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ABSTRACT

A COMPARISON OF FLORISTIC DIVERSITY IN OLD-GROWTH VERSUS MID- 

SUCCESSIONAL SECONDARY-GROWTH HARDWOOD FORESTS OF THE 

WHITE MOUNTAIN NATIONAL FOREST, NEW HAMPSHIRE, USA

by

Leslie M. Teeling-Adams 

University o f New Hampshire, May, 2003

There is currently debate over whether managed forests will ever regain the species 

diversity of old-growth stands. While succession and response to disturbance of tree species has 

been extensively researched, little similar effort has focused on understory herbaceous 

communities. This study conducted large-scale, comprehensive botanical inventories of three 

old-growth and three mid-successional (80-100 year old) secondary forest stands in New 

Hampshire’s White Mountain National Forest (WMNF). Cluster analysis and TWINSPAN 

grouped the secondary sites within two steps. Old-growth floras were significantly richer in total, 

total herbaceous, woodland herbaceous, and unique herbaceous species. Abundance distributions 

o f the two treatment groups were significantly different according to Chi2 results: more woodland 

herbaceous species of rare, infrequent, or dominant abundance rank occurred in old-growth sites. 

Floristic similarities were analyzed using Sorensen’s Index of Similarity. Tree community data 

did not reflect differences in floristic diversity, suggesting that reliance on tree data alone to infer 

system recovery from disturbance would be misleading.

Key words: diversity, forest ecosystem, flora, old-growth, recovery, succession, clearcutting
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INTRODUCTION

Old-growth forest ecosystems in the northeastern United States have been 

substantially altered by human forces. Fragmentation, pollution, silvicultural activities, 

changes in hydrology and microtopography, and the suppression or elimination of fires 

and large carnivores exert new pressures on forests that had been largely undisturbed, 

perhaps since the end of the Pleistocene (Braun 1950). Although the variability of “old- 

growth” definitions and the scattered distribution of these areas across public and private 

lands have resulted in difficulty estimating the number of acres remaining nationally 

(Heinz Report 2002), the scientific value of these areas is undisputed. Forest ecosystems 

untouched by human development and silviculture have the potential to function as 

genetic source pools, and may be critical to the enrichment of recovering systems 

(Matlack 1994). They represent what Aldo Leopold (1972, pp. 145 -146) referred to as 

“the base datum o f  normality.”

Relatively free from human influence, pre-settlement mesophytic forests of the 

eastern U. S. and Canada experienced infrequent catastrophic disturbance and likely 

constituted one of North America’s least disturbance-prone forest types (Davis 1996). 

Even today, fire and hurricane damage tend to have greater impact near the edges of 

eastern deciduous forests, and the effects of such events are often small in scale. Much 

more common to disturbance regimes in these systems are individual or small-scale 

treefalls, resulting in canopy gaps (Bormann and Likens 1979; Davis 1996; Kimball et al. 

1995; Kimmins 1997; Tyrrell and Crow 1994; Runkle 1982). Given the natural pattern of

I
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stability in these forest systems, researchers have expressed concern over the ability of 

old-growth temperate forest ecosystems to recover from the intense disturbance of many 

current tree harvesting methods (Goebel et al. 1999; Halpem and Spies 1995; Meier et al. 

1995; Roberts and Zhu 2002; Spies 1991; Teeling 1998; Teeling et al. 2001).

Scientific interest in the effects of species diversity on natural systems continues 

to intensify with reports of escalating species extinctions worldwide (Christensen et al. 

1996; Doak et al. 1998; Tilman and Downing 1994; Wilson 1992). While there is debate 

over the exact mechanisms, the basic hypothesis that diversity adds to the stability of 

ecosystems has fostered renewed interest in diversity theory in recent years (Doak et al. 

1998; Grime 1997; Hooper and Vitousek 1997; Naeem et al. 1995; Tilman and Downing 

1994; Tilman et al. 1997,1998). Conceptual models attempting to explain temporal and 

spatial patterns of species diversity in temperate forests abound; richness has been related 

to successional age, disturbance, competition, productivity, resource and habitat 

heterogeneity, nutrient dynamics, predation, positive interactions, population growth rates 

and life-history strategies (Bormann and Likens 1979; Connell 1978; Grime 1973,1979; 

Hacker and Gaines 1997; Halpem 1989; Halpem and Spies 1995; Huston 1979; 

MacArthur and Wilson 1963; Petratitis et al. 1989; Roberts and Gilliam 1995; 

Rosenzweig and Abramsky 1993; Tilman and Pacala 1993; Waide et al. 1999; Whittaker 

et al. 1973; Williams 1964). The number of theories alone attempting to predict species 

richness suggest that a complex pattern of interrelated factors likely govern diversity in 

biological systems, and ultimately, their interplay may be system-specific.

The maintenance of species diversity is an important directive of USDA Forest 

Service’s management policy (Christensen et al. 1996; Fay, pers. comm.; Roberts and

2
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Zhu 2002; Wade pers. comm.). In temperate hardwood forests, herbaceous species 

comprise the predominant component of the flora, often representing upwards of 70% of 

species (Bormann and Likens 1979; Leak 1987; Siccama et al. 1970; Teeling 1998; 

Teeling et al. 2001; Westveld et al. 1956). Diversity in this community therefore exerts 

critical influence on the system’s floristic diversity overall, yet the effects of today’s 

silvicultural practices on forest floor communities are still not well-understood (Goebel et 

al. 1999; Halpem and Spies 1995; Johnson et al.1993; Meier et al. 1995; Roberts and Zhu 

2002; Teeling et al. 2001). The preponderance of ecological data from New England 

forests has historically focused on tree species alone, with understory species examined 

only in terms of biomass or percent cover. While the number of understory studies has 

increased over the last few decades, focus has typically been limited to only a few 

dominant species or categories o f species. It is only very recently that studies attempting 

to address full floras, including herbaceous species, have begun to appear in the literature. 

The result of this gap has been that while succession, diversity patterns and response to 

disturbance in the tree layer have been well-understood for some time, our understanding 

of similar processes in herbaceous communities remains largely theoretical (Halpem and 

Spies 1995; Johnson et al. 1993; Meier et al. 1995; Roberts and Zhu 2002). Hence, 

speculation continues in the scientific literature as to the long-term effects of silvicultural 

practices, but we as yet have few clear answers (Bratton 1976; Carbonneau 1986; Meier 

et al. 1995; Teeling 1998; Teeling et al. 2001; Whitney and Foster 1988).

On average, 770 ha of the White Mountain National Forest of New Hampshire (or 

about 0.5%) are projected for harvest annually. Clearly, intensive logging represents a 

catastrophic disturbance to any forest system and has the potential to drastically alter

. 3
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species composition directly through loss of the canopy, and indirectly by reverting the 

system to an earlier successional stage (Bormann and Likens 1979). Large-scale loss of 

the canopy increases solar radiation reaching the forest floor dramatically, which in turn 

elevates soil temperature and decreases soil moisture. The initial physical impacts of 

harvesting include the uprooting and trampling of understory vegetation by equipment, 

soil compaction, redistribution of the forest floor, disruption of the seed bank, changes in 

nutrient dynamics, rutting and erosion (Bormann et al. 1974; Bormann and Likens 1979; 

Mou et al. 1993; Pierce et al. 1993). Canopy removal initiates a period o f intense 

competition between forest floor species and shade-intolerant, or ruderal species (sensu 

Grime 1973), while the stand reinitiates itself. A period of “stem exclusion” follows 

(sensu Bormann and Likens 1979) as the canopy closes and self-thinning of overstory 

trees commences. Tree mortality during this stage often causes no gap in the canopy, or 

only small gaps that close rapidly, and species diversity in the understory declines sharply 

due to the reduction of penetrating solar radiation. As the overstory matures, a transition 

phase begins in which self-thinning continues, but gaps are larger and slower to close. It 

is during this stage that increased solar radiation penetrates the canopy to the forest floor, 

permitting understory re-establishment and, theoretically, allowing system diversity to 

increase to pre-cut levels (Bormann and Likens 1979).

Thus far, however, there has been little empirical evidence from studies of 

recovering secondary-growth forests in support of this classical recovery theory. Part of 

the problem has been the lack of floristic data from old-growth forests, our “base data of 

normality.” While a number of studies have indicated that diversity may remain lowered 

even 70 to 90 years after harvest (Clebsch and Busing 1989; Duffy and Meier 1992;

4
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Gilliam et al. 1995; Matlack 1994; Teeling et al.2001; Roberts and Zhu 2002), only two 

studies comparing floristic diversity in old-growth and mid-successional secondary- 

growth forests of the eastern U. S. appeared prior to this study. Duffy and Meier (1992) 

compared the diversity of nine old-growth and nine environmentally similar secondary 

forests (45 to 87 years old) of the southern Appalachian and Cumberland Mountains. 

Their study found secondary forest floras both significantly less rich and less abundant 

(in terms of species population sizes), with no evident trend toward recovery of either 

variable. While this study has been criticized by some (Duffy 1993; Elliott et al. 1993; 

Johnson et al. 1993), Goebel et al. (1999) reported similar findings in their study of two 

old-growth and two 70-79 year old, previously cut mixed Quercus forests of southeastern 

Ohio. Using canonical correspondence analysis (CCA), their study found old-growth 

floras more abundant and significantly richer than secondary floras in early spring, late 

spring and mid-summer herbaceous flora. Thickness and pH of the soil A horizon and 

stand age demonstrated the highest influence on species diversity.

The study presented here sought to further investigate floristic differences 

between old-growth and secondary-growth forest floras and constitutes the first 

comparative study of its kind in New England. While Whitney and Foster (1988) 

compared understory and overstory species of old-growth and secondary old-field 

hardwood forests of Massachusetts and southern New Hampshire, they did not examine 

diversity. Crow et al. (1994) and Royte et al. (1996) performed detailed botanical 

reconnaissance o f two old-growth preserves (Mountain Pond Research Natural Area 

(RNA) and Nancy Brook RNA, respectively), but did not compare their findings with 

secondary systems. Carboneau and Allen’s (1995) botanical reconnaissance of the Bowi

5
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RNA did not collect adequate data for comparisons. Teeling et al. (2001) conducted 

complete botanical inventories of the experimental watersheds of the Hubbard Brook 

Experimental Forest, constituting close to 350 ha of mid-successional secondary or young 

tertiary forest, but did not compare these data to old-growth floras.

The method of the study presented here was also unique. Full botanical 

inventories were conducted of large, representative areas of the sites under examination 

rather than employing plot-based sampling techniques. Although exceedingly rare, fiill- 

inventory studies yield the most comprehensive data for the assessment of species 

diversity. Plot-based methods lend increased risk of missing rare species, which have 

been theorized to be among the better indicators of primary systems (Halpem and Spies 

1995; Meier et al.1995; Peterken and Game 1984; Roberts and Zhu 2002; Rooney and 

Dress 1997; Spies 1991; Whitney and Foster 1988). Studies employing plots also have 

the tendency to underestimate the abundance of species with contagious distributions, 

making them problematic in the study of old-growth forests where many species 

propagate clonally (Kimmins 1997; Mueller-Dumbois and Ellenberg 1974; Sobey and 

Barkhouse 1977; Whitford 1949). The intensive investment in field time required for full 

inventories yields comprehensive, fine-grained data best suited for diversity studies and 

long-term monitoring of floristic composition.

The objectives o f this study were to 1) conduct comprehensive botanical 

inventories, with abundance estimates, of 7 ha representative sections of three old-growth 

hardwood forest preserves in the White Mountain National Forest, thus providing 

baseline floristic data for their long-term monitoring, 2) determine floristic variation 

between these oid-growth sites and three 80-100 year old environmentally similar

6
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secondary forest sites with respect to total, tree, herbaceous, vernal, spring ephemeral, 

and woodland herbaceous species, 3) determine floristic variation between these old-and 

secondary-growth sites with respect to species associated with wet, moist and/or rich and 

dry and/or disturbed forest soils 4) determine the variation in species abundance patterns 

between old-growth and secondary sites with respect to total, tree, herbaceous, vernal, 

spring ephemeral, and woodland herbaceous populations, and 5) to theorize the basis for 

any observed differences between these two forest types.

Differences in the vernal herbaceous flora and spring ephemeral flora (a subset 

therein) were explored in response to questions specifically regarding these species that 

are still outstanding in the scientific literature (Duffy and Meier 1992; Goebel et al. 1999; 

Meier etal. 1995).

