Spring 2013

Sensitivity Analysis of a Proposed Model for Removal Efficiency of Trihalomethanes (THMs) Using Spray Aeration

Aidan Cecchetti

University of New Hampshire - Main Campus, ark58@wildcats.unh.edu

Follow this and additional works at: https://scholars.unh.edu/honors

Part of the Environmental Engineering Commons

Recommended Citation

https://scholars.unh.edu/honors/111

This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Sensitivity Analysis of a Proposed Model for Removal Efficiency of Trihalomethanes (THMs) Using Spray Aeration

Abstract
Trihalomethanes (THMs) form in drinking water treatment systems as a byproduct of chlorination and are problematic from a public health perspective due to their carcinogenic potential and their potential for additional formation throughout distribution systems. Recently, regulations have tightened on THMs in an attempt to reduce the risk of exposure for consumers at the far ends of distribution systems. Due to widespread use of chlorine and the reluctance of drinking water providers to overhaul current treatment systems, research has been undertaken to investigate post-treatment removal of THMs. One such method is spray aeration, whereby water is recycled in water storage tanks by spraying it through showerheads. Using a spray aeration model and a simple sensitivity analysis, the following study evaluates the influence of various parameters on the model's output. It was determined that the configuration and magnitude of the recycle flow were the most influential parameters, while spray angle and the distribution of THM species (speciation) were the least influential. These results are important for practitioners as they can help them to determine the most important design parameters for spray aeration systems. Additionally, the following study elucidates the advantages of spray aeration in the removal of brominated THM species.

Keywords
THMs, spray aeration, drinking water, mass balance, sensitivity analysis, CEPS, Environmental Engineering, Environmental Engineering: Municipal Processes

Subject Categories
Environmental Engineering

Comments
The primary content of this work has been removed at the request of the author. The abstract, table of contents, and references are available.
Sensitivity Analysis of a Proposed Model for Removal Efficiency of Trihalomethanes (THMs) Using Spray Aeration

A Senior Honors Thesis Presented to the University Honors Program
University of New Hampshire

In Partial Fulfillment of the Requirements for Honors in Environmental Engineering

By Aidan Cecchetti
College of Engineering and Physical Sciences
University of New Hampshire

Faculty Advisor: M. Robin Collins

Spring 2013
Abstract

Trihalomethanes (THMs) form in drinking water treatment systems as a byproduct of chlorination and are problematic from a public health perspective due to their carcinogenic potential and their potential for additional formation throughout distribution systems. Recently, regulations have tightened on THMs in an attempt to reduce the risk of exposure for consumers at the far ends of distribution systems. Due to widespread use of chlorine and the reluctance of drinking water providers to overhaul current treatment systems, research has been undertaken to investigate post-treatment removal of THMs. One such method is spray aeration, whereby water is recycled in water storage tanks by spraying it through showerheads. Using a spray aeration model and a simple sensitivity analysis, the following study evaluates the influence of various parameters on the model’s output. It was determined that the configuration and magnitude of the recycle flow were the most influential parameters, while spray angle and the distribution of THM species (speciation) were the least influential. These results are important for practitioners as they can help them to determine the most important design parameters for spray aeration systems. Additionally, the following study elucidates the advantages of spray aeration in the removal of brominated THM species.
Acknowledgements

Harrison Roakes,
for his meticulous development of the model,
as well as his support and advice throughout this project.

M. Robin Collins,
for his expert advice and support.

Jihyon Im,
for her constant support, assistance, advice and friendship,
and for convincing me to start working on and finally complete this project.

