoption of the 503 regulations. There 

are very little data available about the fate of emerging pathogens in biosolids treatment 

processes and land application programs. The pathogens considered in the current 

regulation are enteric viruses, helminths and Salmonella or fecal coliforms.
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Bacteria

Bacterial pathogens of concern in sewage sludge include species of Salmonella 

and Shigella, Yersinia and Vibrio cholerae, Campylobacter jejuni, and Escherichia coli. 

Several types of E. coli are pathogenic to humans. Enteiobaemorrhagic E. coli of the 

serotype 0157:H7 has been of the greatest concern in the United States. Exposure to 

contaminated drinking water, recreational water, and food has resulted in numerous 

outbreaks of diarrhea and in some cases mortality in young children due to hemolytic 

uremic syndrome (NRC, 2002). Ecoli 0157:H7 occurs in domestic wastewater and has 

been detected in biosolids (Lytle et al., 1999).

Campylobacter is recognized as being the most common enteric bacterial 

infection, yet there is relatively little research documenting its fete in biosolids treatment 

processes or the environment (MMWR, 1999). In addition, Staphylococcus aureus has 

been implicated as a source of illness from land-applied biosolids. It is found on the skin 

of a large number of people and is associated with atopic dermatitis, a superficial 

inflammation of the skin. For bacterial pathogens, the infectious dose will vary with the 

organism and can be as low as 100 bacteria to establish a Salmonella infection (Kowal, 

1985). Bacteria are an important pathogen with regard to biosolids and land application 

because the potential exists for regrowth following treatment, particularly when biosolids 

are blended with other nutrient containing materials for the creation of soil amendment 

products (Yanko, 1988).

Exposure to both human and animal wastes has been associated with outbreaks of 

gastroenteritis although there are no scientific data to confirm this (Lewis, 2002). The
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range of emerging bacterial pathogens and their potential for presence in biosolids, 

combined with the increasing rate at which microorganisms are developing antibiotic 

resistance, necessitates the demand for current data regarding pathogen persistence in 

land applied biosolids.

Enteric Viruses

Viruses are obligate, intracellular parasites composed of a DNA or RNA core 

surrounded by a protein coat Viruses require a living host for replication and specific 

target cell receptors to establish an infection. Infection is accomplished by release of the 

viral genome into a susceptible cell. There are at least 140 types of human enteric viruses 

that include 72 serotypes of enteroviruses, caliciviruses, hepatitis A virus, reo virus, 

astroviruses, adenovirus and rotavirus (Hurst et aL, 1991), all of which have the potential 

to be transmitted through biosolids. Examination of raw sludges in various studies in 

different geographical areas revealed that numbers of enteric viruses may range from 

1,000 to greater than 50,000 PFU/Liter with numbers of adenovirus and rotavirus 

reported in even larger concentrations (Lasobras et a l, 1999).

Enteric viruses are the major cause of childhood diarrhea in the United States and 

result in an estimated one hundred deaths per year related to gastroenteritis (EPA, 2000). 

Polio virus is the most well known of the enteroviruses, and is transmitted by the fecal- 

oral route. Infection manifests as poliomyelitis and in some cases paralysis. The 

environmental fete of poliovirus has been studied extensively because it is easily grown 

and assayed in the laboratory.
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Rotaviruses and caliciviruses are the leading causes of gastroenteritis in the 

United States and have been shown to be transmitted by food and water. Rotaviruses are 

the most important viruses causing life-threatening disease in young children and are a 

major cause of hospitalization of children in the United States (Gerba et al, 1996) (Estes,

2001). In a recent study by Pang et al. twenty-four percent of children under two years of 

age evaluated for diarrheal disease were infected with rotavirus (Pang et al., 2000). 

Rotaviruses have been detected in water, wastewater and more recently in biosolids, 

although very little data exist on their occurrence in biosolids (Chapron et a l, 2000). 

Rotaviruses are responsible for both waterborne and foodbome outbreaks in the United 

States and are the only double-stranded RNA viruses currently known to be transmitted 

through water to humans. They are extremely resistant in the environment and present in 

large amounts in wastewater. Rotavirus has emerged as the most common cause of severe 

gastroenteritis in children and as a result has become a target for prevention and control 

with vaccines (NRC, 2002).

Adenoviruses are one of the most common and persistent viruses detected in 

wastewater, and enteric adenoviruses are the second most common cause of childhood 

viral diarrhea (Enriquez et al., 1995) (Gerba et al., 1996). Adenoviruses are heat resistant 

and have been detected in Class B biosolids (Chapron et al., 2000). Some strains cause 

nose, eye and respiratory infections, whereas others appear to be only enteric pathogens. 

In immuno suppressed cancer patients, enteric adenoviruses cause serious infections, 

resulting in case fatalities of up to 50% (Gerba et al., 1996). Adenoviruses have been 

transmitted by both recreational and drinking waters (Kukkula et al., 1997) 

(Papapetropoulou and Vantarakis, 1998). Adenoviruses are of particular concern because
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of the ability of some strains to produce tumors in animals and transform cells in vitro 

(Russell, 2000).

There has been very little research conducted on the occurrence of enteric viruses 

in biosolids in recent years. The existing information provides data about the prevalence 

of enteroviruses, specifically poliovirus, in biosolids, and the effect of treatment; yet for 

many processes the amount of data on virus removal is very limited. Previous cell culture 

techniques were limited in their ability to detect viruses in environmental samples. With 

the advent of new and improved cell culture detection techniques, it is now possible to 

assess prevalence and persistence of pathogens, such as rotavirus and adenovirus, which 

were previously not cultivatable. There is a need for better estimates on the concentration 

of enteric viruses in biosolids, along with identification of adequate indicators. In 

addition, there is a need for better assessment of exposure via aerosols and groundwater 

transport.

Protozoa

Protozoan pathogens of concern in municipal wastewater and sewage sludge 

include Cryptosporidium parvum and Giardia lamblia, Entamoeba histolytica, 

Balantidium coli and Toxoplasma gondii. Toxoplasma gondii is a threat to humans as a 

result of the severe deformations and damage caused to a developing fetus when the 

organism is transmitted transplacentally horn an infected mother. Infection manifests 

differently depending on the site of growth of the organism and may include pneumonia, 

neurologic flu-like symptoms and retinitis. There are currently no data on the prevalence
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or resistance of Toxoplasma oocysts in biosolids treatment and no adequate methods for 

screening such material (Garcia and Bruckner, 1997) (NRC, 2002).

Balantidium coli has worldwide distribution in humans and is the largest of the 

protozoa that parasitize humans, but is rarely recovered from clinical specimens in the 

United States. Infections are either asymptomatic or manifest as intermittent diarrhea 

(Garcia and Bruckner, 1997). In areas of the world where human infections with this 

parasite are common, sludges can contain large numbers of cysts. There is no information 

about the prevalence of B. coli in the United States or survival during biosolids treatment 

processes (NRC, 2002).

Entamoeba histolytica is transmitted from human to human by the fecal-oral route 

and is generally associated with poor hygiene and poor water quality. In 1984, five 

hundred million people worldwide were estimated to be infected with E. histolytica 

(Garcia and Bruckner, 1997). Infection manifests as severe dysentery and can be life 

threatening. The geographical distribution of this pathogen and prevalence in wastewater 

or manure is unknown and there are no routinely employed standard methods for 

detecting this pathogen in effluents or biosolids (NRC, 2002). However, the cyst stage 

has been demonstrated to be very resistant to environmental conditions and can remain 

viable for sixty days at 0°C in soil (Garcia and Bruckner, 1997).

Cryptosporidium parvum and Giardia lamblia are parasites of the small intestine 

that cause diarrhea. C. parvum oocysts and G. lamblia cysts have been detected in 

products of wastewater treatment and in biosolids and are of particular concern because 

of their low infectious dose, ten oocysts for Cryptosporidium and one cyst for Giardia 

(Kowal, 1985). G. lamblia is the most commonly diagnosed flagellate in the intestinal
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tract. Infection manifests as giardiasis which causes nausea, diarrhea and dehydration 

(Faubert, 2000) (Garcia and Bruckner, 1997). Infection with the protozoan parasite 

Cryptosporidium manifests as acute gastrointestinal distress resulting in a severe diarrhea 

that is potentially life-threatening in immunocompromised individuals (Clark, 1999) 

(Current, 1988) (Leventhal and Cheadle, 1989) (Balows et al., 1991) (Bowman, 1999) 

(Fayer, 1997). There is currently no effective treatment for Cryptosporidium infection 

(Clark, 1999). Cryptosporidium has a ubiquitous geographical distribution in the United 

States and is commonly found in surface water. Cryptosporidium is a major threat to the 

water supply because it is resistant to chlorine, small and difficult to filter, and is present 

in many animals (Guerrant, 2001). Accurate and reliable methods for detecting Giardia 

and Cryptosporidium in water are currently being developed and such methods are not 

optimized for recovery of these protozoan parasites from sludge and biosolids matrices 

(Nieminski et a l, 1995). Parasite cysts and oocysts are resistant to environmental 

degradation and to conventional methods of treating biosolids; and as a result have been 

implicated in parasitic waterborne outbreaks. For these reasons, parasitic protozoa 

represent potential candidates for biosolids monitoring (Olson et al., 1999) (Kuczynska 

and Shelton, 1999).

The effect of lime treatment on protozoan parasites is not known, nor is the 

potential for pathogen survival following land application. This is in part due to a lack of 

adequate recovery methodology for the parasites from biosolids material and a lack of 

rapid and sensitive viability assays. Research to determine the persistence of protozoan 

parasites during biosolids treatment processes is necessary to folly assess the potential 

use of such organisms as indicators for the presence of parasites in biosolids material.
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Helminths

Helminth eggs are large and heavy and are therefore concentrated in wastewater 

sludge (O’Donnell et aL, 1984) (Meyer et aL, 1978). Helminth ova are currently utilized 

to indicate parasite removal, therefore demonstrating effective treatment and approval for 

use of bio solids for land application. Helminth worms include Ascaris lumbricoides and 

Ascarissuum, Trichuris trichiura, Toxocara canis, Taenia saginata, Taenia solium, 

Necator americanus (Hookworm), and Hymenolepsis nana. The clinical manifestation of 

a helminth infection will depend on the worm burden, the length of the infection and the 

age and overall health status of the host. Infection with T. trichiura (whipworm) is more 

common in warm, moist areas of the world, presenting as diarrhea or dysentery, and is 

often seen in conjunction with Ascaris infections. The potential for transmission of T. 

trichiura from animals to humans is not known but presents a potential risk especially 

from contaminated surface water runoff. The prevalence of this organism in sludges and 

the effects of treatment are not known (NRC, 2002) (Garcia and Bruckner, 1997).

Research conducted by Yanko demonstrated that the ova of A. lumbricoides were 

more resistant to inactivation by treatment processes and environmental conditions than 

other parasites investigated (Yanko, 1988). A. lumbricoides ova have been demonstrated 

to survive for long periods of time in sludge matrices, particularly when eggs are 

integrated into soil where they are afforded protection from radiation and desiccation. 

(Storey and Phillips, 1985) (O’Donnell et al., 1984) (Yanko, 1988). This research led to 

the establishment of A. lumbricoides, an intestinal roundworm, as the primary indicator 

for assessing presence of other parasites and measurement of treatment efficiency. The
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use o f Ascaris eggs as an indicator for helminths has been advocated because: 1) 

Ascariasis is a common and ubiquitous helminth infection 2) Ascaris eggs tend to settle 

in sludge, and 3) Ascaris eggs are more resistant to adverse external conditions than other 

enteric organisms (Meyer et al, 1978).

It is estimated that 800 million to 1.3 billion individuals worldwide suffer from 

Ascariasis, the infection resulting from ingestion of eggs, or ova (WHO, 1986). Infection 

manifests as vomiting, abdominal pain, pneumonitis and nutritional impairment, and in 

severe infections, small bowel obstruction (WHO, 1986). Current EPA 503 regulations 

require biosolids to be screened for A. lumbricoides; however, regional differences in 

parasite occurrence and difficulties in testing viability have led to suggestions for an 

alternative organism to be appointed to indicate the presence of parasites. Currently there 

is no timely method to monitor for the inactivation of Ascaris eggs. Inactivation of 

helminth ova is one of the ways of assessing whether a disinfection process produces 

Class A biosolids. Eggs must be recovered from biosolids and examined microscopically 

for viability. Original methodology was developed to detect parasite eggs in fecal 

samples but methods for routine analysis of sludge material, which contains fewer eggs, 

are not adequate (Meyer et al., 1978). Currently employed methodology is costly and 

labor-intensive and extremely inefficient, therefore compromising the integrity of 

reported results on pathogen presence in biosolids intended for land application. The low 

number of Ascaris eggs typically found in domestic sewage biosolids in the United States 

warrants investigation of alternative indicators for routine screening. The need exists for 

improved methodology to effectively recover helminth eggs from biosolids. In addition,
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studies must be conducted to determine the persistence, transport and fete of helminth 

ova in biosoiids, along with identification of representative indicators.

Pathogen Exposure from Biosolids

The major routes of potential human exposure to pathogens in biosolids are air, 

soil, water and transfer from vectors. Humans may be exposed to pathogens in biosolids 

from a variety of pathways including ingestion of contaminated food, water, or soil, 

dermal contact, and inhalation of bioaerosols, all of which represent primary sources of 

transmission. Secondary transmission may occur from exposure to pathogens shed from 

infected individuals either by direct contact or by routes through the environment (NRC, 

2002). The hazards associated with biosolids are a function of the number and type of 

pathogens in the treated sludge relative to the minimum infectious dose and the exposure 

level (EPA, 1993). There is the potential for surfece-water contamination by runoff, as 

well as groundwater contamination from passage of pathogens through the soil into 

underground aquifers, particularly during a rain event (Straub et al., 1993) (Hurst et al., 

1991).

Pathogens can survive in soils from hours to years and there is very little 

information available about pathogen transport and survival in soils and aerosols (Straub 

et al., 1993). In a study conducted by NIOSH (National Institute of Occupational Safety 

and Health), air samples were collected and analyzed for bacteria and endotoxin, and 

bulk sewage sludge samples were obtained and analyzed for fecal coliform bacteria at a 

Class B biosolids land application processing facility. The results revealed that
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potentially pathogenic bacteria were found in bulk samples and air samples, and 

concluded that employee gastrointestinal illness at that facility may have been caused by 

ingestion or inhalation of Class B bio solids (NIOSH, 2000).

Pesaro et al. demonstrated that viruses contained within manure may persist for 

prolonged periods of time if stored under nonaerated conditions, representing a potential 

source of environmental contamination at times of land application (Pesaro et al., 1995). 

Viruses are small and not as complex in structure as bacteria, protozoan parasites and 

helminths; therefore, they have the greatest potential for transport in the soil. Enteric 

viruses in soil are too small to be retained through size exclusion like protozoans and 

helminths. Rather, viruses are removed or retained by the soil through electrostatic 

adsorption. The specific characteristics of the soil matrix will affect viral binding. Viruses 

carry a negative charge in acidic soils and therefore bind to positively charged soil 

particles. This charge interaction is reduced during rain events creating the potential for 

virus survival and transport through the soil to underground aquifers.

In addition to viral transport through the soil column, groundwater may be 

subjected to focal contamination from sewage treatment plant effluent, on-site septic 

waste treatment discharges, land runoff from urban, agricultural and natural areas, and 

leachates from sanitary landfills (Abbaszadegan et al., 1998) (Hurst et al., 1991). 

Therefore, under these circumstances, it is especially necessary to demonstrate the 

inactivation of pathogens in biosolids prior to land application. Demonstrating pathogen 

inactivation helps to ensure protection of surface and groundwater, in addition to 

protecting the public from exposure through ingestion, dermal contact or inhalation of 

aerosols.
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Outbreaks

Toxic chemicals, infectious organisms, and endotoxins or cellular material may 

all be present in biosolids. At present, there is no documented scientific evidence that the 

Part 503 rule has M ed to protect public health. Currently, there are no scientifically 

documented outbreaks or excess illnesses that have occurred from microorganisms in 

treated biosolids (Lewis et aL, 2002). There have been anecdotal allegations of disease 

from exposure to biosolids. These reports attribute a range of adverse health effects from 

relatively mild irritations and allergic reactions to severe and chronic health outcomes 

such as headaches, respiratory problems and gastrointestinal illness. There have also been 

several allegations of human and animal deaths attributed to biosolids exposure. Odors 

are a common complaint from citizens living near biosolids land-application sites as well 

as attraction of vectors, declines in property value and damage to property from transport 

of biosolids (Krogmann et al., 2001). At present, a causal association between biosolids 

exposures and adverse health outcomes has not been documented. However, 

epidemiological studies have not been conducted on exposed populations, and many of 

the pathogens potentially present in biosolids are not reportable diseases; therefore, 

information on potential biosolids related outbreaks is not available. There is a 

considerable lack of health information on populations exposed to biosolids (Lewis et al., 

2002). In order to conduct an appropriate risk analysis, scientific risk assessment data, 

including adequate epidemiological studies, are necessary indicating the fete of 

pathogens under various treatment conditions (NRC, 2002).

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Indicator Organisms

The concept of indicator organisms first came about in the 1800’s at a time when 

cholera was rampant. It was thought that such an organism could be used to indicate 

pollution in the water supply, particularly fecal pollution, and the definition remains the 

same today (Hach, 2000). There are three different types of indicator organisms.

Indicator organisms can be used to control a process, such as the use of total coliforms to 

determine the treatment effectiveness of chlorine disinfection. They can be used to 

indicate a particular type of contamination, such as the evaluation of fecal coliform 

density following treatment as a measure of how well a process can meet Class B sewage 

sludge disinfection requirements. Finally, indicator organisms can be used as a model, or 

surrogate for other organisms, such as the use of somatic phage, F-specific phage, or 

phage o f Bacteroides fragilis as an indicator of enteric virus and potentially a surrogate in 

experimental studies (Fewtrell and Bartram, 2001).

There are several characteristics associated with a good indicator organism. The 

organism should be present in high concentrations in feces, preferably human feces, to 

indicate human fecal contamination versus total coliforms from animals and humans. The 

organism should be present only when there is fecal contamination. An acceptable 

indicator organism should not replicate or increase in number once outside of a host. In 

addition, the indicator organism should be more resistant to commonly employed 

disinfection techniques and behave similarly to the population it is representing in its 

ability to be inactivated by disinfection techniques. Finally, methodology should exist to 

accurately and efficiently detect the indicator organisms (Hach, 2000). Ideally, in
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monitoring biosolids quality, the indicator organism should provide a real-time indication 

of pathogen presence, but that is rarely available with biological indicator organisms 

aside from rapid enzymatic tests such as Colilert™ (NRC, 2002). Usually the monitoring 

of indicator organisms provides results 24-48 hours after analysis, at which time the 

sample that was taken may no longer be representative. Therefore, any action to correct 

contamination may be futile (Fewtrell and Bartram, 2001).

In addition to the delay in detecting and enumerating currently employed 

indicator organisms for biosolids testing, the methodology utilized for assay of these 

organisms is not sufficient to allow for adequate protection of public health (Straub et al., 

1993). Fecal coliforms are evaluated routinely to indicate the potential presence of 

pathogens. However, it has been questioned whether fecal coliforms are truly the best 

indicator and if their presence or absence can be correlated with the presence of absence 

of pathogenic bacteria, viruses and or parasites. This is of particular concern considering 

that the method for recovery of fecal coliforms is cumbersome, uses a small and arguably 

non-representative sample, and does not generate immediate results. Studies to evaluate 

the reliability of traditionally employed indicators of fecal contamination in water have 

demonstrated that fecal coliforms do not provide adequate information about the fete and 

resistance of viruses to treatment (Havelaar et al., 1993).

Clostridium perfringens has received attention as a potential indicator organism in 

light of waterborne Cryptosporidium outbreaks. Clostridium is a spore-forming bacterium 

that is extremely resistant to conventional methods of water treatment potentially making 

it an excellent candidate for monitoring of Cryptosporidium in water. It is typically found 

at high densities in untreated biosolids; therefore, the spores may represent a surrogate for
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Ascaris eggs. However, there is concern that this organism is potentially far too resistant 

to treatment technologies, and adequate reduction or inactivation could not be achieved 

and therefore it should not be included in guidelines. Bifidobacteria are prevalent in water 

and found in high numbers in feces; however, methods to effectively culture these types 

of bacteria for monitoring purposes are difficult due to their strictly anaerobic nature 

(Fewtrell and Bartram, 2001).

Bacteriophages have received a great deal of attention in the research of indicator 

organisms and surrogates due to their similarity in size and composition to the 

enteroviruses which are currently monitored for in drinking water (Lasobras et al., 1999). 

Bacteriophages are small, found in high numbers in feces and present in high numbers in 

wastewater, although their presence will depend on the quality of the water, pH and 

quantity of bacteria. Bacteriophages appear to behave similarly to enteric virus as far as 

their inactivation by traditionally employed methods. Some bacteriophages are more 

susceptible to inactivation than others. It appears that F-specific phages are more 

susceptible to disinfection techniques than somatic phage or phage infecting Bacteroides 

fragilis. Available information on bacteriophage as an indicator organism is scarce. The 

data that do exist is not uniform primarily due to variations in the host bacterium used for 

study, making comparisons difficult if not impossible to conclude (Lasobras et al., 1999) 

(Fewtrell and Bartram, 2001).

There is no one indicator that can accurately reflect the presence or inactivation of 

virus, bacteria, protozoa and helminth organisms under all circumstances. All of these 

organisms are distinct and have unique qualities that make them resistant to treatment 

technologies in different ways. It is not feasible or cost-effective to monitor for all of the
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pathogens that are present in environmental samples (Baker and Hegarty, 1997). It may 

be feasible to monitor indicator organisms for process efficiency at critical control points 

in the treatment process. This may represent a means of providing a cost-effective 

monitoring regime. Potentially, bacteriophages represent a useful tool with which to 

monitor the fete of human enteric viruses in sludges (Lasobras et al., 1999).

Studies investigating the inactivation of virus, bacteria, protozoan and helminth 

will always need to be conducted as new pathogens emerge and new treatment 

technologies are developed. Each of these organisms is susceptible to a different 

treatment process and there ideally would be indicators to reflect this, i.e. Cryptosporidia 

are susceptible to ultraviolet light inactivation and ozonation but are extremely resistant 

to chlorination (Fewtrell and Bartram, 2001).

The selection of microorganisms for analysis in biosolids or wastewater should be 

based on a set of criteria that includes the following: availability of a reliable and 

relatively consistent assay for study of the pathogen, presence of the pathogen in 

wastewater and the ability to be transmitted as a result of exposure to biosolids, 

survivability following biosolids treatment processes, and the extent of the survival in the 

environment. In the Part 503 regulations, fecal coliforms are used as indicator organisms 

to classify biosolids, and to indicate wastewater treatment efficiency. Fecal coliforms are 

easy to assay and represent an appropriate indicator of treatment efficiency with regard to 

the potential for regrowth; however, some pathogens are more resistant to treatment 

processes than fecal coliforms.

Routine surveillance of enteroviruses cannot accurately reflect the likelihood of 

contamination by other extremely resistant viruses such as adenoviruses and rotavirus.
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The focus must ultimately be on demonstrating process efficiency and taking a multiple 

barrier approach to adequately protect public health, along with educating the public 

about land application and protection of their watershed, rather than investing in costly 

inaccurate analysis. Research to demonstrate the effectiveness of treatment processes 

coupled with evaluation of bacteriophage as potential indicator organisms is required to 

ensure cost-effective management o f biosolids land application (Fewtrell and Bartram, 

2001).

Risk Assessment

The development of effective public health policy requires the integration of large 

collections of information that are diverse, highly variable and in most cases uncertain. 

Patterns o f disease are caused by a complex interaction of social, biological and 

environmental processes. Risk assessment is a process for identifying potential adverse 

consequences along with their severity and likelihood (Byrd, 2000). The risk analysis 

process involves three main steps which are risk assessment, risk management, and risk 

communication. Each overlaps with the next and requires that individuals from many 

different disciplines join collectively to establish a program that will effectively meet the 

needs of the community. The objective of the risk analysis process is to quantify the risk 

and provide risk managers with tools to balance the level of risk against the cost of the 

risk reduction (Fewtrell and Bartram, 2001). The process used for conducting the Part 

503 risk assessments involved four main steps. These steps were hazard identification, 

exposure assessment, dose-response evaluation, and risk characterization (EPA, 1995).
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In order to control the exposure of the human population to environmental 

contaminants present in biosolids it is necessary to identify an acceptable level of 

exposure. This is accomplished by combining exposure assessment data with dose- 

response data for the specific hazard that has been identified. The resultant risk 

characterization is the generation of an approximate risk of developing an illness based 

on an exposure. An exposure assessment is necessary to determine the likelihood of an 

individual coming in contact with and absorbing a contaminant. An exposure assessment 

must take into account the region being analyzed, what it is currently used for and what it 

may be used for in the future. The population residing in that region needs to be 

characterized and any subpopulations, particularly immunocompromised populations, 

identified. Often risk assessment is conducted with many assumptions. In addition to the 

aforementioned variables, the time at which the study is conducted influences the risk 

assessment that will result. In addition to characterizing the region, the contaminant itself 

must be characterized to determine the fete of the contaminant in the environment 

through construction of a fete-transport model, the spatial and temporal distribution, and 

the cumulative effects and the degradative effects of the contaminant. In addition, 

pharmacokinetic studies can be performed to determine the response in the body to the 

pathogen, including adsorption and degradation in the body (Byrd, 2000) (Fewtrell and 

Bartram, 2001).