7
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SITE DESCRIPTIONS

Established in 1911, the White Mountain National Forest is composed of 

almost 800,000 hectares of New Hampshire and western Maine (Figure 1). Three sites in 

old-growth hardwood forest and three sites in mid-successional secondary-growth 

hardwood forest were inventoried for this study. The sites classified as old-growth forests 

have a history of use by earlier researchers (Bailey and Cogbill, submitted; Carbonneau 

1986; Cogbill, unpubl. data; Goodale 1999; Leverett 1966; Martin pers. comm.), and met 

the functional, structural and historical criteria specified by this study, as follows:

1. the presence of self-replacing, predominately shade-tolerant or late successional 

tree species in the canopy

2. a tree community with a diversity of age classes (that is, having a multi-layered 

canopy), including the presence of some trees near the end of their natural 

lifespan

3. large standing dead trees (snags) and large decaying logs commonly occurring 

throughout the stand

4. a history or evidence of a long, uninterrupted period of development, substantially 

free o f significant human or natural disturbance such as catastrophic logging, fire 

or hurricane damage

5. canopy gap-phase dynamics commonly occurring throughout the stand; a 

“patchiness” of both microtopography and canopy structure indicative of small- 

scale disturbances, such as the downing of individual large trees

8
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Figure 1. Locations of the six study sites in the White Mountain National Forest, NH.
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“Hardwood forest” was defined as having a combined presence of no more than 

10% coniferous species in the canopy. Typical northern hardwood forest composition in 

these sites was characterized by a dominant presence of Fagus grandifolia, Acer 

saccharum, and Betula alleghertiensis, with less abundant populations of A. 

pensylvanicum, A. rubrum, Picea rubens, Abies balsamea, and Tsuga canadensis. 

Understory vegetation was abundant and largely dominated by Viburnum alnifolium, with 

herbaceous species such as Erythronium americanum, Maianthemum canadense, 

Dryopteris intermedia, Aster acuminatus, and Uvularia sessilifolia commonplace on the 

forest floor.

Geographical Information System (GIS) data, provided by the Pemigewasset 

Forest Service Station in Laconia, NH, were used to identify two of the three 

environmentally similar secondary forest sites used as matches for old-growth sites. The 

four coverages used were the Forest Service’s Ecological Land Type (ELT) classification 

system, minimum stand age, minimum stand area, and land use history (provided by Dr. 

Christine Goodale of the Woods Hole Research Center in Woods Hole, MA; unpubl. 

data). The ELT classification system categorizes land based on vegetation type, soils and 

geomorphic processes; site climate, elevation, slope aspect and bedrock types are 

therefore inherent. The Forest Service’s GIS database was queried for sites within the 

White Mountain National Forest (WMNF) with 1.) ELTs corresponding to old-growth 

sites, the Bowl and Shingle Pond, 2.) a minimum stand age of 80 years, and 3.) a 

minimum stand area of 20 hectares. Results were then cross-referenced with the land use 

data to select sites which also had a history of heavy hardwood logging in the early 

1900s. Forest Service records were checked to insure potential sites were not impacted by

10
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the 1915 Paugus-Pasaconawway fire, and ground reconnaissance was used to further 

select the best secondary-growth matches for two of the three old-growth sites.

An environmentally similar secondary-growth site was chosen for the third old- 

growth site, Lafayette Brook, using separate sources of vegetation, soils, topographic and 

land use history data, as explained in the secondary-growth sites descriptions (page 19).

Old-Growth Sites. The Bowl Research Natural Area (RNA) is located in Campton, New 

Hampshire, in the Sandwich Range Wilderness Area of the WMNF. It encompasses 

approximately 206 ha of the western drainage area of the West Branch of the Wonalancet 

Brook and includes most of the eastern slope o f Mount Whiteface. Elevations range from 

620 to 1215 m. Mean monthly temperatures range from -10°C in January to 17.2°C in 

July, with the frost-free growing period averaging around 95 days (Carbonneau and Allen 

1995). Mean annual precipitation is approximately 145 cm, with 4.2 m mean annual 

snowfall. The Bowl has a long history as a valuable old-growth research site. As such, 

tree harvesting is prohibited, forest fires are suppressed and no hiking trails traverse the 

RNA, though it is accessible from several WMNF’s trails. Northern hardwood forest is 

present at lower elevations, while mountain spruce-fir forest predominates over most of 

the western portion of the RNA, rising toward the summit of Mt. Whiteface.

An 8.1 ha study site was delineated along the southern section of the brook in the 

hardwood forest at an elevation of approximately 620 to 670 m (Table 1; Figure 2). The 

site is east-facing in aspect and terrain was typically steep, with slopes anywhere from 0° 

to 35°. Soils in this region are classified only as “rough mountainous land” by the 

USDA’s Soil Survey, a designation broadly encompassing podzolic soils of the rough

11
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Table 1. Defining coordinates for the six study sites, expressed in degrees and minutes.

The Shingle Lafayette ; Bowl- j  Shingle Pond- I HBEF
j ; ! I

Bowl Pond Brook i match i  match W6

N43° 55.871 ;N44° 05.623 

W71° 23.193 W71° 04.249 *

i  I

N43° 55.914 | N44° 05.739 :

W71° 23.205 | W71° 03.345 j

! i
! [

N43° 55.972 ! N44° 05.741 !
i  I

W71° 23.212 W71° 04.234

N43° 56.038 N44° 05.700I

W71° 23.132 | W71° 03.016

N44° 10.809 ; N44° 0.738 ! N44° 0.813
i i

W71° 40.977 j W71° 15.623 ! W71° 14.617

N44° 10.773 |N44° 0.815
I

W71° 40.834 ! W71° 15.440

N44° 10.845 

W71° 40.927
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Figure 2. Study site within the Bowl Research Natural Area, Campton, NH.
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and stony land group (Latimer et al. 1939). However, research conducted by USDA 

Forest Service Geologist Scott Bailey at the Hubbard Brook Experimental Forest 

Research Station more finely characterizes the study site soils as Berkshire series sandy 

loams and Monadnock series loamy sands (unpubl. data). Soil depths reached 2 meters, 

although a densipan layer also was found in one location at a depth of approximately 29 

inches. This area encompassed many vernal drainage streams, two 

perennial streams and a series o f flat seeps characterized by a diverse flora.

The area surrounding Shingle Pond (SP), located in the WMNF of Intervale, New 

Hampshire, is presently considered a candidate RNA. Northern hardwood forest is 

present at lower elevations, while mountain spruce-fir forest predominates over most 

higher elevations. A 7.2 ha study site was delineated approximately 2 km southeast of the 

pond, along the Weeks Brook Trail (Figure 3). Elevations ranged from 225 to 265 m, 

with slopes from 0° to 15° in a southeasterly direction.

Soils in this region are classified as Monadnock series loamy to gravelly sand 

(Bailey, unpubl. data). Lyman soils likely predominate on rocky outcrops and shallow 

ledges, and Peru soils in drainage ways and wetter areas (USDA Soil Conservations 

Service and Forest Service 1977). A hiking trail forms a boundary along the area’s 

southern border, necessitating a setback of the site 10 meters to avoid floristic edge 

effects. While relatively flat in gross topography, the Shingle Pond study site 

encompassed many microhabitats (defined here as a physical and/or resource niche 

supporting a distinctive subset of the larger flora) by virtue of its complex system of 

perennial and vernal streams, wet seeps and extensive canopy gaps.

The Lafayette Brook Scenic Area (LB), located in the WMNF in Franconia, New
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Figure 3. Study site near Shingle Pond, Intervale, NH.
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Hampshire, is a 47 ha tract of land off the northwest slope of Mount Lafayette. The forest 

is a mix o f northern hardwood and mountain spruce-fir types. A 5.6 ha study site was 

delineated off the eastern side of Interstate 93, near the northern end of Franconia Notch 

State Park (Figure 4). Elevations ranged from 560 to 620 m, with slopes from 0° to 20° in 

a northeasterly direction. Meteorological records kept by the Cannon Mountain Valley 

Station reported a mean January temperature of -8.5° C, and a mean July temperature of 

17.8° C for the 1990s. Average precipitation in snowfall for that same period was 

reported as 3.02 m. A small parking lot along the area’s north-eastern border necessitated 

a site setback of 10 meters to avoid floristic edge effects.

Soils in this region are classified as Peru series sandy loams with a pan layer 

composed of compacted basal till (Bailey, unpubl. data). Many vernal and perennial 

drainage streams, animal trails, and wet seeps provided this site with a wealth of 

microhabitats. While most of the forest was northern hardwood type, one large area of 

moss-covered boulder field existed which was dominated by nearly pure coniferous 

forest. In this areas, little understory existed.

Secondary-Growth Sites. Two sites along the Kancamagus Highway (NH Route 112), 

in Albany, NH were chosen as good environmental matches for the Bowl and Shingle 

Pond old-growth study sites. According to 1911 historical records, both sites were 

categorized as “selectively to heavily cut” stands of northern hardwood and mixed 

spruce-fir forest prior to their procurement by the U. S. Forest Service in 1914. This 

stretch of the Kancamagus Highway was constructed along the path of two former 

logging railroads, as well as along the banks of the Swift River, and it is therefore likely
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Figure 4. Study site within Lafayette Brook Scenic Area, Franconia, NH.
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that the area was hardwood forest in the 1900s. Hardwoods were the preferred fuel to 

power steam engines, and railways were preferentially laid along stretches of deciduous 

forest. Those interested should see Belcher (1980) for a complete history.

The Bowl-match site (B-m) was a 7.18 ha tract of land at the base of Big Attitash 

Mountain, just south of the Kancamagus Highway. Elevation ranged from 320 to 380 m, 

with slopes from 10° to 35° in a north to north-westerly direction (Figure 5). Soils in this 

region are classified as Monadnock series loamy sands (Bailey, unpubl. data). Only one 

stream traversed this site. While slopes within this site varied, microtopography was 

observed to be particularly homogeneous in nature. Most of the forest was northern 

hardwood type, with some steeper portions of the site dominated by mixed hardwood- 

coniferous forest.

The Shingle Pond-match site (SP-m) was a 7.35 ha tract of land, also at the base 

of Big Attitash Mountain, just east of the Kancamagus Highway (Figure 6). Elevations 

ranged from 280 to 340 m, with slopes from 0° to 30° in an easterly direction. Soils in 

this region are classified as Berkshire series sandy loams and Monadnock series loamy 

sands (Bailey, unpubl. data). This site was largely flat and even in topography, except for 

a talus slope on the southwest border with slopes ranging up to 35°. Vegetation in this 

boulder-field area was almost exclusively Acer spicatum and A. pensylvanicum with little 

understory development. The site encompassed many vernal streams and a small 

perennial wet seep characterized by a diverse flora.

While B-m and SP-m were close in proximity, differences in canopy composition 

were judged to be significant enough during ground-proofing provide supportive 

evidence for their different ELT classifications and to justify their selection. The
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Figure 5. Bowi-match study site in Albany, NH.
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Figure 6. Shingle Pond-match study site in Albany, NH.
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hardwood portion of Watershed 6 (W6) of the Hubbard Brook Experimental Forest 

(HBEF) was selected as the environmental match for the Lafayette Brook Scenic Area 

(Figure 7). As the HBEF is not covered by Forest Service GIS data, this selection was 

made using HBEF vegetation, soils, topographic and land use history data. An 

international Biosphere Reserve, HBEF comprises a 3160 ha portion of the WMNF in 

Woodstock, New Hampshire, dedicated as a Long Term Ecological Reserve (LTER), and 

operated by the USDA Forest Service’s Northeastern Forest Experiment Station. Since 

the Hubbard

Brook Ecosystem Study was founded in 1963, ten small, well-defined 

experimental watersheds have been delineated in the northeastern section of the bowl­

shaped Hubbard Brook Valley. These experimental watersheds were inventoried in the 

late 1990s, employing the same methods used in this study (Teeling et al. 2001).

Prior to 1895, most of the Hubbard Brook Valley was mature, primary forest 

(Bormann et al., 1970; Likens and Bormann, 1995). Historical records indicate that 

intensive logging between the turn of the century and 1917 resulted in the majority of 

both hardwood and coniferous tree species being removed. There has been no evidence 

of logging after this time, nor any evidence of subsequent fires or serious damage as a 

result of the 1938 hurricane (Cogsbill, pers. comm.). At the time of this study, W6 was 

characterized as a relatively even-aged, secondary forest with some older trees present.

Its stand composition had been referred to as reasonably representative of climax and it 

was used most frequently used as a vegetation reference or control by HBEF researchers 

(For more on W6, see Bormann et al. 1970; Leak 1987; Siccama et al. 1970; Whittaker et 

al. 1974). Approximately 75.3% (9.9 ha) of W6’s 13.2 ha is hardwood forest, the rest
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Figure 7. Study site within Watershed 6 of the Hubbard Brook Experimental Forest,

Woodstock, NH.
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being mixed hardwood-spruce-fir or pure spruce-fir forest. A species list for the 

hardwood only portion of this watershed was available from Teeling (1998), as our study 

inventoried watersheds by forest type. Elevation in the hardwood region ranged from 549 

m to approximately 660 m, with slopes from 0° to 25° in a southeasterly direction. Soils 

in this region were classified by Siccama et al. (1970) as mainly Berkshire coarse to very 

stony fine sandy loams with a relatively impermeable bedrock at a depth of 0.5 to 3.0 m. 

