Lobster movements in response to a hurricane

Winsor H. Watson III
University of New Hampshire, Durham, win.watson@unh.edu

Steven H. Jury
University of New Hampshire, Durham

William Hunting Howell
University of New Hampshire, Durham, William.Howell@unh.edu

Follow this and additional works at: https://scholars.unh.edu/jel

Recommended Citation

This Article is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Jackson Estuarine Laboratory by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
NOTE

Lobster movements in response to a hurricane

Steven H. Jury*, W. Hunting Howell, Winsor H. Watson III**

Zoology Department, Center for Marine Biology, University of New Hampshire, Durham, New Hampshire 03824, USA

ABSTRACT: There are several anecdotal reports of the American lobster Homarus americanus moving to deeper water, or suffering increased mortality, in response to storm events. It has also been reported that changes in salinity and temperature, similar to those resulting from storm events, can elicit avoidance behaviors. In 1991, during an ongoing lobster study, Hurricane Bob caused a substantial drop in salinity in the Great Bay Estuary, New Hampshire, USA. This freshet, and possibly related environmental perturbations, was associated with increased movement of lobsters down the estuary toward the coast and a rise in catch in areas closer to the coast. Thus, our data support the hypothesis that storms can induce movements of lobsters and subsequent transient shifts in the demographics of the lobster population.

KEY WORDS: Estuary · Hurricane · Lobster · Movements

It is generally accepted that seasonal changes in the physico-chemical environment, particularly temperature and salinity, affect the catch and movements of the American lobster Homarus americanus (McCleese & Wilder 1958, Krouse 1973, Munro & Therriault 1983, Reynolds & Casterlin 1985, Ennis 1986, Robichaud & Campbell 1991, Campbell 1992, DiBacco & Pringle 1992, W. Watson, H. Howell & A. Vetrovs unpubl. data). Intense storms often cause transient drops in salinity and changes in water temperature, and several anecdotal reports suggest that these events trigger movements of lobsters. For example, both Cooper et al. (1975) and Ennis (1984) observed that adult lobsters in inshore regions undertake small-scale movements downslope from shallow waters to deeper areas in response to stormy conditions. It was also noted that when these storms occur during the summer, the lobsters usually return to shallow waters shortly after the event (Ennis 1984). After particularly severe storms, there have been reports of many dead lobsters washed up on beaches in New Brunswick (Prince 1897) and on Prince Edward Island, Canada (D. J. Scarratt pers. comm. reported in Drinkwater et al. 1991), and the rapid declines in salinity associated with some storms have reportedly caused lobster mortalities when the freshwater layer reached low enough to cover their burrows (Thomas 1968, Thomas & White 1969). Taken together, these reports suggest that during storms lobsters move to deeper water which is colder, calmer and has a higher salinity. The purpose of this study was to collect movement and catch data which might improve our understanding of this behavior.

Catastrophic storms, particularly hurricanes, may perturb the inshore environment by several means including increased turbidity (Tabb & Jones 1962, Saloman & Naughton 1977), depletion of oxygen due to decomposition of exposed or resuspended organic sediments or detritus (Tabb & Jones 1962, Saloman & Naughton 1977, Knott & Martore 1991), physical disturbance due to tidal, wind and wave action (Saloman & Naughton 1977, Yeo & Risk 1979, Lowery 1992), and low salinities caused by heavy rains and runoff (Saloman & Naughton 1977, Knott & Martore 1991). The most obvious environmental impact of severe storms (e.g. hurricanes) on temperate estuaries is the occurrence of freshets (Witham et al. 1968, Boesch et al. 1976, Knott & Martore 1991) which cause a rapid, and large, drop in salinity.

Lobsters are limited osmoregulators (Dall 1970) and when they are exposed to decreased salinity there is a drop in blood osmolarity and an increase in the rate of oxygen consumption (Jury et al. 1994a). It has also been demonstrated that lobsters actively avoid salinities below approximately 20 to 17 ppt (Reynolds & Casterlin 1985, Jury et al. 1994b). The upper lethal temperatures for adults range from 20.6 to 30.5°C and...
the lower lethal salinities range from 6.0 to 16.4 ppt (McCleese 1956). The lethal salinity (LD₂₀) for Stage I lobsters is approximately 17 ppt and this decreases to between 10.5 and 12 ppt in Stages IV and V (Charmantier et al. 1988). Newly hatched larvae avoid salinities of less than 21.4 ppt (Scarratt & Raine 1967) and the metabolic stress of low salinity is thought to be greatest for larvae and molting individuals (Scarratt & Raine 1967, Charmantier et al. 1988). Finally, the warmer the water, the less tolerant lobsters are to drops in salinity (McCleese 1956). Therefore, summer storm events are likely to result in potentially lethal changes in the ambient salinity and temperature for inshore lobsters.

