Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

Lahiru S. Wijedasa
National University of Singapore

Jyrki Jauhiainen
University of Helsinki

Mari Kononen
University of Helsinki

Maija Lampela
University of Helsinki

Harri Vasander
University of Helsinki

Follow this and additional works at: https://scholars.unh.edu/ersc

Recommended Citation

This Article is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars’ Repository. It has been accepted for inclusion in Earth Systems Research Center by an authorized administrator of University of New Hampshire Scholars’ Repository. For more information, please contact Scholarly.Communication@unh.edu.
LETTER TO THE EDITOR

Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

LAHIRU S. WIJEDASA1,2,3,*, JYRKI JAUVIHAJANKI4, MARI KÖNÖNEN4, MAIJA LAMPOLA4, HARRI VAASANDER4, MARIE-CLAIRE LEBLANC5, STEPHANIE EVERS6,7,8, THOMAS E. L. SMITH9, CATHERINE M. YULE7,10, HELENA VARKKEY7,11, MASSIMO LUPASCU12, FAIZAL PARISH13, IAN SINGLETON14, GOPALASAMY R. CLEMENTS3,6,10,15,16, SHEEMA ABDUL AZIZ3,6,16, MARK E. HARRISON17,18, SUSAN CHEYNE17, GUSTI Z. ANSHARI19, ERIK MEIJARDE20,21, JENNY E. GOLDSTEIN22, SUSAN WALDRON23, KRISTELL HERGOUALCH24, RENE DOMMAIN25, STEVE FROLKING26, CHRISTOPHER D. EVANS27, MARY ROSE C. POSA1, PAUL H. GLASER28, NYOMAN SURYADIPUTRA29, REZA LUBIS29, TRULY SANTIKA21, RORY PADFIELD7,30,31, SOFYAN KURNIANTO24,32, PANUT HADISISWOYO33, TECK WYN LIM34, SUSAN E. PAGE18, VINCENT GAUCI35, PETER J. VAN DER MEER36, HELEN BUCKLAND37, FABIEN GARNIER38, MARSHALL K. SAMUEL6,7,38,39, LIZA NURITI LIM KIM CHO038, PATRICK O’REILLY7,40,41, MATTHEW WARREN42, SURIN SUKSUWAN43, ELHAM SUMARGA44, ANUJ JAIN2,45, WILLIAM F. LAURANCE46, JOHN COUWENBERG47, HANS JOOSTEN47, RONALD VERNIMMEN48, ALJOSJA HOOIJER48, CHRIS MALINS49, MARK A. COCHRANE50, BALU PERUMAL51, FLORIAN SIEGERT52,53, KELVIN S.-H. PEH54,55, LOUIS-PIERRE COMEAU56, LOUIS VERCHOT57, CHARLES F. HARVEY58,59, ALEX COBB59, ZEEHAN JAFAAR1,60, HENK WÖSTEN61, SOLICHIN MANURJ62, MORITZ MÜLLER63, WIM GIESENF44, JACOB PHELPS65, DING LI YONG6,3,66, MARCEL SILVIUS67, BEATRICE M. M. WEDEUX68, ALISON HOYT58,59, MITSURU OSAKI69, TAKASHI HIRANO69, HIDENORI TAKAHASHI70, TAKASHI S. KOHYAMA69, AKIRA HARAGUCHI71, NUNUNG P. NUGROHOS7, DAVID A. COOMES68, LE PHAT QUOI72,73, ALUE DOHONG74, HARIS GUNAWAN74, DAVID L. A. GAVEAU24, ANDREAS LANGNER75, FELIX K. S. LIM76, DAVID P. EDWARDS76, XINGLI GIAM77, GUIDO VAN DER WERF78, RACHEL CARMENTA24, CASPAR C. VERWER79, LUKE GIBSON80, LAURE GANDOIS81, LAURA LINDA BOZENA GRAHAM82, JHANSON REGALINO82, SERGE A. WICH8,83, JACK RIELEY84, NICHOLAS KETTRIDGE85, CHLOE BROWN84, ROMAIN PIRARD24, SAM MOORE86, B. RIPOLL CAPILLA17, UWE BALLHORN53, HUA CHEW HO87, AGATA HOSCILO88, SANDRA LOHBERGER53, THEODORE A. EVANS39, NINA YULIANTI90, GRACE BLACKHAM91, ONRIZAL92, SIMON HUSSON17, DANIEL MURDIYARSO24,93, SUNITA PANGALA33, LYDIA E. S. COLE24, LUCA TACCONI93, HENDRICK SEGAGH91, PRAYOTO TONOTO94, JANICE S. H. LEE97, GERALD SCHMILEWSKI98, STEPHAN WULFFRAAT99, ERIANTO INDRAPUTRA2,3,100, MEGAN E. CATTAU101, R. S. CLYMO102, ROSS MORRISON103, AAZANI MUJAHID104, JUKKA MIETTINEN105, SOO CHIN LIEW105, SAMU VALPOLA106, DAVID WILSON107, LAURA D’ARCY17, MICHEL GERDING98, SITI SUNDARI108, SARA A. THORNTON17,18, BARBARA KALISZ109, STEPHEN J. CHAPMAN110, AHMAD SUHAIZI MAT SU111, IMAM BASUKI12,13,14, MARILYN ITOH112, CARL TRAEHOLT113, SEAN SLOAN14, ALEXANDER K. SAYOK114, and ROXANE ANDERSEN115,16