This site was largely flat and even in topography, and encompassed only a few vernal 

streams.
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MATERIALS AND METHODS

Reconnaissance field surveys were used to inventory the flora of each study 

site. The last weeks before the growing season began (early May) were spent mapping 

microhabitats and dividing the sites into segments that could be comprehensively 

surveyed in a field day. Each o f these segments was then visited weekly from mid-May 

through early September and systematically walked, using compass azimuth at 10 to 20 

m intervals. Watershed 6 o f the HBEF was surveyed during the field seasons of 1995 and 

1996. The study sites at the Bowl RNA, Shingle Pond and the Lafayette Brook Scenic 

Area were surveyed during the 1999,2000, and 2001 field seasons, respectively 

(variations in climatic conditions during the time period field data was collected were not 

judged to be significantly influential on the flora). The Albany secondary forest sites 

were surveyed during the 2002 field season. Species lists were compiled and voucher 

specimens were collected for the old-growth sites, unless to do so would have threatened 

the existing population. Collections were deposited in the Hodgdon Herbarium (NHA) at 

the University of New Hampshire. No specimens were collected from W6 due to a HBEF 

minimal-disturbance policy for this watershed, and collections were taken from the 

Albany sites only in the case of difficult or potentially controversial identifications.

Estimates of species abundance within each segment of a study site were 

made based upon the rank abundance approach suggested by Palmer et al. (1995; Table 

2). This system was used to rank the frequency of occurrence of individuals of a species 

in relation to the total flora, and was the same method used by Teeling et al. (2001). A
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Table 2. Frequency of occurrence scale modified from Palmer et al. (1995). Species 

constituting approximately 20% or more of all individuals present in its community type 

(i.e., tree, shrub or herbaceous) were defined as “dominant” species. Ramets of clonal 

species were defined as “individuals.”

Rank Category Qualitative Description

5 Abundant Dominant or codominant in one or more common habitats.

4 Frequent

3 Occasional 

2  Infrequent

1 Rare

0 Absent

Easily seen or found in one or more common habitats, but not 

dominant in any.

Widely scattered, but not difficult to find.

Difficult to find, few individuals or colonies, but found in 

several locations.

Very difficult to find and limited to one or very few locations 

or uncommon habitats.

Not found, but found in a previous survey from the same or 

similar sites, or was otherwise suspected to occur.
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“dominant” species was defined as one constituting approximately 20% or more of the 

individuals present. Due to the prevalence of clonal species in this study, ramets were 

regarded as “individuals.” In a highly diverse area it was therefore possible to have no 

species rate in the “abundant” category (5), but rather, several rated only as “frequent” 

(4). At the end of the field season, data from all segments of the study site were 

combined. The proportional area a segment represented was calculated and estimates of 

species abundance were averaged according to that proportion, yielding an estimate for 

each study site in its entirety. Teeling-Adams conducted the field work for all six sites, 

minimizing variations in abundance estimates.

Data were analyzed both by individual study site and by forest type (old- 

growth vs. secondary-growth). Resultant floras were examined in their totality, as well as 

compositionally by tree, shrub, and herbaceous communities. The taxonomic keys of 

Gleason and Cronquist (1991) and Voss (1985,1996) make note of species with known 

soil and habitat associations. Species in this study were classified as reliant on 1) wet 

soils, 2) dry and/or disturbed soils, and 3) moist and/or rich soils, as denoted in the above 

two manuals. Species that were tolerant of a wide range of conditions, or for which no 

information was expressly given, were left without designation. Taxa which were not 

identified to species were also left without designation. The herbaceous community was 

further divided into “woodland,” nonwoodland and vernal species lists. Spring 

ephemeral species, a subset of the vernal herbaceous flora, were also examined for some 

analyses.

The definition of “woodland species” used here was adapted from a Peterken 

and Game (1984) analysis, which partitioned “shade-casters, shade-bearers, and wood-
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margin species” (p. 159) into a group seen as more representative of undisturbed forests. 

For this study, species of forested wetland areas (seeps, streams) were included in the 

woodland species list. Vernal species were defined as species flowering by early June 

(tho not necessarily senescing); spring ephemeral species were defined as per Rogers 

(1982) as species with senescence of photosynthetic shoots by early June. Unique 

species, defined as species occurring only in one watershed and/or one forest type, were 

also examined.

The study sites were hierarchically classified by species importance values, using 

both divisive and agglomerative methods, to investigate differences in species richness 

coupled with species abundance. Two-way indicator species analysis (TWINSPAN) was 

used to numerically classify the sites (Hill et al. 1975; Kent and Coker 1992). The total 

flora and various subsets therein and were analyzed separately. Ward’s minimum 

variance clustering was used to corroborate TWINSPAN results (Pielou 1984). Both 

analyses were conducted using PC-ORD software, version 3.06 (MjM Software Design).

Sorensen’s Index of Similarity, expressed as a proportion, was calculated for 

the study sites’ total, tree, shrub, herbaceous, and vernal herbaceous flora, by study site. 

This index measures the number of coinciding species occurrences against the number of 

theoretically possible co-occurrences (Mueller-Dombois and Ellenberg 1974). The index 

is described by,

I _  2c

3 5+b)

where a is the number of species in area A, b is the number of species in area B, and c is 

the number of species in common to both areas A and B.
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A randomized complete block design analysis of variance (RCB ANOVA) 

was used to compare species richness of the old-growth study sites with that of their 

secondary-growth matches (Mueller-Dumbois and Ellenberg 1974). Seven subsets of 

species richness were also tested to examine possible associations: tree species, total 

herbaceous species, woodland herbaceous and vernal herbaceous species, species reliant 

on wet soils, dry and/or disturbed soils, and moist and/or rich soils.

Species abundance distributions were compared for old- versus secondary- 

growth forest types, as well as by individual study site. These comparisons were viewed 

as a way of comparing the general establishment and vigor of species populations in the 

sites and between the two forest types. Differences in abundance class distributions of 

total, tree, herbaceous, woodland herbaceous, and vernal herbaceous populations were 

tested for significance using Chi-square test for independence.
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RESULTS

One hundred forty-seven species in 55 families were encountered in the combined 45.7 

ha o f the six sites (Appendix A). Herbaceous species composed the majority of the flora at all 

sites (Figure 8). Within the herbaceous flora, 91.2% of the total list was classified as woodland 

species, 26.2% as vernal species, and 9.8% as nonwoodland species. Only one non-native species 

(Taraxacum officinale) was encountered. One hundred thirty-two species were found in the old- 

growth sites and 92 species were found in the secondary forest sites. Of those species occurring 

in the old-growth sites, 55 species (53.9% of the old-growth flora) were unique to only that forest 

type, while 17 species (27.9% of the secondary site flora) were unique to the secondary sites. 

Twenty-eight species (19% of the total flora) were common to all sites. In all cases, old-growth 

study sites were richer in species associated with wet soils and species associated with moist 

and/or rich soils (Figure 9). No clear trend was apparent for species associated with dry soils.

Numerical classification of the study sites using TWINSPAN and abundance 

data of all species present separated the secondary-growth sites from the old-growth sites 

in two divisions (Table 3; Figure 10). The first division separated the three secondary- 

growth sites and LB from the Bowl and SP sites. The second division removed LB from 

the secondary-growth grouping. Numerical classification of the study sites using 

abundance values of species associated with moist and/or rich soils separated the 

secondary-growth sites from the old-growth sites in three divisions. In the classification 

analyses using total herbaceous species, woodland herbaceous species and species 

associated with wet soils, TWINSPAN grouped the study sites in a somewhat similar
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Figure 8. Total, herbaceous, tree, and shrub richness by study site. Old-growth 

sites were the Bowl, Shingle Pond and Lafayette Brook; secondary-growth sites 

were Bowl-match, Shingle Pond-match and HBEF W6.
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Figure 9. Species richness by study site of species associated with moist and/or rich 

soils, wet soils, and dry and/or disturbed soils. Old-growth sites were the Bowl, Shingle 

Pond and Lafayette Brook; secondary-growth sites were Bowl-match, Shingle Pond- 

match and HBEF W6.
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Table 3. Abbreviated species abundance matrix adapted from TWINSPAN two-way 

ordered table for the total flora, based on ranked abundance values of 147 species (see 

Appendix 2 for unabridged table). Order of the six samples (sites) is Lafayette Brook 

(LB), Bowl-match (B-m), Shingle Pond-match (SP-m), HBEF W6 (W6), The Bowl, 

Shingle Pond (SP). Results of the first two divisions are shown below. Old-growth 

sites were the Bowl, Shingle Pond and Lafayette Brook; secondary-growth sites 

were Bowl-match, Shingle Pond-match and HBEF W6.

LB B-m SP-m W6 Bowl SP

Carex debilis 4 - - - - -

Tiarella cordifolia 5 - - - - -

Dryopteris carthusiana - - 3 2 - -

Amelanchier laevis - 4 4 - - -

Lycopodium clavatum - 4 - - - -

Pteridium aquilinum - 4 4 - - -

Solidago rugosa ssp. rugosa - 3 3 - - -

Claytonia caroliniana 4 - - - 2 -

Polystichum acrostichoides 3 - - - 2 -

Ribes lacustre 3 - - - 3 -

Carex dejlexa 4 - - - - 3

Carex scabrata 3 - - - 3 3

Dryopteris campyloptera 4 - - - 5 2
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Thalictrum pubescens 2 - - - 4 -

Solidago macrophylla 2 - - - 3 4

Actaea pachypoda 3 4

Actaea rubra - - - - - 5

Cardamine pensylvanica 3 2

Chelone glabra 4 3

Epilobium glartdulosum 3 3

Eupatorium rugosum . . .  5

Euthamia graminifolia 4 2

Galium triflorum 4

Glyceria melicaria - - - - 4

Impatiens capensis . . . .  4 .

Lycopus uniflorus . . . . .  4

First division: [LB B-m SP-m W6] [Bowl SP]

0 0 0 0 1 1

Second division: LB [B-m SP-m W6]

0 1 1 1
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Figure 10. Dendrograms of TWINSPAN classification of study sites, using species 

abundance values o f a) the total flora and b) species associated with moist and/or rich 

soils conditions. Old-growth sites were the Bowl, Shingle Pond and Lafayette Brook; 

secondary-growth sites were Bowl-match, Shingle Pond-match and HBEF W6.
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Figure 11. Dendrograms of TWINSPAN classification of study sites using species 

abundance values of a) the total herbaceous flora and b) the woodland herbaceous flora. 

Old-growth sites were the Bowl, Shingle Pond and Lafayette Brook; secondary-growth 

sites were Bowl-match, Shingle Pond-match and HBEF W6.
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manner, the exception being in the placement of LB. In all three analyses, this old-growth 

site remained closely nested within the secondary-growth group (Figure 11). Numerical 

classification of vernal herbs, spring ephemeral herbs, species associated with wet soils 

and species associated with dry and/or disturbed soils yielded no discemable patterns 

with respect to the two forest types.

Tree species were identified by TWINSPAN as occurring in all old-growth 

sites, but in no secondary-growth sites (Table 4). Ten species occurred in two of three 

old-growth study sites but no secondary-growth sites and 42 species occurred only in one 

old-growth study site. There were no species which occurred in all three secondary- 

growth sites but no old-growth sites. However, four species occurred in two of three 

secondary-growth sites but no old-growth sites, and 13 species occurred only in one 

secondary-growth study site (Table 5). Herbaceous species accounted for 89.1% of the 

species unique to old-growth sites, but only 52.9% of the species unique to secondary- 

growth sites.

Mixed results were obtained clustering sites with Ward’s minimum variance method, 

using the total flora. Three agglomerations were necessary to group the three secondary-growth 

sites and LB old-growth site remained nested within this cluster (Figure 12). Stronger results 

were seen, however, for Ward’s clustering using the total herbaceous, woodland herbaceous and 

vernal herbaceous flora, and also using species associated with wet soils and species associated 

with moist and/or rich soils. In all five analyses, secondary-growth sites were grouped in two 

agglomerations (Figures 12 and 13). While the total herbaceous, woodland herbaceous and 

species associated with wet soils analyses were 100% chained (vernal herb and species 

associated with moist and/or

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 4. The 55 herbaceous, shrub and tree species which were unique to old-growth (o-g) sites. Listed are the taxa
that occured in one, two or all three old-growth sites. Species are indicated as associated with moist and/or rich soils*, wet soils*’
or dry and/or disturbed soilsd (Gleason and Cronquist 1991; Voss 1985,1996).

  occurred in all o-g sites
Herbs Carex scabrata**

Dryopteris campyloptera* 
Solidago macrophylla*

OJ
-F

Shrubs

Trees

occurred in 2 o -g  sites_____
Actaea pachypoda* 
Cardamine perinsylvanica** 
Carex deflexa**
Chelone glabra**
Claytonia caroliniana* 
Epilobium glartdulosum** 
Euthamia graminifolia* 
Polystichum aCrostichoides 
Thalictrum pubescens**

Ribes lacustre**

occurred in 1 o-g site
Actaea rubra*
Anemone quinquifolia* 
Aralia racemosa*
Arisaema triphyllum**
Aster lanceolatus*
Aster macrophyllus d 
Aster sp. 1 
Aster sp. 2 
Botrichium simplex*
Carex debilis 
Carex leptonervia 
Cerastium arvense d 
Cirsium sp.
Cornus canadensis* 
Dicentra cucullaria* 
Dryopteris marginalis 
Epilobium ciliatum** 
Erigeron strigosus d 
Eupatorium rugosum** 
Rubus elegantulus d 
Nemopanthus mucronatus** 
Vaccinium angustifolium 
Corylus americana 
Tilia americana*

Galium circaezans** 
Galium triflorum** 
Gaultheria hispidula 
Glyceria melicaria** 
Goodyera repens 
Impatiens capensis**
Lycopus uniflorus** 
Mitella nuda** 
Osmunda claytoniana* 
Poaceae sp. 1 
Poaceae sp. 2 
Poaceae sp. 3 
Pyrola rotundifolia 
Scutellaria lateriflora** 
Solidago canadensis 
Taraxacum officinale d 
Tiarella cor difolia* 
Veratrum viride**
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Table 5. The 17 herbaceous, shrub and tree species which were unique to secondary-growth (2°) sites. Listed are species 
occurring in one, two or all three secondary-growth sites. Species are indicated as associated with moist and/or rich soils*, 
wet soils** or dry and/or disturbed soils'* (Gleason and Cronquist 1991; Voss 1985,1996).