Risk assessment relies on accurate scientific and epidemiological data, neither of 

which currently exists as relates to biosolids quality. Epidemiological studies provide a 

qualitative approach to risk assessment and are often able to determine whether the 

effects of one exposure are greater than another. Such studies often establish cause-effect
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relationships and are inherently stricken with bias in the methods and population selected 

for the study. There is an extremely small amount of epidemiological information 

available on the potential adverse health effects of biosolids and there is an absence of 

evidence documenting infection, and limited evidence documenting the lack of infection 

from biosolids. Epidemiological exposure assessment studies to assess the potential 

adverse health effects of biosolids are necessary to examine the exposure and potential 

health risks to both worker and community populations (Byrd, 2000).

A risk assessment must balance the needs of the community with the risk. Models 

are often employed in risk assessment. An ideal model will be an exact representation of 

the situation trying to be emulated; however, this is unlikely if not impossible. Therefore, 

models attempt to represent a situation and several types of models exist for this purpose. 

Physical, biological, and conceptual models are all part of risk analysis. Dose-response 

models, a type of biological model, are a critical part of the risk assessment process 

because they indicate the infectious dose for a particular pathogen in the animal being 

studied. Generating dose-response data is cumbersome and costly and contributes greatly 

to the expense of establishing an adequate risk assessment; however, it changes the risk 

assessment from qualitative, to quantitative, where a value can be assigned with 

conditional properties. The generation of a dose-response curve for a particular agent 

allows regulators to establish a threshold by combining the exposure data with the dose- 

response data to establish an acceptable risk. Development of a conceptual model for 

disease transmission is dynamic and population based and involves defining disease 

states in a population and identifying potential transmission pathways. Each model is 

unique to the pathogen being modeled and the various transmission pathways. The degree
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of contamination and the degree of risk will depend on the contribution and interactions 

of all the different environmental transmission pathways (Byrd, 2000) (Fewtrell and 

Bartram, 2001).

The risk assessment portion of risk analysis aims to characterize a risk by 

determining the probability of illness from exposure to a pathogen. Once a risk has been 

identified and characterized, a management strategy must be implemented, and the risk 

effectively communicated to the public. Risk management may involve monitoring of 

indicator organisms to meet the standards set based on the aforementioned risk 

assessment, using process control organisms to monitor critical control points in the 

distribution system, demonstration of an effective process over a period of time, or 

conducting an entirely new risk assessment for the specific community (Fewtrell and 

Bartram, 2001).

Overall, the risk assessment process is laden with uncertainty, often from 

variability in the data and models employed, making it extremely difficult for regulators 

to establish guidelines that will adequately protect public health. Biosolids are a complex 

mixture of chemical and biological agents, the exact composition of which changes from 

time to time and place to place. It will never be possible to account for all the components 

of the mixture. The Part 503 rule risk assessments were carried out more than a decade 

ago. Due to significant changes in risk-assessment methods and policies over the last 

decade, there is a need to revise and update the Part 503 rule risk assessments to include 

new pathogens that have been recognized to be transmitted by biosolids (Gerba et al.,

2002) (Lewis et al., 2002). Current scientific date measuring the late of pathogens during 

biosolids treatment processes is necessary to facilitate this task. Risk assessment requires
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an appreciation for the collaboration that needs to take place in order for the process to be 

successful For pathogen assessment it is important to consider the cumulative effects of 

e n su re  to multiple pathogens over a period of time. Ultimately, creation of a 

harmonized framework that accounts for this cumulative effect to establish a combined 

qualitative risk o f pathogen exposure in the environment will be necessary to fully predict 

the fete of pathogens present in biosolids and their effect on public health (Byrd, 2000) 

(Fewtrell and Bartram, 2001) (Gerba et al., 2002), (Straub et al., 1993).

Research Goals and Objectives

The objectives of this research were to evaluate the effectiveness of lime 

stabilization as a treatment technology to inactivate pathogens whose persistence under 

liming conditions has not previously been studied. Pathogens employed in the monitoring 

of biosolids treatment processes, bacteria and enteric virus, were evaluated with 

bacteriophage to determine their persistence in lime-stabilized sludge. Male-specific 

bacteriophage, fecal coliforms, Salmonella, polio virus type 1, rotavirus Wa strain, and 

adenovirus Type 5, were evaluated during lime stabilization conditions in various 

matrices at room temperature (28'C) and reduced temperature (4*C). In addition, the 

prevalence of male-specific bacteriophage and enterovirus in raw and lime stabilized 

biosolids was evaluated and compared to assess the potential use of male-specific 

bacteriophage as an indicator of pathogen presence and inactivation during biosolids 

treatment. The data generated as a result of this research will be useful in the continued 

development of new regulations and risk analysis for the land application of biosolids and 

will provide insight into the magnitude of pathogen contamination in limed biosolids.
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Phase 1

The goals of the first phase of this research were to evaluate the survivability of 

bacterial and viral pathogens in a bench-scale model of lime stabilization. Various 

matrices were seeded to determine the persistence of pathogens in a bench-scale model of 

lime stabilization. The pH of the matrix was elevated to 12 for two hours and then 

lowered to 11.5 for twenty-two hours. For viral pathogens, lime stabilization experiments 

were conducted at both room temperature (28°C) and reduced temperature (4°C), 

representing a temperature range found in New Hampshire. The pH of the sample was 

adjusted using an aqueous slurry of calcium hydroxide and samples were removed at 

specific time points following addition of lime. Control samples consisting of seeded 

organisms into water, sludge or biosolids matrix and test samples consisting of a seeded 

and subsequently limed water, sludge or biosolids matrix were assayed at specified time 

points and results of enumeration were compared to determine the amount of bacteria, 

phage, and virus removed or inactivated by the elevated pH.

Organisms were recovered from the limed matrix in accordance with the 503 

regulations, and viability or infectivity was assessed using methods specific to the 

organism in question. The plaque assay technique was used to determine the survivability 

of male-specific bacteriophage and rotavirus. A TCID50 technique was used for 

enumeration of adenovirus type 5.

The results of this research will have a significant impact on the agricultural use 

of biosolids for fertilizer and the regulations currently in place for the land application of 

biosolids. The increasing quantity of biosolids being land applied every year demands the
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assessment of the survivability of pathogenic organisms in lime-stabilized sludge. Land 

application of biosolids is an excellent means of disposal; however, until treatment 

processes can demonstrate effective removal of pathogenic organisms, it should be 

considered a public health risk to apply sludge to land when it cannot be accurately 

determined whether or not pathogenic organisms are present and to what extent. This 

research represents initial investigation in what needs to be an on-going investigation to 

evaluate various methods of sludge or biosolids preparation, and the persistence of 

emerging pathogens during such treatment, in an effort to minimize public health threats, 

maximize potential benefits and move our society towards sustainability. The land 

application of biosolids should be done in a way such that groundwater and public health 

are protected. The challenge is to establish which management practices and treatment 

techniques (timing, application rate and stockpiling) are most important to protect 

groundwater quality and public health.

Phase 2

The results generated in Phase 1 of this research provided the impetus for Phase 2. 

The goals of the second phase of this research focused on evaluating the prevalence of 

and comparing the relationships between male-specific bacteriophage and human enteric 

virus within various raw and lime stabilized biosolids samples obtained from several sites 

throughout the United States. The methodology established in the Part 503 rule for 

recovering enteric viruses from biosolids is extremely inefficient; this is due in part to the 

particle association that takes place between charged viruses and soil particles and the
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difficulty in separating the viruses from the solid component for assay. As a result, 

routine monitoring of enteric virus from biosolids samples generally fails to recover 

enteric virus, demonstrating that the material is in compliance with regulations and is 

therefore suitable for land application. The negative results for enteric virus presence in 

biosolids are most likely due to the inefficiency of recovering virus from the material, 

especially when considering that fecal material will contain measurable amounts of virus. 

The purpose of this study was to evaluate the presence of enteric virus and male specific 

bacteriophage in raw and limed biosolids in an effort to identify a potential indicator 

organism that may be used in conjunction with evaluation of enteric virus. The 

identification of such an indicator will help to ensure treatment effectiveness in the 

absence of adequate methodology to recover viral pathogens.

Thirty-six raw and lime stabilized match-batch samples (sampled immediately 

prior to and immediately following treatment) were obtained from three participating 

utilities in the United States which employ lime stabilization as a method of sludge 

treatment. Aliquots o f designated samples were obtained and eluted for recovery of 

enteric virus and assayed by cell culture to evaluate the presence of virus cultivatable 

using Buffalo Green Monkey Kidney Cells (BGM) in accordance with methodology 

established in the Part 503 regulations. In addition, aliquots of the same samples were 

washed, centrifuged and assayed for male-specific bacteriophage using a double-agar 

overlay technique. It is unrealistic that one indicator will adequately ensure that a public 

health hazard does not exist; however, considering the lack of adequate methodology for 

recovery of enteric virus, survey of phage may provide a screening tool to be used in
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conjunction with monitoring of enteric virus as they are easily recovered from wastewater 

solids and present in high numbers.
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CHAPTER TWO

EVALUATION OF POLIOVIRUS TYPE 1, FECAL COLIFORMS, 
SALMONELLA,, ADENOVIRUS TYPE 5, ROTAVIRUS Wa, AND MS-2 
BACTERIOPHAGE PERSISTENCE UNDER LIME STABILIZATION

CONDITIONS

ABSTRACT

The use of lime to reduce or eliminate pathogen content is a cost-effective 

treatment method currently being employed in many Class B biosolids production plants 

in the United States. A bench scale model of lime stabilization was designed to evaluate 

pathogen persistence. The survivability of poliovirus type 1, fecal coliforms, Salmonella 

sp., adenovirus type 5, rotavirus Wa, and the male specific bacteriophage MS-2 was 

evaluated under lhne stabilization conditions in various matrices. Salmonella sp. and 

fecal coliforms were evaluated at room temperature (28°C) and poliovirus and MS-2 were 

evaluated at both room temperature (28°C) and reduced temperature (4°C) for 

survivability under lime stabilization conditions in a sludge matrix. All microorganisms 

evaluated were discovered to be below detectable levels following twelve hours of liming 

at pH 12 for both temperatures evaluated. Adenovirus type 5 and MS-2 were initially 

tested in an RO water matrix and limed with an aqueous solution of calcium hydroxide 

for twenty-four hours at 28°C. In all water matrix trials, both adenovirus type 5 and MS-2 

were below detectable levels following 0.1 hours of liming, demonstrating at least a five- 

log reduction and at least a seven-log reduction respectively.
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Rotavirus Wa and MS-2 were also seeded into an RO water matrix and subsequently 

limed with an aqueous solution of calcium hydroxide for twenty-four hours at 28°C. In all 

water matrix trials, both rotavirus Wa and MS-2 were below detectable levels, 

demonstrating at least a four log reduction and at least a seven log reduction respectively. 

Adenovirus type 5 and rotavirus Wa, evaluated individually with MS-2, were seeded into 

compost, raw and previously limed matrices, representative of sludge and biosolids 

matrices. Each matrix was seeded and limed for twenty-four hours at 28°C and 4°C. In all 

matrices evaluated at 28°C and 4°C, adenovirus type 5, rotavirus Wa and MS-2 were 

below detectable levels following a twenty-four hour incubation with lime, demonstrating 

at least a four-log reduction, at least a four-log reduction, and at least a six-log reduction 

respectively, with inactivation rates varying depending on the sample matrix evaluated. 

Evaluation of reliable and cost effective treatment processes to demonstrate sufficient 

inactivation of pathogens provides valuable information for implementation of treatment 

technologies. This research has demonstrated that lime stabilization is effective at 

reducing fecal coliforms and Salmonella sp. in a sludge matrix at 28°C, poliovirus type 1 

in a sludge matrix at 28°C and 4CC, and adenovirus Type 5, rotavirus Wa, and male- 

specific bacteriophage, in sludge and water matrices at 28°C and 4°C when calcium 

hydroxide is added to achieve a pH of 12 for 2 hours and 11.5 for 22 hours. In addition, 

the data demonstrate that male specific bacteriophages are inactivated similarly to both 

adenovirus type 5 and rotavirus Wa and may therefore represent a potential indicator to 

evaluate treatment efficiency.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTRODUCTION

The use of lime to reduce or eliminate pathogen content in sewage sludge 

represents a simple and inexpensive method of treatment by which Class B sludge can be 

generated (Farrell et al., 1974). Liming is a process where calcium hydroxide or calcium 

oxide is added and the pH elevated to 12 for two hours and then reduced to 11.5 for 

twenty-two hours. Lime has been in use for a number of years for the disinfection and 

odor suppression of solid wastes. Lime treatment reduces the number of microorganisms 

in discharged effluent by binding to solid material, thereby facilitating flocculation in 

sedimentation or flotation processes while the hydroxide alkalinity of the lime has an 

antimicrobial effect (Grabow et al., 1978) (Wong et al., 2000). Lime is not an oxidizing 

chemical and the formation of hazardous compounds is unlikely. During the liming 

process, the splitting of complex organic molecules is likely to occur by hydrolysis. In 

addition, a “lime bonding” to sludge occurs where lime becomes firmly bound to sludge 

and cannot be dissolved off (Farrell et al., 1974). Installation of a lime stabilization 

treatment system is relatively rapid, with minimal capital costs, compared to alternative 

treatment technologies. Such a system is easy to operate and generates a relatively safe 

and sustainable product (Farrell et al., 1974).

The early evidence available to indicate stability of lime treated sludge was 

obtained primarily from qualitative observations noting the lack of odor in lime stabilized 

sludges (Farrell et al., 1974). Qualitative research has shown the bactericidal properties of 

lime by inactivating Escherichia coli and Salmonella (Farrell et al., 1974) (Wong et al.,
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2001). Additional work with bacteria revealed the destruction of Gram-negative bacteria 

and highlighted the survival o f spore-forming bacteria (Grabow et al., 1978). Previous 

research to evaluate the persistence of enteric virus under lime stabilization conditions 

has utilized poliovirus type 1 and has demonstrated that maintaining a high pH over a 

period of time is very effective at reducing or eliminating the viral load from sludge 

(Sattar et al., 1976) (Sattar and Ramia, 1976) (Derbyshire and Brown, 1979) (Deng and 

Cliver, 1995) (Grabow et al., 1978).

There has been very little research focusing on enteric virus survival in lime 

stabilized sludge since the 1970’s. Currently, there is little information available on the 

removal and inactivation of certain human enteric pathogenic viruses, such as rotavirus 

and adenovirus, which were not cuhivatable when original studies were conducted to 

evaluate the effects of high-pH lime treatment of sewage. Enteric viruses are the major 

cause of childhood diarrhea in the United States and result in an estimated one hundred 

deaths per year related to gastroenteritis (EPA, 2000). There has been very little research 

conducted on the occurrence of enteric viruses in biosolids in recent years. The existing 

information provides data about the prevalence of enteroviruses, specifically poliovirus, 

in biosolids, and the effect of treatment; yet for many processes the amount of data on 

virus removal is very limited (NRC, 2002). With the advent of new and improved cell 

culture detection techniques, it is now possible to assess the prevalence and persistence of 

pathogens such as rotavirus and adenovirus that were previously not cuhivatable and 

identify potential indicator organisms to monitor treatment effectiveness.

Bacteriophages have received a great deal of attention in the research of indicator 

organisms due to their similarity in size and composition to enteroviruses. Currently,
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there are no data available evaluating the inactivation of bacteriophages compared with 

inactivation of enteric viruses during traditionally employed sludge treatment processes. 

The similar morphology, structure and behavior of F-specific RNA bacteriophages, as 

well as other phages, to that of human enteric viruses, suggests that they could represent a 

better model to indicate the presence of pathogens and could potentially be utilized to 

demonstrate inactivation by treatment processes (Fewtrell and Bartram, 2001).

Evaluation of the lime stabilization technique to demonstrate that it is sufficient to 

inactivate the enteric virus, helminth and protozoan pathogens that could not be evaluated 

at the time the Part S03 rules were enacted is necessary. The need for such information 

was the impetus for conducting the following investigation.

Poliovirus

Previous research conducted to evaluate the persistence of pathogens during lime 

stabilization utilized poliovirus type 1. At the time such research studies were performed, 

methods were available for the propagation and enumeration of poliovirus in cell culture. 

Poliovirus type 1 was selected for experimental contamination because it is relatively 

harmless due to available vaccines, and relatively easy to grow and quantitate in the 

laboratory (Sattar et al., 1976).

Poliovirus belongs to the enterovirus family and exists as three serotypes (types 1- 

3). Enteroviruses are small RNA viruses that readily infect the intestinal tract and have a 

ubiquitous and worldwide distribution. Poliovirus infection is asymptomatic in ninety 

percent of cases. When disease does result it manifests in one of three ways. Abortive 

poliomyelitis is a nonspecific febrile illness lasting two to three days. Aseptic meningitis
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includes symptoms associated with abortive poliomyelitis and is accompanied by 

meningeal irritation (stiff neck, pain, and stiffness in the back), with recovery in two to 

three days. Paralytic poliomyelitis is often preceded by a period of minor illness with 

signs of meningeal irritation, and asymmetric paralysis. As damaged neurons regain 

function, recovery will begin and may continue for a period of six months after which 

time remaining paralysis is permanent (Ryan, 1994).

Enteroviruses are unique in their resistance to extreme pH, high temperatures, and 

common disinfectants such as 70% alcohol and various detergents (Ryan, 1994). In 

addition, enteroviruses are normally present in sewage in large numbers with densities 

ranging from undetectable to ten thousand plaque forming units (PFU) per liter (Yanko et 

aL, 2000) (Sattar et al., 1976). The aforementioned qualities make poliovirus an excellent 

candidate for spiking studies to evaluate persistence during lime stabilization.

Previous studies conducted by Sattar concluded that no virus could be detected in 

the supemate of limed sewage sludge samples following twenty minutes of liming at pH

11.5, indicating a viral removal o f99.99%; however, the group concluded that sludge 

associated virus in the sediment may contain infectious virus and a lack of efficient 

methodology to recover such virus particles may present a public health threat if the 

limed material is disposed of through land application (Sattar et al, 1976). It cannot be 

assumed that because poliovirus was inactivated under lime stabilization conditions that 

other enteric viruses present in sewage sludge would be inactivated in a similar manner. 

Therefore similar experiments were conducted using representatives of the adenovirus 

and reovirus groups.
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Adenovirus

Adenoviruses are one of the most common and persistent viruses detected in 

wastewater, and enteric adenoviruses are the second most common cause of childhood 

viral diarrhea (Enriquez et al., 1995) (Gerba et al., 1996). Adenoviruses have been 

transmitted by both recreational and drinking waters (Kukkula et aL, 1997) 

(Papapetropoulou and Vantarakis, 1998). Adenoviruses consist of almost one hundred 

different serotypes, forty-seven of which are known to infect humans. Adenoviruses were 

first isolated in 1953 and are widespread in nature, infecting birds, many mammals and 

man. There are two genera of adenovirus, Aviadenovirus (avian) and Mast adenovirus 

(mammalian). Adenoviruses are non-enveloped, sixty to ninety nanometers in diameter, 

icosahedral in shape and possess double-stranded DNA (Novartis, 2001). Replication and 

assembly of mature virus particles occurs in the nucleus of an infected cell and virions 

are released by cell destruction (Ryan, 1994).

Adenoviruses are characterized by their ubiquity and persistence in host tissues 

for periods ranging from a few days to several years. Adenoviruses have the ability to 

produce infection in the absence of clinical disease and this is illustrated by the frequent 

recovery of virus from tonsils or adenoids removed from healthy children and by 

“prolonged intermittent shedding of virus from the pharynx and intestinal tract” after 

initial infection (Ryan, 1994). Type 1 and type 2 adenoviruses are highly endemic and 

type 5 is the next most common. Most primary infections with these viruses occur early 

in life (Novartis, 2001). The spread of the virus can be either respiratory or by fecal-oral 

contamination. Only about 45% of adenovirus infections result in disease. Infections
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caused by serotypes 1,2, and 5 are generally most frequent during the first few years of 

life. All serotypes can occur during any season of the year, but are encountered most 

frequently during late winter or early spring (Ryan, 1994).

Adenovirus infections are very common with most being asymptomatic. 

Adenoviruses enter the host by inhalation of droplets or by the oral route. The virus 

replicates in epithelial cells, producing cell necrosis and inflammation. Viremia 

sometimes occurs and may result in spread to distant sites such as the kidney, bladder, 

liver, lymphoid tissue and occasionally the central nervous system. Following the acute 

phase of the illness, viruses may remain in tissues, particularly lymphoid structures such 

as tonsils, adenoids and intestinal Peyer’s patches and become reactivated and shed 

without producing illness for six to eighteen months thereafter. Reactivation is enhanced 

by stressful events. The clinical manifestation of adenovirus infection is diverse 

depending on the associated serotype. Acute respiratory syndromes vary in both clinical 

manifestations and severity and symptoms may include fever, rhinitis, pharyngitis, cough 

and conjunctivitis. Acute and occasionally chronic conjunctivitis has been associated 

with several serotypes. Other serotypes have been recognized as significant causes of 

gastroenteritis (Ryan, 1994). Infection with enteric adenoviruses is universal among 

children early in life with infection being symptomatic. The immune response generated 

generally protects against subsequent severe disease (Novartis, 2001). Several adenovirus 

types have demonstrated oncogenic potential (Russell, 2000). There is no specific therapy 

for adenovirus infection (Ryan, 1994).
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Rotavirus

Rotaviruses are the most important viruses causing Hfe-threatening disease in 

young children and are a major cause of hospitalization of children in the United States 

(Gerba et a l, 1996) (Estes, 2001) (Smith and Gerba, 1982). Rotaviruses have been 

detected in water, wastewater and more recently in biosolids, although very little data 

exist on their occurrence in biosolids (Chapron et al., 2000). They are extremely resistant 

in the environment and present in large amounts in wastewater varying in concentration 

from undetectable to ten thousand plaque forming units (PFU) per liter (Yanko et al., 

2000). The public effects of exposure to rotavirus in drinking and recreational waters 

have been evaluated and the resultant dose-response data indicated that rotavirus is the 

most infective of all the enteric viruses (Baker and Hegarty, 1997). These qualities make 

rotavirus an important candidate for evaluating survivability following lime stabilization. 

There is a need for more data on the occurrence and potential exposure to this and other 

viruses (Baker and Hegarty, 1997).

Rotavirus has a worldwide presence and is believed to account for forty to sixty 

percent of cases of acute gastroenteritis occurring in the winter among infants and 

children less than two years of age. By the age of four years, more than ninety percent of 

individuals have humoral antibodies, suggesting a high rate of virus infection early in life 

(Ryan, 1994). The rotaviruses belong to the family Reoviridae. They are naked, spherical 

particles 65 to 75 nanometers in diameter with a segmented genome containing double

stranded RNA and a double icosahedral shell. Three serotypes have been associated with 

disease in humans, groups A, B, and C. Four group A serotypes (1,2,3 and 4) based on
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type-specific antigens on the outer capsid are of major epidemiologic importance (Ryan, 

1994).

Outbreaks of rotavirus induced gastroenteritis are frequently observed as a result 

of person to person transmission in institutional settings such as hospitals, nursing homes, 

day-care centers and schools (Ansari et a l, 1988). Following a one to three day 

incubation, infection manifests as vomiting followed by diarrhea. Rotaviruses localize in 

the duodenum and proximal jejunum, causing destruction of villous epithelial cells. The 

decrease in absorptive surface in the small intestine results in severe diarrhea. Viral 

excretion lasts two to twelve days but can be prolonged with symptoms persisting in 

malnourished or immunocompromised patients. The major complications associated with 

infection include dehydration which can lead to death in very small or malnourished 

infants. There is no specific treatment for rotavirus infection. Replacement of fluids and 

electrolytes is recommended and is required in severe cases. Rotaviruses are highly 

infectious and may spread quickly in family and institutional settings (Ryan, 1994).

The use of a plaque assay is an accurate and quantitative technique that may be 

employed to measure virus infectivity. Plaque assays, for both simian and human strains 

of rotavirus, have been developed and require treatment with proteolytic enzymes as 

plaques will not form under an agar overlay with maintenance medium alone (Smith et 

al., 1978) (Wyatt et al., 1980). Rotavirus will grow and plaque in several cell lines 

including MA-104, LLC-MK2 and CV-1; however, Smith et al. demonstrated that the 

MA-104 cell line is the most sensitive with respect to virus titers obtained, plaque size 

and time of appearance of plaques with simian rotavirus (Smith et al., 1978) (Londrigan 

et al., 2000). The presence of trypsin in the maintenance medium has been shown to
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greatly facilitate the growth of rotaviruses in cell culture and is essential for plaque 

formation (Ramia and Sattar, 1979). Tiypsin added to the agar overlay used in a plaque 

assay enhances rotavirus infectivity due to inactivation of neutralizing antibodies in the 

media and cleavage of capsid proteins on the virus surface (Smith et al., 1978).