1Department of Biological Sciences, National University of Singapore, 4 Science Drive 4, 117453, Singapore, 2ConservationLinks, 433 Clementi Avenue 3, #01-258, 120433, Singapore, 3Rimba, Malaysia, Jalan 1/9D, Bandar Baru Bangi, Selangor, MY 43650, Malaysia, 4University of Helsinki, P.O. Box 3 (Fabianinkatu 33), 00014 Helsinki, Finland, 5Faculté des Sciences de l’Agriculture et de l’Alimentation, 2425, Rue de l’agriculture, Pavillon Paul-Comtois, Bureau 1122, Ville de Québec, QC G1V 0A6, Canada, 6School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia, 7Tropical Catchment Research Initiative (TROCAIR), Kuala Lumpur, Malaysia, 8School of Natural Sciences &

Correspondence: Lahiru Wijedasa & Roxane Andersen, tel. +65-90667160, fax +65-67792486, e-mails: lahirux@gmail.com, Roxane.

Andersen@uhi.ac.uk

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
The first International Peat Congress (IPC) held in the tropics – in Kuching (Malaysia) – brought together over 1000 international peatland scientists and industrial partners from across the world (‘International Peat Congress with over 1000 participants’, 2016). The congress covered all aspects of peatland ecosystems and their management, with a strong focus on the environmental, societal and economic challenges associated with contemporary large-scale agricultural conversion of tropical peat.

However, recent encouraging developments towards better management of tropical peatlands have been undermined by misleading newspaper headlines and statements first published during the conference. Articles in leading regional newspapers (‘Oil palm planting on peat soil handled well, says Ugghah, 2016b; Cheng & Sibon, 2016; Nurbianto, 2016a,b; Wong, 2016) widely read across the region portrayed a general consensus, in summary of the conference, that current agricultural practices in peatland areas, such as oil palm plantations, do not have a negative impact on the environment. This view is not shared by many scientists or supported by the weight of evidence that business-as-usual management is not sustainable for tropical peatland agriculture.

Peer-reviewed scientific studies published over the last 19 years, as reflected in the Intergovernmental Panel on Climate Change (IPCC) Wetland Supplement on greenhouse gas inventories, affirm that drained tropical peatlands lose considerable amounts of carbon at high rates (Drösler et al., 2014). Tropical peat swamp forests have sequestered carbon for millennia, storing a globally significant reservoir below ground in the peat (Page et al., 2011; Dommain et al., 2014). However, contemporary agriculture techniques on peatlands heavily impact this system through land clearance, drainage and fertilization, a process that too often involves fire. Along with biodiversity losses driven by deforestation (Koh et al., 2011; Posa et al., 2011; Giam et al., 2012), the carbon stored in drained peatlands is rapidly lost through oxidation, dissolution and fire (Couwenberg et al., 2009; Hirano et al., 2012; Ramdani & Hino, 2013; Schrier-Uijl et al., 2013; Carlson et al., 2015; Warren et al., 2016). Tropical peat fires are a major contributor to global greenhouse gas emissions and produce trans-boundary haze causing significant impacts on human health, regional economies and ecosystems (Page et al., 2002; Marlier et al., 2012; Jaafar & Loh, 2014; Chisholm et al., 2016; Huijnen et al., 2016; Stockwell et al., 2016).