Herbs
occurred in all 2° sites

(none)

Shrubs

Trees

occurred in two 2° sites
Dryopteris carthusiana 
Pteridium aquilinum d 
Solidago rugosa d

Amelanchier laevis J

occurred in one 2° site
Botrychium oneidense* 
Carex sp. 1 
Carex sp. 2 
Epigea repens 
Habenaria orbiculata* 
Lycopodium clavatum d 
Ribes glandulosum** 
Spiraea tomentosa d 
Viburnum nudum * 
Ostrya virginiana 
Pinus resinosa d 
Populus grandidentata d 
Quercus rubra



Figure 12. Dendrogram produced by Ward’s minimum variance clustering of the 

study sites using a) total, b.) herbaceous and c.) woodland herbaceous species abundance 

data. Distances are Euclidean.
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Figure 13. Dendrograms produced by Ward’s minimum variance clustering of the

study sites using abundance data of a) vernal herbaceous species, b) species associated

with wet soils and c) species associated with moist and/or rich soils. Distances are

Euclidean. Old-growth sites were the Bowl, Shingle Pond and Lafayette Brook;

secondary-growth sites were Bowl-match, Shingle Pond-match and HBEF W6.
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rich soils datasets chained 25%), this was interpreted as appropriately revealing a true 

floristic relationship amongst the study sites (Pielou 1984) which were, after all, chosen 

for their biotic and abiotic similarities. The sites did not cluster using spring ephemeral 

herbaceous data.

Similarity of the total flora ranged from 61.2% to 85.7% between the sites, according to 

Sorensen’s Index, with the Bowl and its match, B-m, exhibiting the lowest similarity in floristic 

composition, and Bowl and the LB exhibiting the highest similarity (Table 6). Old-growth sites 

were more floristically similar to one another, but exhibited more within-group variation than did

the secondary sites (x  oo = 0.731, * = 0.110; x  2°= 0.691, *=0.0763). The old-growth and 

secondary forest environmentally-matched pairs (Bowl and B-m, SP and PS-m, LB and W6)

showed the lowest mean floristic similarity, as well as the least group variation (x  Mp= 0.643,

 ̂= 0.0297; Figure 14). Sorensen’s Index for the herbaceous flora showed similar trends, with the 

old-growth floras exhibiting even greater mean similarity than the secondary group, but with 

greater standard deviation (x oc= 0.732, *=0.183; x 2°= 0.688, *= 0.0932; X MP= 0.602, s = 

0.0497; Table 6). The tree community showed the greatest degree o f similarity overall, with the 

old-growth group still ranking most similar (x  oc = 0.878, * = 0.0578; x  20= 0.725, * = 0.0578;

x  MP= 0.778, *=0.0578). None of these mean differences were significant according to two- 

sample t-tests for the means.

Patterns differed for the vernal herbaceous flora, with Sorensen’s Index revealing SP and 

SP-m as the most similar and SP and LB as the least similar. This matrix was generated to 

explore SP’s notably depauperate vernal flora, relative to the other old-growth sites. The group 

mean of SP’s similarity to secondary-growth sites was higher than either the Bowl or LB’s group

means to these sites ( x s p / 2 0 = :  0.815, * = 0.0578; x  b o w i / 2 0 =  0.770, *=0.0468; x  Lb / 2 ° =  0.729,
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Table 6. Sorensen’s Index of Similarity matrices for a.) total flora, b.) herbaceous flora, 

c.) vernal herbaceous flora. Main diagonal (bold) is the number of species in each site, 

above the main diagonal is Sorensen’s index, below the main diagonal is the number of 

species in common to both sites. Old-growth sites were the Bowl, Shingle Pond (SP) and 

Lafayette Brook (LB); secondary-growth sites were Bowl-match(B-m), Shingle Pond- 

match (SP-m) and HBEF W6 (W6).

a.
Bowl SP LB B-m SP-m W6

Bowl 87 0.686 0.857 0.612 0.637 0.643
SP 59 87 0.651 0.635 0.671 0.634
LB 78 54 81 0.704 0.697 0.647

B-m 45 47 50 60 0.779 0.655
SP-m 50 53 53 51 71 0.640

W6 45 45 44 38 40 55

b.
Bowl SP LB B-m SP-m W6

Bowl 65 0.641 0.943 0.547 0.595 0.586
SP 41 65 0.612 0.598 0.643 0.580
LB 58 37 58 0.660 0.686 0.617

B-m 29 32 33 41 0.795 0.641
SP-m 33 36 36 35 47 0.627

W6 29 29 29 25 26 36

c.
Bowl SP LB B-m SP-m W6

Bowl 20 0.765 0.732 0.743 0.824 0.743
SP 13 14 0.686 0.759 0.857 0.828
LB 15 12 21 0.722 0.743 0.722

B-m 13 11 13 15 0.828 0.733
SP-m 14 12 13 12 14 0.759

W6 13 12 13 11 11 15

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



s = 0.0121). It was also higher than either old-growth or secondary-growth within-group means

(x oc= 0.728, s — 0.0397; x 2°= 0.773, s= 0.0491), though none of these mean differences were 

significant according to two-sample t-tests for the means.

Results for RCB ANOVA analyses revealed significantly greater total species 

richness (Fu  = 51.857, p = 0.0187), herbaceous species richness (Fu  = 240.25, p = 0.004), 

and unique herbaceous species richness (F,,4 = 33.8, p = 0.00436) in the old-growth sites as 

compared to secondary-growth sites. Old-growth sites were also richer than secondary sites 

in shrub species (Fl>2 = 16.000, p = 0.057; Figure 15), species reliant on wet soils (F,,2 =

12.488, p = 0.024), and species associated with moist and/or rich soils (F,, 2 = 6.761, p =

0.060), though not significantly so. It should be noted that, while not significant according to 

this study’s P = 0.025 standard, ANOVA results for the wet species list closely approached 

significance. No clear pattern was seen for species associated with dry soils and ANOVA 

results were not significant (F,,4 = 0.0938, p = 0.775). Secondary-growth sites were richer 

than old-growth sites in tree species, though not significantly so (F,,2 = 0.429, p = 0.868).

Within the herbaceous flora, the number of uniquely occurring herbaceous species and 

woodland herbaceous species were significantly greater in the old-growth sites (Fl>4 =

33.800, p = 0.00436, and F!i2 = 81.757, p = 0.012, respectively). Vernal and spring ephemeral 

herbs, while again richer in old-growth sites, were not found to be significantly so (Fu2 =

3.903, p = 0.187, and FM = 0.893, p = 0.398, respectively).

In all cases, the model using untransformed data provided the best fit for the 

analyses, showed no trends in the residuals, and was chosen as the working model. Due to 

the low numbers of unique and spring ephemeral species in the secondary-growth sites, and 

the low numbers of species associated with dry soils in the old-growth sites, the blocking
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Figure 14. S0rensen’s Index of Similarity within-group a.) means and b.) standard 

deviations for old-growth, secondary-growth and matched-pairs study sites. Tree, shrub, 

herbaceous and total flora results are presented.
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Figure 15. Total, herbaceous, tree and shrub species richness by old-growth and 

secondary-growth study sites.

□  Secondary
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factor was removed from those analyses.

Total herbaceous and woodland herbaceous species abundance distributions 

were found to be significantly different in old-growth versus secondary-growth sites, 

according to Chi-square tests for independence, P < 0.05 (herbaceous: X 2-  10.757, p =

0.0294; woodland herbaceous: X 2 = 10.707, p = 0.0301). Subjective examination of the 

graphed data revealed that old-growth species distributions were skewed to the right, 

relative to secondary-growth distributions, indicating a greater frequency of occurrence 

of species with “infrequent” or “rare” abundance values in old-growth sites (Figure 16). 

More species with “dominant” abundance values also occurred in old-growth sites. While 

different distributional patterns were also revealed between the two forest types for total, 

tree, shrub, vernal herbaceous, and spring ephemeral species, these differences were not 

significant (for df = 4, total flora: X 2= 7.837, p = 0.0977; tree: X =  1.034, p = 0.905; 

shrub: X =  1.302, p = 0.861; vernal herbaceous: X2 = 6.744, p = 0.150; spring 

ephemerals: X 2= 1.373, p =0.849).
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Figure 16. Species abundance distributions for a) total herbaceous flora 

and b) woodland herbaceous flora in old-growth and secondary-growth sites.

a.

□  Secondary

□  Secondary
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DISCUSSION

The results of this study concur with those of the few other comparative studies of eastern 

deciduous forests in finding significant differences between old-growth and mid-successional 

secondary forests floras. Classification of the six study sites by total floras using TWINSPAN 

separated secondary from old-growth floras in 2 divisions, results which were corroborated by 

cluster analysis. Cluster analysis also grouped secondary-growth sites using total herbaceous, 

woodland herbaceous and vernal herbaceous species abundance data. Old-growth floras were 

significantly richer in herbaceous species, specifically woodland herbaceous species, and these 

species showed significantly different abundance distributions relative to secondary floras. Old- 

growth floras included more species of small population size and were significantly richer in 

unique herbaceous species. Differences in the number of species associated with wet soils 

closely approached statistical significance. Sorensen’s similarity index indicated old-growth 

floras to be more similar in their tree, shrub and herbaceous communities than secondary floras.

Sorensen’s index showed old-growth sites the Bowl and LB to have the greatest 

similarity o f both total and herbaceous floras, yet TWINSPAN and cluster analyses suggested the 

Bowl’s flora to be more similar to Shingle Pond’s, often nesting Lafayette Brook within 

secondary site groupings. While species.richness and abundance was used in both site 

classification analyses, Sorensen’s index compared study sites using only species richness. 

Differences between the results o f the classification analyses and Sorensen’s may therefore be 

due to differences in species abundance of many or even a few species. It should also be noted

rH »U
that the 3 and 4 most similar sites in Sorensen’s total and total herbaceous analyses were LB
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and secondary-growth sites B-m and SP-m, respectively (secondary-growth sites B-m and SP-i 

ranked 2nd). Such close associations may also help to explain the nesting of LB in secondary- 

growth clusters.

These results can be interpreted by various theoretical models of species 

diversity, but are comprehensively explained by the general model o f  diversity suggested 

by Petraitis et al. (1989). This model attempts to explain why most equilibrium and 

nonequilibrium hypotheses alike predict maximum species diversity at intermediate 

levels o f disturbance or predation (Petraitis et al. 1989). Perhaps the best known model of 

species diversity and disturbance is Connell’s intermediate-disturbance hypothesis

(1978), in which disturbance prevents the system from reaching equilibrium, thus 

suppressing the rate of competitive exclusion and maximizing the number of species able 

to coexist. Petraitis et al. (1989) demonstrated that the definition of whether a system as 

at equilibrium or not is merely a matter of scale and believed it probable that theories 

pertaining to these two states may converge when disturbance is small and frequent 

enough to act like predation. Their general model combines Huston’s (1979) dynamic- 

equilibrium model and MacArthur and Wilson’s (1963) island biogeography theory in 

predicting species diversity as a function of disturbance, productivity, competitive 

exclusion, life-history characteristics, and rates of immigration and extinction within the 

system. Grime (1979) and MacArthur and Wilson (1963) showed that life-history 

characteristics limit species from being highly tolerant of both disturbance and 

competition. At intermediate levels of disturbance trade-offs in species-specific abilities 

regulate birth and death rates, as well as rates of immigration and extinction, maximizing 

the number of disturbance-tolerant and competition-tolerant species able to coexist.
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The general model o f diversity (Petraitis et al. 1989) predicts maximum diversity 

at low to intermediate disturbance levels in systems characterized by low species growth 

rates, low rates of competitive exclusion and extinction, and intermediate rates of 

immigration. Although not directly measured by this study, it is theorized that the high 

level of species richness in old-growth floras is directly or indirectly the result of canopy 

gap dynamics coupled with the life-history characteristics of late-successional species, 

which together foster all these conditions. Gap dynamics in old-growth systems can be 

theoretically shown to constitute an intermediate level of disturbance at the stand level, 

creating conditions of lowered rates of extinction and competitive exclusion, and higher 

rates of immigration as compared to secondary systems. By comparison, the mid- 

successional secondary forests studied here will be argued to be systems with relatively 

low rates o f disturbance and relatively high recent rates of competitive exclusion and 

extinction. Intensive tree harvesting and the resultant conversion of these systems to 

earlier successional conditions have resulted in the disruption of gap dynamics and a 

reduction in habitat heterogeneity at the stand level. Changed conditions in secondary 

sites as a result of harvesting may have also contributed to the floristic differences 

identified in this study. Rates of immigration to mid-successional secondary-growth 

forests are low as life-history traits of late-successional species make them inefficient 

dispersers and colonizers o f new areas. Such conditions have resulted in a perhaps 

prolonged period of understory repression and lowered species richness in these forests.
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I. Gap dynamics in eastern old-growth forests

a. Background

• The importance of gap-phase dynamics to old-growth forests has been much 

discussed in the literature. Bormann and Likens (1979) reported that the natural cycle of 

catastrophic disturbance events in beech-maple old-growth forests probably approaches 

or exceeds 1000 years, over three times the average lifespan of the system’s dominant 

individuals (Davis 1996, Runkle 1991). Most natural disturbance to these systems is 

therefore small in scale, by way o f individual tree deaths or the death of small groups of 

trees. Age distributions of canopy trees in old-growth forests indicate that tree species are 

self-replacing in a “patchy” manner, leading researchers to refer to old-growth gap forests 

as shifting mosaics o f patches of forest at different successional ages (Bormann and 

Likens 1979; Connell 1989; Petraitis et al. 1989; Runkle 1991).