Fecal Coliforms

Fecal coliform bacteria, including Escherichia coli, are commonly found in the 

feces of humans and other warm-blooded animals and are used to indicate the potential 

presence of pathogens in class B biosolids (EPA, 1998). Fecal coliforms are Gram- 

negative, non-spore forming rods contained within the Enterobacteriaceae and are among 

the larger bacteria that colonize humans (Ryan, 1994) (EPA, 1998). Enterobacteriaceae 

are large (2-4 micrometers in length and 0.4 to 0.6 micrometers in width) Gram-negative 

rods that are free living in nature and part of the indigenous flora of humans and animals. 

Enterobacteriaceae are the most common causes of urinary tract infection and some of 

the species are important etiologic agents of acute diarrhea throughout the world (Ryan, 

1994). Escherichia coli is the “most commonly encountered member of the 

Enterobacteriaceae in the normal intestinal flora” and is a leading cause of opportunistic 

infections (Ryan, 1994). The densities of fecal coliforms in sewage are estimated to be 

one hundred thousand colonies per one hundred milliliters (Yanko et al., 2000). The EPA 

Part 503 regulations require that treated sewage sludge must be monitored for fecal 

coliforms and that the density may not exceed one thousand most probable number 

(MPN) or colony forming units (CFU) per gram of total solids (dry weight basis)
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analyzed if the sludge is to qualify as Class A sludge, or less than two million MPN or 

CFU per gram total solids analyzed if the sludge is to quality as Class B sludge (EPA, 

1999). Bacteria are important pathogens with regard to biosolids and land application 

because the potential exists for regrowth following treatment, particularly when biosolids 

are blended with other nutrient containing materials for the creation of soil amendment 

products (Yanko, 1988).

Salmonella

Salmonella are ubiquitous pathogens and infection is most often associated with 

improper food handling; however, Salmonella is a microorganism that is of concern in 

sewage sludge. The densities of Salmonella in sewage range from less than one to one 

thousand most probable number (MPN) per one hundred milliliters (Yanko, 2000). The 

EPA Part 503 regulations require that treated sewage sludge must be monitored for focal 

coliform or Salmonella species and have a Salmonella density of less than three most 

probable number (MPN) per four grams total solids (dry weight basis) to qualify as a 

Class A sludge (EPA, 2000). For bacterial pathogens, the infectious dose will vary with 

the organism and can be as low as 100 bacteria to establish a Salmonella infection 

(Kowal, 1985). Salmonella infection manifests as gastroenteritis following ingestion of 

contaminated food or water. Symptoms will manifest twenty-four to forty-eight hours 

after ingestion and consist of nausea and vomiting followed by cramping and diarrhea 

persisting for three to four days and resolving spontaneously (Ryan, 1994).
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Bacteriophage

There are at least twelve distinct groups of bacteriophage that are diverse both 

structurally and genetically. Somatic coliphages, F-specific RNA phages, and 

Bacteroidesfragilis phages represent types of bacteriophage that have been proposed as 

specific indicators of viral contamination (Fewtrell and Bartram, 2001). The best known 

bacteriophages are the common phages of E. coli. Bacteriophage may consist of single- 

stranded or double-stranded DNA or RNA and are further classified by size, the presence 

and structure of a tail, and the location of attack for infection. Phage may be male- 

specific, requiring a bacterial pilus for attachment or somatic, attaching directly to the 

outer cell membrane or cell wall.

The male-specific phage MS-2 is a single-stranded RNA bacteriophage within the 

family leviviridae. MS-2 is approximately twenty-six nanometers in size, 3,569 

nucleotides in length, icosahedral in shape, and possesses a positive sense RNA strand; 

therefore, the MS-2 nucleic acid acts directly as its own messenger RNA upon entry into 

a susceptible cell. MS-2 attaches directly to the pilus of a susceptible cell during infection 

(Fewtrell and Bartram, 2001). Studies conducted by Mignotte-Cadiergues et al. 

concluded that inactivation of somatic coliphages, F-RNA bacteriophage and Bacteroides 

fragilis was dependent on pH and sludge matrix, with a pH of 9 being necessary for 

inactivation in solids matrices and a pH of 13.5 for liquid sludges (Mignotte-Cadiergues 

et al., 2002). The similar morphology, structure and behavior of F-specific RNA 

bacteriophage, as well as other phages, to that of human enteric viruses, suggests that
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they could represent a model for presence of pathogens to demonstrate inactivation by 

treatment processes, and for routine surveillance of pathogen persistence.
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MATERIALS AND METHODS

Male Specific Bacteriophage Preparation

Male specific bacteriophage levels were determined using a modified double- 

agar-overlay procedure previously described by Cabelli (1982). Two grams of sample to 

be assayed was obtained to which ten milliliters of phosphate buffered saline (pH 7.0) 

supplemented with magnesium chloride was added. The sample was thoroughly vortexed 

and subsequently centrifuged at 1,000 x g for ten minutes at room temperature (28'C). 

The supemate was immediately assayed for presence of male-specific bacteriophage.

Male-specific bacteriophage was propagated and enumerated using an E. coli host 

harboring a conjugative plasmid conferring both streptomycin and ampicillin resistance 

and pilus production (E. coli F. Amp HFR). The E. coli host was grown to log phase in 

Tryptic Soy broth supplemented with 1% streptomycin/ampicillin and 1% magnesium 

chloride at 37°C for approximately three hours. MS-2 bacteriophage was added to the log 

phase E. coli culture and incubated at 37°C for twelve to eighteen hours. Following 

incubation, the viral suspension was centrifuged at 10,000 rpm at 4°C for ten minutes to 

remove cellular debris. The supemate was removed, placed in sterile bottles and 

refrigerated at 4°C until use. The propagated MS-2 was enumerated by plaque assay with

E. coli F. Amp using a double agar overlay technique. This was accomplished by 

growing host E. coli to log phase in Tryptic Soy Broth for three hours prior to assay. 

Serial dilutions of sample supemate to be enumerated were created using a IX phosphate 

buffered saline solution supplemented with magnesium chloride. One hundred microliters
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of sample and two hundred microliters o f£  coli were inoculated into five milliliters of a 

sterile tempered agar overlay. The sample was gently mixed and immediately poured 

onto a sterile Tryptic soy agar plate and distributed evenly over the surface of the plate by 

swirling. Plaques were observed and counted after eighteen to twenty-four hours of 

incubation at 37°C. Plates containing 30-300 plaques were counted and used to calculate 

the final titer which was reported as the number of plaque forming units per milliliter of 

sample evaluated (PFU/mL). Male-specific bacteriophage densities were calculated per 

two grams of sample determined by the number of plaques per volume of supemate 

assayed times the dilution factor divided by the number of grams of sample examined.

Poliovirus Preparation

Poliovirus type 1 (LSc strain) was propagated using Buffalo Green Monkey

(BGM) Kidney cells (Biowhittaker). Cells were grown to 90% confluency in closed 75

cm2 cell culture flasks at 37°C with Eagle’s Minimal Essential Media (MEM) and L-l 5

Medium supplemented with 8% Fetal Bovine Serum (FBS). Prior to infection, media was

removed from each flask and cell monolayers were washed twice with serum-free MEM.
<*

One flask was infected with 1 mL of 10 PFU/mL poliovirus type 1 and the other flask 

was inoculated with 1 mL of serum-free MEM and maintained as a negative control. The 

virus was allowed to adsorb to cells for sixty minutes at 37'C with rocking of the flasks 

every fifteen minutes to redistribute the virus and adequately hydrate cells. Following 

incubation, 15 mL of Eagle’s MEM supplemented with 2% FBS was added to each flask 

and flasks were incubated at 37°C. Flasks were observed daily for cytopathic effect. Once
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a generalized cytopathic effect was achieved, virus was liberated from the cells by rapidly 

freeze thawing cells twice. The resultant viral suspension was transferred to a 15 mL 

conical tube and centrifuged at 1000 x g to separate cellular debris from virus present in 

the supernatant. Supemate fluid containing virus was aliquoted into cryovials for storage 

at -80°C.

Virus was enumerated using the plaque-forming unit (PFU) method (Dulbecco 

and Vogt, 1954). Buffalo Green Monkey Kidney (BGM) cells were grown to confluency 

with 5% CO2 in 12-well cell culture plates with Eagle’s MEM supplemented with 8% 

FBS. Cells were washed prior to infection with serum-free MEM. The propagated viral 

suspension was serially diluted in serum-free MEM. Cell culture wells were clearly 

labeled with the dilution of vims to be added and cells were inoculated in triplicate with 

0.1 mL of the appropriate viral dilution. Plates were incubated in 5% CO2 for sixty 

minutes with continual rocking to allow virus to adsorb and maintain hydration of cells. 

Following incubation, 2 mL of an agar overlay maintenance medium consisting of 

Medium 199 (Sigma) supplemented with 2% FBS, 2% flake agar (Difco), and neutral red 

(Sigma) was added to each well. This agar overlay provides a solid support matrix with a 

viability stain for plaque visualization. Following addition of overlay, the agar was 

permitted to solidify and the plates were returned to the 5% CO2 incubator. Cells were 

examined every twenty-four hours and observed for plaques for seven days. The 

concentration of vims was determined by multiplying the averaged number of plaques 

counted in triplicate wells by the dilution factor of the wells. For a 12-well cell culture 

plate, dilutions containing 20-50 plaques were counted and this number was used to 

calculate the concentration of vims which was reported as plaque forming units per
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milliliter volume evaluated (PFU/mL). Enumerated stocks of poliovirus were stored in 

cryovials at -80°C. Poliovirus type 1 was propagated for use in spiking studies to evaluate 

efficiency of inactivation by lime stabilization.

Adenovirus Type 5 Preparation

Adenovirus Type 5 was propagated using A549 cells grown to 90% confluency in 

closed 75 cm2 cell culture flasks at 37°C with Eagle’s Minimal Essential Media (MEM) 

and L-15 Medium supplemented with 10% Fetal Bovine Serum (FBS). Confluent 

monolayers of A549 cells were inoculated with adenovirus type 5 and incubated at 37°C 

for sixty minutes to permit viral attachment. Following incubation, a maintenance 

medium consisting of Eagle’s MEM supplemented with 2% FBS was added and cells 

were incubated at 37°C and observed daily for cytopathic effect. Once a generalized 

cytopathic effect was achieved, flasks were freeze-thawed to liberate viruses trapped 

within cells. The resultant suspension was centrifuged at 1000 x g for ten minutes to 

separate cellular debris from virus present in the supernatant.

Adenovirus was enumerated using the TCIDso method established by Reed and 

Muench in 1937. Serial dilutions of propagated virus were created with serum-free 

minimal essential media. 96-well cell culture plates containing confluent monolayers of 

A549 cells were inoculated according to TCID50 protocols with 0.025 mL of the 

appropriate viral dilution. Adsorption of the virus was allowed to occur for 1.5 hours at 

37°C. Following adsorption, a maintenance medium consisting of MEM (Sigma) 

supplemented with 2% FBS was added. Plates were incubated at 37°C in 5% CO2 with
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humidity and observed for cytopathic effect. Plates were observed for fourteen days post

inoculation and the number of positive wells was determined for each dilution. The 

number of positive wells was used to calculate a TCID50 titer according to the formula 

below. Enumerated stocks of adenovirus type 5 were stored in cryovials at -80°C. 

Adenovirus type 5 was propagated for use in spiking studies to evaluate efficiency of 

inactivation by lime stabilization.

Calculation of TCID50

Log TCIDso/inL = Log [{10 exp [X + (p-0.5)] [/Inoculum volume]

X = positive exponent from last dilution where all wells were positive 
P = ratio of positive wells/total number of wells

Rotavirns Wa Preparation

Rotavirus Wa propagation and enumeration was accomplished using modified 

protocols established by Smith et al. (1978). Rotavirus Wa strain was propagated using 

Mai 04 cells. Cells were grown to 90% confluency in closed seventy-five cm2 cell culture 

flasks at 37°C using Eagle’s MEM supplemented with 10% FBS. Prior to infection, 

media was removed from each flask and the cells were washed twice with serum-free 

MEM. One flask was infected with 1 mL of 106 PFU/mL rotavirus Wa and the other flask 

was inoculated with 1 mL of serum-free MEM and maintained as a negative control. The 

virus was allowed to adsorb to cells for sixty minutes at 37°C with rocking of the flasks 

every fifteen minutes to redistribute the virus and adequately hydrate cells. Following
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incubation, 15 mL of Eagles’ MEM supplemented with five micrograms per milliliter of 

trypsin (Gibco) was added to each flask and flasks were incubated at 37°C. Flasks were 

observed daily for cytopathic effect. Once a generalized cytopathic effect was achieved, 

virus was liberated from the cells by rapidly freeze thawing cells twice. The resultant 

viral suspension was transferred to a 15 mL conical tube and centrifuged at 1000 x g for 

ten minutes to separate cellular debris from virus present in the supernatant. Supemate 

fluid containing virus was aliquoted into cryovials for storage at -80°C.

Virus was enumerated using a modified plaque-forming unit (PFU) method 

(Smith et al., 1954). Mai 04 cells were grown to confluency with five percent CO2 in 12- 

well cell culture plates with Eagle’s MEM supplemented with 10% FBS. Cells were 

thoroughly washed prior to infection with serum-free MEM. The propagated viral 

suspension was serially diluted in serum-free MEM. Cell culture wells were clearly 

labeled with the inoculum dilution to be added and cells were inoculated in triplicate with 

0.1 mL of the appropriate viral dilution. Plates were incubated in 5% CO2 for sixty 

minutes with continual rocking to allow vims to adsorb and maintain hydration of cells. 

Following adsorption, 2 mL of an agar overlay maintenance medium consisting of 2X 

MEM supplemented with 1 ug/mL trypsin (Gibco), and 2% agar (Sigma) was added. This 

agar overlay provides a solid support matrix to physically confine virus and permit 

plaque formation. Following addition of overlay, the agar was permitted to solidify and 

the plates were returned to the 5% CO2 incubator. Plates were incubated for four days at 

which time 2 mL of 10% formaldehyde in normal saline solution was added to each well. 

Plates were returned to the CO2 incubator for overnight incubation. Solid overlay was 

removed from wells by rinsing under warm tap water and 2 mL of a 0.1% crystal violet
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solution was added to each well to permit visualization of plaques (Figure 1). Plaques 

were quantified and results from duplicate flasks averaged. A titer was determined by 

multiplying the average number of plaques by the dilution factor. Enumerated stocks of 

rotavirus Wa were stored in cryovials at -80°C. Rotavirus Wa was propagated for use in 

spiking studies to evaluate efficiency of inactivation by lime stabilization.
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Visualization of Plaque Formation in a Rotavirus Plaque Assay

10'1 10'2 lO-3 10-4 10'5 Controls

Figure 1: Visualization of plaque formation in a rotavirus plaque assay -1 2  well cell 
culture plates were inoculated with serial dilutions of rotavirus Wa. Following a four day 
incubation to permit viral replication, agar overlay was removed, cells were fixed with 
10% formaldehyde in normal saline, and 0.1% crystal violet solution was added to permit 
visualization of plaques. Crystal violet solution will stain cells purple; therefore, areas of 
clearing represent areas in the cell culture well where no cells are present. Plaques are 
easily visualized as zones of clearing in the monolayer that decrease with an increase in 
viral dilution. Negative controls, inoculated with one hundred microliters of serum free 
MEM do not contain areas of clearing and therefore are negative for plaque formation. 
The positive control well, inoculated with one hundred microliters of rotavirus Wa 1 x 
103 PFU/mL displays plaque formation consistent with the concentration of the inoculum.
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Elution ofViruses from Sludge Samples

Samples were evaluated for total culturable viruses, including enteroviruses, 

according to the procedures designated for recovery and assay of viruses from sludge in 

the EPA part 503 rules. The procedure for recovery of viruses from wastewater solids is 

an adsorption process reliant upon adsorption of viruses from the liquid phase to the 

sludge solids, which are subsequently eluted and concentrated by centrifugation. The 

supemate was discarded and viruses were desorbed from the solids by physiochemical 

means and further concentrated by organic flocculation. Decontamination prior to 

evaluation by cell culture was accomplished by incubation with antibiotics.

Liquid samples were conditioned prior to elution. A 100 mL quantity of liquid 

sludge was homogenized for five minutes, at which time 1 mL of aluminum chloride was 

added and the pH of the solution adjusted to 3.5 with IN HCL. The sample was mixed 

for thirty minutes and subsequently centrifuged at 2500 x g for fifteen minutes at 4°C. 

The supemate was discarded and the sample eluted. Elution of conditioned liquid 

samples and sludge solids involved resuspension of the resultant pellet from the 

conditioning or measuring 100 grams of sample in the case of a solid sample and adding 

100 mL of distilled water. The sample was blended gently for five minutes. Following 

blending, an equal volume of 20% beef extract solution was added to the sample and 

blended. The sample was then mixed for thirty minutes and centrifuged at 10,000 x g for 

thirty minutes at 4°C. The supemate fluid was decanted and the appropriate volume of 

distilled water added to bring the final concentration of beef extract to 3%. The resultant 

eluate was transferred to a clean centrifuge bottle and the pH adjusted to 3.5. The sample
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was mixed for thirty minutes and centrifuged at 2500 x g for fifteen minutes. The 

sediment was retained, resuspended in 20 mL of sodium phosphate buffer (pH 7.0) and 

transferred to a conical tube where the pH was adjusted to 7.0. Samples were incubated at 

37°C for three hours with 1 mL of antibiotic/antimycotic and fungizone (10,000 units/mL 

of penicillin and 10,000 pg/mL of streptomycin, and 25 pg/mL of amphotericin B) and 

0.1 mL of gentamicin (50 mg/mL) and frozen for assay.

Fecal Collform Isolation

Indigenous fecal coliform densities in dewatered sludge samples obtained for lime 

stabilization experiments were evaluated using a most probable number assay (MPN) 

according to method 9221 E Standard Methods for the Examination of Water and 

Wastewater (Greenberg et al., 1992). This method is recommended by the EPA for fecal 

coliform detection in biosolids by multiple tube fermentation (also referred to as the most 

probable number procedure) (EPA, 1999). The MPN assay is an estimation of bacterial 

density and employs culture specific media combined with elevated temperature to 

isolate and enumerate fecal coliforms. A presumptive step using lauryl tryptose broth 

(LTB) (Difco) as the selective enrichment medium and a completed step using E. coli 

(EC) (Difco) media, incubated at elevated temperature, permit the recovery and isolation 

of fecal coliforms. Thirty grams of sample was blended with 270 mL sterile phosphate 

buffered saline (PBS). Ten-fold serial dilutions were created with PBS and inoculated 

into five test tubes containing sterile LTB and glass shell vials to indicate gas production. 

Tubes were incubated for forty-eight hours at 35*C and observed at both 24 and 48 hours
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for the presence of presumptive growth indicated by gas and/or heavy growth in the 

fermentation tubes. Failure to produce gas or growth in the LTB media within 48 hours 

was recorded as a negative presumptive test. A sterile loop was used to transfer a culture 

sample from each LTB presumptive positive fermentation tube to fermentation tubes 

containing sterile EC media and glass shell vials. EC fermentation tubes were incubated 

in a water bath at 44.5°C for 24 hours. Gas production in EC broth in 24 hours or less, 

measured by presence o f a gas bubble within the glass shell vial, was considered a 

positive fecal coliform reaction. Failure to produce gas was a negative reaction and 

indicated that fecal coliform bacteria were not present. Results of the MPN procedure 

were reported in terms of MPN/g calculated from the number of positive EC culture tubes 

and total solids determination using Thomas’ equation. Positive control cultures 

consisting of E. coli were included in each assay. Pseudomonas sp. were incorporated as 

a negative control in each assay.

Thomas’ Equation: MPN/lOOmL = (# Positive Tubes x 100)/V(mL sample in 

negative tubes x mL sample in all tubes)

MPN/g = (10 x MPN Index/100mL)/(largest volume x % 

dry solids)
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Salmonella Isolation

Indigenous Salmonella densities in dewatered sludge samples obtained for lime 

stabilization experiments were evaluated using a most probable number assay (MPN) 

according to methodology recommended by the EPA for Salmonella detection in 

biosolids by multiple tube fermentation (also referred to as the most probable number 

procedure) using procedures established in standard methods 9260 D (Greenberg et al., 

1992). Sludges with Salmonella species densities below three MPN per four gram of total 

solids meet class A criteria.

The MPN assay is an estimation of bacterial density and employs culture specific 

media to isolate and enumerate Salmonella. Thirty grams of sample was blended with 

270 mL PBS. Sample volumes were inoculated into selenite brilliant green sulfa (SBG) 

broth for enrichment of Salmonella. Following a 24 hour incubation period at 37*0, 

samples were streaked for isolation on xylose-lysine deoxycholate agar (XLD). 

Characteristic Salmonella colonies will appear as red or pink with a black center. Plates 

were incubated for 24 hours at 37°C. Positive Salmonella plates containing characteristic 

black colonies were stabbed into triple sugar iron agar (TS1) slants. Slants were incubated 

for 24 hours at 37°C. Positive TSI slants for Salmonella are characterized by a color 

change (black butt/red slant) with no gas production. TSI supports the growth of 

organisms other than Salmonella', therefore, a confirmation step, employing urea, serves 

as an additional confirmation and will result in a yellow color change if positive for 

Salmonella. Samples yielding positive urease tests are confirmed as Salmonella using 

polyvalent antisera (Difco) specific for Salmonella. Agglutination is measured using a
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small volume from the TSI slant placed on a glass slide and observed for agglutination. 

Negative control samples incorporate Proteus sp., which have urease capability, and 

generate a red color change for the urease test.
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Lime Stabilization

Experimental Design Evaluation

Poliovirus type 1 was seeded into a 1-Liter volume of raw dewatered sludge and 

evaluated for inactivation by lime stabilization at room temperature (28°C) and reduced 

temperature (4°C) according to methodology established in prior studies conducted by 

Sattar et al. (1976). The purpose of this exercise was to determine whether or not the 

same inactivation rates reported in previous studies with respect to poliovirus type 1 

could be achieved in addition to developing an appropriate experimental design for the 

evaluation of adenovirus type 5, rotavirus Wa, and MS-2 bacteriophage under lime 

stabilization conditions (Sattar et al., 1976). In similar trials, indigenous Salmonella sp. 

and fecal coliforms were evaluated in conjunction with seeded MS-2 to compare results 

obtained to the inactivation rates achieved by other investigators (Mignotte et aL, 2001) 

(Gantzer etal., 2001). A raw dewatered sludge sample was obtained from the Durham 

Wastewater Treatment Plant, Durham, NH and diluted with 1.5 liters of PBS to facilitate 

mixing during lime treatment. A 500 mL aliquot of the sample was removed and 

incubated at room temperature. A background sample was removed to assay for presence 

of enteroviruses, fecal coliforms, Salmonella sp. and MS-2 bacteriophages. Enteroviruses 

were recovered by beef extract elution and detected by plaque assay. Fecal coliform and 

Salmonella sp. concentration was estimated using a most probable number fermentation 

tube test. MS-2 viability was determined by double-agar overlay plaque assay.

Enteroviruses were not detected in the background sludge sample; therefore, 

poliovirus type 1 was spiked to achieve a final concentration of approximately 1.0 x 104
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PFU/mL. Fecal coliform concentrations and Salmonella sp. concentrations were 

determined to be 1.32 x 108 and 1.0 x 103 MPN/gram dry weight respectively, which was 

sufficient for experimentation and therefore, indigenous fecal coliforms and Salmonella 

sp. were evaluated without the need for additional spiking. Male specific bacteriophage 

was not recovered in the background sample; therefore, the 1-Liter sludge sample was
m

spiked to achieve a final concentration of approximately 1.0x10 PFU/mL of MS-2. 

Vials of MS-2 and poliovirus used for spiking were placed at room temperature and 

assayed throughout the experiment to evaluate inactivation as a result of incubation at 

room temperature. The spiked 1-Liter sample was limed to a pH of 12 for 2 hours and 

incubated at pH 11.5 for 22 hours with continual mixing through the use of magnetic stir 

bars. Aliquots of the test sample, control sample incubated at room temperature, and MS- 

2/poliovirus incubated at room temperature, were removed at time 0.1,2,12, and 24 

hours to assay for poliovirus, focal coliform and Salmonella sp., and MS-2 viability.

The results of trials to evaluate experimental design were comparable to those 

reported by Sattar et al., demonstrating inactivation of poliovirus type 1 following lime 

stabilization, and those results reported by Mignotte et al., reporting an elimination of 

Salmonella sp. from a sludge sample in 24 hours at a pH of 10.0, and Gantzer et al., 

reporting a decrease in E. coli following lime stabilization (Sattar et al., 1976) (Mignotte 

et al., 2001) (Gantzer et al., 2001). Upon review of the experimental design it was 

determined that in order to achieve statistical accuracy, it would be necessary to create 

separate control and test beakers for individual time points. This would eliminate 

variability resulting from the removal of aliquots at various time points from one 

individual spiked sample. Therefore, in subsequent experimentation to evaluate pathogen
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inactivation in RO water matrix trials and sludge and biosolids matrix trials, separate 

control and test beakers were employed using smaller quantities of matrix (50 mL RO 

water or 50 G sludge).