and

My friends and family,
for their love and support.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Glossary of Terms and Acronyms</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables and Figures</td>
<td>v</td>
</tr>
<tr>
<td>List of Equations</td>
<td>vi</td>
</tr>
<tr>
<td>Section 1: Introduction and Background</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 A Brief History of Regulations on THMs</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Formation and Management of THMs</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Post-treatment Removal of THMs</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Modeling THM Removal Using Spray Aeration</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Results and Conclusions</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Further Recommendations</td>
<td>8</td>
</tr>
<tr>
<td>Section 2: Review of Relevant Literature</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Air Stripping Systems</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1 Mass Transfer Equilibrium</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 Henry’s Law and the Two-Film Model of Mass Transfer</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3 Spray Aeration THM Removal Predictions</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Mass Balance Modeling Principles</td>
<td>16</td>
</tr>
<tr>
<td>Section 3: Mass Balance Foundation of the Spray Aeration THM Removal Model</td>
<td>18</td>
</tr>
<tr>
<td>3.1 Basic Mass Balance Equation</td>
<td>18</td>
</tr>
<tr>
<td>3.2 Model Development</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Development of the TTHM\textsubscript{formed} Term</td>
<td>22</td>
</tr>
<tr>
<td>3.4 Hydraulic Profiles of Systems Modeled</td>
<td>23</td>
</tr>
<tr>
<td>3.5 Removal Efficiencies and Temperature Dependence</td>
<td>24</td>
</tr>
<tr>
<td>Section 4: Sensitivity Analysis – A Case Study</td>
<td>25</td>
</tr>
<tr>
<td>4.1 Introduction to Sensitivity Analyses</td>
<td>25</td>
</tr>
<tr>
<td>4.2 Model Assumptions</td>
<td>26</td>
</tr>
<tr>
<td>4.3 Sensitivity Analysis Outputs</td>
<td>26</td>
</tr>
<tr>
<td>4.4 Results: Influence of Input Parameters</td>
<td>33</td>
</tr>
<tr>
<td>Section 5: Summary and Conclusions</td>
<td>38</td>
</tr>
<tr>
<td>5.1 Conclusions</td>
<td>38</td>
</tr>
<tr>
<td>5.2 Further Recommendations</td>
<td>38</td>
</tr>
<tr>
<td>References</td>
<td>39</td>
</tr>
</tbody>
</table>
Glossary of Terms and Acronyms

air-to-water ratio The physical parameter based on the ratio of either the volume or the volumetric flow rate of air versus that of water.
biota Organisms in the environment.
brominated Species of trihalomethanes that are partly comprised of bromine.
CHCl₃ Chloroform; a species of THMs.
CHBrCl₂ Bromodichloromethane; a species of THMs.
CHBr₂Cl Dibromochloromethane; a species of THMs.
CHBr₃ Bromoform; a species of THMs.
chloramination The use of chlorine in the combined form with ammonia, chloramines, for disinfection.
CSTR Completely-stirred tank reactor.
DBPs Disinfection by-products; chemicals formed due to interactions between disinfectants and naturally occurring organic matter.
DOC Dissolved organic carbon.
dₛₘₖₐₜ Sauter mean diameter; the diameter of a droplet that has the same volume to surface area as the total spray coming out of a nozzle.
EPA The United States Environmental Protection Agency
Fick’s First Law A physical law that controls the rate at which dissolved masses diffuse across a concentration gradient.
fulvic acids A type of organic acid that forms due to the breakdown of organic matter in natural waters.
Henry’s Law Physical chemistry principle that controls the extent to which a dissolved volatile substance will evacuate from the solvent it is dissolved in (typ. water).
humic acids A type of organic acid that forms from the breakdown of organic matter waters.
IARC International Agency for Research on Cancer
lignin A natural byproduct of the breakdown of wood plants. Precursor to humic and fulvic acids.
NDMA N-nitrosodimethylamine; a DBP and carcinogen that may be caused by chloramination.
NOM Naturally occurring organic matter; carbon based substrates that are present in drinking water source waters.
pathogens Disease causing microorganisms.
speciation The relative amounts of various trihalomethane species that are present in waters being treated.
THMs Trihalomethanes; a type of DBP formed by chlorination.
THMFP Trihalomethane formation potential; the upper concentration limit for the amount of THMs that can be formed in a water based on its water quality.
TTHM Total trihalomethane concentrations.
TTHM_{formed} Mass of trihalomethanes formed based on the THMFP.
VOCs Volatile organic carbon substances.
µg/L Micrograms per liter.
µm Micrometers.
[Content removed.]
References