Most canopy tree deaths in New England forests are caused by wind stress and/or 

predation from fungi, insects or disease (Kimball et al. 1995; Tyrrell and Crow 1994; 

Worrall and Harrington 1988). It’s estimated that 1% of the old-growth canopy is opened 

by new treefalls annually (Clebsch and Busing 1989; Moore and Vankat 1986; Runkle 

1991). Runkle (1982) found that gaps o f various ages occupied anywhere from 3.2-24.2% 

o f the canopy of old-growth hardwood stands he studied, and Lorimer (1989) estimated 

an average of 70% of old-growth canopies to be occupied by large, mature tree crowns at 

any given time. Size of these gaps is important to species composition, as small gaps are 

quickly closed by lateral crown expansion and favor shade-tolerant species, whereas large 

gaps close only with tree replacement over many years, thus favoring shade-intolerant 

species (Clebsch and Busing 1989). Lorimer’s (1989) review of the literature classified
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average gap size in temperate old-growth forests to be 280 m2to 375 m2 in size (also see 

Clebsch and Busing 1989), although Tyrrell and Crow (1994) found average gap size in 

25 old-growth hardwood-hemlock stands in Wisconsin and Michigan to be > 50 n r , with 

30% < 10 m2 and few gaps > 250 m2.

b. Gaps and environmental heterogeneity

The effects of gap-phase dynamics include openings in the canopy, “pit and 

mound” microtopography and an increase in the system’s volume of leaf litter and coarse 

woody debris (CWD) in all stages o f decay. Gap-phase dynamics increase both the 

number o f resource conditions and the number o f physical microhabitats in old-growth 

forests. This increase in environmental heterogeneity should theoretically foster high 

species diversity (see Whittaker et al. 1974). Treefalls create depressions and hummocks 

on the forest floor (pits and mound topography), exposing small areas of mineral soil 

with differing nutrient availability, cation-exchange capacity and pH (Beatty 1984), and 

creating catchments for precipitation and decaying organic matter (Bratton 1976; Moore 

and Vankat 1986). Openings in the canopy increase light, air temperatures, soil moisture, 

and soil temperature within the microenvironment of the patch (Moore and Vankat 1986; 

Schultz and Adams 1995; Walters and Stiles 1996). Leaf litter and decaying wood 

provide low nutrient, high moisture environments that are important germination sites for 

several plant species (Meier et al. 1995; Moore and Vankat 1986; Runkle 1991). This 

gradient o f resource conditions created by canopy openings increases heterogeneity of the 

forest floor and results in greater availability of coarse woody debris (CWD) in various 

stages of decay. Both have been theorized by Goebel et al. (1999) and Meier at al. (1995)
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to be responsible for the higher species diversity in old-growth sites. Bratton (1976) 

believed only seasonal changes in light competed with the importance of 

microtopography in influencing herbaceous species distributions in Appalachian cove 

ecosystems.

c. Species diversity and gap size

Size and orientation are both important determinants of species composition 

within canopy gaps (Schultz and Adams 1995). Diversity studies of different sized gaps 

are not plentiful, but most references in the literature maintain that only large gaps 

increase species richness at the stand level (Collins and Pickett 1988; Lorimer 1989). 

Moore and Vankat (1986) reported greater abundance but no significant differences in 

herbaceous species richness in the small (i.e., single treefall) gaps they studied in the old- 

growth beech-maple forests of Hueston Woods, Ohio. Kimball et al. (1995) compared 

small gaps (< 50 m ) in young secondary forests with large harvest-created gaps 

(averaging 225 m2) and found the latter promoted significantly richer herbaceous species 

compositions. Lorimer (1989) suggested managing for diversity with gaps > 500 m2, 

although further research is being conducted regarding such estimates (Margolis 2002).

Clebsch and Busing (1989) reported that a wide range of gap sizes in forests 

accommodates a larger variety of species, including more shade-intolerants. Large gaps 

offer greater opportunity for new species immigrations, specifically with respect to wind- 

dispersed ruderals. The case of the Shingle Pond old-growth site in this study illustrated 

this point. Shingle Pond contained the largest number of nonwoodland herbaceous 

species of any site (6, as compared to none for HBEF Watershed 6 and 2 for all other
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sites), four of which were wind-blown ruderals (Cirsium sp., Erigeron strigosus, 

Euthamia graminifolia, Taraxacum officinal). The likeliest explanation for this is that this 

site was also observed to have the largest percent of open canopy, probably due to 

damage during an unusually severe ice storm in 1998. Damage from such storms results 

from ice coating tree limbs heavily enough to break portions of the canopy. The ice storm 

o f 1998 resulted in significant canopy damage at mid elevations throughout the WMNF 

(Rhoads et al. 2002).

It is possible that, while not explicitly observed, even smaller gaps contribute to 

the greater species diversity o f old-growth forests. A shifting mosaic of gaps of various 

sizes and ages may allow these systems to maintain species which would otherwise be 

extirpated by offering revolving opportunities for reproduction and enrichment of the 

seed bank. There is good evidence that some understory species may require gap 

conditions for successful reproduction. Moore and Vankat (1986) and Menges (1986) 

observed that species common to their study areas frequently occurred in greater 

abundance in gaps, and that individuals in gaps appeared more robust and vigorous.

Moore and Vankat (1986) noted that woodland species produced more flowers in 

gaps, leading them to theorize that moisture and temperature differences in these 

microenvironments influenced vegetative and reproductive phenology patterns, 

assimilation rates, and resource allocation patterns. Walters and Stiles (1996) studied the 

reproductive phenology of Impatiem capensis in old-growth oak-hickory-beech stands in 

New Jersey and found pollinator visitation rates, floral densities and seed production all 

significantly higher in gaps (visitations increased, but not significantly, with the number 

o f open flowers). They cite the sensitivity of pollinators to temperature, visibility, and the
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quality of pollen/nectar rewards when foraging. The seeds of some shade-tolerant 

woodland species have been found to germinate significantly better in the higher light, 

heat and moisture conditions gaps provide (Anderson and Loucks 1973).

d. Gaps as an intermediate level of disturbance

If we look at the herbaceous dynamics o f old-growth forests at the stand level 

then, their pattern can be represented as a mosaic of discreet species compositions 

experiencing a gradient of disturbance intensities. While most of the forest floor is under 

mature, intact canopy and experiencing little to no disturbance, over 20% may be 

experiencing intermediate to intense disturbance (small vs. large gaps). While most o f the 

forest is at relative equilibrium with respect to species composition, some proportion is in 

the midst of active directional changes, a balance which has been referred to as “dynamic 

gap-phase equilibrium” (Bormann and Likens 1979). Such forests likely constitute an 

intermediate level o f disturbance, and may possess a gradient of resource conditions 

within which a maximized number o f species can coexist.

II. Conditions in mid-successional secondary-growth forests

a. Loss of gap-phase dynamics

While there are few published studies quantitatively comparing the effects of 

canopy gaps on herbaceous species diversity in eastern temperate old-growth versus mid- 

successional secondary-growth forests, most studies indicate that gap dynamics in these 

two systems differ significantly. Clebsch and Busing (1989) reported significant 

differences in the canopies of Appalachian cove forests, citing that old-growth forests
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tended to have larger average gap size as well as gaps which were slower to close, 

resulting in a larger distribution of gap age classes across the stand. Older forests have 

been noted to have a higher rate of gap formation per year than mid-successional 

secondary forests and a more even distribution of all size classes (Runkle 1982; Tyrrell 

and Crow 1994). Lorimer’s (1989) review of the literature concluded that treefalls in 60- 

80 year old secondary forests either did not create gaps or created gaps small enough that 

they were quickly closed by lateral crown expansion.

Most o f the differences between old-growth and mid-successional forests have 

been attributed to differences in average tree age. Larger trees in old-growth forests have 

broader, overlapping crowns, whereas secondary canopies are composed of smaller 

crowns with little overlap (Clebsch and Busing 1989). Age estimates at which gap-phase 

dynamics typified by eastern old-growth forests will be reestablished in secondary forests 

vary: Duffy and Meier (1982) suggested that gaps may continue to decline in 

Appalachian forest systems for up to 87 years after being cut. Meier et al. 1995 believed 

that gap-phase processes may take 150-200 years to fully recover. Tyrrell and Crow

(1994) found that both average gap size and percent of the canopy occupied by gaps 

increased linearly with stand age, suggesting recovery times might be estimated based on 

average lifespans o f dominant trees.

There is clearly concern expressed in the literature that many late-successional 

species will suffer extirpation in secondary forests by the time gap-phase processes fully 

recover (Goebel et al. 1999; Halpem and Spies 1995; Meier et al.1995; Roberts and Zhu 

2002; Spies 1991). The relationship between habitat diversity and species richness is 

well-documented, as is the decrease in habitat diversity resulting from the loss of gap-
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phase dynamics. Besides the loss of median heat and light conditions, the forest floor 

environment of aggrading forests has been found to be more homogenous than that of 

older stands specifically because of the rarity of treefalls (Bormann and Likens 1979; 

Crozier and Boemer 1984).

Thompson (1980) and Rogers (1982) found herbaceous species that preferred 

treefall areas. Beatty (1984) reported that mounds and pits of old-growth hardwood 

forests had characteristically different assemblages of herbaceous species as compared to 

undisturbed ground, theorizing differences in resource availability and competitive 

dynamics as reasons for these specializations. Goebel et al. (1999) theorized that the 

exposure of mineral-rich soil in tip-up mounds accommodated species not found in their 

secondary sites. Tyrrell and Crow (1994) studied stand age structural development o f 25 

Wisconsin and Michigan hemlock-hardwood old-growth stands and reported that 

although total volume of CWD (“coarse woody debris”; logs in all decay classes) 

increased linearly over time, well-decayed logs occurred only after threshold age of 275- 

300 yrs. While they found area and density of tip-up mounds not correlated to stand age, 

they explained this as probably due to the persistence of these topographic features over 

long periods of time. Beatty (1984) believed treefall pits and mounds could potentially 

last several centuries if  undisturbed.

Lacking the gap-phase dynamics which characterize old-growth systems, the 80- 

100 year old secondary-growth forests of this study and others are likely experiencing a 

relatively low rate of disturbance which has contributed to their lower species richness. 

This rate is likely to increase slowly over time, as canopy trees mature, until the gap- 

phase dynamics characteristic of old-growth systems are restored and species richness is
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again maximized by intermediate disturbance conditions. Theoretically, this may take as 

long as the average lifespan of dominant tree species, which in the case of beech-maple 

forests of the northeast is approximately 300 years.

b. Soil changes as the result of harvesting

Long-term changes to the soil as the result of tree harvesting may also have 

detrimental effects on regenerating floras. Concern over the lasting effect o f soil 

compaction, erosion, hydrological changes, and depletion of the seed bank has been cited 

in the literature (Bormann et al. 1974; Bormann and Likens 1979; Mou et al. 1993; Pierce 

et al. 1993). It remains unclear whether altered conditions in secondary stands, such as 

soil impoverishment and loss of soil moisture, may further diminish the suitability of 

these sites for colonization. Several studies have noted that soils of secondary-growth 

sites appeared drier and that species composition reflected this condition (Anderson and 

Loucks 1973; Moore and Vankat 1986), and Goebel et al. (1999) found differences in 

ground flora composition of old-growth versus 70-79 year old secondary forests 

correlated with differences in pH and depth of the A horizon.