RO (Reverse Osmosis) Water Matrix Trials

Adenovirus type 5, rotavirus Wa, and MS-2 were initially evaluated in an RO 

water matrix to determine inactivation by lime stabilization. Trials were performed in an 

RO water matrix to provide a baseline for inactivation independent of the inhibitory 

components commonly found in sludge and biosolids matrices. In addition, due to poor 

methodology and low recovery rates for protozoa and helminth organisms in sludges, 

lime stabilization to evaluate these pathogens was conducted in RO water. To allow for 

comparisons to be made, initial trials to evaluate viral persistence during lime 

stabilization were also conducted in RO water matrices. RO water matrix trials were 

performed according to the following procedures in triplicate at room temperature (28°C). 

Fifty milliliter volumes of RO water in separate control and test beakers for time points 

0.1,2,12, and 24 hours were inoculated with adenovirus type 5 and MS-2 to achieve a 

final concentration of 1.0 x 106 TCIDso/mL or PFU/mL respectively for each virus. The 

same experimental design was employed in separate trials with Rotavirus Wa and MS-2 

with inoculation of 50-mL volumes of RO water to achieve a final concentration of 1.0 x 

104 PFU/mL for each virus. Samples were continually mixed with magnetic stir bars and 

pH and temperature readings were recorded for control and test beakers hourly. The pH 

of the test beakers for each time point was simultaneously adjusted to 12.0 using an 8%
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aqueous slurry comprised of calcium hydroxide and distilled deionized water. 

Approximately 0.4 - 0.5 mL of calcium hydroxide slurry was required to elevate the pH 

to 12.0, corresponding to a lime dose of approximately 80 g/kg total solids. The pH was 

maintained at 12.0 for 2 hours at which time, 0.1 N HCL was added drop by drop until a 

pH value of 11.5 was achieved and maintained. At time points 0.1,2,12 and 24 hours, 

test beakers were neutralized with 0.1 N HCL and aliquots were removed horn 

designated control and test beakers for viral enumeration. Aliquots of control and 

neutralized test sample were diluted in phosphate buffered saline and plated immediately 

for male-specific bacteriophage using the previously described double agar overlay 

technique. Aliquots of control and neutralized test sample designated for viral 

enumeration were centrifuged for ten minutes at 1000 x g to remove precipitated lime, in 

an effort to minimize the toxic effects of the lime crystals on cells. Following 

centrifugation, the supemate was retained and assayed directly for adenovirus type 5 and 

rotavirus Wa by TCID50 and plaque assay respectively according to methods previously 

described.

Sludge Matrix Trials

Sludge matrix trials were performed according to the following procedure at room 

temperature (28°C) and reduced temperature (4°C). Fifty grams of various sludge 

matrices (compost, raw and previously limed), collected from participating utilities, was 

placed in separate control and test beakers for removal at time points 0.1,2,12, and 24 

hours. One hundred milliliters of RO water was added to facilitate mixing. Samples were
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inoculated with adenovirus Type 5 and MS-2 to achieve a final concentration of 

approximately 1.0 x 105 TCIDso/mL and approximately 1.0 x 107 PFU/mL for each virus 

respectively. The same experimental design was employed in separate trials using 

rotavirus Wa and MS-2. Rotavirus Wa and MS-2 were inoculated into various sludge 

samples to achieve a final concentration of approximately 1.0 x 104 PFU/mL and 

approximately 1.0 x 107 PFU/mL for each virus respectively. The pH of the test beakers 

was simultaneously adjusted to 12 .0  using an 8% aqueous slurry comprised of calcium 

hydroxide and distilled deionized water. Approximately 0.4 - 0.5 mL of calcium 

hydroxide slurry was required to elevate the pH to 12.0, corresponding to a lime dose of 

approximately 80 g/kg total solids. The pH was maintained at 12.0 for 2 hours at which 

time 0.1 N HCL was added drop by drop until a pH value of 11.5 was achieved and 

maintained. At time points 0.1,2,12 and 24 hours, test beakers were neutralized with 0.1 

N HCL and aliquots were removed from designated control and test beakers for viral 

elution and enumeration. Aliquots of control and neutralized test sample were diluted in 

phosphate buffered saline and plated immediately for male-specific bacteriophage using 

the previously described double agar overlay technique. Aliquots of control and 

neutralized test sample designated for viral enumeration were eluted according to 

previously described methodology and subsequently assayed for adenovirus type 5 and 

rotavirus Wa by TCID50 and plaque assay respectively.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RESULTS

MS-2, Poliovirus Type 1, Fecal Coliform and Salmonella Persistence in Lime 
Stabilized Sludge

A bench scale analysis of lime stabilized sludge to assess survivability of MS-2 

bacteriophage and Poliovirus type 1 in a dewatered sludge matrix revealed the 

inactivation of both organisms immediately following the addition of calcium hydroxide 

at room temperature (28°C) (Figure 2). Evaluation at reduced temperature (4°C) revealed 

an increased survivability of both organisms, as compared to results obtained for 

experiments conducted at room temperature (28°C) (Figure 3). At 28°C, MS-2 

bacteriophage was below detectable levels (< 1 PFU/mL) following the initial liming, 

demonstrating at least a seven-log reduction. Poliovirus type 1 was also below detectable 

levels (<1 PFU/mL) at the same time point, demonstrating at least a five-log reduction. 

At 4°C the MS-2 bacteriophage did not demonstrate any reduction following the initial 

liming, yet was below detectable levels following a two-hour incubation at pH 12. At the 

same temperature, poliovirus type 1 demonstrated at least a 1.2 log reduction following 

the initial liming and was below detectable levels after the two-hour lime stabilization 

period at pH 12. MS-2 and fecal coliforms evaluated in a dewatered sludge matrix at 

room temperature (28°C) were below detectable levels following 0.1 hours of lime 

stabilization at pH 12 demonstrating at least a seven-log and at least an eight-log 

reduction respectively (Figure 4). No decrease in Salmonella density was observed at 

time 0.1 hours and 2 hours
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post liming. Following 12 hours of liming, Salmonella was below detectable levels 

(Figure 4).
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Poliovirus Type 1 and MS-2 Persistence in a Limed Sludge Matrix at
Room Temperature (28°C)
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Figure 2: Evaluation of poliovirus type 1 and MS-2 persistence in a limed sludge 
matrix at room temperature (28°C) - Poliovirus type 1 and MS-2 seeded into a 
dewatered sludge matrix were below detectable levels following lime stabilization at 
room temperature (28°C). Poliovirus type 1 seeded into dewatered sludge to achieve a 
final concentration of 1 x 104 PFU/mL (Poliovirus Test) was below detectable levels 
following 0.1 hours o f liming (time point 6 minutes) demonstrating at least a  four log 
reduction. MS-2 seeded into dewatered sludge to achieve a final concentration of 1 x 107 
PFU/mL (MS-2 Test) was also below detectable levels following 0.1 hours of liming 
(time point 6 minutes) demonstrating at least a seven log reduction. Control samples 
consisting of poliovirus type 1 (Poliovirus Control) and MS-2 (MS-2 Control) seeded into 
dewatered sludge maintained at room temperature did not undergo lime stabilization. 
Aliquots of control samples removed at time points 0.1,2,12 and 24 hours demonstrated 
no viral reduction.
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Poliovirus Type 1 and MS-2 Persistence in a Limed Sludge Matrix at
Reduced Temperatures (4°C)
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Figure 3: Evaluation of poliovirus type 1 and MS-2 persistence in a limed sludge 
matrix at reduced temperature (4°C) - Poliovirus type 1 and MS-2 seeded into a 
dewatered sludge matrix were below detectable levels following lime stabilization at 4°C. 
Poliovirus type 1 seeded into dewatered sludge to achieve a final concentration of 1 x 104 
PFU/mL (Poliovirus Test) was below detectable levels following 2 hours of liming (time 
point 2) demonstrating at least a  four log reduction. MS-2 seeded into de watered sludge 
to achieve a final concentration of 1 x 107 PFU/mL (MS-2 Test) was also below 
detectable levels following 2 hours of liming (time point 2) demonstrating at least a seven 
log reduction. Control samples consisting of poliovirus type 1 (Poliovirus Control) and 
MS-2 (MS-2 Control) seeded into dewatered sludge maintained at room temperature did 
not undergo lime stabilization. Aliquots of control samples, removed at time points 0.1,2, 
12 and 24 hours, demonstrated no viral reduction.
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MS-2, Poliovirus Type 1, Salmonella, & Fecal Coliform Persistence in a Limed
Sludge Matrix at Room Temperature (28°C)
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Figure 4: Evaluation of MS-2, poliovirus type 1, Salmonella, & fecal coliform 
persistence in a limed sludge matrix at room temperature (28°C) -  MS-2, poliovirus 
type 1, Salmonella, and fecal coliforms evaluated in a dewatered sludge matrix were 
below detectable levels following lime stabilization at room temperature (28°C). 
Poliovirus type 1 seeded into dewatered sludge to achieve a final concentration of 5 x 104 
PFU/mL (Poliovirus Test) was below detectable levels following 0.1 hours of liming 
(time point 6 minutes) demonstrating at least a four and a half log reduction. MS-2 
seeded into dewatered shidge to achieve a final concentration of 5 x 107 PFU/mL (MS-2 
Test) was also completely inactivated following 0.1 hours of liming (time point 6 
minutes) demonstrating at least a seven log reduction. Indigenous fecal coliform and 
Salmonella sp. at concentrations of 1 x 10 (Fecal Coliform Test) and 1 x 103 MPN 
(Salmonella Test) per gram total solids respectively, were below detectable levels 
following 0.1 (time point 6 minutes) and 12 hours (time point 12) of liming respectively. 
Control samples consisting of seeded MS-2 (MS-2 Control) and poliovirus type 1 
(Poliovirus Control), and indigenous fecal coliforms (Fecal Coliform Control) and 
Salmonella sp. (Salmonella Control) in dewatered sludge maintained at room temperature 
did not undergo lime stabilization. Aliquots of control samples removed at time points 
0.1,2,12 and 24 hours demonstrated no reduction for organisms evaluated.
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Adenovirus Type 5 and MS-2 Lime Stabilization Evaluated in a Water Matrix at 
Room Temperature (28°C)

Adenovirus Type 5 and male specific bacteriophage MS-2 were spiked into a 

water matrix and limed for twenty-four hours with.removal of aliquots at time points 0.1 

hours (immediately following addition of lime), 2,12, and 24 hours post lime addition. 

Following removal of aliquots at designated time points and immediate neutralization, 

virus was enumerated using previously described methods. The results of three trials 

conducted with adenovirus type 5 and MS-2 spiked into a limed water matrix at room 

temperature are presented in figures S, 6,7, and 8. In all trials, adenovirus was below 

detectable levels by TCID50 (< 100-5 TCIDst/mL) indicating inactivation following 0.1 

hours of liming (time point 6 minutes). In all trials, MS-2 was below detectable levels (< 

1 PFU/mL) following 0.1 hours of liming (time point zero). In all RO water trials, 

Adenovirus was spiked into RO water to achieve a final concentration of approximately 

104 TCIDso/mL and MS-2 was spiked into RO water to achieve a similar final 

concentration of approximately 104 PFU/mL. In all RO water trials both Adenovirus and 

MS-2 were below detectable levels following 0.1 hours of liming, exhibiting at least a 

four log reduction for both viruses.
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Adenovirus Type 5 and MS-2 Persistence in a Limed RO 
Water Matrix at Room Temperature (28°C) (Trial 1)
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Figure 5: Evaluation of adenovirus type 5 and MS-2 persistence in a limed RO 
water matrix at room temperature (28°C) (trial 1) - Adenovirus type 5 and MS-2 
seeded into an RO water matrix were below detectable levels following lime stabilization 
at 28°C. Adenovirus type 5 seeded into RO water to achieve a final concentration of 1 x 
104 TCIDso/mL (Adenovirus Control) was below detectable levels following an initial 
liming (time point 6 minutes) demonstrating at least a four log reduction. MS-2 seeded 
into RO water to achieve a  final concentration o f 1 x 104 PFU/mL (MS-2 Control) was 
below detectable levels following initial liming (time point 6 minutes) demonstrating at 
least a four log reduction. Control samples consisting of adenovirus type 5 (Adenovirus 
Control) and MS-2 (MS-2 Control) seeded into an RO water matrix maintained at room 
temperature did not undergo lime stabilization. In addition, aliquots of seeded virus (MS- 
2 at Temp and Adenovirus at Temp) were incubated at room temperature and enumerated 
at each time point. Aliquots of control samples removed at time points 0.1,2,12 and 24 
hours demonstrated no viral reduction.
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Adenovirus Type 5 and MS-2 Persistence in a Limed RO 
Water Matrix at Room Temperature (2S°C) (Trial 2)
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Figure 6: Evaluation of adenovirus type 5 and MS-2 persistence in a limed RO 
water matrix at room temperature (28°C)(trial 2) - Adenovirus type 5 and MS-2 
seeded into an RO water matrix were below detectable levels following lime stabilization 
at 28*C. Adenovirus type 5 seeded into RO water to achieve a final concentration of 1 x 
104 TCIDso/mL (Adenovirus Control) was below detectable levels following an initial 
liming (time point 6 minutes) demonstrating at least a four log reduction. MS-2 seeded 
into RO water to achieve a final concentration of 1 x 104 PFU/mL (MS-2 Test) was 
below detectable levels following initial liming (time point 6 minutes) demonstrating at 
least a four log reduction. Control samples consisting of adenovirus type 5 (Adenovirus 
Control) and MS-2 (MS-2 Control) seeded into an RO water matrix maintained at room 
temperature did not undergo lime stabilization. In addition, aliquots of seeded virus (MS- 
2 at Temp and Adenovirus at Temp) were incubated at room temperature and enumerated 
at each time point. Aliquots removed at time points 0.1,2,12 and 24 hours demonstrated 
no viral inactivation.
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Adenovirus Type 5 and MS-2 Persistence in a Limed RO 
Water Matrix at Room Temperature (28°C) (Trial 3)
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Figure 7: Evaluation of adenovirus type 5 and MS-2 persistence in a limed RO 
water matrix at room temperature (28°C) (trial 3) - Adenovirus type 5 and MS-2 
seeded into an RO water matrix were below detectable levels following lime stabilization 
at 28’C. Adenovirus type 5 seeded into RO water to achieve a final concentration of 1 x 
104 TCID5o/mL (Adenovirus Control) was below detectable levels following an initial 
liming (time point 6 minutes) demonstrating at least a four log reduction. MS-2 seeded 
into RO water to achieve a final concentration o f 1 x 104 PFU/mL (MS-2 Control) was 
below detectable levels following initial liming (time point 0) demonstrating at least a 
four log reduction. Control samples consisting of adenovirus type 5 (Adenovirus Control) 
and MS-2 (MS-2 Control) seeded into an RO water matrix maintained at room 
temperature did not undergo lime stabilization. In addition, aliquots of seeded virus (MS- 
2 at Temp and Adenovirus at Temp) were incubated at room temperature and enumerated 
at each time point. Aliquots removed at time points 0.1,2,12 and 24 hours demonstrated 
no inactivation of organisms.
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Adenovirus Type 5 and MS-2 Inactivation for Three Trials Conducted in a Limed
RO Water Matrix at Room Temperature (28°C)
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Figure 8: Adenovirus Type 5 and MS-2 Persistence for Three Trials Conducted in a 
Test Lime and Control RO Water Matrix at Room Temperature (28°C) - Adenovirus 
type 5 and MS-2 seeded into an RO water matrix at room temperature were below 
detectable levels following lime stabilization tor 0.1 hours in all three trials conducted. 
Adenovirus type 5 seeded into RO water to achieve a final concentration of 1 x 104 
TCID5o/niL (Adenovirus Test) was below detectable levels following an initial liming 
(0.1 hours) demonstrating at least a four log reduction. MS-2 seeded into RO water to 
achieve a final concentration of 1 x 104 PFU/mL (MS-2 Test) was below detectable levels 
following initial liming (0.1 hours) demonstrating at least a four log reduction. Control 
samples consisting of adenovirus type 5 (Adenovirus Control) and MS-2 (MS-2 Control) 
seeded into an RO water matrix maintained at room temperature did not undergo lime 
stabilization. In addition, aliquots of seeded virus (MS-2 at Temp and Adenovirus at 
Temp) were incubated at room temperature and enumerated at each time point. Aliquots 
removed at time points 0.1,2,12 and 24 hours demonstrated no viral inactivation.
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Statistical Analysis of Three Trials of Adenovirus Type 5 and MS-2 Lime 
Stabilization evaluated in a RO Water Matrix at 28°C

Statistical analysis of three trials of Adenovirus type 5 and MS-2 lime 

stabilization evaluated in a water matrix at room temperature were conducted using the 

SPSS statistical software package. A general linear model was constructed to evaluate the 

following null hypotheses 1) lime stabilization does not have a statistically significant 

effect on the inactivation of adenovirus type 5 and MS-2 bacteriophage 2) the effect of 

liming is not statistically different between adenovirus type 5 and MS-2 bacteriophage 

when the effect of liming over a period of time is considered for each organism 

individually 3) there is no statistical difference between the inactivation of adenovirus 

type 5 and MS-2 bacteriophage under lime stabilization conditions.

Analysis of differences in treatment effectiveness for inactivation of adenovirus 

type 5 and MS-2 indicates that there is no significant difference between the effect of 

lime treatment on either organism (p value = 0.119). Therefore, the hypothesis that both 

viruses behave the same with regard to treatment by lime stabilization cannot be rejected. 

Overall treatment effect on adenovirus type 5 and MS-2 was significant (p value = 0.000) 

and both viruses were below detectable levels following 0.1 hours of liming. In addition, 

there appears to be no significant effect of liming over time for adenovirus type 5, 

therefore, treating for longer periods of time will generate no greater inactivation effect 

because adenovirus is inactivated immediately. In addition, the effect of time does not 

appear to differ between adenovirus type 5 and MS-2 (p value 0.001); therefore, treating 

for a period of time beyond 0.1 hours in RO water provides no added advantage with 

regard to inactivation of viruses during lime stabilization.
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Adenovirus Type 5 and MS-2 Lime Stabilization evaluated in Various Sludge
Matrices at Room Temperature (28°C) and Reduced Temperature (4°C)

Adenovirus type 5 and male-specific bacteriophage MS-2 were spiked into 

various sludge matrices and limed for twenty-four hours with removal of aliquots at time 

points 0.1 (immediately following addition of lime), 2,12 and 24 hours post lime 

addition. Following removal of aliquots at designated time points and immediate 

neutralization, virus was enumerated using previously described methods. The results of 

three trials conducted with adenovirus type 5 and MS-2 spiked into a various sludge 

matrices at room temperature (28°C) are presented in figures 9,10,11 and 12. The results 

of similar trials conducted at reduced temperature (4‘C) are presented in figures 13,14, 

15, and 16. In all shidge trials conducted at room temperature (28'C) and reduced 

temperature (4°C), adenovirus was below detectable levels by TCID50 (<  100-5 

TCIDso/mL) indicating inactivation following 24 hours of liming (time point 24). 

Inactivation rates varied with different matrices. In trials conducted at 28°C, adenovirus 

was inactivated at 2 hours, 0.1 hours and 0.1 hours for composted, previously limed and 

raw samples respectively. In these same trials, MS-2 was inactivated at 2 hours, 12 hours, 

and 24 hours post-lime addition for composted, previously limed and raw samples 

respectively. In trials conducted at 4°C, adenovirus was determined to be below 

detectable levels at 2 hours, 0.1 hours, and 0.1 hours for composted, previously limed and 

raw samples respectively. In these trials, MS-2 was below detectable levels (< 1 

PFU/mL) at 24 hours, 12 hours and 12 hours for composted, previously limed and raw 

samples respectively. In all sludge trials, adenovirus type 5 was spiked into the sludge
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matrix to achieve a final concentration of approximately 105 TCIDso/mL and MS-2 was 

spiked to achieve a final concentration of approximately 107 PFU/mL.
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Adenovirus Type 5 and MS-2 Persistence under Liming Conditions in a Composted
Biosolids Matrix at Room Temperature (28°C)
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Figure 9: Adenovirus type S and MS-2 persistence in a test lime and control 
composted biosolids matrix at room temperature (28°C) - Adenovirus type 5 and MS- 
2 seeded into a composted biosolids matrix at room temperature were below detectable 
levels following lime stabilization for 2 hours. Adenovirus type 5 seeded into a 
composted biosolids matrix to achieve a final concentration of 1 x 105 TCIDso/mL 
(Adenovirus Test) was below detectable levels following 2 hours of liming (time point 2) 
demonstrating at least a five log reduction. MS-2 seeded into the same matrix to achieve 
a final concentration of 1 x 107 pfu/mL (MS-2 Test) was below detectable levels 
following 2 hours of liming (time point 2) demonstrating at least a seven log reduction. 
Control samples consisting of adenovirus type 5 (Adenovirus Control) and MS-2 (MS-2 
Control) seeded into composted biosolids maintained at room temperature did not 
undergo lime stabilization. In addition, aliquots of seeded virus (MS-2 at Temp and 
Adenovirus at Temp) were incubated at room temperature and enumerated at each time 
point. Aliquots of control samples removed at time points 0.1,2,12 and 24 hours 
demonstrated no viral reduction.
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Adenovirus Type 5 and MS-2 Persistence under Liming Conditions in a Previously
Limed Biosolids Matrix at Room Temperature (28°C)
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Figure 10: Adenovirus type 5 and MS-2 persistence in a test lime and control 
previously limed biosolids matrix at room temperature (28'C) - Adenovirus type 5 
and MS-2 seeded into a previously limed biosolids matrix at room temperature were 
below detectable levels following lime stabilization for 0.1 and 12 hours respectively. 
Adenovirus type 5 seeded into previously limed biosolids to achieve a final concentration 
of 1 x 106TCIDso/mL (Adenovirus Test) was below detectable levels following an initial 
liming (0.1 hours) demonstrating at least a six log reduction. MS-2 seeded into previously 
limed biosolids to achieve a final concentration of 1 x 107 PFU/mL (MS-2 Test) was 
detectable following 0.1 and 2 hours of liming and was below detectable levels following 
12 hours of liming (time point 12) demonstrating at least a seven log reduction. Control 
samples consisting of adenovirus type 5 (Adenovirus Control) and MS-2 (MS-2 Control) 
seeded into previously limed biosolids maintained at room temperature did not undergo 
lime stabilization. In addition, aliquots of seeded virus (MS-2 at Temp and Adenovirus at 
Temp) were incubated at room temperature and enumerated at each time point. Aliquots 
of control samples removed at time points 0.1,2,12 and 24 hours demonstrated no viral 
reduction.
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Adenovirus Type 5 and MS-2 Persistence under Liming Conditions in a Raw Sludge
Matrix at Room Temperature (28°C)
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Figure 11: Adenovirus type 5 and MS-2 persistence in a test lime and control raw 
sludge matrix at room temperature (28°C) - Adenovirus type 5 and MS-2 seeded into a 
raw sludge matrix at room temperature were below detectable levels following lime 
stabilization for 0.1 hours and 24 hours respectively. Adenovirus type 5 seeded into raw 
sludge to achieve a final concentration of 1 x 103 TCIDso/mL (Adenovirus Test) was 
below detectable levels following an initial liming (0.1 hours) demonstrating at least a 
five log reduction. MS-2 seeded into the same raw sludge to achieve a final concentration 
of 1 x 107 PFU/mL (MS-2 Test) was below detectable levels following 24 hours of 
liming demonstrating at least a seven log reduction. Control samples consisting of 
adenovirus type 5 (Adenovirus Control) and MS-2 (MS-2 Control) seeded into an RO 
water matrix maintained at room temperature did not undergo lime stabilization. In 
addition, aliquots of seeded virus (MS-2 at Temp and Adenovirus at Temp) were 
incubated at room temperature and enumerated at each time point. Aliquots of control 
samples removed at time points 0.1,2,12 and 24 hours demonstrated no viral reduction.
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Overall Adenovirus Type 5 and MS-2 Inactivation for Three Trials Conducted in
Various Sludge Matrices Lime Stabilized at Room Temperature (28°C)
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Figure 12: Overall adenovirus type 5 and MS-2 inactivation for three trials 
conducted in various sludge matrices lime stabilized at room temperature (28°C) -  
Adenovirus type 5 and MS-2 seeded into varying sludge matrices were below detectable 
levels following 24 hours of lime stabilization at 28*C in all trials conducted, with 
inactivation times varying depending on the matrix evaluated. The results presented 
represent the average concentrations of adenovirus type 5 (Adenovirus Control, 
Adenovirus Test) and MS-2 (MS-2 Control, MS-2 Test) in spiked control and test 
samples for the three lime stabilization trials conducted in the various matrices evaluated 
(compost, raw and previously limed) at room temperature. Average enumerations of 
aliquots of seeded virus (MS-2 at Temp and Adenovirus at Temp), incubated at room 
temperature and enumerated at each time point, are also presented.
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Adenovirus Type 5 and MS-2 Persistence under Liming Conditions in a Composted
Biosolids Matrix at Reduced Temperature (4°C)
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Figure 13: Adenovirus type S and MS-2 persistence in a test lime and control 
composted biosolids matrix at reduced temperature (4°C) - Adenovirus type 5 and 
MS-2 seeded into a composted biosolids matrix at 4'C were below detectable levels 
following lime stabilization for 2 hours and 24 hours respectively. Adenovirus type 5 
seeded into a composted biosolids matrix to achieve a final concentration of 1 x 105 
TCIDso/mL (Adenovirus Test) was below detectable levels following 2 hours of liming 
(time point 2) demonstrating at least a five log reduction. MS-2 seeded into the same 
matrix to achieve a final concentration of 1 x 107 PFU/mL (MS-2 Test) was below 
detectable levels following 24 hours of liming (time point 24) demonstrating at least a 
seven log reduction. Control samples consisting of adenovirus type 5 (Adenovirus 
Control) and MS-2 (MS-2 Control) seeded into composted biosolids maintained at room 
temperature did not undergo lime stabilization. In addition, aliquots of seeded virus (MS- 
2 at Temp and Adenovirus at Temp) were incubated at 4°C and enumerated at each time 
point. Control sample aliquots removed at time points 0.1,2,12 and 24 hours 
demonstrated no viral reduction.
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Adenovirus Type 5 and MS-2 Persistence under Liming Conditions in a Previously
Limed Biosolids Matrix at Reduced Temperature (4°C)