On August 19, 1991, Hurricane Bob passed over the New Hampshire, USA, coast and the intense rains associated with the storm caused the salinity in the upper Great Bay Estuary, New Hampshire, to drop to close to 0 ppt; and, it remained below 10 ppt for more than 1 wk (Fig. 1). After a lag of approximately 4 d, freshets from the 7 rivers emptying into the estuary even caused a drop in salinity from 31 to 20 ppt at the coastal terminus of the Great Bay estuarine system. There was also a concurrent decrease in temperature in the upper estuary, but not in the lower estuary (Fig. 1). Because this hurricane occurred during an ongoing study of the temporal and spatial distribution of Homarus americanus in this estuary, we have been able to document its effects on lobster movements and catch per unit effort (CPUE).

Although our data support the notion that severe storms induce lobster movements (Cooper et al. 1975, Ennis 1984), this study was not intentionally designed to test the effect of storms on lobster movements and catch. Indeed, logistical problems abound in studies of storm events due to their unpredictable nature, difficulty in finding controls, and often the inability to sample during the storm (Boesch et al. 1976). Nonetheless, the data presented have been interpreted conservatively and support the limited observational data showing that lobsters move short distances in response to episodic environmental perturbations caused by storms.

Methods. Lobsters were trapped at 5 sampling sites within the Great Bay Estuary and coastal waters of New Hampshire (Fig. 2). All were caught in standard, vinyl-coated wire commercial traps baited with hermit crab meat and tended 2 to 3 times per week. Lobsters were measured, sexed, molt-staged, tagged using individually numbered modified sphyran tags (Scarratt 1970), and released immediately at the same location. Some additional tagging and trapping was carried out on commercial lobster boats and the tag number and location of recaptured animals was reported by local lobstermen or University of New Hampshire (UNH) personnel. As all lobsters below the legal size limit were immediately released, some lobsters were recaptured (and their location reported) on several occasions. Bottom salinity and temperature were recorded daily (Fig. 1) in the upper Great Bay (Endeco Model 972 CTD meter; daily mean computed from hourly readings) and at the UNH Coastal Marine Laboratory near the mouth of Portsmouth Harbor, New Hampshire (precision mercury thermometer and a temperature compensated refractometer). In the estuary both temperature and salinity exhibited tidal fluctuations with a range of up to 5°C and 5 ppt, respectively. The magnitude of this tidal variability diminished toward the coast.

To examine hurricane effects, lobster data collected in 1989, 1990, and 1992 were compared with data collected in 1991, the year of Hurricane Bob. For each year directional movement information was extracted

Fig. 1. Daily salinity (ppt) and temperature (°C) in the Great Bay Estuary and New Hampshire Coastal Waters (Portsmouth Harbor) between July 1 and September 30, 1990–1992. BOB: hurricane, August 19, 1991.
only from individuals that were tagged between July 1 and August 20 and subsequently recaptured between August 21 and September 30. This time frame was chosen to bracket the time of lowest salinity associated with the hurricane. The numbers of recaptured lobsters that had not moved, or that had moved either upstream or downstream relative to their tagging location, were compared within and between years using chi-squared contingency tests (Sokal & Rohlf 1981). We were also able to 'track' the movements of individual lobsters (n = 13) that were recaptured on multiple occasions before and after the storm in 1991.

CPUE, measured as the number of lobsters caught per trap haul, was determined by dividing the combined weekly catch from our own traps by the combined number of traps fished during that week. Typically, we pulled our traps 2 to 3 times each week and we had 3 to 4 traps at each sampling site. Data from adjacent sampling locations (Fig. 2) were pooled in order to group the data into upper, middle, and lower estuarine areas, which yielded twice as many trap hauls at the estuary and river stations than at the coastal site (upper = 522, middle = 590, lower = 322). Again, a month long window of time before and after Hurricane Bob was established for comparison between years from 1989 to 1992.

Results. Lobster movements after Hurricane Bob in 1991 were markedly different than they were in 1989, 1990, and 1992 (Fig. 3). First, compared with other years, a significantly greater number than expected had moved from their tag/release location during this period of time (compare hatched bars, Fig. 3, p < 0.001). In a typical year, between 50 and 70% of the lobsters tagged during the summer were found in a new location a month later, but during 1991 more than 80% of the individuals tagged moved. Second, of the lobsters that did move, a greater number than expected moved downstream toward the coast than upstream into the estuary (p < 0.001). While it is common for more lobsters to move downstream than upstream at this time of the year (Watson & Howell unpubl. data), the number of individuals moving downstream was significantly greater in 1991 than in 1989, 1990, or 1992 (Fig. 3). The lower number of recaptured lobsters in 1989 (when we were beginning our tagging program) and 1992 (when the program was ending) most likely reflect poorer communication with lobstermen, not a change in the number tagged or catchability. Finally, the limited data obtained from the lobsters that were released and then recaptured on several subsequent occasions also indicate a general downstream movement associated with the hurricane. In the months preceding the storm, 8 of these 13 lobsters were repeatedly recaptured near their original tagging locations. Following the storm, all subsequent recaptures were made some distance downstream in a deeper, higher salinity location. Thus, all of our movement data, based upon both single and multiple recaptures, indicate that Hurricane Bob caused a general pattern of movement down the estuary.