While not directly measured, Teeling-Adams noted that both the secondary sites 

of this study, as well as those she surveyed within the Hubbard Brook Experimental 

Forest, appeared to have less interruption of waterways by downed logs and 

microtopographic features than was observed in old-growth sites. Such interruptions 

often resulted in more vernal streams, small stifles and wet seeps which clearly exhibited 

a greater diversity of herbaceous species than drier areas within the site. By contrast, 

streams in secondary sites were observed to be more direct and often of a perennial
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nature. From these observations it can be theorized that, whether using conventional 

machinery or horse teams, a possible “grading” or homogenizing of the forest floor 

occurs in some secondary sites as a result of clearing large, felled trees from the land. 

Coupled with the effects of erosion and the suppression of new microtopographic features 

(the loss of pit and mound formation) this smoothing of microtopography may cause 

potentially significant changes in site drainage, such that a few major waterways remain 

where there once were countless secondary features. While the volume of water moving 

through an old-growth site and its secondary incarnation may be the same, this moisture 

may be distributed in very different ways. More research is needed in this area.

III. Life-history traits of “late-successional species”

Disturbance-tolerance, resource utilization and competitive dynamics in 

herbaceous species are closely tied to physiology and morphology (Bratton 1976; Grime 

1973). MacArthur and Wilson (1963) classified species as r- or K-selected based on 

patterns of resource allocation (also see Gadgil and Solbrig 1972). K-selected species 

employ a strategy of restrained investment in growth and reproduction, and increased 

allocation to photosynthate storage in order to tolerate resource-poor conditions. Grime

(1979) characterized species as ruderals, competitors or stress-tolerators according to life- 

history characteristics. Long lifespans with low seed production and low maximum 

potential growth rates characterize species o f stressful systems with low productivity 

(Grime and Hunt 1975; MacArthur and Wilson 1963). Old-growth ecosystems have been 

well-documented to be stable, relatively unproductive environments and both models 

recognize that species adapted to such environments are limited in their ability to tolerate
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disturbance (Bormann et al. 1974; Davis 1996; Whittaker et al. 1974).

a. Slow growth rates

Evidence for slow rates of growth in woodland species of the northeast is largely 

observational, but some empirical data do exist. Sobey and Barkhouse (1977) recorded 

the growth rates o f 43 woodland herbaceous species in eastern Canada and found rates 

ranging up to 100 cm/year. Late-successional herbaceous taxa were the slowest growing, 

with many growth rates reported as undetectable. Whitford (1949) reported growth rates 

o f late-successional woodland species in Illinois as 0.66-3.5 cm/year. Curtis (1943) 

studied five Cypripedium spp. and found C. acaule took 8-10 years to reach reproductive 

maturity, while C. regime took 14-16 years. Moore and Vankat (1986) suggested the use 

o f more stored materials for growth and reproduction may make late-successional species 

slower to respond to changing resource conditions, reducing competitive abilities in the 

event o f disturbance. Rogers (1982) found long-lived perennial herbaceous species with 

large storage organs to be uncommon in the disturbed mesophytic forest sites he studied 

in the Great Lakes region.

b. Asexual reproduction and low seed production

Because o f the tendency to allocate more energy to growth and storage, many 

late-successional species are functionally clonal (Beatty 1984; Whitford 1949). Asexual 

reproduction is energy efficient and an important strategy in environments where light 

and resources may be limiting. Beatty (1984) found vegetative reproduction the most 

common mode of herbaceous dispersal in the New York hardwood forests she studied.
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Anderson and Loucks (1973) reported that Trientalis borealis apportioned 64.8% total 

dry weight to vegetative reproduction and storage (rhizomes and tubers) and < 2% to 

seeds. Whitney and Foster (1988) theorized that low seed production explained 

differences between primary and secondary understories in the Pisgah forests of 

Massachusetts and southern New Hampshire. The tendency toward clonal reproduction 

has long been considered a contributing factor in the slow migration rates of many 

woodland species (Beatty 1984; Whitford 1949). While Matlack (1994) found no 

significant difference between migration rates of clonal and exclusively sexual species, 

this may have been due to the extremely low rates of species of both types.

c. Inefficient dispersal mechanisms and migration

While the processes are not well yet understood, studies have suggested that 

inefficient dispersal mechanisms may be more significant than low reproduction rates in 

explaining low migration rates of late-successional species to new areas (Ehrlich 1996; 

Matlack 1994; Meier et al. 1995). Though dispersal efficiency has long been theorized to 

determine the rate at which a species will colonize new habitats, little empirical data for 

woodland herbaceous species exists (Beatty 1984; Matlack 1994; MacArthur and Wilson 

1963; Thompson 1980). Matlack’s (1994) comparison of species-rich old-“regrowth” (a 

term used by the author to acknowledge the probability of small-scale selective cutting in 

these forests by native peoples) and species-poor successional stands in the 

Delaware/Pennsylvania Piedmont zone stands out. Matlack measured migration rates 

between contiguous areas and found many species with extremely low to no measurable 

rates at all, leading him to warn that such characteristics “threaten [these species]
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continued existence in the second-growth forest landscape” (Matlack 1994, p. 1491). 

Significant differences in rates of migration were based on dispersal modes, with ingested 

and adhesive seeds dispersing the most efficiently, wind-dispersed seeds proving the next 

most efficient, and ant- or gravity-dispersed seeds migrating least efficiently.

Successional stands were particularly species-poor in ant-, spore- and gravity-dispersed 

species, species shown to be important to late-successional floras (Handel et al. 1981). 

Other studies, such as that o f the dispersal of Panax trifolius drupes (Meier et al. 1995), 

concur with Matlack’s findings.

Dependence upon specific microhabitats for seed germination, such as decayed 

logs, canopy gaps or duff pockets, may complicate the difficulties late-successional 

species face in colonizing new areas.

IV. Species differences found in this study

In this study, the majority of the species lacking in secondary study sites were 

herbaceous species with relationships to microhabitats or resource conditions which have 

been cited as deficient in regrowth conditions. The small scale of this study dictates 

caution in the extrapolation of specific findings. None of the species found here to 

exclusively (or more abundantly) occur in old-growth sites should be considered “old- 

growth species.” Rather, it is patterns in the types of taxa, or uniting and limiting 

characteristics o f these taxa, which should be of interest.

a. Species of wet soils. The RCB ANOVA analysis comparing differences in the 

number of species associated with wet soils in old- versus secondary-growth study sites
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very closely approached statistical significance. Cluster analysis using these species 

separated secondary sites from old-growth sites in two agglomerations. Species 

associated with wet soils accounted for 34.5% of the 55 species unique to old-growth 

study sites. By contrast, only 5.9% of the 17 species unique to secondary-growth sites 

and 13.3% of the 75 species found in both old-growth and secondary sites were species of 

wet microhabitats. It was also noted that many of the species of particularly lower 

abundance in secondary sites, relative to old-growth sites, were species associated with 

wet soils, such as Cicaea alpina, Chrysosplenium americanum, Gymnocarpium 

dryopteris, Viola and Galium species.

Several other studies have noted species of wet habitats as specifically vulnerable 

to extirpation in post-harvest environments (Meier et al. 1995, Roberts and Zhu 2002; 

Rooney and Dress 1997). Mou et al. (1993) reported changes in hydrology patterns of 

clearcut areas and commented that rutting and erosion could inhibit future recovery of 

forest floor species. While not statistically conclusive, the results presented here strongly 

suggest that the old-growth sites of this study contained more wet microhabitats than 

their secondary counterparts.

b. Species of moist and/or rich soils. While RCB ANOVA results comparing 

the number o f species associated with moist and/or rich soils in old- versus secondary- 

growth study sites found no statistically significant differences, TWINSPAN and cluster 

analysis grouped secondary sites in two steps using these species. Species associated with 

moist and/or rich forest soils accounted for 27.3% of the 55 species unique to old-growth 

study sites and 30.7% of the 75 species found in both old-growth and secondary sites. By
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contrast, only 23.5% of the 17 species unique to secondary-growth sites were species 

requiring similar conditions. Together, species reliant on moist to wet soils accounted for 

61.8% of species unique to old-growth sites, 44% of species occurring in both forest 

types, and 29.4% of species unique to secondary sites. These results strongly suggest that 

the old-growth sites of this study contained moister, richer soils, and more wet 

microhabitats than their secondary counterparts.

c. Species of dry and/or disturbed soils. No statistically significant results 

were obtained in any analyses using richness and/or abundance data of species associated 

with dry and/or disturbed soils. Yet, these species accounted for 41.2% of the species 

unique to secondary-growth sites. By contrast, only 9.1% of species unique to old-growth 

study sites and 4.0% of species found in both old-growth and secondary sites were 

species associated with similar conditions. These results may be an artifact of small 

sample size, as B-m was contained a disproportionately large number of the species under 

discussion than either other secondary-growth site. It is also possible that these results 

show a patchiness o f soil conditions within secondary sites, such that areas of dry soils 

represent specific microhabitats within the larger landscape. Theoretically, these areas 

may be exhibiting more severe and long-term impacts due to harvesting and altered 

moisture regimes. More study is needed regarding soils conditions and moisture regimes 

in secondary versus old-growth forests.
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d. Rare and unique species. The flora of secondary-growth sites in this study 

showed significantly fewer rare and infrequently occurring species, as well as 

significantly fewer unique species, concurring with the findings of Halpem and Spies

(1995), Meier et al. (1995), and Roberts and Zhu (2002). One reason rare species have 

been found to be more susceptible to extirpation in logged forests is increased odds of 

total population loss during disturbance events (from Spiller and Schoener 1998).

Another reason is that small distributions may indicate species limited to certain 

vulnerable microhabitats. Both explain why rare species have been considered by some to 

be among the better indicators of primary forests (Peterken and Game 1984; Spies 1991; 

Whitney and Foster 1988).

The results of this study strongly suggest that rare and infrequently occurring, 

predominantly herbaceous species are good indicators of old-growth systems. Although 

not specifically measured, this pattern of apparent loss of species of small population size 

is seen as a verification o f the secondary-growth sites’ reduction in microhabitats and 

“patchy” conditions, resulting at least in part, from the loss of gap-phase dynamics. For 

instance, in this study 71.3% of the occurrences of species reliant on wet microhabitats 

were ranked as rare or infrequent. It remains unclear whether the sites’ initial clearing 

may also have resulted in the destruction of microhabitats. This study’s findings suggest 

that rare and infrequently occurring species of wet microhabitats may be particularly 

indicative of old-growth floristic conditions.

Loss of species o f small population size (species reliant on microhabitats) most 

likely also resulted in a loss of unique species in secondary sites. In old-growth sites,

71.4% of the 55 unique species were rare and infrequently occurring species; in

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



secondary sites, 74.3% o f the 17 unique species were similarly low in abundance.

e. Species limited by life-history characteristics

Though issues o f morphology and physiology were explored for the species in 

this study, few important trends were recognized. Little species-specific data for 

herbaceous species in temperate forests exists (Beatty 1984; Matlack 1994; MacArthur 

and Wilson 1963; Thompson 1980). The following is a brief synopsis of the findings:

Personal observation, a search of the literature, and a review of species collections 

in the Hodgdon Herbarium (University of New Hampshire) revealed that most o f the 

species unique to old-growth sites in this study were at least somewhat to vigorously 

clonal (Anemone quinquifolia, Dryopteris campyloptera, Carex scabrata, Cerastium 

arvense, Mitella nuda, Osmunda claytoniana, Scutellaria lateriflora, Solidago 

macrophylla, Carex deflexa, etc.), yet several species unique to secondary-growth sites 

also displayed this trait (Pteridium aquilinum, Solidago rugosa, Lycopodium clavatum, 

Viburnum nudum). A higher percent o f the species unique to secondary-growth sites were 

observed to be high seed producers (Amelanchier laevis, Carex spp., Ribes glandulosum, 

Spiraea tomentosa, Solidago rugosa subsp. rugosa), though species unique to old-growth 

sites were by no means universally infertile (Carex scabrata, Solidago macrophylla, 

Cardamine pensylvanica, Euthamia graminifolia, Eupatorium rugosum, Ribes laucustre, 

etc.). Modes of dispersal seemed evenly mixed between the two groups (Ridley 1930), 

but when habitat requirements were considered, many wind- or animal-dispersed species 

in old-growth sites (the most efficient modes for migration, according to Matlack1994) 

were limited by the need for suitable (i. e., moist to wet) habitat which was not prevalent
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in secondary sites.

Overall, limitations of habitat and soil moisture remain the strongest indicators of 

the distinction between species of old- and secondary-growth forests.

f. Vernal herbaceous species. It has been suggested that vernal herbaceous 

species may be useful diagnostic indicators of disturbance and subsequent recovery of 

eastern forest systems from the effects o f tree harvesting (Duffy and Meier 1992; Goebel 

et al. 1999; Keddy and Drummond 1996; Meier et al. 1995). Altered competitive 

dynamics and loss o f habitat have been noted as possible factors in the extirpation of 

these species as the result o f clearcutting. Limiting life-history characteristics and long­

term changes in microenvironment have been hypothesized to repress recovery and 

inhibit migration to secondary sites. Bratton (1976) and Meier et al. (1995) commented 

that vernal species in particular may be more sensitive to issues of substrate, relying on 

soil organic matter, duff pockets and logs in various stages of decay for habitat. Rogers 

(1982) found lower importance value o f vernal herbaceous species correlated with places 

o f nutrient-poor mineral soils. While vernal species are probably not gap species per se 

(Moore and Vankat 1986; Rogers 1982), patterns in the forest floor produced by gap 

processes over the long-term may foster or maintain diversity in this community. A better 

understanding is needed regarding the issues governing distributions of these species.