100000000

10000000 -

E 1000000 -a.0am3 100000 -
>
o 10000 -
e£% 1000 -
e
8e 100 -
oo 10 -

240 0.1 2 12

— «—  MS-2 Control 

MS-2 T e s t 

MS-2 a t  T em p

— ■— Adenovirus 
Control 
Adenovirus 
T e s t

— a —  Adenovirus a t  
Tem p

Time Point (Hours)

Figure 14: Adenovirus type 5 and MS-2 persistence in a test lime and control 
previously limed biosolids matrix at reduced temperature (4°C) - Adenovirus type 5 
and MS-2 seeded into a previously limed biosolids matrix at 4°C were below detectable 
levels following lime stabilization for 0.1 and 12 hours respectively. Adenovirus type S 
seeded into previously limed biosolids to achieve a final concentration of 1 x 10s 
TCID5o/mL (Adenovirus Test) was below detectable levels following an initial liming 
(0.1 hours) demonstrating at least a five log reduction. MS-2 seeded into previously 
limed biosolids to achieve a final concentration of 1 x 107 PFU/mL (MS-2 Test) was 
detectable following 0.1 and 2 hours of liming and was below detectable levels following 
12 hours of liming (time point 12) demonstrating at least a seven log reduction. Control 
samples consisting of adenovirus type 5 (Adenovirus Control) and MS-2 (MS-2 Control) 
seeded into previously limed biosolids maintained at 4*C did not undergo lime 
stabilization. In addition, aliquots of seeded virus (MS-2 at Temp and Adenovirus at 
Temp) were incubated at 4’C and enumerated at each time point. Aliquots removed at 
time points 0.1,2,12 and 24 hours demonstrated no viral reduction.
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Adenovirus Type 5 and MS-2 Persistence under Liming Conditions in a Raw Sludge
Matrix at Reduced Temperature (4°C)
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Figure IS: Adenovirus type 5 and MS-2 persistence in a test lime and control raw 
sludge matrix at reduced temperature (4°C) - Adenovirus type 5 and MS-2 seeded into 
a raw sludge matrix at 4°C were below detectable levels following lime stabilization for 
0.1 hours and 12 hours respectively. Adenovirus type 5 seeded into raw sludge to achieve 
a  final concentration of 1 x 10s TCIDso/mL (Adenovirus Test) was below detectable 
levels following an initial liming (0.1 hours) demonstrating at least a five log reduction. 
MS-2 seeded into the same raw sludge to achieve a final concentration of 1 x 107 
PFU/mL (MS-2 Test) was below detectable levels following 12 hours of liming 
demonstrating at least a seven log reduction. Control samples consisting of adenovirus 
type 5 (Adenovirus Control) and MS-2 (MS-2 Control) seeded into raw sludge matrix 
maintained at 4“C did not undergo lime stabilization. In addition, aliquots of seeded virus 
(MS-2 at Temp and Adenovirus at Temp) were incubated at 4°C and enumerated at each 
time point. Aliquots removed at time points 0.1,2,12 and 24 hours demonstrated no viral 
reduction.
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Overall Adenovirus Type 5 and MS-2 Inactivation for Three Trials Conducted in
Various Sludge Matrices Lime Stabilized at Reduced Temperature (4°C)
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Figure 16: Overall adenovirus type 5 and MS-2 inactivation for three trials 
conducted in various sludge matrices lime stabilized at reduced temperature (4°C) -  
Adenovirus type 5 and MS-2 seeded into varying sludge matrices were below detectable 
levels following 24 hours of lime stabilization at 4°C in all trials conducted, with 
inactivation times varying depending on the matrix evaluated. The results presented 
represent the average concentrations of adenovirus type 5 (Adenovirus Control, 
Adenovirus Test) and MS-2 (MS-2 Control, MS-2 Test) in spiked control and test 
samples for the three lime stabilization trials conducted in the various matrices evaluated 
(compost, raw and previously limed) at 4°C. Average enumerations of aliquots of seeded 
virus (MS-2 at Temp and Adenovirus at Temp), incubated at 4°C and enumerated at each 
time point, are also presented.
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Statistical Analysis of Three Trials of Adenovirus Type 5 and MS-2 Lime
Stabilization evaluated in Various Sludge Matrices (compost, previously limed, raw)
at 28°C and 4°C

Statistical analysis of three trials of adenovirus type 5 and MS-2 lime stabilization 

evaluated in various sludge matrices (compost, previously limed, raw) at room 

temperature (28°C) and reduced temperature (4°C) were conducted using the SPSS 

statistical software package. A general linear model was constructed to evaluate the 

following null hypotheses 1) lime stabilization does not have a statistically significant 

effect on the inactivation of adenovirus type 5 and MS-2 bacteriophage 2) the effect of 

liming is not statistically different between adenovirus type 5 and MS-2 bacteriophage 

when the effect of liming over aperiod of time is considered for each organism 

individually 3) there is no statistical difference between the inactivation of adenovirus 

type 5 and MS-2 bacteriophage under lime stabilization conditions.

Analysis of lime treatment effectiveness for all trials in all matrices evaluated at 

both 28’C and 4°C revealed a statistically significant effect of treatment on both 

adenovirus type 5 and MS-2 generating a p value o f0.000. Therefore, the hypothesis that 

both viruses behave the same with regard to treatment by lime stabilization cannot be 

rejected. In addition, it was determined that there is no significant difference between the 

effect of liming on adenovirus type 5 and MS-2 at both temperatures generating a p value 

of 0.315 at 28°C and 0.072 at 4°C. A p value o f0.072 is on the border of what would be 

considered statistically significant. This can be explained by the larger effect size for 

adenovirus, with greater than 99.99% inactivation at almost all time points except for the 

0.1 hour time point in trial #1. MS-2 was not inactivated until two hours of liming;
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therefore, the overall effect size (control data minus test data) used for statistical 

calculation was smaller for MS-2 in earlier time points. The percent inactivation for virus 

and bacteriophage was calculated for each time point in each trial. The percent recovery 

was used in statistical analysis to draw comparisons between organisms due to a 

difference in starting concentrations. If the actual effect size value were used it would 

provide a false impression because the effect size for MS-2 would be extremely high due 

to a higher starting concentration; therefore, a statistically significant difference in effect 

of treatment on organisms would be a function of the starting concentration.

For trials conducted at 28°C, there is no statistically significant effect of time on 

the inactivation of virus or bacteriophage by lime stabilization (p value = 0.108). 

Therefore the hypothesis that time has no effect on treatment cannot be rejected. In 

addition, there is no statistically significant difference between the effect of time on 

adenovirus or MS-2 during stabilization, both organisms are affected the same over time 

(p value = 0.824). In trials conducted at 4°C, there appears to be a significant effect of 

liming over time; therefore, the hypothesis that time does not have an effect and that 

treating for longer periods of time will generate no greater effect can be rejected (p value 

= 0.000). The significant effect of time is most likely a result o f MS-2 inactivation. In 

order to achieve 99.99% inactivation of MS-2, a lime exposure of at least two hours was 

necessary, therefore demonstrating the potential for enhanced survivability at 4°C.

Liming in this instance can be demonstrated to be time dependent, whereas at 28°C it was 

not evident because inactivation was achieved at 0.1 hours and time points below 0.1 

hours were not evaluated. Even though there is a statistically significant effect of time 

seen at 4°C, the effect of time does not differ significantly between organisms. Therefore

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



there is no statistically significant difference between the effect of time on adenovirus or 

MS-2 during lime stabilization; however, the p value is close to 0.05, therefore, on the 

border of what would be considered significant. This can be explained by the feet that 

MS-2 is inactivated after two hours of liming whereas adenovirus is inactivated at 0.1 

hours post-lime addition. There is no statistical difference yet MS-2 was detectable in all 

two hour time points when adenovirus was not detected. The variation between trials was 

not evaluated statistically because trials were performed in different matrices. The 

rationale behind performing the experiments this way is that no two sludge samples or 

aliquots of a single sludge matrix will be the same. Therefore, in an effort to obtain 

information about the effect of lime stabilization it was most practical to evaluate liming 

in several different matrices rather than different aliquots of the same matrix that can 

never be considered consistent.
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Rotavirus Wa and MS-2 Lime Stabilization evaluated in a RO Water Matrix at
Room Temperature (28°C)

Rotavirus Wa and male specific bacteriophage MS-2 were spiked into a water 

matrix and limed for twenty-four hours with removal of aliquots at time points 0.1 hours, 

(immediately following addition of lime), 2,12, and 24 hours post lime addition. 

Following removal of aliquots at designated time points and immediate neutralization, 

virus was enumerated using previously described methods. The results of three trials 

conducted with rotavirus Wa and MS-2 spiked into a limed water matrix at room 

temperature are presented in figures 17,18,19 and 20. In all trials, rotavirus was below 

detectable levels (< 1 PFU/mL) by plaque assay indicating inactivation following 0.1 

hours of liming (time point zero). In all trials, MS-2 was below detectable levels (< 1 

PFU/mL) following 2 hours of liming (time point two hours). In all RO water matrix 

trials, rotavirus Wa was spiked into RO water to achieve a final concentration of 

approximately 104 PFU/mL and MS-2 was spiked into RO water to achieve a similar 

final concentration of approximately 104 PFU/mL. In all RO water trials both rotavirus 

and MS-2 were below detectable levels following 0.1 and 2 hours of liming respectively, 

exhibiting at least a four log reduction for both viruses.
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Rotavirus Wa & MS-2 Persistence in a Limed RO Water Matrix at Room
Temperature (28°C) (Trial 1)
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Figure 17: Evaluation of rotavirus Wa & MS-2 persistence in a limed RO water 
matrix at room temperature (28°C) (Trial 1) -  Rotavirus Wa and MS-2 seeded into an 
RO water matrix were below detectable levels Mowing lime stabilization at 28°C. 
Rotavirus Wa seeded into RO water to achieve a final concentration of 1 x 104 PFU/mL 
(Rotavirus Test) was below detectable levels following an initial liming (time point 0.1 
hours) demonstrating at least a four log reduction. MS-2 seeded into RO water to achieve 
a final concentration of 1 x 104 PFU/mL (MS-2 Test) was below detectable levels 
following 2 hours of liming (time point 2 hours) demonstrating at least a four log 
reduction. Control samples consisting of rotavirus Wa (Rotavirus Control) and MS-2 
(MS-2 Control) seeded into an RO water matrix maintained at room temperature did not 
undergo lime stabilization. In addition, aliquots of seeded virus (MS-2 at Temp and 
Adenovirus at Temp) were incubated at 28°C and enumerated at each time point. 
Aliquots removed at time points 0.1,2,12 and 24 hours demonstrated no viral reduction.
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Rotavirus Wa & MS-2 Persistence in a Limed RO Water Matrix at Room
Temperature (28°C) (Trial 2)
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Figure 18: Evaluation of rotavirus Wa and MS-2 persistence in a limed RO water 
matrix at room temperature (28°C) (Trial 2) - Rotavirus Wa and MS-2 seeded into an 
RO water matrix were below detectable levels following lime stabilization at 28°C. 
Rotavirus Wa seeded into RO water to achieve a final concentration of 1 x 104 PFU/mL 
(Rotavirus Test) was below detectable levels following an initial liming (time point 0.1 
hours) demonstrating at least a four log reduction. MS-2 seeded into RO water to achieve 
a final concentration of 1 x 104 PFU/mL (MS-2 Test) was below detectable levels 
following 2 hours of liming (time point 2 hours) demonstrating at least a  four log 
reduction. Control samples consisting of Rotavirus Wa (Rotavirus Control) and MS-2 
(MS-2 Control) seeded into an RO water matrix maintained at room temperature did not 
undergo lime stabilization. In addition, aliquots of seeded virus (MS-2 at Temp and 
Adenovirus at Temp) were incubated at 28°C and enumerated at each time point. 
Aliquots removed at time points 0.1,2,12 and 24 hours demonstrated no viral 
inactivation.
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Rotavirus Wa & MS-2 Persistence in a Limed RO Water Matrix at Room
Temperature (28°C) (Trial 3)

I
&
§
s

coo»3h.
>

10000000 

1000000 - 

100000 

10000 

1000 

100-1 

10 

1

MS-2 Control 

■ --- MS-2 T es t 

■M S-2 a t  T em p

-♦— Rotavirus
Control
Rotavirus
T es t 

■ R o ta v iru sa t 
T em p

0.1 2 12 
Time Point (Hours)

24

Figure 19: Evaluation of rotavirus Wa and MS-2 persistence in a limed RO water 
matrix at room temperature (28°C) (Trial 3) - Rotavirus Wa and MS-2 seeded into an 
RO water matrix were below detectable levels following lime stabilization at 28°C. 
Rotavirus Wa seeded into RO water to achieve a final concentration of 1 x 104 PFU/mL 
(Rotavirus Test) was below detectable levels following an initial liming (time point 0.1 
hours) demonstrating at least a four log reduction. MS-2 seeded into RO water to achieve 
a final concentration of 1 x 104 PFU/mL (MS-2 Test) was below detectable levels 
following 2 hours of liming (time point 2 hours) demonstrating at least a four log 
reduction. Control samples consisting of rotavirus Wa and MS-2 seeded into an RO water 
matrix maintained at room temperature did not undergo lime stabilization. In addition, 
aliquots of seeded virus (MS-2 at Temp and Adenovirus at Temp) were incubated at 28°C 
and enumerated at each time point. Aliquots removed at time points 0.1,2,12 and 24 
hours demonstrated no viral reduction.
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Overall Rotavirus Wa and MS-2 Inactivation for Three Trials Conducted in a
Limed RO Water Matrix at Room Temperature (28°C)
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Figure 20: Overall rotavirus Wa and MS-2 persistence for three trials conducted in 
a test lime and control RO water matrix at room temperature (28°C) - Rotavirus Wa 
and MS-2 seeded into an RO water matrix were below detectable levels following lime 
stabilization at 28‘€  in aU three trials conducted. Rotavirus Wa seeded into RO water to 
achieve a final concentration of 1 x 104 PFU/mL (Rotavirus Test) was below detectable 
levels following an initial liming (0.1 hours) demonstrating at least a four log reduction. 
MS-2 seeded into RO water to achieve a final concentration of 1 x 104 PFU/mL (MS-2 
Test) was below detectable levels following two hours of liming (time point 2 hours) 
demonstrating at least a four log reduction. Control samples consisting of rotavirus Wa 
(Rotavirus Control) and MS-2 (MS-2 Control) seeded into an RO water matrix 
maintained at room temperature did not undergo lime stabilization. In addition, aliquots 
of seeded virus (MS-2 at Temp and Adenovirus at Temp) were incubated at 28'C and 
enumerated at each time point. Aliquots removed at time points 0.1,2,12 and 24 hours 
demonstrated no viral reduction.
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Statistical Analysis of Rotavirus Wa and MS-2 Lime Stabilization for Three Trials
Evaluated in an RO Water Matrix at Room Temperature (28°C)

Statistical analysis o f three trials of rotavirus Wa and MS-2 lime stabilization 

evaluated in a water matrix at room temperature were conducted using the SPSS 

statistical software package. A general linear model was constructed to evaluate the 

following null hypotheses 1) lime stabilization does not have a statistically significant 

effect on the inactivation of rotavirus Wa and MS-2 bacteriophage 2) the effect of liming 

is not statistically different between rotavirus Wa and MS-2 bacteriophage when the 

effect of liming over a period of time is considered for each organism individually 3) 

there is no statistical difference between the inactivation of rotavirus Wa and MS-2 

bacteriophage under lime stabilization conditions.

Analysis of differences in treatment effectiveness for inactivation of rotavirus Wa 

and MS-2 indicates that there is no significant difference between the effect of lime 

treatment on either organism (p value = 0.431). Therefore, the hypothesis that both 

viruses behave the same with regard to treatment by lime stabilization cannot be rejected. 

Overall treatment effect on Rotavirus Wa and MS-2 was significant (p value = 0.000) and 

both viruses were below detectable levels following 0.1 hours of liming. Statistical 

analysis revealed that there is no statistically significant effect of liming over time, as 

both rotavirus Wa and MS-2 were below detectable levels following 0.1 hours of liming 

(p value = 0.660).
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Rotavirus Wa and MS-2 Lime Stabilization evaluated in Various Sludge Matrices at
Room Temperature (28°C) and Reduced Temperature (4°C)

Rotavirus Wa and male-specific bacteriophage MS-2 were spiked into various 

sludge matrices and limed for twenty-four hours with removal of aliquots at time points 

0.1 (immediately following addition of lime), 2,12 and 24 hours post lime addition. 

Following removal of aliquots at designated time points and immediate neutralization, 

virus was enumerated using previously described methods. The results of three trials 

conducted with rotavirus Wa and MS-2 spiked into a various sludge matrices at room 

temperature (28'C) are presented in figures 21,22,23 and 24. The results of similar trials 

conducted at reduced temperature (4°C) are presented in figures 25,26,27, and 28. In all 

sludge trials conducted at room temperature (28°Q and reduced temperature (4°C), 

rotavirus was below detectable levels by plaque assay (<1 PFU/mL) indicating 

inactivation following 0.1 hours of liming (time point 0). Inactivation rates varied with 

different matrices. In trials conducted at 28‘C, rotavirus was inactivated at 0.1 hours 

following the addition of lime for composted, previously limed and raw samples 

respectively. In these same trials, MS-2 was below detectable levels (<1 PFU/mL) at 2 

hours, 2 hours, and 12 hours post-lime addition for composted, previously limed and raw 

samples respectively. In trials conducted at 4‘C, rotavirus was below detectable levels 

(<1 PFU/mL) at 0.1 hours following the addition of lime for composted, previously limed 

and raw samples respectively. In these trials, MS-2 was below detectable levels (<1 

PFU/mL) at 12 hours, 12 hours and 24 hours for composted, previously limed and raw 

samples respectively. In all sludge trials, rotavirus Wa was spiked into the sludge matrix
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to achieve a final concentration of approximately 104 PFU/mL and MS-2 was spiked to 

achieve a final concentration of approximately 104 PFU/mL.
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Rotavirus Wa and MS-2 Persistence under Liming Conditions in a Composted
Biosolids Matrix at Room Temperature (28°C)
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Figure 21: Evaluation of rotavirus Wa and MS-2 persistence in a test lime and 
control composted biosolids matrix at room temperature (28°C) -  Rotavirus Wa and 
MS-2 seeded into a composted biosolids matrix at room temperature were below 
detectable levels following lime stabilization for 0.1 and 2 hours respectively. Rotavirus 
Wa seeded into a composted biosolids matrix to achieve a final concentration of 1 x 104 
PFU/mL (Rotavirus Test) was below detectable levels following initial liming (time point 
0.1 hours) demonstrating at least a  four log reduction. MS-2 seeded into the same matrix 
to achieve a final concentration of 1 x 104 PFU/mL (MS-2 Test) was below detectable 
levels following 2 hours of liming (time point 2) demonstrating at least a four log 
reduction. Control samples consisting of rotavirus (Rotavirus Control) and MS-2 (MS-2 
Control) seeded into composted biosolids maintained at room temperature did not 
undergo lime stabilization. In addition, aliquots of seeded virus (MS-2 at Temp and 
Rotavirus at Temp) were incubated at 28“C and enumerated at each time point. Control 
sample aliquots removed at time points 0.1,2,12 and 24 hours demonstrated no viral 
reduction.
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Rotavirus Wa aud MS-2 Persistence under Liming Conditions in a Raw Sludge
Matrix at Room Temperature (28°C)
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Figure 22: Evaluation of rotavirus Wa and MS-2 persistence in a test lime and 
control raw biosoiids matrix at room temperature (28°C) -  Rotavirus Wa and MS-2 
seeded into a raw biosolids matrix at room temperature were below detectable levels 
following lime stabilization for 0.1 and 12 hours respectively. Rotavirus Wa seeded into a 
composted biosolids matrix to achieve a final concentration of 1 x 104 PFU/mL 
(Rotavirus Test) was below detectable levels following an initial liming (time point 0.1 
hours) demonstrating at least a four log reduction. MS-2 seeded into the same matrix to 
achieve a final concentration of 1 x 104 PFU/mL (MS-2 Test) was below detectable levels 
following 12 hours o f liming (time point 12) demonstrating at least a four log reduction. 
Control samples consisting of rotavirus Wa (Rotavirus Control) and MS-2 (MS-2 
Control) seeded into composted biosolids maintained at room temperature did not 
undergo lime stabilization. In addition, aliquots of seeded virus (MS-2 at Temp and 
Rotavirus at Temp) were incubated at 28'C and enumerated at each time point. Control 
sample aliquots removed at time points 0.1,2,12 and 24 hours demonstrated no viral 
reduction.
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Rotavirus Wa and MS-2 Persistence under Liming Conditions in a Previously
Limed Biosolids Matrix at Room Temperature (28°C)
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Figure 23: Evaluation of rotavirus Wa and MS-2 persistence in a test lime and 
control previously limed biosolids matrix at room temperature (28°C) -  Rotavirus 
Wa and MS-2 seeded into a previously limed biosolids matrix at room temperature were 
below detectable levels following lime stabilization for 0.1 and 2 hours respectively. 
Rotavirus Wa seeded into a previously limed biosolids matrix to achieve a final 
concentration of 1 x 104 PFU/mL (Rotavirus Test) was below detectable levels following 
an initial liming (time point 0.1 hours) demonstrating at least a four log reduction. MS-2 
seeded into the same matrix to achieve a final concentration o f 1 x 104 PFU/mL {MS-2 
Test) was below detectable levels following 2 hours of liming (time point 2) 
demonstrating at least a four log reduction. Control samples consisting of rotavirus Wa 
(Rotavirus Control) and MS-2 (MS-2 Control) seeded into a previously limed biosolids 
matrix maintained at room temperature did not undergo lime stabilization. In addition, 
aliquots of seeded virus (MS-2 at Temp and Rotavirus at Temp) were incubated at 28‘C 
and enumerated at each time point. Control sample aliquots removed at time points 0.1,2, 
12 and 24 hours demonstrated no viral reduction.
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Overall Rotavirus Wa aud MS-2 Inactivation for Three Trials Conducted in
Various Sludge Matrices Lime Stabilized at Room Temperature (28°C)
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Figure 24: Overall rotavirus Wa and MS-2 inactivation for three trials conducted in 
various sludge matrices lime stabilized at room temperature (28°C) -  Rotavirus Wa 
and MS-2 seeded into varying sludge matrices were below detectable levels following 12 
hours of lime stabilization at 28°C in all trials conducted, with inactivation times varying 
depending on the matrix evaluated. The results presented represent the average reduction 
of rotavirus Wa and MS-2 in spiked control and test samples for the three lime 
stabilization trials conducted in the various matrices evaluated (compost, previously 
limed and raw) at room temperature. In addition, aliquots of seeded virus (MS-2 at Temp 
and Rotavirus at Temp) were incubated at 28°C and enumerated at each time point.
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Rotavirus Wa and MS-2 Persistence under Liming Conditions in a Composted
Biosolids Matrix at Reduced Temperature (4°C)
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Figure 25: Evaluation of rotavirus Wa and MS-2 persistence in a test lime and 
control composted biosolids matrix at reduced temperature (4°C) -  Rotavirus Wa 
and MS-2 seeded into a composted biosolids matrix at reduced temperature were below 
detectable levels following lime stabilization forO.l and 12 hours respectively. Rotavirus 
Wa seeded into a composted biosolids matrix to achieve a final concentration of 1 x 104 
PFU/mL (Rotavirus Test) was below detectable levels following an initial liming (time 
point 0.1 hours) demonstrating at least a four log reduction. MS-2 seeded into the same 
matrix to achieve a final concentration of 1 x l(r PFU/mL (MS-2 Test) was below 
detectable levels following 12 hours of liming (time point 12) demonstrating at least a 
four log reduction. Control samples consisting of rotavirus Wa (Rotavirus Control) and 
MS-2 (MS-2 Control) seeded into composted biosolids maintained at reduced 
temperature did not undergo lime stabilization. In addition, aliquots of seeded virus (MS- 
2 at Temp and Rotavirus at Temp) were incubated at 4‘C and enumerated at each time 
point. Control sample aliquots removed at time points 0.1,2,12 and 24 hours 
demonstrated no virus reduction.
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Rotavirus Wa and MS-2 Persistence under Liming Conditions in a Raw Sludge
Matrix at Reduced Temperature (4°C)
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Figure 26: Evaluation of rotavirus Wa and MS-2 persistence in a test lime and 
control raw sludge matrix at reduced temperature (4°C) - Rotavirus Wa and MS-2 
seeded into a raw sludge matrix at reduced temperature were below detectable levels 
following lime stabilization for 0.1 and 24 hours respectively. Rotavirus Wa seeded into a 
raw sludge matrix to achieve a final concentration of 1 x 10 PFU/mL (Rotavirus Test) 
was below detectable levels following an initial liming (time point 0.1 hours) 
demonstrating at least a four log reduction. MS-2 seeded into the same matrix to achieve 
a  final concentration o f 1 x  104 PFU/mL (MS-2 Test) was below detectable levels 
following 24 hours of liming (time point 24) demonstrating at least a four log reduction. 
Control samples consisting of rotavirus Wa (Rotavirus Control) and MS-2 (MS-2 
Control) seeded into a raw sludge matrix maintained at reduced temperature did not 
undergo lime stabilization. In addition, aliquots of seeded virus (MS-2 at Temp and 
Rotavirus at Temp) were incubated at 4°C and enumerated at each time point. Control 
sample aliquots removed at time points 0.1,2,12 and 24 hours demonstrated no viral 
reduction.
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Rotavirus Wa and MS-2 Persistence under Liming Conditions in a Previously
Limed Biosolids Matrix at Reduced Temperature (4°C)
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Figure 27: Evaluation of rotavirus Wa and MS-2 persistence in a test lime and 
control previously limed biosolids matrix at reduced temperature (4°C) - Rotavirus 
Wa and MS-2 seeded into a previously limed biosolids matrix at reduced temperature 
were below detectable levels following lime stabilization for 0.1 and 12 hours 
respectively. Rotavirus Wa seeded into a previously limed biosolids matrix to achieve a 
final concentration of 1 x 104 PFU/mL (Rotavirus Test) was below detectable levels 
following an initial liming (time point 0.1 hours) demonstrating at least a  four log 
reduction. MS-2 seeded into the same matrix to achieve a final concentration of 1 x 104 
PFU/mL (MS-2 Test) was below detectable levels following 12 hours of liming (time 
point 12) demonstrating at least a four log reduction. Control samples consisting of 
rotavirus Wa (Rotavirus Control) and MS-2 (MS-2 Control) seeded into previously limed 
biosolids maintained at reduced temperature did not undergo lime stabilization. In 
addition, aliquots of seeded virus (MS-2 at Temp and Rotavirus at Temp) were incubated 
at 4'C and enumerated at each time point. Control sample aliquots removed at time points 
0.1,2,12 and 24 hours demonstrated no viral reduction.
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Overall Rotavirus Wa and MS-2 Inactivation for Three Trials Conducted in
Various Sludge Matrices Lime Stabilized at Reduced Temperature (4°C)
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Figure 28: Overall rotavirus Wa and MS-2 inactivation for three trials conducted in 
various sludge matrices lime stabilized at reduced temperature (4°C) -  Rotavirus Wa 
and MS-2 seeded into varying sludge matrices were below detectable levels following 24 
hours of lime stabilization at 4°C in all trials conducted, with inactivation times varying 
depending on the matrix evaluated. The results presented represent the average 
inactivation of rotavirus Wa and MS-2 in spiked control (Rotavirus Control, MS-2 
Control) and test (Rotavirus Test, MS-2 Test) samples for the three lime stabilization 
trials conducted in the various matrices evaluated (compost, previously limed and raw) at 
reduced temperature. In addition, aliquots of seeded virus (MS-2 at Temp and Rotavirus 
at Temp) were incubated at 28°C and enumerated at each time point.
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Statistical Analysis of Three Trials of Rotavirus Wa and MS-2 Lime Stabilization
evaluated in Various Sludge Matrices (compost, previously limed, raw) at 28°C and
4°C