With future El-Niño events predicted to increase in frequency and severity (Cai et al., 2014) and with fire prevalence now decoupled from drought years (Gaveau et al., 2014), future large-scale fire and haze events are imminent given the extensive areas of now-drained fire-prone drained peatlands (Kettridge et al., 2015; Turetsky et al., 2015; Page & Hooijer, 2016).

In reality, just how much of the estimated 69 gigatonnes of carbon (Page et al., 2011) stored in South-East Asian tropical peatlands is being lost due to agricultural operations under the current management regime is still uncertain. Of great concern is that none of the agricultural management methods applied to date have been shown to prevent the loss of peat and the associated subsidence of the peatland surface following drainage (Wosten et al., 1997; Melling et al., 2008; Hooijer et al., 2012; Evers et al., 2016). Recent projections suggest that large areas of currently drained coastal peatlands will become undrainable and progressively be subjected to longer periods of inundation by river and ultimately sea water (Hooijer et al., 2015a,b; Sumarga et al., 2016). With growing risk of saltwater intrusion, agriculture in these coastal lands will become increasingly untenable, calling into question the very notion of ‘long-term sustainability of tropical peatland agriculture’.

A more accurate view of drained peatland agriculture is that of an extractive industry, in which a finite resource (the peat) is ‘mined’ to produce food, fibre and fuel, driven by global demand. In developing countries with growing populations, there are strong socio-economic arguments for exploiting this resource to support local livelihoods and broader economic development (Mizuno et al., 2016). However, we must accept that ongoing peat loss is inevitable under this scenario. Science-based measures towards improved management, including limitations on the extent of plantation development, can be used to minimize the rate of this peat loss (President of Indonesia, 2011). Such an evidence-based position, supported with data and necessary legal instruments, is needed for sustainable futures. The scientifically unfounded belief that drained peatland agriculture can be made ‘sustainable’, and peat loss can be halted, via unproven methods such as peat compaction debilitates the effort to find sustainable possibilities. To a large extent, the issues surrounding unsustainable peatland management have now been recognized by sections of industry (Wilmar, 2013; APP, 2014; Cargill Inc., 2014; Mondelēz International, 2014; Sime Darby Plantation, 2014; APRIL, 2015; Olam International, 2015), government (President of Indonesia, 2014, 2016, Mongabay, 2015; Mongabay Haze Beat, 2015; Hermansyah, 2016) and consumers (Wijedasa et al., 2015). In recognition of the constraints and risks of peatland development, many large and experienced oil palm and pulpwood companies have halted further development on peat and introduced rigorous management requirements for existing peatland plantations (Lim et al., 2012). However, the denial of the empirical basis calling for improved peatland management

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 23, 977–982
remains persistent in influential policy spaces, as illustrated by the articles reporting on the conference (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbianto, 2016a,b). The search for more responsible tropical peatland agriculture techniques includes promising recent initiatives to develop methods to cultivate crops on peat under wet conditions (Giesen, 2015; Dommain et al., 2016; Mizuno et al., 2016). While a truly sustainable peatland agriculture method does not yet exist, the scientific community and industry are collaborating in the search for solutions (International Peat Society, 2016), and for interim measures to mitigate ongoing rates of peat loss under existing plantations. Failing to recognize the devastating consequences of the current land use practices on peat soils and failing to work together to address them could mean that the next generation will have to deal with an irreversibly altered, dysfunctional landscape where neither environment nor society, globally or locally, will be winners.

Acknowledgements

Open access facilitated by Greifswald Mire Centre and Department of Forestry Sciences, University of Helsinki.

References

Mongabay (2015) Jokowi to oversee Indonesia peat restoration agency but details thin on the ground. Mongabay.

President of Indonesia (2011) Instruction of the President of the Republic of Indonesia number 10 of 2011 about suspension of granting of new licenses and improvement of governance of natural primary forest and peatland.

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 23, 977–982
President of Indonesia (2014) Government Regulation Number 71 of year 2014 about Protection and Management of Peat Ecosystems.

President of Indonesia (2016) Presidential Regulation Number 1 of year 2016 About Peat Restoration Agency.

Wong J (2016) Yield of oil palm on peatland can be doubled. The Star.