Seven of the 55 species unique to old-growth sites (12.7%) were vernal 

herbaceous species, while only one of the 17 species unique to secondary-growth sites 

(5.9%) were spring blooming herbs (25.3% of the species in common to both forest types 

were vernal). Within this list, three spring ephemeral species were found only in old-
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growth sites (Arisaema triphyllum, Claytonia caroliniana, Dicentra cucullaria); no 

spring ephemeral species were unique to secondary sites.

While the secondary sites in this study noticeably clustered using the vernal 

species, ANOVA results for this subset of the flora were not significant. This seeming 

disagreement with the literature may be an artifact of small sample size, as Shingle 

Pond’s vernal species list was notably depauperate. Shingle Pond’s greater mean vernal 

floristic similarity to the secondary-growth sites was corroborated by cluster analysis, 

which grouped this old-growth site closer to the secondary than old-growth cluster 

(Figure 13). It is alternatively possible that vernal herbaceous species (as well as spring 

ephemeral species importance) may have a lower importance value in New England 

forests than in cove forests of the Appalachian Mountains, where previous studies have 

been conducted. Fewer vernal species in both old-growth and secondary-growth floras 

overall may explain the lack of significance. While infrequent, ice storm event such as 

that of 1998 do occur in these northern states and therefore effect old- as well as 

secondary-growth canopies to some real extent. It is therefore not possible to positively 

ascertain from this study the relationship between vernal herbaceous species in old- 

versus secondary-growth forest types in New England temperate forests.
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SUMMARY

This study concurs with the findings of Duffy and Meier (1992) and Goebel et al. (1999) 

in detecting significant floristic differences between eastern old-growth forests and mid- 

successional secondary-growth forests recovering from the effects of timber harvesting. Old- 

growth floras were significantly richer in herbaceous species, specifically woodland herbaceous 

species, and these species showed significantly different abundance distributions relative to 

secondary floras. Old-growth floras included more species of small population size and were also 

significantly richer in unique herbaceous species. Differences in the number o f species 

associated with various soil moisture regimes in some cases closely approached statistical 

significance.

While not directly measured, the lack of gap-phase dynamics in the canopy and 

changes in hydrology and soil moisture as the result of harvesting events are 

hypothesized as the primary explanation for these results. Insufficient life-history data on 

the species in this study made it impossible to assess the importance of this factor.

Canopy gaps in eastern old-growth forests may alter birth and death rates o f the 

species present by providing microhabitats with altered resource conditions, reducing 

competitive exclusion, and increasing rates of growth and reproduction. Gap dynamics 

may influence the pattern of immigrations and extinctions, as large gaps provide 

opportunities for new species to colonize the stand, and small gaps may reduce 

extirpation risks of pre-existing species by offering reproductive niches that enrich the 

seed bank. In order to increase diversity, mid-successional forest ecosystems rely heavily
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on species that are likely among the least efficient migrators. Life-history traits of many 

late-successional species make them slow to spread and/or colonize secondary forests and 

the lack of gap-phase dynamics, distance from source pools, and possibly altered soil 

conditions in these disturbed areas may further impede understory reestablishment.

There has been insufficient recovery time as yet in eastern U. S. forests to judge 

the length of time necessary for mid-successional forests to attain the species diversity of 

old-growth systems, but the data indicate that 90-100 years is insufficient. Actual 

recovery periods may be closer to the average lifespan of the system’s dominant tree 

species.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIMITATIONS OF THE STUDY

1. This study suffers the same limitations as all chronosequences in that it is unlikely that 

any two sites are exact environmental replicants of one another. The design of this study 

aimed to minimize these discrepancies, but characteristics such as pH, soil moisture, and 

cation exchange capacity (CEC) were not directly measured and may have had effects on 

understory species compositions.

2. Site history data prior to 1914 for the secondary sites were imperfect and sometimes 

consisted of anecdotal information. Although it seems unlikely (for the reasons expressed 

in Site Descriptions), it is possible that the secondary-growth matches for the Bowl and 

Lafayette Brook were initially coniferous and not hardwood stands when they were 

logged in the late 19th and early 20th centuries. If so, seed bank and soil differences may 

have contributed to differences in species richness at these sites.

3. While every attempt was made within the limitations of this study to closely match the 

environmental factors o f old-growth sites with those of secondary sites, slope-aspects 

were not exactly the same. These discrepancies were judged to be acceptable, but it 

should be noted that aspect has been shown to have significant effect on species 

composition.

4. Care should be taken in extrapolating results of this study to modem methods of forest

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



harvesting. This study, like all studies of 70-100 year old secondary forests in the U.S., is 

actually examining the effects of now-antiquated logging techniques. Modem methods of 

harvesting did not begin in the National Forests until around 1964 (Johnson et al.1993). It 

is generally assumed that contemporary methods more severely affect forest systems, as 

before this time harvesting was largely unmechanized, highly variable and probably more 

like series of selective cuts (Metzger and Schultz 1981).
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MANAGEMENT IMPLICATIONS

Results of this study concur with the research of Goebel et al. (1999), Kimball et 

al. (1995), Meier et al. (1995) and others in recommending that future harvesting 

techniques mimic the natural gap dynamics of old-growth forests as closely as possible in 

order to maintain species diversity. The practice of “high grading” (in which single trees 

o f exceptional value are removed) and carefully applied selective cutting may be 

applicable practices, but more research is needed. Appropriate gap sizes and their 

distributions within different forest types need more scientific attention.

In addition to breaks in the canopy, attention should be paid to the amount of 

CWD contributed to the forest floor and its placement, which may be important in terms 

of interruption of surface drainage patterns (see pp. 64). More study is needed regarding 

soil moisture regimes and hydrological patterns in old- versus secondary-growth forest 

systems.

Metzger and Schultz (1981) found the flora of Michigan forests that had been 

selectively cut several times over a 50 year period to be more diverse than areas clearcut 

50 years ago, suggesting that repetitive intermediate disturbance safeguards species 

diversity more effectively than does intense disturbance followed by a period of rest. To 

this end, it should be understood that clearcutting disrupts forest ecosystems and species 

composition for likely well over the 120 year rotation time afforded managed hardwood 

forests in the WMNF under the best of conditions. It is therefore likely that rotation times 

for eastern deciduous forests should be lengthened. Though many of the most vulnerable
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herbaceous species may already be lost, the same mechanisms which contribute to 

species losses in harvested primary forest remain at issue when secondary forests are 

harvested. Practices that reduce soil disruption, compaction, erosion and damage to 

understory species should be pursued.

Bormann and Likens’ (1979) statistics on catastrophic disturbance cycles in 

eastern temperate deciduous forests implied that, without human disturbance, 

approximately 20% o f the landscape would be covered by first-generation stands, while 

the remaining 80% would be composed of mostly trees at or near their maximum age. 

Today, less than 1% of the landscape in the eastern U.S. (4% of forested land) is primary 

forest (Davis 1996). While silvicultural practices can and should be amended in order to 

promote diversity, the questionable recovery rates of many late-successional species 

make the preservation of existing old-growth forests critical. While large areas may be 

necessary to maintain regional and global diversity, Meier et al. (1995) found no 

correlation between area and mean number of species per m2 for the old-growth preserves 

they examined, suggesting refugia of any size are valuable as source pools at the 

landscape level. Matlack (1994) found understory richness in contiguous as well as 

separate successional stands limited by distance to source pools, and that stands isolated 

from these propagule sources suffered significantly lower species richness.

Species-specific studies, including research on growth rates, reproductive and 

dispersal abilities, and immigration and extinction potentialities of woodland species in 

response to disturbance, are badly needed. In order to minimize the likelihood that rare 

species will be overlooked, more complete inventories should be conducted on areas both 

before and after harvesting events, using the methodology of this study. More inventories

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of old-growth areas and long-term monitoring of the flora within should be a priority 

until such time as the equivalent species diversity is restored to secondary forests.
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Appendix A. Abundance checklist of the vascular flora for the six study sites: The Bowl 

RNA, Shingle Pond (SP), Lafayette Brook Scenic Area (LB), Bowl- match (Bm), Shingle 

Pond-match (SPm), and Hubbard Brook Experimental Forest Watershed 6 (W6).

Hubbard Brook data from Teeling (1998). Abundance modified from Palmer et al.

(1995). Nomenclature follows Kartesz (1994). Species are designated (D) as woodland 

herbaceous species", vernal herbaceous speciesv, associated with moist and/or rich soils*, 

associated with wet soils**, associated with dry and/or disturbed soils'1,.

D Bowl SP LB Bm SPm W6
PTERIDOPHYTA
D ennstaedtiaceae (H ay-Scented Fern Family)

Dennstaedtia pmctilobula (Michx.) Moore. w 1 3 1 2 3 3
Pteridhim aquilimm (L.) Kuhn. d 3 3

D ryopteridaceae (W ood F ern  Family)
Athyrium thelypteroides (Michx.) Desv. w * 4 2 3
Athyrium filix-femina var. angustum (Willd.) 
G. Lawson

w  * 2 2 3 2 1

Dryopteris campyloptera Clarkson 
[=Dryopteris spinulosa var. americana (Fisch.) 
Fern.]

w  * 4 1 3

Dryopteris carthusiana (Vill.) H.P. Fuchs 
[=Dryopteris spinulosa (O.F. Mueli.) Watt; D. 

austriaca var. spinulosa (O.F. Muell.) Fisch.]
w 2 1

Dryopteris boottii (Tuckerman) Underwood 
[= Dryopteris cristata (L.) Gray x Dryopteris 
intermedia (Muhl.)]

w

4 4 3

Dryopteris intermedia (Muhi. ex Willd.) Gray w 2 4 4 2 4

Dryopteris marginalis (Linnaeus) w 1
Gymnocarpium dryopteris (L.) Newm. w  ** 2 1 4 1 1
Polystichum acrosticoides (Michx.) Schott. w I 2
Onoclea sensibilis L. w  ** I 2

Lycopodiaceae (C lubm oss Fam ily)
Huperzia lucidula (Michx.) Trevisan 
[=Lycopodium Iucidulum Michx.] w 5 2 3 3 3 5

Lycopodium annotinum L. w 2 3
Lycopodium clavatum L. w d 3
Lycopodium obscurum L w  * 1 3 3
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D Bowl SP LB Bm SPm W6
Ophioglossaceae (A dder’s Family)
Botrychium oneidense (Gilbert) House w  * I
Botrychium simplex E. Hitchc. w  * 1

O sm undaceae (Royal F ern  Family)
Osmmda cinnamomea L. w  ** 2 2 2 3
Osmunda claytoniana L. w  * 1

Polypodeaceae (Polypody Family)
Polypodium virginianum L. w 3 4 2

Tbelypteridaceae (M arsh  F ern  Family)
Phegopteris connectilis (Michx.) Watt 
[=Thelypteris phegopteris (L.) Slosson] w  * 2 1 3 3 3 4

Thefypteris noveboracensis (L.) Nieuwl. w 1 1 3 3 3 2

GYMNOSPERMS
PINOPHYTA
Pinaceae (P ine Family)
Abies balsamea (L.) P. Mill. 2 1 3 2 2 2
Picearubens Sarg. 3 2 2 2 2 2
Pinus resinosa Ait. d 1
Pinus strobus L. 1 2 2
Tsuga canadensis (L.) Carr. * 1 2 2 3 3 1

Taxaceae (Yew Family)
Taxus canadensis Marsh. 1 1

ANGIOSPERMS
MAGNOLIOPHYTA
MAGNOLIOPSIDA
A ceraceae (M aple Family)
Acer pensylvanicitm L. 5 4 4 3 4 2
Acer rubrum L. 2 2 2 2 2 2
Acer saccharum Marsh. 5 5 5 5 5 4
Acer spicatum Lam. * 2 1 3 3 3 2

Aquifoliaceae (Holly Fam ily)
Ilex verticillata (L.) Gray ** 1 1
Nemopanthus mucronatus (L.) Loes. ** I

A raliaceae (Ginseng Fam ily)
Aralia mdicaulis L. w 4 5 2 4 4 3
Aralia racemosa subsp. racemosa L. w  * 4
Panax trifolius L. w v  * 1 1
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D Bowl SP LB Bm SPm W 6
A steraceae (A ster Family)
Aster acuminatus Michx. w 4 5 3 3 4 3
Aster macrophyllus L. w  d 1
Aster lanceolatus Willd. w  * 2
Aster sp. 1 1
Aster sp. 2 1
Cirsium Miller 1
Erechtites hieraciifolia (L.) Raf. var. hieraciifolia w  d 1 I
Erigeron strigosus Muhl. d 1
Eupatorium rugosum Houttuyn. w  * 4
Euthamia graminifolia (L.) Nutt. * 3 1 2
Prenanlhes altissima L. w 2 2 2 1 2 2
Solidago canadensis L. var. canadensis w 2

Solidago macrophylla Pursh w  * 2 1

Solidago rugosa P. Mill, subsp. rugosa var. rugosa d 2 2
Taraxacum officinale G.H. Weber ex Wiggers d 1

Balsam inaceae (Touch-m e-not Family)
Impatiens capensis Meerb. w  ** 3

Betulaceae (B irch Family)
Betula alleghaniensis Britt. 5 2 3 2 2 4

Betula cordifolia Regel
[=BetuIa papyrifera var. cordifolia (Regel) Fern.] 2 3 2
Betula papyrifera Marsh. 2 3 3 3
Corylus americana Walter 1
Ostrya virginiana (P. M ill.) K. Koch. 1

Brassicaceae (M ustard  Family)
Cardamine pensylvanica Muhl. w  ** 2 1

Caprifoliaceae (Honeysuckle Family)
Diervilla lonicera P. Mill. * 3 1 2

Lonicera canadensis Bartr. ex Marsh. 1 3 3 3 2 3

Sambucus racemosa subsp. pubens var. pubens 
(Michx.) Koehne *

3 3 3 2 2 3

Viburnum alnifolium Marsh. 
[=Vibumum lantanoides Michx.]