Statistical analysis of three trials of rotavirus Wa and MS-2 lime stabilization 

evaluated in various sludge matrices (compost, previously limed, raw) at room 

temperature (28°C) and reduced temperature (4°C) were conducted using the SPSS 

statistical software package. A general linear model was constructed to evaluate the 

following null hypotheses 1) lime stabilization does not have a statistically significant 

effect on the inactivation of rotavirus Wa and MS-2 bacteriophage 2) the effect of liming 

is not statistically different between rotavirus Wa and MS-2 bacteriophage when the 

effect of liming over a period of time is considered for each organism individually 3) 

there is no statistical difference between the inactivation of rotavirus Wa and MS-2 

bacteriophage under lime stabilization conditions.

Analysis of lime treatment effectiveness for all trials in all matrices evaluated at 

both 28°C and 4°C revealed a statistically significant effect of treatment on both rotavirus 

Wa and MS-2 generating a p value o f0.000, where a p value of < 0.05 was used as the 

parameter for statistical significance. In trials conducted at 28°C it was determined that 

there was no significant difference between the treatment effect of liming on either virus 

or bacteriophage (p value = 0.315). The same was true for trials conducted at 4“C where 

the p value was 0.184. Statistical analysis was performed with calculated percent 

inactivation values for rotavirus and MS-2 in the same way as was done for adenovirus 

and MS-2 data. For all trials conducted at 28°C and 4°C, there was no statistically 

significant effect of time on treatment, and no statistically significant difference between

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the effect of time on either rotavirus or MS-2 inactivation, with p values of 0.155 and 

0.352, indicating that both organisms behaved similarly over time when exposed to lime 

regardless of matrix.

Statistical Analysis of Adenovirus Type 5, Rotavirus Wa, and MS-2 evaluated in 
Various Sludge Matrices (compost, previously limed, raw) at 28°C and 4°C

Percent reduction values generated for adenovirus type 5, rotavirus Wa, and MS-2 

were analyzed to make comparisons between trials evaluated at different temperatures in 

an effort to determine if liming conducted at 4°C reduced inactivation of virus and 

bacteriophage. Bacteriophage data from all trials conducted at 28"C and 4°C were 

compiled and analyzed. The results of such analysis revealed a significant effect of 

treatment regardless of temperature (p value = 0.000), and no significant difference in 

treatment effectiveness for inactivation of MS-2 at either temperature (p value = 0.201). 

The same result was true for adenovirus type 5 where the effect of treatment with lime 

was significant at both temperatures (p value = 0.000) and there was no significant 

difference in treatment effectiveness at different temperatures (p value = 0.856). 

Rotavirus was not detected in any of the test samples analyzed in any of the matrices at 

both temperatures evaluated; there was no difference between samples or temperatures.
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DISCUSSION

Lime stabilization is a method employed by many sludge generators to inactivate 

pathogens, immobilize heavy metals by precipitating and locking heavy metals into stable 

compounds, modify acidic soils, which is of particular importance in new England, to 

produce higher yields, and to reduce vector attraction. The use of lime as a treatment 

method is inexpensive with regard to cost of implementation and operation. Lime can be 

purchased at $20 a ton, is easy to use, reduces odor which is the primary reason for the 

lack of public acceptance of land application of biosolids, and results in an end product 

that is beneficial and acceptable for agricultural use. Very little data are currently 

available indicating the persistence of pathogens under lime stabilization conditions. The 

goal o f this study was to evaluate the persistence of virus and bacteriophage at various 

stages of the lime treatment process in water, sludge and biosolids matrices at room 

temperature, 28°C and reduced temperature, 4°C.

Organisms were initially evaluated in an RO water matrix. This was to evaluate 

the inactivation of pathogens as a result of lime addition independent of the many 

inhibitory substances that may be present in sludge and biosolids matrices. In addition, 

pathogens such as Cryptosporidium and viable helminth ova have poor recovery 

efficiencies using currently available techniques for recovery. Therefore, in order to draw 

comparisons against pathogens evaluated in a water matrix, as a result of problems with 

recovery efficiency from solid matrices, it was necessary to have a baseline inactivation 

for viral pathogens in a water matrix.
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The results generated indicate that lime stabilization effectively inactivated 

adenovirus type 5, rotavirus Wa and male-specific bacteriophage MS-2 in a water matrix 

at room temperature (28°C). The data also demonstrate that male specific bacteriophages 

are inactivated similarly to both adenovirus type 5 and rotavirus Wa. The methodology 

established in the Part 503 rule for recovering enteric viruses from biosolids is extremely 

inefficient; this is due in part to the particle association that takes place between charged 

viruses and soil particles and the difficulty in separating the viruses from the solid 

component for assay as discussed in Chapter 3. Ideally, indigenous viruses would be 

present in high enough concentrations and easily recovered from sludge and biosolids 

samples so that spiking would not be necessary; however, until such methods are 

available to assess and evaluate the nature of the association of viruses to sludge 

particulates and effectively extract such viruses, spiking of virus is necessary to evaluate 

treatment effectiveness. Although it is important to keep in mind when interpreting the 

results the potential difference between the interactions of lime, which requires surface 

contact on viruses that are tightly bound to sludge particulates, and potentially protected, 

versus viruses which are freely suspended in a sludge that is homogenously limed. The 

data presented elucidate a new area of research to evaluate the difference in treatment 

effectiveness and rates of inactivation on seeded versus indigenous organisms in sludge 

and biosolids.

This highlights another point, which is the requirement that in order to achieve 

inactivation rates demonstrated in this investigation it was necessary that the matrix be 

adequately mixed and the lime added to achieve a homogeneous distribution in the 

sample. If the sludge were not adequately mixed it would be possible for the creation of
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microenvironments resulting in a non-homogeneous mixture which would not achieve the 

high pH levels necessary for viral inactivation. Therefore, effective liming is contingent 

upon the lime coming in contact with the sludge particulates in a homogenous nature 

thereby ensuring that small areas that do not achieve the high pH do not exist. Such areas, 

subsequently land applied, may contain virus that could later be mobilized in a rain event 

and move through the soil column into underground aquifers. The most effective way to 

ensure adequate contact of lime is to utilize large tanks for mixing and addition of lime to 

a sludge that is not dewatered rather than dewatering and subsequently liming. There are 

advantages and disadvantages to incorporating this type of system into a treatment 

facility. The dewatering step removes a large component of the sludge material to be 

treated, therefore eliminating a great deal of the bulk, creating a smaller quantity of 

sludge for treatment and disposal. The dewatering process, which is most often 

accomplished using large centrifuged, or belt and fitter presses, generates a liquid 

component which can be re-circulated back into the treatment processes, then chlorinated 

and finally discharged as effluent. Yet, once sludge is dewatered it becomes increasingly 

difficult to adequately homogenize the sample for liming to ensure that pathogens 

potentially present in the material have an equal opportunity of coming in contact with 

the alkaline slurry to be inactivated. Sludge that is not dewatered and can be incorporated 

with the lime slurry in large tanks and held fer a period of time prior to dewatering is 

more easily homogenized and therefore more likely to inactivate pathogens. However, a 

drawback associated with this technique of liming is that sludge must be dewatered 

following lime stabilization to reduce the bulk of material that must ultimately be land 

applied. Dewatering of the limed sludge generates a high pH liquid that must be disposed.
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This alkaline liquid cannot be easily re-circulated back into the wastewater treatment 

process unless there is sufficient influent to dilute the effects of the high pH so that the 

alkaline pH does not disturb the normal aeration process that takes place as part of the 

wastewater treatment process. The high pH liquid re-circulated could potentially kill the 

microorganisms necessary for clarification of the wastewater in the early stages of the 

wastewater treatment process.

Ultimately, the decision as to which method of liming is most effective should be 

determined on an individual plant basis. Plants that have small influent volumes cannot 

effectively dilute the high pH liquid that results from dewatering after liming and 

therefore in order to prevent the disruption of the wastewater treatment process it may be 

necessary to dewater prior to liming. In this instance it is imperative that the material be 

adequately homogenized with lime and held for sufficient time to inactivate virus present 

in the material prior to land application.

Additional experiments to evaluate the effectiveness of lime stabilization to 

inactivate Cryptosporidium parvum and Ascaris lumbricoides were conducted jointly 

with Christine Bean (Graduate Student, Department of Microbiology). Such experiments 

were conducted in water due to the ease with which the organisms could be recovered. A. 

lumbricoides remained viable following 72 hours of liming. Similarly, C. parvum strain 

MD, evaluated in a limed water matrix due to low recovery efficiencies in biosolids 

matrices, remained infectious in neonatal mice following 72 hours of liming. Dose- 

response analysis of C. parvum infectivity demonstrated that lime stabilization for 24 

hours did not inactivate the oocysts. To the contrary, the treatment increased the
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infectivity of the oocysts by more than 4-fold. The same effect was observed after a 2 

hour lime exposure resulting in over 7-fold reduction in ID50 for treated oocysts.

Evaluation of reliable and cost-effective treatment processes to demonstrate 

sufficient inactivation of pathogens provides valuable information for implementation of 

treatment technologies. This research has demonstrated that lime stabilization is effective 

at reducing fecal coliforms, Salmonella, adenovirus type 5, rotavirus Wa, and male- 

specific bacteriophage in a water matrix when calcium hydroxide is added in sufficient 

quantity to raise the pH to 12 for 2 hours and 11.5 for 22 hours. In addition, the data 

demonstrate that male specific bacteriophages are inactivated similarly to both 

adenovirus type 5 and rotavirus Wa and may therefore represent a potential indicator to 

evaluate treatment efficiency. Currently fecal coliforms are the only microbiological 

indicator evaluated in Class B sludge. Preliminary research has demonstrated that C. 

parvum and A lumbricoides persist long after fecal coliforms have been inactivated. 

Further investigation is required to optimize recovery efficiencies to evaluate inactivation 

of pathogens in a sludge matrix in an effort to accurately characterize the risks associated 

with land application of Class B biosolids. Fecal coliforms were inactivated immediately 

upon exposure to lime. This data suggests that fecal coliforms are not a reliable indicator 

for the inactivation of Cryptosporidium by lime stabilization.

Liming studies conducted to assess survivability of Cryptosporidium in water 

evaluated by DAPI/PI, Excystation, and animal infectivity reveal persistence of 

Cryptosporidium beyond the twenty-four hour time point. Incorporation of additional 

time points to represent 24 hours, 48 hours and 72 hours revealed 80% inactivation of 

Cryptosporidium oocysts with inactivation varying depending on the viability/infectivity
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assay used to make the determination. When assessed by vital stains, liming has a 

statistically significant effect on Cryptosporidium viability. When assessed by 

excystation, liming has no statistically significant effect on Cryptosporidium viability. 

When assessed by mouse infectivity liming has an effect immediately at time point 0 and 

this effect does not increase over time. The results demonstrate not only the persistence 

of Cryptosporidium following lime stabilization but the variation in results depending on 

the assay used for measurement. Vital dyes and Excystation are methods used to 

determine the viability of Cryptosporidium oocysts, but viability is not synonymous with 

infectivity and infectivity is measured by inoculating oocysts into animals.

The Cryptosporidium liming trials were performed in an RO water matrix due to 

the ease with which the organisms could be recovered and the lack of appropriate or 

efficient methodology for recovery of such organisms from sludge and biosolids 

matrices. Ultimately the effects of liming on Cryptosporidium and Ascaris lumbricoides 

in a sludge or biosolids matrix must be evaluated. In order to accomplish this recovery 

methods must be optimized. In addition, with regard to Cryptosporidium, it is not known 

what the long term effects of holding the organism after treatment and neutralization are 

or if reactivation is possible over time. In conclusion, focal coliforms are not a reliable 

indicator of Cryptosporidium or Ascaris lumbricoides presence or viability following 

treatment by lime stabilization. For class B biosolids, focal coliforms are the only 

microbiological parameter evaluated and yet the data show that focal coliforms are 

inactivated almost immediately upon the addition of lime whereas Cryptosporidium 

oocysts and Ascaris lumbricoides ova persist for long periods of time, up to 72 hours 

following the addition of lime, which is the time requirement for Class A certification.
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Therefore sludges that are tested for pathogens to achieve Class B or Class A 

certification, and M  within the acceptable levels for fecal coliform density, are not 

necessarily free of Cryptosporidium and viable helminth ova. This is especially important 

when considering that in a survey conducted it was determined that of thirty-eight 

samples evaluated, 20% were positive for the presence of Cryptosporidium whereas only 

15% were positive for Ascaris (Chapter 3). For Class B biosolids, reduced pathogen 

levels are acceptable for due to the incorporation of management practices. However, the 

results demonstrate pathogen persistence following 72 hours of liming which is the time 

requirement for alkaline stabilization to achieve Class A biosolids certification, a 

certification which deems the material ‘Virtually pathogen free,” or containing pathogens 

below detectable levels.

The land application of biosolids is a sustainable means of recycling the nutrient 

and organic matter present in waste and can be done in such a way that groundwater and 

the public health are protected. The true challenge is to establish which management 

practices and treatment techniques are the most relevant and important to protecting 

groundwater quality and public health.

The data herein demonstrate that bacterial indicators and enteric viruses were 

inactivated more rapidly than bacteriophages. This is promising information illustrating 

the potential for bacteriophage use to indicate the fete of enteric virus in treatment 

processes (Chapter 3). Future studies to determine the variation in sensitivity of 

bacteriophages to high pH to determine if MS-2 is adequate would be valuable to choose 

which, if any, bacteriophages are optimal. In conclusion, based on this research, it 

appears that bacteriophages are a potential model organism for determining the fate of
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human viruses in different types of sludges as they are inactivated at a similar rate, are 

easily recovered, are present in high concentrations in raw sludge and rapid, reliable and 

cost-effective methods exist for their recovery.

The data provided in this research are useful for developing recommendations for 

implementing successful treatment technologies along with preventing risks to workers 

and community populations in settings where exposure to biosolids may occur. This 

research represents initial study in what needs to be an on-going investigation to evaluate 

methods of sludge or biosolids preparation in an effort to minimize public health threats 

associated with land application of biosolids, maximize potential benefits and move our 

society towards sustainability.
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CHAPTER THREE

BIOSOLIDS SURVEY FOR MALE SPECIFIC BACTERIOPHAGE AS A 
POTENTIAL MICROBIAL INDICATOR TO EVALUATE BIOSOLIDS 

TREATMENT EFFECTIVENESS

ABSTRACT

Biosolids intended for land application must be screened for pathogens, including 

enteric viruses and viable helminth ova, to comply with regulatory requirements. The 

effectiveness of existing methodology to recover enteric viruses and viable helminth ova 

from biosolids is questionable. Enteric viruses are recovered from biosolids using an 

elution technique and are subsequently detected by cell culture. Viable helminth ova are 

recovered from biosolids samples by flotation. The methods employed to evaluate both 

classes of pathogens are labor intensive, time consuming and subject to interference by 

environmental inhibitors present in samples. There exists a need to develop rapid and 

sensitive assays to recover and detect human enteric viruses and viable helminth ova in 

biosolids samples and ensure public health safety when such material is land applied. 

Bacteriophages have received a great deal of attention in the research of indicator 

organisms due to their similarity in size and composition to enteroviruses. In the absence 

of adequate methodology for recovery and detection of enteric viruses from biosolids, an 

alternative approach of surveying for bacteriophage was evaluated.
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The primary objective of this study was to survey and compare results obtained 

from raw and lime stabilized biosolids intended for land application when evaluated for 

the presence of male specific bacteriophage and enteric virus. In addition, the samples 

were surveyed to evaluate the prevalence of viable helminth ova. This was accomplished 

by analyzing thirty-six raw and lime stabilized sludge samples for the presence o f the 

male specific bacteriophage MS-2, enteric virus, and viable helminth ova. Samples were 

obtained from six wastewater treatment utilities employing lime stabilization as a 

treatment method, between May 2002 and February 2003.

Of the eighteen raw samples evaluated, all were positive for the presence of male 

specific bacteriophage in varying concentrations, and all were negative for the presence 

of enteric virus. Male specific bacteriophage and enteric virus were not recovered from 

any of the eighteen lime stabilized biosolids samples evaluated. Viable helminth ova 

were not recovered from any of the raw or lime stabilized samples evaluated. The data 

demonstrates that, using EPA approved methodology for biosolids testing, male specific 

bacteriophages are easily and consistently recovered from raw sludge samples when 

enteric viruses are not. Based on these results, coupled with data demonstrating that MS- 

2 is inactivated similarly to enteric virus under lime stabilization conditions, 

bacteriophages represent a suitable indicator for the monitoring of biosolids to determine 

treatment effectiveness following lime stabilization. For regulatory purposes, male- 

specific bacteriophage may represent an adequate indicator organism that can be used as 

an index of enteric virus presence and inactivation following treatment by lime 

stabilization.
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INTRODUCTION

Land application of biosolids represents an effective means of recycling nutrients 

and organic matter but public health risks do exist with respect to human pathogens 

potentially contained within treated biosolids. Human exposure to land applied biosolids 

may result from direct contact, inhalation or ingestion of water from contaminated 

aquifers (NRC, 2002). Current regulations require the monitoring of four classes of 

organisms for Class A certification. These include surveillance of Salmonella, fecal 

coliforms, enteric virus, and viable helminth ova. Class B certification of biosolids 

requires screening for fecal coliforms (EPA, 1999). The microbiological analysis required 

for certification is labor intensive, costly, and employs a small sample size, thereby 

raising concern about the validity of results. In addition, methods for biosolids analysis 

are currently being developed and optimized. Available methodology for recovering 

pathogens from biosolids is inadequate, making it difficult to adequately assess biosolids 

for the presence of pathogens and to accurately determine whether or not pathogens have 

been inactivated following treatment processes (Brashear, 1982). The identification of an 

indicator organism that is both easily recovered and assayed for, and is representative of 

other pathogens potentially present in biosolids is necessary.

It is impractical to screen for all pathogens posing a threat to public health 

individually. Therefore, there is a need to be able to assess the efficacy o f indicators. 

Currently, there is no one organism that is considered to be the ideal indicator. A study 

aiming to correlate the inactivation of the most resistant human pathogens to
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bacteriophage inactivation would be valuable in determining the efficacy of phage as a 

viable indicator. This is of particular importance considering the inefficiency of existing 

methodology for recovery of pathogens in biosolids samples. Methods to evaluate the 

presence of human viruses in sludge have been developed. These methods involve elution 

of viruses from sludges by incorporating a proteinaceous material such as beef extract to 

compete with viruses for binding sites; thereby separating viruses from sludge 

particulates. Following elution, viruses are concentrated to reduce the sample size to a 

manageable volume, and subsequently detected by cell culture or molecular techniques 

such as PCR. Recovery of viruses using commonly employed elution methodology is 

challenging due to the tight association of viruses to solid particulates, which are then lost 

during centrifugation (Brashear, 1982). In addition, detection of viruses in a sludge 

matrix is problematic due to the presence of toxic substances in the eluate that interfere 

with cell culture and inhibit PCR. The use of phage as an indicator of enteric virus 

presence and inactivation represents an alternative approach (Fewtrell, 2001).

Bacteriophages have received a great deal of attention in the research of indicator 

organisms and surrogates due to their similarity in size and composition to the 

enteroviruses, a microbiological parameter evaluated for class A certification. 

Bacteriophages, like enteroviruses, are small in size, found in high numbers in feces and 

present in high numbers in wastewater, although their presence will depend on the quality 

of the water, pH and quantity of bacteria. Bacteriophage must be evaluated to determine 

whether or not they fit all of the criteria which must exist for an indicator organism to be 

considered reliable in predicting a health risk. These criteria are: 1) the organism must be 

exclusively of fecal origin and consistently present in fecal waste, 2) the indicator must
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occur in greater numbers than the associated pathogen, 3) the indicator must be more 

resistant to environmental stresses and persist for a greater length of time than the 

pathogen, 4) the indicator must not proliferate to any great extent in the environment, 5) 

simple, reliable and inexpensive methods should exist for the detection, enumeration and 

identification of the indicator organism (Fewtrell and Bartram, 2001).

Bacteriophages appear to be inactivated in the same way as enteric viruses when 

exposed to traditionally employed methods of treatment. Research has shown variations 

in phage susceptibility to treatment. F-specific phages appear to be more susceptible to 

disinfection techniques than somatic phage or phage infecting Bacteroides fragilis 

(Fewtrell, 2001). However, there is a need for updated research to evaluate the 

persistence of bacteriophage during conventional treatment processes and assess its 

potential as an indicator organism.

There is a substantial lack of available scientific information indicating the 

prevalence of phage in biosolids and their persistence during treatment. The existing data 

are not uniform because of variations in the bost bacterium used for study; however such 

data indicates that bacteriophage may be a useful tool with which to model the fate of 

human enteric viruses in sludges. Available data on the occurrence of phage in raw and 

treated wastewater indicate that bacteriophages are adequate indicators of enterovirus 

contamination (Gantzer, 1998). Research conducted by Lasobras et al. concluded that 

bacteriophages will accumulate in primary sludge in the same way as bacteria and 

viruses. This promising discovery prompted the group to evaluate the recovery and 

detection of phages from sludges to determine that the numbers of bacteriophage found in
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various sludge types are high enough to be considered as model microorganisms 

(Lasobras et al., 1999).