The CPUE data also support the contention that lobsters were moving downstream after the storm (Fig. 4). In 1991, there was an increase in catch in the lower...
Spiny lobsters appear to avoid low salinity conditions caused by storms. The mechanisms and ultimate cause of the observed downstream movement of lobsters are uncertain, adverse environmental conditions caused by the storm runoff appear to be the most plausible explanation. It is likely that lobsters inhabiting estuaries are near the extremes of their zone of tolerance (McCleese 1956, MacKenzie & Moring 1985). If we assume that waters were fully oxygenated in the Great Bay Estuary, which is tidally well mixed so that hypoxia is rarely recorded (Short 1992), then we may extrapolate the lethal levels of temperature and salinity for lobsters acclimated to pre-storm conditions [based upon the findings of McCleese (1956)] to be from 27.8 to 30.5°C and from 8.2 to 16.4 ppt. The drop in temperature and salinity caused by Hurricane Bob may not have reached lethal levels in the lower estuary (where the salinities were comparatively high and temperatures low), but they almost certainly did in the upper estuary (where the salinities were comparatively low and temperatures high).

It is unknown how the severe and unseasonal reductions in temperature and salinity caused by storms affect lobster behavior. Lobsters' ability to tolerate abrupt temperature changes is limited by the rate of change (McCleese). Lobsters can survive rapid increases of 16°C and decreases of 20°C (Aiken & Waddy 1986). However, smaller temperature changes may be important environmental cues that trigger certain behavioral and/or physiological responses (McCleese & Wilder 1958), including the well-documented seasonal migrations of spiny lobsters *Panulirus argus* (Kanciruk & Herrnkind 1978). In contrast, the low salinities which resulted from the hurricane were potentially lethal in some areas and it is likely that lobsters either moved to deeper, more coastal waters where the salinity was higher, or died. Although we have no mortality data, we believe that it is likely that some lobsters, particularly those near molting which extends from June to July, moved to previously occupied sites following a summer storm; similar to post-storm SCUBA observations in other areas (Emnis 1984, Knott & Martore 1991).

Discussion. While the mechanisms and ultimate cause of the observed downstream movement of lobsters are uncertain, adverse environmental conditions caused by the storm runoff appear to be the most plausible explanation. It is likely that lobsters inhabiting estuaries are near the extremes of their zone of tolerance (Ennis 1984, Knott & Martore 1991). Bob: hurricane, August 1991.

![CPUE graphs](image)
closely resembling that which we observed for *Homarus americanus*.

At the population level, Sutcliffe (1973) found a positive correlation between discharge from the St. Lawrence River, Canada, and landings of American lobsters in Quebec, Canada, 9 yr later. He speculated that in years when there was greater discharge, there were more nutrients added, and this resulted in more food for larval lobsters. Subsequently, Sheldon et al. (1982) suggested that the underlying mechanism may be associated with discharge-related temperature changes rather than nutrient loading. More recently, Drinkwater et al. (1991) have shown that the relation-

ship between river discharge and landings first reported by Sutcliffe (1973) has not held since 1984, and they suggest that lobster populations may be responding to more widespread environmental or ecosystem changes. Whatever the underlying mechanism, the close relationship between river discharge and lobster landings that held for about 40 yr is provocative, and suggests that seasonal variations in river runoff can be directly, or indirectly, affecting recruitment to local stocks.

The effect of episodic environmental disturbance caused by storms may be more pertinent to the life history of estuarine and coastal decapods in temperate areas than the paucity of literature suggests. In the Great Bay Estuary the average monthly precipitation for the months of July, August, and September from 1981 to 1990 was 8.53 cm ± 4.57 SD (based upon National Weather Service monitoring in Durham, NH; NOAA 1981–1990). However, in this 10 yr span there were 5 instances when the precipitation in any one summer month was >14.0 cm. During these months the salinity in the Great Bay Estuary probably dropped significantly, and may have triggered movements similar to those reported in this study. Thus, these relatively common environmental disturbances are likely to have both a short- and long-term impact on the distribution and/or recruitment of estuarine and nearshore decapods, and they should be considered more thoroughly in future studies.

Acknowledgements. We extend special thanks to the faculty and staff of the Zoology Department, Jackson Estuarine Laboratory, and the Coastal Marine Laboratory of the University of New Hampshire. In particular, we thank Rich Langan for providing temperature and salinity data and continuously helping us with our boats, Joanne Delaney for accurately measuring temperature and salinity at the Coastal Marine Laboratory, and all of the students who entered thousands of pieces of data during the past 5 yr. We are especially indebted to all the New Hampshire lobstermen who provided tag/reapture data. This manuscript was improved by the comments of several anonymous reviewers. This is contribution no. 309 of the Center for Marine Biology/Jackson Estuarine Laboratory series.

LITERATURE CITED

This note was presented by R. B. Forward, Beaufort, N. Carolina, USA.