5 5 5 5 5 5

Viburnum nudum var. cassinoides (L.) T. & G. * 3

C aryophyllaceae (Pink Family)
Cerastium arvense L. d 1

C ornaceae (Dogwood Family)
Cornus alternifolia L. f. ■k 3 2 2 1 1 1

Cornus canadensis L. w v * 2
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D Bowl SP LB Bm SPm W6
E ricaceae (H eath Family)
Epigaea repens L. w v d 1
Gaultheria hispidula (L.) Muhl. ex Bigelow w 1
Vaccinium angustifolium A it 1

Fagaceae (Beech Family)
Fagus grandifolia Ehrh. 5 5 4 5 5 4
Quercus rubra L. 2

Fum ariaceae (Fum atory  Family)
Dicentra cuculiaria (L.) Bemh. W  V * 2

G rossulariaceae (G ooseberry Fam ily)
Ribes lacustre (Pers.) Poiret. *jfc 2 2
Ribes glandulosum Grauer ** 1

L ab iatae  (M in t Family)
Lycopus uniflorus Michx. w  ** 3
Scutellaria lateriflora L. w  ** 2

M onotropaceae (Ind ian  P ipe Fam ily)
Monotropa uniflora L. w  * 1 1 2 2 1 2

O leacede (Olive Family)
Fraxinus americana L. * 1 4 3 3

O nagraceae (Evening P rim rose Family)
Circaea alpina L. w  ** 3 3 2 2

Epilobium ciliatum var. ciliatum Raf. w  ** 2
Epilobium glandulosum Lehm. w  ** 2 2

O robanchaceae (B room -rape Fam ily)
Epifagus virginiana (L.) W. Bart. w I 1 2 3 1

O xaiidaceae (W ood-sorrel Family)
Oxalis acetocella L. W  V * 5 3 4 2 3 4

P ortulacaceae (Purslane Family)
Claytonia caroliniana Michx. var. caroliniana w v  * 1 3

P rim ulaceae (Prim rose Family)
Trientalis borealis Raf. w 3 1 4 4 4 3

Pyrolaceae (Shinleaf Family)
Pyrola elliptica Nutt. w 2 3 4

Pyrola rolundifolia L. w 2
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D Bowl SP LB Bm SPm W 6
R anunculaceae (B uttercup Family)
Actaea pachypoda Ell. w  * 2 3
Actaea rubra (Ait.) Willd. w  * 2
Anemone quinquefolia L. w v  * 2
Coptis trifolia subsp. groenlandica (Oeder) Hultdn W  V * 4 1
Thalictrum pubescens Pursh [= T. polygamum 
Muhl.l

w  ** 3 1

Rosaceae (Rose Family)
Amelanchier laevis Wieg. d 3 3
Prunus pensylvanica L. f. d 1 2 2 2 1
Rubus elegantulus Blanch. d 1
Rubus idaeus subsp. strigosus (Michx.) Focke d 1 3 2 2 2
Rubus pubescens Raf. w  * 2 1 3 2 3
Sorbus americana Marsh. * 2 3 3 1
Spiraea tomentosa L. * 1

R ubiaceae (M adder Family)
Galium asprellum Michx. w  ** 3 1 1 1 1
Galium circaezans Michx. w  ** 2

Galium triflorum Michx. w  ** 3
Mitchella repens L. w v 1 1 3 3 2

Salicaceae (W illow Family)
Populus grandidentata Michx. d 2

Saxlfragaceae (Saxifrage Family)
Chrysosplenium americanum Schwein. ex Hook. w v * * 4 2 1

Mitella nuda L. W  V * * 1

Tiarella cordifolia L. w v  * 4

Scrophulariaceae (Figw ort Family)
Chelone glabra L. w  ** 3 2

Tiliaceae (Linden Family)
Tilia americana L. * 3

Violaceae (Violet Family)
Viola cucullata Ait. W  v ** 3 3 2 3
Viola macloskeyi subsp. pallens (Banks ex DC.) 

M.S.Baker
w  v ** 3 4 2 I 2 2

Viola rotundifolia Michx. W V 4 2 2 2
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D Bowl SP LB Bm SPm W6
LILIOPSIDA (Monocotyledons)

A raceae (Arum  Fam ily)
Arisaema triphyllum (L.) Schott subsp. triphyllum w v * * 1

C yperaceae (Sedge Family)
Carex arctata Boott ex Hook. w  * 2 2 1 3 3 1
Carex bnmnescens (Pers.) Poir. w  * 1 2 1 3 2
Carex communis Bailey w 1 3 3 2
Carex debilis Michx. 3
Carex deflexa Homem. ** 2 3
Carex gynandra Schwein. w  ** 2 1 1
Carex intumescens Rudge w  * 1 1 3 2
C a re t leptonervia (Fern.) Fern. w 2
Carex scabrata Schwein. w  ** 2 2 2
C a re t sp. 1 2
C a re t sp. 2 1

Liliaceae (Lily Fam ily)
Climonia borealis (Ait.) Raf. w v 4 2 4 2 3 4
Erythronium americanum Ker-Gawl. w v 5 4 2 4
Maianthemum canadense Desf. w v 3 2 4 4 4 3
Medeola virginiana L. W  V * 4 4 3 3 3 4
Polygonatum pubescens (Willd.) Pursh w v  * 3 2 1
Smilacina racemosa (L.) Desf. w  * 3 3 2 2 3
Streptopus amplexifolius (L.) DC. w v * 2 1 I I
Streptopus roseus Michx. W  V 4 2 3 3 3 3
Trillium erectum L. W  V 3 3 2 3 3 3
Trillium undulatum Willd. W  V 2 3 2 3 3 2
Uvularia sessilifolia L. w v 5 5 4 4 3 4
Veratrum viride Ait. w  ** 1

O rchidaceae (O rchid  Family)
Cypripedium acaule Ait. W  V 1 1 2 2 1
Goodyera repens (L.) R. Br. ex Ait. f. w 2
Habenaria orbiculata (Pursh) Torr. 
[=Platanthera orbiculata (Pursh) Lindl.] w  * 1

Poaceae (G rass Family)

Brachyelytrum erectum (Schreber) P. Beauv. 
var. septentrionale w  * 1 2 2 2

Cinna latifolia (Trevir.) Griseb. w  * 2 1 3
Glyceria melicaria (Michx.) F. T. Hubbard ** 3
Unknown sp. 1 1
Unknown sp. 2 3
Unknown sp. 3 2
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Appendix B. Complete and unaltered TWINSPAN two-way ordered table for the total 

flora, based on ranked abundance values of 147 species (only 100 species are output in 

the table). Order of the six samples (sites) is 3 Lafayette Brook, 4 Bowl-match, 5 Shingle 

Pond-match, 6 HBEF W6,1 The Bowl, 2 Shingle Pond.

345612

30 Carex debilis 4—  000000

134 Tiarella cordifolia 5—  000000

46 Coptis trifolia var. groenlandica 52—  000001

82 Lycopodium annotinum 3-4— 00001

97 Panax trifolius 2—2— 00001

55 Dryopteris carthusiana —32— 000100 

8 Amelanchier laevis -44-- 000101

83 Lycopodium clavatum -4—  000101 

111 Pteridium aquilinum-44— 000101

125 Solidago rugosa ssp. rugosa -33— 000101

84 Lycopodium obscurum 244— 00011 

101 Pinus strobus 233--- 00011

93 Osmunda cinnamomea 334-3 00100

98 Phegopteris connectilis 444532 00100 

122 Smilacina racemosa 4334-4 00100

133 Thelypteris novaboracensis 444322 00100

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136 Trientalis borealis 555442 00100 

22 Betula papyrifera 444-3- 001010 

25 Brachyelytrum septentrionale 333--2 001010 

29 Carex communis 443--2 001011 

88 Mitchella repens -44322 0011

50 Cypripedium acaule 332-22 010000 

128 Streptopus amplexifolius 222-3- 010000

1 Abies balsamea 433332 010001 

5 Acerspicatum 444332 010001 

27 Carex arctata 244233 010001 

45 Clintonia borealis 534553 010001

51 Dennstaedtia punctilobula 234424 010001 

65 Erythronium americanum 53-56- 010001 

70 Galium asprellum 2222-4 010001

78 Huperzia lucidula 444663 010001 

81 Lonicera canadensis 443424 010001 

86 Maianthemum canadense 555443 010001 

90 Monotropa uniflora 332322 010001 

119 Rubus pubescens 434-32 010001 

129 Streptopus roseus 444453 010001

138 Trillium undulatum 344334 010001

139 Tsuga canadensis 344223 010001 

143 Viburnum alnifolium 666666 010001

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 Acerpensylvcmicum 545365 010010

3 Acerrubrum 33-333 010010

4 Acer sciccharum 666566 010010 

10 Aralia midicaiilis 355456 010010 

13 Aster acuminatus 445456 010010 

18 Athyriumfilix-femina 4-3233 010010 

20 Betula allegheniensis 433563 010010 

32 Carex gynandra 2-23- 010010

47 Cornus alternifolia 322243 010010 

56 Dryopteris intermedia 53-535 010010 

68 Fagus grandifolia 566566 010010 

87 Medeola virginiana 444555 010010 

96 Oxalis acetocella 534564 010010 

99 Picearubens 333343 010010

109 Prenanthes altissima 323333 010010

110 Prunus pensylvanica 332-23 010010 

118 Rubus idaeus ssp. strigosus 3-3324 010010

120 Sambucus racemosa ssp. pubens 433444 010010 

137 Trillium erectum 344444 010010 

140 Uvularia sessilifolia 554566 010010 

147 Viola rotundifolia 3-335- 010010 

19 Athyrium thelypteroides -34-5- 010011 

28 Carex brunnescens 243-23 010011
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33 Carex inlumescens 4--322 010100 

76 Gymnocarpium dryopteris 522-32 010100 

21 Betula cordifolia 4--33- 010101

106 Polypodium virginianum 5-3-4- 010101 

44 Claytonia caroliniana 4 -2 -  01011

107 Polystichum acrostichoides 3—2- 01011 

59 Epifagus virginiana -34222 0110

92 Onoclea sensibilis --3-2 0110

6 9 Fraxirtusamericana -4425 OHIO

79 Ilex verticillata var. verticillata - 2 - 2  01110

63 Erichtites hieraciifolia -2—2 01111

41 Cinna latifolia —432 1000

58 Dryopteris booitii - 4 - 5  1000

146 Viola macloskeyi var. pallens 323345 1000

112 Pyrola elliptica -5-34 1001

126 Sorbus americana 4-2-34 1010

145 Viola cucullata 3-4-44 1010

105 Polygonatum pubescens 3 -2 4  1011

116 Ribes lacustre 3 - 3 -  1011

31 Carex deflexa 4— 3 110

35 Carex scabrata 3—33 11100

54 Dryopteris campyloptera 4—52 11100

132 Thalictrum pubescens 2 -4 -  11100
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42 Circaea alpina 2-3-44 111010 

124 Solidago macrophylla 2—34 111010 

53 Diervilla lonicera 23-54 111011 

6 Actaeapachypoda — 34 1111 

11 Actaea rubra — 5 1111 

26 Cardamine pennsylvanica — 32 1111

39 Chelone glabra — 43 1111

40 Chrysosplenium americanum --253 1111 

62 Epilobium glandulosum — 33 1111

66 Eupatorium rugosum — 5- 1111

67 Euthamia graminifolia — 42 1111 

72 Galium triflorum - — 4-  1 1 1 1

74 Glyceria melicaria — 4- 1111 

80 Impatiens capensis — 4- 1111 

85 Lycopus uniflorus -----4 1111

000011

0111
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