The majority of research to determine the relevance of phage as an indicator has 

been conducted in the area of water quality. The microbiological quality of water is 

evaluated by the use of indicators of fecal contamination (fecal coliforms, Escherichia 

coli and fecal streptococci). Early research conducted by Metcalf et al. revealed that 

bacterial indicators are inactivated more successfully than bacteriophages (Metcalfj 

1978). Later studies conducted by Havelaar et al in 1993, corroborated earlier findings by 

demonstrating that bacterial indicators do not provide adequate information about the fete 

and resistance of viruses to treatment (Havelaar et al., 1993). Additional research 

conducted by Havelaar et al. demonstrated that F-specific RNA bacteriophages were 

adequate model organisms for enteric viruses in fresh water and concluded that enteric 

virus concentrations can be predicted from F-RNA phage data (Havelaar et al., 1993). 

Recent research conducted by Jiang et al. comparing the prevalence of human 

adenoviruses and coliphages in coastal waters affected by urban runoff concluded that the 

presence of human adenovirus was not significantly correlated with the concentration of 

coliphage but was significantly correlated with the concentration of F-specific coliphage 

(Jiang et al., 2001). These findings illustrate the promise of bacteriophage as a useful 

indicator for monitoring purposes. The implementation of such an indicator would be 

highly rewarding with regard to cost, turn around time for results and feasibility of assay. 

The alternative to assessing the currently approved bacterial indicators for water quality 

is to evaluate samples for the presence of enteroviruses by cell culture or molecular 

biology techniques. The isolation of enteroviruses by cell culture permits determination
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of the infectious nature of the virus isolated; however, this process is time-consuming, 

difficult to perform and not all viral serotypes can be detected. Molecular biology 

techniques such as reverse transcription-polymerase chain reaction (RT-PCR) can be 

used for sensitive, specific and rapid detection of the enterovirus genome and represent a 

valuable alternative to cell culturing; however, the detection of the viral genome does not 

dictate infectivity.

Currently, there are no data available evaluating the inactivation of 

bacteriophages compared with inactivation of enteric viruses during traditionally 

employed sludge treatment processes. The objective of this study was to determine the 

levels of and compare the relationships between male-specific bacteriophage and enteric 

virus found in raw and lime stabilized samples obtained from six utilities in three states 

that employ lime stabilization as a sludge treatment method.

Bacteriophage

Bacteriophages were first described from the intestinal tract of man in the early 

1900’s. In the 1930’s phage was used as a model for indicating the likely presence of 

pathogenic enteric bacteria, at which time, a direct correlation was established between 

the presence o f certain bacteriophage and the intensity of fecal contamination. There are 

at least twelve distinct groups of bacteriophage which are diverse both structurally and 

genetically. Somatic coliphages, F-specific RNA phages, and Bacteroides fragilis phages 

represent types of bacteriophage that have been proposed as specific indicators of viral 

contamination (Lasobras et al., 1999) (Fewtrell and Bartram, 2001) (Gantzer et al., 1998).
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The best known bacteriophages are the common phages of E. coll Bacteriophage may 

consist of single-stranded or double-stranded DNA or RNA and are further classified by 

size, the presence and structure of a tail, and the location of attack for infection. Phage 

may be male-specific, requiring a bacterial pilus for attachment or somatic, attaching 

directly to the outer cell membrane or cell wall. The male-specific phage MS-2 is a 

single-stranded RNA bacteriophage within the family leviviridae. MS-2 is approximately 

twenty-six nanometers in size, and is 3,569 nucleotides in length, icosahedral in shape, 

with a positive sense RNA strand. Therefore, the MS-2 nucleic acid acts directly as its 

own messenger RNA upon entry into a susceptible cell MS-2 attaches directly to the F+ 

pilus of a susceptible cell (Fewtrell and Bartram, 2001).

There are many variables that affect the incidence, survival and behavior of 

phages in different environments, including the densities of both host bacteria and phage 

along with temperature and pH. Bacteriophages have been shown to persist for long 

periods of time, particularly at low temperatures as do enteric viruses (Lasobras et al., 

1999). The only microbiological indicator evaluated for Class B biosolids certification is 

fecal coliforms and studies have shown that bacterial indicators are inactivated more 

successfully than other pathogens potentially present in biosolids (Lasobras et al., 1999). 

This is not surprising as the inadequacy of fecal coliforms for predicting the virological 

quality of water is well documented even in marine environments where human enteric 

viruses have been shown to accumulate in water, crabs, shellfish and bottom sediments, 

in the absence of fecal indicator bacteria (Goyal et al., 1984) (Dore et a l, 2000). 

Concentrations of F-specific RNA bacteriophages have been significantly correlated with 

enterovirus concentrations in water environments and with adenovirus concentrations in
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recreational water (Havelaar et al., 1993) (Jiang et al., 2001). The use o f alternative 

indicators in conjunction with existing microbiological indicators offers a new way to 

distinguish sources of fecal contamination. The similar morphology, structure and 

behavior of F-specific RNA bacteriophages, as well as other phages, to that of human 

enteric viruses, suggests that they could represent a better model for presence of 

pathogens. Bacteriophage could therefore potentially be used to demonstrate inactivation 

of enteric virus by treatment processes, and for routine surveillance of pathogen 

persistence.

Bacteriophages represent a potential indicator, however, limitations do exist. 

Many of these limitations have been noted with regard to the use of bacteriophage as an 

indicator for water quality, yet many of the same issues will apply when proposing to use 

bacteriophage as an indicator in sludge matrices. Phages are excreted by a percentage of 

humans and animals all the time while viruses are excreted only by infected individuals 

for a short period of time. The excretion of viruses is dependent upon epidemiology, 

outbreaks and administration of vaccine. There is no direct correlation between the 

numbers of phages and viruses excreted by humans. The methods for detecting 

coliphages recover a wide range of phages with different properties. Some coliphages 

have been shown to replicate in water environments, and therefore may also replicate in a 

sludge environment where host bacteria exist. Enteric viruses have been detected in water 

environments in the absence of coliphages. Human enteric viruses associated with 

waterborne diseases are excreted almost exclusively by humans whereas phages used as 

models in water quality assessment are excreted by humans and animals. The feces of 

animals generally contain high densities of phages compared to humans. The percentage
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of animals excreting phage is higher than for humans. The microbiota of the gut, diet and 

physiological state of animals seems to affect the number of coliphages in feces. The 

composition and numbers of phages excreted by humans is variable. The differences 

between phage and enteric viruses are also reflected by differences in the efficiency of 

adsorption elution techniques for their recovery. The differences are due to differences in 

adsorption properties which have major implications for behavior in water environments 

and some treatment processes (Fewtrell and Bartram, 2001).

Detection of bacteriophage is contingent upon the use of an appropriate host 

bacterium. In this survey, male specific bacteriophages were targeted for recovery. The 

bacterial host used was E. coli harboring a conjugative plasmid conferring both 

streptomycin and ampicillin resistance and pilus production (E. coli F. Amp HFR). This 

host was chosen for its antibiotic resistance, making it extremely useful for studies 

involving sludge and wastewater, where the potential for contamination is extremely 

high. MS-2 was evaluated as a potential indicator for monitoring the fete of enteric 

viruses in sludge and biosolids samples and was employed as an internal biocontrol in 

lime treatment studies.
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MATERIALS AND METHODS

Sample Collection and Handling

Raw and lime stabilized sludge samples intended for land application were 

obtained from six wastewater treatment plant sites in three states within the United States. 

The sites chosen each employ lime stabilization as a method of treatment for wastewater 

solids. Samples were collected by treatment plant workers at participating utilities, placed 

in clean, sterile screw cap bottles and shipped overnight on ice to the Virology and 

Waterborne disease laboratory at the University of New Hampshire. Samples were stored 

at 4'C until analysis was performed. The samples were mixed and aliquoted into four 

portions in preparation for sample analysis, one fifty gram or fifty milliliter portion was 

obtained and evaluated to determine percent total solids, one one-hundred gram or one- 

hundred milliliter portion was obtained and eluted for enteric virus assay, one ten gram or 

ten milliliter portion was obtained and eluted for male-specific bacteriophage assay, and 

one fifty gram or four hundred and fifty milliliter portion was obtained and processed for 

viable helminth ova recovery.

Total Solids

Total solids are material residue that is retained following evaporation of a sample 

and its subsequent drying in an oven at a defined temperature. Results obtained for 

pathogen analysis of biosolids samples are reported as the concentration of organism
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detected with regard to the percentage of total solids in the sample. The determination of 

total solids concentration involved drying an aliquot of sample at 103° to 105°C to 

remove water. The mass of total solids in the sample was then determined by comparing 

the mass of the sample before and after each drying step. Total solids concentrations were 

calculated for each sample obtained for this study. Sample aliquots of fifty grams were 

placed in a weighed porcelain evaporating dishes previously stored in a desiccator. A 

combined weight was obtained to include the weight of the sample and the evaporating 

dish prior to drying. Liquid samples were dried at 103° to 105°C for one hour at which 

time the sample was cooled in a desiccator and weighed. The sample was repeatedly 

heated, cooled and weighed until the weight change was less than fifty milligrams. Solid 

samples were dried at 103° to 105‘C overnight. Following overnight drying, solid 

samples were cooled in a desiccator and weighed. The drying process was repeated until 

the weight change of the sample was less than fifty milligrams. The percentage total 

solids in the sample was calculated by subtracting the weight of the dish (B) from the 

weight of the dried residue and the dish combined (A), multiplying by one hundred and 

dividing the resultant figure by the weight of the wet sample and the dish (C) minus the 

weight of the dish (B).

Percent Total Solids = l(A)-(B)] x 100 / [(C)-(B)]
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Elution of Bacteriophages from Sludge Samples

Two methods were initially evaluated for the isolation of bacteriophages from raw 

and lime stabilized biosolids using six raw sludge samples, and compared to the results 

obtained form evaluating the sample without any elution manipulation. The method 

employed ibr elution of viruses from wastewater solids as dictated in the EPA part 503 

rules was evaluated for efficiency at recovering bacteriophages. This method is described 

in detail below and is outlined in Figure 1. The second method involved measuring two 

grams or two milliliters of sample and placing it into a 15-mL conical tube. Ten 

milliliters of a 1% phosphate buffered saline solution supplemented with magnesium 

chloride was added and the pH adjusted to 7.0. The sample was vortexed for thirty 

seconds and centrifuged at 1000 x g for 10 minutes. Following centrifugation, the 

supemate was immediately assayed using a double-agar overlay plaque assay technique 

with an F. amp E. coli host used for the isolation of male-specific bacteriophage.

Elution of Viruses from Sludge Samples

Samples were evaluated for total culturable viruses, including enteroviruses, 

according to the procedures designated for recovery and assay of viruses from sludge in 

the EPA part 503 rules. The procedure for recovery of viruses from wastewater solids is 

an adsorption process reliant upon adsorption of viruses from the liquid phase to the 

sludge solids, which are subsequently eluted and concentrated by centrifugation. The 

supemate is discarded. Viruses are desorbed from the solids by physiochemical means
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and further concentrated by organic flocculation. Decontamination prior to evaluation by 

cell culture is accomplished by incubation with antibiotics.

Liquid samples were conditioned prior to elution as follows. A one hundred 

milliliter quantity of liquid sludge was homogenized for five minutes, at which time one 

milliliter of aluminum chloride was added and the pH of the solution adjusted to 3.5 with 

IN HCL. The sample was mixed for thirty minutes and subsequently centrifuged at 2500 

x g for fifteen minutes at 4°C. The supemate was discarded and the sample eluted.

Elution of conditioned liquid samples and sludge solids involved resuspension of the 

resultant pellet from the conditioning or measuring one hundred grams of sample in the 

case of a solid sample and adding one hundred milliliters of distilled water. The sample 

was blended gently for five minutes. Following blending, an equal volume of 20% beef 

extract solution was added to the sample and blended. The sample was then mixed for 

thirty minutes and centrifuged at 10,000 x g for thirty minutes at 4°C. The supemate fluid 

was decanted and the appropriate volume of distilled water added to bring the final 

concentration of beef extract to 3%. The resultant eluate was transferred to a clean 

centrifuge bottle and the pH adjusted to 3.5. The sample was mixed for thirty minutes and 

centrifuged at 2500 x g for fifteen minutes. The sediment was retained, resuspended in 

twenty milliliters of sodium phosphate buffer and transferred to a conical tube where the 

pH was adjusted to 7.0. Samples were incubated at 37°C for three hours with one 

milliliter of antibiotic/antimycotic (lOOx) and one hundred microliters of gentamicin and 

frozen for assay. A flow chart of the sludge processing procedure for viral analysis is 

presented in Figure 1.
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Viral Elution Methodology

Conditioning of Sludge (Liquid Samples)

I

Homogenize and Adjust pH to 3.5 

Centrifuge and Retain Sediment

4

Elution from Sludge Solids

i
Homogenize Conditioned Pellet/Solid Sludge in Beef Extract

I
Centrifuge and Retain Supernate 

Adjust pH to 3.5

I
Centrifuge and Retain Sediment

i
Eluate

i
Cell Culture 

Figure 1. Sludge preparation for cell culture
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Cell Culture Analysis

The procedure for detection of viruses in sludge by plaque assay was performed 

according to protocols established in the EPA part 503 regulations (EPA, 1999). This 

procedure involves the use of an agar medium to localize virus growth following 

attachment of infectious virus particles to cells contained within a confluent cell 

monolayer. Localized lesions of dead cells will develop several days following infection 

and visualization of such plaques is enhanced by the incorporation of a neutral red stain 

in the agar overlay. The neutral red viability stain will stain live cells only. The number 

of unstained plaques are counted and reported as plaque forming units, whose number is 

proportional to the amount of infectious virus particles inoculated.

The viral assay was performed using a continuous cell line of Buffalo Green 

Monkey Kidney (BGMK) cells. Cells were grown in minimal essential media (MEM) 

(Sigma) and L-15 Medium supplemented with 8% fetal calf serum, 100 U/ml penicillin, 

100 ug/ml streptomycin, and 50 ug/nflkanamycin.

Prior to each viral assay cells were prepared by passaging previously prepared cell 

culture flasks containing confluent monolayers of BGMK cells. The cells were passaged 

by: 1) decanting and discarding the growth medium, 2) washing the cell monolayer with 

pre-warmed serum-free minimal essential media, 3) adding IX trypsin (Sigma) solution 

to the monolayer and placing flasks in a 37°C incubator for five minutes or sufficient 

time to allow cells to lift from the bottom of the flask. Once the cells were dissociated, 

fresh medium was added and the cell suspension centrifuged at 1000 x g for ten minutes 

to remove residual trypsin. Cells were re-seeded into new flasks at a 1:4 dilution. Once
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the cells reached confluency they were used to assay infectivity for enterovirus by means 

of a plaque assay technique.

T-25 cell culture flasks were used for plaque assay. Samples were diluted to 10' 

with phosphate buffered saline and 0.1 ml of the appropriate dilution inoculated in 

triplicate onto confluent monolayers of BGMK cells. Adsorption of virus was allowed to 

proceed for 1.5 horns at 37°C with rocking every fifteen minutes. Following adsorption, 

cells were washed with phosphate buffered saline and an agar overlay maintenance 

medium containing 2% fetal bovine serum added. Flasks were inverted and incubated at 

37°C and examined daily for the presence of plaques up to seven days following 

inoculation.

Male Specific Bacteriophage

Male specific bacteriophage levels were determined using a modified double- 

agar-overlay procedure previously described by Cabelli (1982). Two grams of sample to 

be assayed was obtained to which ten milliliters of phosphate buffered saline with 

magnesium chloride was added. The sample was thoroughly vortexed and subsequently 

centrifuged at 1,000 x g for ten minutes at room temperature. The supemate was 

immediately assayed for presence of male-specific bacteriophage.

Male specific bacteriophage for positive control was propagated and enumerated 

using an E. coli host harboring a conjugative plasmid conferring both streptomycin and 

ampicillin resistance and pilus production (E. coli F. Amp HFR). The host was grown to 

log phase in Tryptic Soy broth supplemented with 1% (lOOx) Streptomycin/Ampicillin
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and 1% Magnesium chloride at 37°C for approximately three hours. MS-2 bacteriophage 

was added to the log phase E. coli culture and incubated at 37°C for twelve to eighteen 

hours. Following incubation, the viral suspension was centrifuged at 10,000 rpm (4°C) 

for ten minutes to remove cellular debris. The supemate was removed, placed in sterile 

bottled and refrigerated at 4°C until use. The propagated MS-2 was enumerated by plaque 

assay with E. coli F. Amp using a double agar overlay technique. Plates were incubated at 

37°C and observed twelve to eighteen hours later for plaques. For assay of sample 

supemate, host E.coli was grown to log phase in Tryptic Soy Broth for three hours prior 

to assay. Serial dilutions of sample supemate were created using a IX phosphate buffered 

saline solution supplemented with magnesium chloride. One hundred microliters of 

sample and two hundred microliters o f E.coli were inoculated into five milliliters of 

sterile tempered agar overlay. The sample was gently mixed and immediately poured 

onto a sterile Tryptic soy agar plate and distributed evenly over the surface of the plate by 

swirling. Plaques were observed and counted after eighteen to twenty-four hours of 

incubation at 3TC. Male-specific bacteriophage densities were calculated pertwo grams 

of sample determined by the number of plaques per volume of supemate assayed times 

the dilution factor divided by the number of grams of sample examined.

Recovery of Viable Helminth Ova from Sludge Samples

Viable helminth ova were recovered from sewage sludge samples using modified 

guidelines established by the U.S. Environmental Protection Agency (EPA) for the 

detection o f Ascaris ova in water, wastewater, solids, and compost (EPA, 1999). The
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magnesium sulfate flotation procedure is the current EPA approved method for detection 

of viable helminth ova. This procedure has been evaluated and modified to improve 

recovery efficiencies. Modifications to the approved methodology include addition of an 

initial step of soaking dry or thick samples overnight to liquefy, the incorporation of an 

additional blending and settling step to ensure liquification, and the addition of a four 

hundred mesh sieve to capture the Ascaris ova. Recovery studies performed by spiking 

viable Ascaris lumbricoides ova into various sample matrices (liquid, semi-solid, and 

solid) revealed higher recovery efficiencies for the modified EPA protocol when 

compared to recovery rates obtained from the approved protocol without modifications. 

In the thirty-six samples evaluated, the modified EPA protocol was employed for 

recovery of viable helminth ova (Bean and Brabants, 2000).

Flotation methods take advantage of liquids, such as magnesium sulfate, that have 

a higher specific gravity than that of eggs or cysts, causing parasites to float to the surface 

where they are retrieved for microscopic survey. Fifty grams or four hundred and fifty 

milliliters of sample was processed by blending with phosphate buffered saline and 

surfactant. The sample was allowed to settle overnight and the supernatant was aspirated 

and discarded. This blending and settling was repeated and sediments were subsequently 

screened to remove large particles. The resulting sediment was centrifuged, the 

supernatant removed and discarded, and the pellet resuspended in magnesium sulfate 

solution (specific gravity 1.2) to create a layer of ova. The specific gravity of the solution 

was adjusted with RO water and the sample centrifuged. Ethyl acetate was added to the 

supemate to remove excess fatty materials and the pellet was immediately examined 

microscopically for the presence of viable helminth ova using a Sedgwick rafter counting
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chamber and a light microscope at 10X magnification. If helminth ova were present, the 

ova were observed for movement of internal larval forms. If movement could not be 

confirmed, samples were incubated for three to four weeks at which time, the material 

was observed for larval forms.
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RESULTS

Efficiency of Methods Assayed for Bacteriophage Elution

Six raw sludge samples were obtained from five different locations and evaluated 

for efficiency of bacteriophage recovery using the two previously described elution 

methods. The use of these two methods was then compared to the efficiency of 

bacteriophage recovery with no elution. Two of the six raw samples were spiked with the 

male-specific bacteriophage MS-2 to achieve a final concentration of 104 PFU/mL, to 

evaluate the presence of inhibitors and potential viral loss from elution. The results of this 

study are presented in Figure 2. In all but one of the samples evaluated, phage was 

recovered in higher concentrations when a washing and centrifugation step was 

incorporated prior to plaque assay. In all samples evaluated, phage was recovered in low 

concentrations or not recovered at all when the method for viral recovery specified in the 

EPA Part 503 regulation for recovery of virus from wastewater solids was employed.
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Evaluation of Two Methods for Male-Specific Bacteriophage Recoveiy

100000

Sample ID

Figure 2: Evaluation of two methods for male-specific bacteriophage recovery -  Six 
samples were evaluated for the presence of phage using the elution method recommended 
for enteric virus recovery according to the EPA Part 503 Regulations (Concentrate), and a 
washing and centrifugation procedure (Wash). The concentrations of male specific 
bacteriophage recovered using the two elution methods are compared to the assay of the 
raw sample without ehition (Raw). Two of the six samples evaluated were spiked with 
MS-2 to achieve a 1 x 104 pfu/mL concentration to evaluate sample inhibition to elution. 
In five of the six samples evaluated, incorporation of a washing and centrifugation step 
prior to assay yielded a higher recovery of male-specific bacteriophage when compared 
to recoveries generated from assay of the raw sample directly and the concentrated 
sample.
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Survey of Bacteriophage. Enteric Virus and Viable Helminth Ova in Raw and Lime 
Stabilized Biosolids

Samples of raw and limed match-batch sludge and biosolids samples (collected 

immediately prior to and following lime stabilization) were obtained from six sites in 

three states during the period of May 2002 to February 2003. The microbiological quality 

of the sludges evaluated is presented in Table 1. The male-specific bacteriophage MS-2 

was detected in all raw samples evaluated for all sites evaluated. Levels o f bacteriophage 

recovered varied among wastewater treatment sites. Sixteen of the raw and lime 

stabilized samples evaluated were obtained from a wastewater treatment plant in the state 

of Texas. The highest levels of bacteriophage were detected in raw sludge samples 

obtained from the Texas wastewater treatment plant. Ten of the raw and lime stabilized 

samples evaluated were obtained from a wastewater treatment plant in the state of 

Arkansas and ten of the samples evaluated were obtained from Pennsylvania. 

Bacteriophage was not detected in any of the lime stabilized biosolids samples evaluated. 

Enteric virus and viable helminth ova were not detected in any of the raw or lime 

stabilized biosolids samples evaluated.
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B a o te i M llte ja iB iiE B i

14-May-02 Raw Texas 4.22 ; <1 <1 1.9 x 1 0 3
1^M  ay-02 Lime Stabilized Texas 30.2 : <1 <1 0
25-Jun-02 Raw Arkansas 2.19 <1 <1 1.8 x 1 0 1
25-Jun-02 Lime Stabilized Arkansas 32.4 <1 <1 0
i5-Oct-02 Raw Texas 2.5 <1 <’i 1.4 x 1 0 s
15-Oct-02 Lime Stabilized Texas 32.4 <1 <1 0
ie o c t-0 2 Raw Pennsylvania 4.29 <1 <1 5.5 x  102
16-bct-02 Lime Stabilized Pennsylvania 18.2 <1 <1 0
2-NovMD2 Raw Arkansas 2.2 <1 <1 6.0 x  102
2-Nov02 Lime Stabilized Arkansas 40.7 <1 <1 0
6-NOV-02 Raw Arkansas 2.04 <1 <1 1.2 x 1 0 s
6-NOVM32 Lime Stabilized Arkansas 43.19 <1 <1 0
7-NOV-02 Raw F’ennsylvania 2.71 <1 <1 1 .0 x 1 0 s
7-Novt)2 Lime Stabilized Pennsylvania 2 6 1 2  <1 <1 0

14-NovG2 Raw Texas 2.12 <1 <1 1.6 x 1 0 s
14-NOV-02 Lime Stabilized Texas 30.35 <1 <1 0
15-No*02 Raw Dewatered Pennsylvania 18.06 <1 <1 2.0 x 102
15-Novt)2 Lime Stabilized Pennsylvania 31.66 <1 <1 0
3-Dec-02 Raw Texas 2.5 <1 <1 1.4 x 1 0 s
3-Dec-Q2 Lime Stabilized Texas 31.6 <1 <1 0

17-Dec-02 Raw Arkansas 5.05 <1 <1 1.7 X102
17-Dec-02 Lime Stabilized Arkansas 44.13 <1 <1 0
17-Dec-02 Raw Arkansas 2.29 <1 <1 1.4 x 1 0 s
17-Dec-02 Lime Stabilized Arkansas 39.98 <1 <1 0
10-Jan-03 Flaw Pennsylvania 3.63 <1 <1 1.0 X102
10-Jan-03 Lime Stabilized Pennsylvania 23.56 <1 <1 0
14-Jan-03 Raw Texas 3.46 <1 <1 2.0 x  10s
14-Jan-03 Lime Stabilized Texas 27.72 <1 <1 0
14-Jan-03 Raw Texas 3.46 <1 <1 2.0 x 10s
14-Jan-03 Lime Stabilized Texas 29.37 <1 <1 0
11-Feb-03 Raw Texas 4.13 <1 <1 1.0 x 1 0 s
11-Feb-03 Lime Stabilized Texas 29.55 <1 <1 0
11-Feb-03 Raw Texas 4.01 <1 <1 1.0 x 1 0 s
11-Feb-03 Lime Stabilized Texas 31.25 <1 <1 0
14-Feb-03 Raw Dewatered Pennsylvania 16.64 <1 <1 1.1 X102
14-Feb-03 Lime Stabilized Pennsylvania 29.06 <1 <1 0

Table 1: Bacteriophage, enteric virus, and helminth surveillance in raw and lime 
stabilized biosolids- Raw and lime stabilized samples collected from three states from 
May 2002 to February 2003, were evaluated for bacteriophage, enteric virus and viable
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helminth ova. Data presented in the table are organized by sample date and are presented 
by pairing the raw sample data with the corresponding treated sample data following 
treatment by lime stabilization. Male-specific bacteriophage was recovered in all raw 
samples evaluated with concentrations varying depending on sample location. Male 
specific bacteriophage was not detected in any of the corresponding lime stabilized 
samples. Enteric virus was not detected in any o f the raw samples or any of the 
corresponding lime stabilized samples evaluated. Viable helminth ova were not recovered 
from any of the raw samples or any of the corresponding lime stabilized samples 
evaluated.
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Levels of Bacteriophages Detected in Raw and Lime Treated Biosolids

Male specific bacteriophage was recovered from all raw samples evaluated. The 

average concentration of bacteriophage recovered was 1 x 103 PFU/mL. Phage 

concentrations varied depending on location surveyed as seen in Figure 3, but did not 

appear to vary based on date collected, although the sample set for individual locations is 

limited as the primary goal of the survey was to assess overall detection of enteric virus 

as compared to bacteriophage detection. To fully assess variation of phage recovery for 

locations and seasons the sample set should be increased.
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Male Specific Bacteriophage Detection in Raw Sludges Obtained from Three States
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Figure 3: Male specific bacteriophage detection in raw sludges obtained from three states 
-  The concentration of male specific bacteriophage recovered from raw sludges varied 
depending on the sample site. The average concentration of bacteriophage recovered 
from samples obtained from the Texas wastewater treatment plant site was 8.6 x 103 
PFU/mL. The error bar represents +/- one standard deviation with a standard deviation of 
778.61. The average concentration of bacteriophage recovered from samples obtained 
from the Pennsylvania wastewater treatment plant site was 4.0 x 102 PFU/mL. The error 
bar represents +/- one standard deviation with a standard deviation o f386.1. The average 
concentration of bacteriophage recovered from samples obtained from the Arkansas 
wastewater treatment plant site was 6.8 x 102 PFU/mL. The error bar represents +/- one 
standard deviation with a standard deviation of 611.1.
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Levels of Enteric Virus and Viable Helminth Ova Detected in Raw and Lime 
Treated Biosolids

Enteric virus was not detected in any of the eighteen raw sludge samples 

evaluated. In addition, enteric virus was not detected in any of the eighteen corresponding 

lime stabilized biosolids samples evaluated. Viable helminth ova were not recovered in 

any of the thirty-six raw or lime stabilized samples surveyed.
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DISCUSSION

Biosolids intended for land application are evaluated according to several 

microbiological parameters depending on the classification of biosolid desired. The 

microbiological parameter evaluated for Class B certification is fecal coliforms. The 

microbiological parameters evaluated for Class A biosolids certification, the most highly 

desired classification, may include screening for enteric virus and viable helminth ova in 

addition to fecal coliforms and Salmonella. Previously described treatment studies to 

evaluate the persistence of virus and male-specific bacteriophage under lime stabilization 

conditions demonstrated that rotavirus Wa and adenovirus type 5 were more susceptible 

to the inactivation effects of lime than male specific bacteriophage. As a result of this 

interesting observation, male specific bacteriophage was considered a potential indicator 

for the inactivation of virus during treatment by lime stabilization. Additional study to 

evaluate the prevalence and recovery of indigenous male specific bacteriophage from 

sludge samples was conducted to assess the efficacy of using bacteriophage as a potential 

indicator. This study evaluated thirty-six sludge samples, representing both raw and lime 

stabilized sludges, for the presence of enteric virus and also viable helminth ova and 

compared this to the presence of bacteriophage. Bacteriophage was evaluated because of 

its ease of detection, its reported high prevalence in sewage sludge, and its resistance 

during lime stabilization trials.

Biosolids samples cannot be effectively evaluated for the presence of 

bacteriophage or enteric virus without the incorporation of an initial elution step. In this
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study, indigenous enteric virus was assayed using protocols established by the EPA Part 

503 Rule for the recovery of virus from wastewater solids, as this is the protocol used to 

evaluate sludge samples for compliance with land application regulations. There is no 

such established protocol for the recovery of bacteriophage from sewage sludges. 

Therefore, two methods were evaluated and compared to determine the efficiency of 

recovering bacteriophage directly from sludges without the incorporation of an elution 

step. Evaluation of the EPA Part 503 Rule methodology for recovery of virus from 

wastewater solids to recover bacteriophage proved inefficient in comparison to the use of 

a simple washing and centrifugation step. The incorporation of a washing and 

centrifugation step resulted in higher recoveries of bacteriophage when compared to 

direct assay of the raw sample. This may be due to the removal of inhibitory substances 

through washing and centrifugation allowing for enhanced formation and visualization of 

plaques. Therefore, when conducting the survey of wastewater sludges for the presence 

of enteric virus and bacteriophage, a washing and centrifugation step was employed for 

elution of bacteriophage and the supemate collected was evaluated for presence of male- 

specific bacteriophage.

In all raw and lime stabilized sludge samples evaluated, enteric virus was not 

detected, and results were reported as less than one plaque forming unit per four grams 

total solids. Such a result indicates compliance with the established EPA Part 503 Rule 

regulation for enteric virus limits for land application. Therefore, all raw and lime 

stabilized sludge samples evaluated according to the established EPA protocol did not 

exceed the enteric virus limits for land application, and represent a potential threat to the 

public health. This is most likely due to the inefficiency of the viral elution method for

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



recovery of virus from the sludge samples rather than the reported absence of virus in 

such samples. Earlier studies have documented the ineffectiveness of the enteric virus 

elution and recovery procedure established for screening biosolids samples, and the need 

for improved methodology and identification of adequate indicator organisms. There is a 

need for optimization of the current methodology to enable recovery of enteric virus from 

sludge samples.

The samples evaluated in the survey represent a composite collection of raw 

samples prior to lime treatment and a composite collection of the corresponding limed 

biosolids following treatment. The exact nature of the association of viruses with 

particles in sludge is not entirely understood. There may be differences between the 

associations of virus particles to sludge particulates in raw sludge compared to lime 

stabilized sludge and the viruses once associated to limed sludge may be irreversibly 

bound. Such sludge bound viruses when applied to land represent a potential threat to 

public health. Without being able to efficiently extract the virus particles from sludge 

material it is difficult to successfully evaluate treatment technologies. This is why it is so 

important to have information about virus survivability in treated biosolids intended for 

land application.

Enteric viruses do not behave the same as other pathogens such as bacteria and 

helminth in soil matrices. Viruses are too small to be retained through size exclusion 

alone and are either removed or retained by the soil through electrostatic adsorption. 

Viruses will bind to the soil based on charges in the viral capsid and the soil properties. 

The characteristics of the soil will affect viral binding such as the soil type, organic load, 

moisture content and rainfall. The cation binding of a virus to a soil particle is reduced
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during rain events. This is because part of the binding process of a virus to a soil particle 

is dependent on the large multivalent cations which are diluted during a rain event 

resulting in de-adsorption of the virus from the particle and ultimate movement of the 

virus through the soil. It is known that viruses can potentially survive for weeks, months 

or even years under the appropriate moist, cool conditions. This survival rate combined 

with the likelihood of transport through the soil presents a threat to underground aquifers, 

particularly in New England, where the groundwater table may be only a few feet from 

the surface of the soil in some areas, and where the soil composition may be brittle and 

contain cracks making it easy for virus to move into underground aquifers.

As a result of method inefficiencies, routine monitoring of enteric virus from 

biosolids samples generally fails to recover enteric virus, demonstrating that the material 

is in compliance with regulations and is therefore suitable for land application. Virus that 

is spiked into sludge and biosolids matrices is easily recovered from the matrix using the 

currently approved method for recovery of viruses from such matrices. However, it is 

difficult to mimic in the laboratory the exact association of virus particles to soil 

particulates and as a result spiking is not the ideal means of evaluating the persistence of 

virus during treatment process. This is illustrated by the feet that enteric virus was not 

recovered in any of the raw sludge samples surveyed. This is most likely because of the 

inefficiency of the beef extract elution method to extract the particle associated viruses 

from the solid component rather than the possibility of all the raw sludge samples 

evaluated being negative for virus. Historically, a variety of methods have been evaluated 

to develop elution and concentration techniques for the separation of viruses from sludge 

particulates and the reduction of sample size to a manageable volume. The elution
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method most often used is to chemically separate viruses horn sludge particulates 

through mixing and subsequent centrifugation. Such methods have incorporated solvents 

such as Freon, phenol and chloroform (Brashear et aL, 1982) (Hurst et al., 1991) 

(Monpoeho et aL, 2001). Currently, human enteroviruses are most commonly eluted from 

matrices and solids using aqueous solutions of beef extract. The beef extract elution 

technique must be optimized and in the absence of such technology an alternate indicator 

identified.

Currently employed methods for viral recovery from sludge were developed by 

conducting seeding and recovery experiments with sludges. Therefore, indigenous virus 

was not used in development of methodology for viral recovery. Seeded viruses and 

indigenous viruses clearly have different associations with sludge particulates as 

indigenous viruses are embedded in sludge particulates whereas the seeded viruses are 

merely surface-associated. In these instances, viral recoveries from seeded samples may 

not have significant relevance when compared to recoveries seen with indigenous viruses. 

Poor recovery efficiency coupled with the feet that different cell lines used to evaluate for 

viral infectivity will have different plaquing efficiencies with varying virus type’s results 

in the creation of a methodology that is cost-limiting, time-consuming, inefficient and 

unreliable for detection of viral pathogens in sludge and bio solids matrices.

Until such time comes where adequate methodology exists for the rapid recovery 

and detection of human enteric virus in biosolids samples, a multifaceted approach 

should be taken, one in which there are multiple barriers to ensure protection of public 

health. The incorporation of a rapid, inexpensive and reliable bacteriophage test as an 

additional monitoring tool to ensure treatment effectiveness represents a novel approach
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to regulating the management of bio solids intended for land application. This study 

demonstrates that bacteriophages are easily recovered from sludge matrices with no 

interfering problems associated with toxicity to the host bacteria used for the detection of 

bacteriophages. This is an advantage over the use of cell culture techniques required for 

the detection of infectious human viruses that are extremely sensitive to toxins found in 

sludge.

Indigenous male specific bacteriophage was easily recovered in high numbers 

from the raw sewage sludge samples evaluated where enteric virus was not, even though 

the two viruses are similar in size and composition. The reason fer this difference in 

recovery efficiency is most likely due to variations in charge and the likely higher 

concentration of bacteriophage in the environment. Even though only a small percentage 

of individuals carry male specific phages, phages are present in high concentrations in 

wastewater and sludge possibly because they are capable of replicating in a biosolids 

matrix where a bacterial host fer infection is present in high concentrations (LeClerc et 

al., 2000) (Havelaar et al., 1990). This is not the case for enteric viruses, which are 

specific to humans (poliovirus type 1 and rotavirus Wa for example) and are only 

released from an infected host. Such viruses are not capable of replicating within the 

biosolids matrix where there is no host present.

The binding efficiencies of virus to soil and sludge particulates are related to the 

charges of each. Soil and sludge particles, particularly in New England, are acidic and 

therefore carry a positive charge. Poliovirus has an isoelectric point of 7.0 and therefore 

will be negatively charged when the pH of the environment is below 7.0. When the virus 

is negatively charged it will tightly bind to the positively charged soil or sludge particles.
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This interaction has been demonstrated by Taylor et aL who revealed that poliovirus was 

not adsorbed in soil samples with a pH above 9.0. In addition, Taylor et al concluded that 

when both the virus and the substrate are highly negatively charged, repulsive 

electrostatic effects will inhibit adsorption (Taylor et a l, 1981). The isoelectric point of 

MS-2 is 5.24; therefore, MS-2 will carry a negative charge below a pH of 5.24. This 

means that MS-2 will tightly bind in acidic soils below a pH of 5.24.

In addition to varying concentrations of phage and enteric viruses in sludge, the 

charge differences of phage and enteric virus may explain the higher recoveries from raw 

sludges. The MS-2, which may not be as tightly bound to soil particles, will be more 

easily eluted when compared to enteric virus, which will carry a negative charge and 

therefore bind tightly to positively charged soil particles. The individual and 

characteristic isoelectric point of viruses not only affects the binding to soil and sludge 

particulates but also their sensitivity to disinfection. Treatment by lime may affect the 

ability o f virus to adsorb to cells or engage in the normal replication process by 

adsorbing, penetrating and uncoating. Treatment may potentially causes alterations in the 

antigenic and other structural features of virus as well. These are some of the reasons why 

the rotavirus and adenoviruses evaluated during lime stabilization treatment may have be 

more susceptible to inactivation by lime stabilization than phage.

In addition to surveying for enteric virus and bacteriophage in this study, viable 

helminth ova were evaluated using current EPA approved methodology for the recovery 

of viable helminth ova from sewage sludge and biosolids. The results show that in all raw 

and lime stabilized sludge samples evaluated, viable helminth ova were not detected, and 

results were reported as less than one viable helminth ova per four grams total solids. As
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seen with enteric virus survey results, this indicates compliance with the established EPA 

Part 503 Rule regulation for viable helminth ova limits for land application. Therefore, all 

raw and lime stabilized sludge samples evaluated according to the established EPA 

protocol did not exceed the viable helminth ova limits for land applicatkm. This may be 

due to a combination of factors including the inefficiency of currently employed 

methodology for recovery of viable helminth ova from the sludges in addition to 

variations in the regional distribution of viable helminth ova.

In a recent survey of thirty-eight samples analyzed for the presence of viable 

helminth ova, it was determined that of all samples evaluated, 15.8% were positive for 

viable helminth ova, 23.7% were positive for Cryptosporidium sp. and 15.8% were 

positive for Giardia sp. It was concluded that there was no correlation between the 

presence of viable helminth ova (Ascaris sp.) and the presence of Cryptosporidium 

oocysts and Giardia cysts, and that percent recoveries varied with different 

methodologies, demonstrating the need for more adequate indicator organisms and more 

efficient recovery methods (Bean and Brabants, 2001). The results of the previous study 

were of particular importance not only in providing data documenting the potential for 

use of protozoan parasites as an indicator but also in light of studies that have shown the 

potential for leaching of oocysts and cysts through the soil profile into groundwater 

(Mawdsley et a l, 1996). It is generally assumed that larger parasites will be retained in 

the soil column through size exclusion; however, Mawdsley et al. demonstrated that 

purified oocysts will leach through the soil profile with the extent of movement being 

affected by soil type. This study also concluded that organic matter and clay will play a 

major role in the adsorption of microbes into soil, due to their large surface area and
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negative charge and studies have demonstrated increased adsorption in soils with an 

increase in organic matter or clay content (Mawdsley et al., 1996).

The current study demonstrates that in all of the raw samples evaluated, viable 

helminth ova were not recovered. This is most likely a function of regional occurrence 

combined with method inefficiency. The sites evaluated in the current survey differed 

from the sites evaluated in the previous survey; therefore, regional distribution may have 

been a factor in obtaining positive viable helminth ova samples. In addition, with 

methods of recovery being only 55% efficient for recovery of viable helminth ova (Bean 

and Brabants, 2000), it is likely that even if viable helminth ova were present in the 

samples they were lost in the recovery process. This is especially disconcerting 

considering the cost and labor-intensity of the methodology for processing viable 

helminth ova samples. The identification of an alternative indicator, such as the use of 

protozoan parasites, or the development and optimization of new and improved 

methodology for recovery of parasites from sewage sludge and biosolids is absolutely 

necessary. The current methodology and indicator organisms are not adequately 

protective of public health as is evidenced in the negative results for all samples 

evaluated for viable helminth ova and enteric virus.

The data obtained from the present survey demonstrate that male-specific 

bacteriophages are rapidly and easily recovered in relatively high concentrations in raw 

sludge samples where enteric virus and viable helminth ova were not recovered. 

Evaluating the efficacy of bio solids management strategies depends on the availability of 

accurate methods to determine concentrations of pathogens of concern in sludge and 

biosolids. Without the availability of efficient methodology to recover enteric virus from
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sewage sludge samples, an alternative indicator must be chosen. The survey of 

bacteriophage as an indicator for the treatment inactivation of enteric virus represents a 

cost-effective alternative to monitoring for enteric virus directly in biosolids intended for 

land application. Survey of bacteriophage can be easily incorporated into the testing 

requirements for Class A and Class B biosolids certification. Samples collected before 

and after treatment are routinely tested for fecal coliforms in order to meet Class B 

requirements and focal coliforms and Salmonella in order to satisfy the Class A 

requirement. The addition of bacteriophage to the testing requirements will add 

confidence in the reported results that treatment has been effective. It is likely that enteric 

virus is present in raw samples but is not easily recovered, but this research has 

demonstrated that not only is bacteriophage present and easily recovered in raw samples, 

it is also less susceptible to inactivation by lime stabilization than the viruses evaluated. 

The use of male specific bacteriophage as an indicator of enteric virus reduction during 

treatment processes should be implemented because methods are currently available and 

are rapid, generating results in less than 24 hours, and a large sample size is not required. 

Survey of raw sludge samples is likely to result in bacteriophage recovery, as 

demonstrated by the survey results contained within.

A monitoring regime that incorporates testing for male-specific bacteriophage 

would involve sampling enough solids to provide at least two grams (total solids) of 

composite material for bacteriophage assay prior to and following treatment (Figure 4). 

To prepare a sludge sample for analysis, a utility would generate a composite 

representative sample by collecting 5-10 samples prior to treatment and 5-10 samples 

following treatment. Two grams (or sufficient solids material to provide one gram total
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solids, as calculated by the total solids equation) of the composite raw and lime stabilized 

sample, as was tested in the survey conducted, can be easily obtained from a utility that 

will normally be collecting samples for pathogen analysis and subsequently evaluated for 

presence of bacteriophage. Samples would be collected and shipped overnight to the 

testing laboratory on ice. Once received, two grams of sample would be resuspended in 

phosphate buffered saline supplemented with magnesium chloride, vortexed and 

centrifuged according to the bacteriophage recovery assay described previously. Sample 

supemate would be assayed using a double agar overlay technique as previously 

described. Results obtained 12-16. hours after assay would be reported as the total number 

of PFU/g total solids analyzed, similar to the manner in which enteric virus results are 

currently reported. Treated samples should contain no more than one plaque per gram 

total solids sample analyzed and results should be reported as less than one PFU/g total 

solids or below detectable levels, equivalent to at least a four log reduction, using the 

double agar overlay for assay of male specific bacteriophage. Such a result would 

indicate compliance and treatment effectiveness for inactivation of male specific 

bacteriophage and consequently enteric virus, and approval for land application of the 

treated material. Less than one PFU/g total solids has been chosen as a limit based on the 

results of these liming studies which revealed that following 24 hours of liming at a pH of 

12 for 2 hours and a pH of 11.5 for 24 hours, male-specific bacteriophage was reduced to 

below detectable levels, or <1 PFU/mL; therefore, if the lime stabilization process is 

performed properly such an inactivation of male specific bacteriophage should be 

expected. A positive sample, generating a result of greater than one PFU/g total solids 

would require a repeat sampling. Upon re-sampling if a negative result of less than one
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PFU/g total solids is generated than the plant would be in compliance and the normal 

monthly sampling monitoring regime should be followed. In the event that the sample is 

greater than one PFU/g total solids, this indicates a process control problem and would 

require corrective action with regard to the lime stabilization treatment process.

Following corrective action, compliance and treatment efficiency must be demonstrated 

by calculating the geometric mean of atleast seven separate samples. The geometric mean 

must be less than one PFU/g total solids. This standard is based on the fecal coliform 

monitoring requirement that currently exists for pathogen screening; therefore, 

implementation of an additional assay would not require additional sampling. Once 

process efficiency is established through the addition of lime to the sewage sludge to 

raise the pH to 12 for atleast 2 hours of contact and maintain the pH at 11.5 for 22 hours 

of contact, monitoring should proceed monthly to ensure process efficiency and 

compliance.

For Class B requirements, materials containing more than 2 million MPN per 

gram of total solids are not acceptable. For Class A requirements, materials containing 

more than 1000 MPN fecal coliforms per gram total solids or 3 MPN Salmonella per four 

grams of total solids are not acceptable as Type A materials. This research has 

demonstrated the persistence of MS-2 during lime stabilization after which time fecal 

coliforms are inactivated.

The data presented here in indicate that naturally occurring male-specific 

bacteriophages are a useful tool for evaluating the effect of lime stabilization of sludges 

on rotavirus Wa and adenovirus type 5, in the absence of adequate methodology to 

recover such organisms. Future studies should evaluate the inactivation of male specific
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bacteriophage using different treatment strategies in addition to evaluating the resistance 

of different types of bacteriophage to treatment in an effort to identify the optimal 

bacteriophage to be used as an indicator for enteric virus. Ultimately, research to assess 

the rates of pathogen survival in soil or on crops following the land application of 

biosolids must be conducted.
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Bacteriophage Sample Monitoring Plan

Compliance

Land Application
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Figure 4: Bacteriophage Sample Monitoring Plan
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APPENDIX A

BUFFERS AND REAGENTS

Aluminum Chloride Solution (A1CL

Dissolve 12.07 g of aluminum chloride in 500 ml of water and dilute to 1000 ml. 
Autoclave solution at 121 °C, 15 psi for 15 minutes. Store at room temperature.

Buffered Beef Extract Solution

Dissolve 10 g of beef extract powder, 1.34 g of Disodium hydrogen phosphate and 0.12 g 
of citric acid in 100 ml of water by stirring on a magnetic stirrer. Autoclave at 121°C, 15 
psi for 15 minutes. Store at 4°C.

Disodium Hydrogen Phosphate Solution (N»iHPOi«7HiO)

Dissolve 4 g o f disodium hydrogen phosphate in 100 ml of water and autoclave at 121°C 
for 15 minutes. Store at room temperature.

Magnesium Chloride

Dissolve 1 g magnesium chloride in 99 mL distilled water. Filter sterilize and store at 
room temperature.

Phosphate Buffered Saline (IX PBS)

Dissolve 9.785 g of phosphate buffered saline powder (Sigma) into 1 Liter with RO 
water. pH to 7.0 and autoclave for 15 minutes at 121'C, 15 psi. Store at 4'C.

Sodium Hydroxide Solution

Dissolve 4.0 g of dry sodium hydroxide (NaOH) in water and dilute to 100 mL.
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Streptomvcin/Ampicillin Antibiotic Solution

Dissolve 0.15 g streptomycin and 0.15 g ampicillin in 100 mL distilled water. Filter 
sterilize and store at 4°C.
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APPENDIX B

MEDIA

IX Agar Overlay

Dissolve 15 g tryptic soy broth, 2.5 g sodium chloride, 5 g yeast extract, 0.075 g calcium 
chloride, and 7.5 g bacto agar in 1 liter of distilled water. Boil to facilitate dissolution. 
Dispense 5 mL per test tube. Cap and autoclave tubes at 125°C, 15 psi for 20 minutes. 
Store at room temperature. To melt when needed, alutoclave at 1210,15 psi for 2 
minutes.

Flake Agar (2%>

Dissolve 2 g of flake agar (Difco) in 98 mL RO water. Autoclave for 15 minutes at 
121 °C, 15 psi and store at 56°C immediately prior to use.

Medium 199 (2X1

1.96 g Medium 199 (Sigma)
0.13 gNaHC03 (Sigma)
0.95 g hepes (Sigma)
0.06 g L-glutamine (Sigma)
2 mL antibiotic/antimycotic (Gibco)1.2 mL neutral red solution (Sigma) 
lmLl%MgCi2
Dissolve components in 100 mL of RO water. Filter sterilize and store at 4°C.

Minimal Essential Media/L-15 Growth Medium

4.7 g Eagles Minimal Essential Medium (Sigma)
7.4 g Leibowitz (L-l 5) Medium (Sigma)
4.22 g hepes (Sigma)
0.292 g L-glutamine (Sigma)
0.75 sodium bicarbonate (Sigma)
10 mL Non-essential amino acids (Gibco)
Dissolve components completely in 1 Liter of RO water and pH solution to 7.2-7.4. Filter 
sterilize and store at 4°C.
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Tryptic Sov Broth

Dissolve 40 g tiyptic soy hroth in 1 liter of distilled water, stir to dissolve. Autoclave at 
121C, 15 psi for 15 minutes and store at room temperature.
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