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[1] The International Bathymetric Chart of the Arctic
Ocean (IBCAO) released its first gridded bathymetric
compilation in 1999. The IBCAO bathymetric portrayals
have since supported a wide range of Arctic science
activities, for example, by providing constraint for ocean
circulation models and the means to define and formulate
hypotheses about the geologic origin of Arctic undersea
features. IBCAO Version 3.0 represents the largest improve-
ment since 1999 taking advantage of new data sets col-
lected by the circum-Arctic nations, opportunistic data
collected from fishing vessels, data acquired from US Navy
submarines and from research ships of various nations.
Built using an improved gridding algorithm, this new grid
is on a 500 meter spacing, revealing much greater details
of the Arctic seafloor than IBCAO Version 1.0 (2.5 km)
and Version 2.0 (2.0 km). The area covered by multibeam
surveys has increased from �6% in Version 2.0 to �11%
in Version 3.0. Citation: Jakobsson, M., et al. (2012), The
International Bathymetric Chart of the Arctic Ocean (IBCAO)
Version 3.0, Geophys. Res. Lett., 39, L12609, doi:10.1029/
2012GL052219.

1. Introduction

[2] For generations there was only speculation as to what
lay beneath the frozen sea ice of the high Arctic. Even
towards the end of the 19th century, maps of the region
depicted large continental land-masses beneath the ice.
Then, from a handful of lead line soundings acquired during
the Fram Expedition 1893–1896, Fridtjof Nansen compiled
a bathymetric map that portrayed the central Arctic Ocean as
a single deep featureless basin [Nansen, 1907]. While Nan-
sen’s map still represents the single largest step forward in
Arctic Ocean bathymetric mapping, subsequent maps suc-
cessively revealed a much more complex bathymetric land-
scape formed from the tectonic evolution of the Arctic
Basin, ocean currents and glacial history [e.g., Atlasov et al.,
1964; Johnson et al., 1979; Perry et al., 1986]. In 1997, one
century after the Fram Expedition, the International Bathy-
metric Chart of the Arctic Ocean (IBCAO) project was ini-
tiated in St Petersburg, Russia. The project had a single
major objective: to collect all available bathymetry data for
the compilation of the most up-to-date bathymetric portrayal
of the Arctic Ocean seafloor. An Editorial Board was
established consisting of representatives from the circum-
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Arctic Ocean nations plus Germany and Sweden. Three
years later, the first bathymetric compilation from IBCAO
was released to the public after an introduction at the AGU
Fall Meeting in 1999 [Jakobsson et al., 2000]. This first
compilation consisted of a Digital Bathymetric Model
(DBM) with grid cell spacing of 2.5 � 2.5 km on a polar
stereographic projection. In 2008, Version 2.0 of the IBCAO
DBM was completed at a finer grid spacing of 2 � 2 km
[Jakobsson et al., 2008]. This version was compiled from an
expanded bathymetric database. In addition to the soundings
acquired from submarines, icebreakers and from the pack
ice, and depth contours digitized from published maps that
were used in Version 1, Version 2.0 also included some
multibeam sonar datasets. In IBCAO Version 2.0, only
about 6% of the area was compiled using multibeam data.
[3] During the First Arctic-Antarctic Seafloor Mapping

Meeting held at Stockholm University in May 2011, it
became obvious that a wealth of new bathymetric data had
become available since the 2008 compilation of IBCAO 2.0
(Figure 1). Numerous bathymetric mapping campaigns in
the Arctic Ocean have recently been carried out for scientific
purposes and as a result of Arctic coastal states’ interests in
establishing extended continental shelves under the United
Nations Convention on the Law of the Sea (UNCLOS)
Article 76 [Marcussen and Macnab, 2011; Mayer et al.,
2010]. Vast amounts of single beam data have also been
collected in the Arctic region using the Olex seabed mapping
system (www.olex.no). Furthermore, since the release of
IBCAO Version 2.0, single beam echo soundings from US
nuclear submarine cruises between 1993–2005 have been
declassified and the Geological Survey of Denmark and

Greenland has released soundings from industry seismic
surveys around Greenland for IBCAO use (Figure 1).
[4] Given the availability of these new data sources, a new

IBCAO Editorial Board was established for the purpose of
compiling IBCAO Version 3.0. Here we describe the com-
pilation of IBCAO 3.0, the new bathymetric data, and the
major improvements that have implications for geological,
geophysical and oceanographic analyses as well as for
numerical modeling applications. IBCAO 3.0 will be the
new standard bathymetric data set for the Arctic Ocean.
Applying an enhanced gridding algorithm, the IBCAO 3.0
DBM is gridded from a substantially enlarged source data-
base. While the base grid is still compiled at a resolution of
2 � 2 km on a polar stereographic projection, the higher
resolution source data (primarily multibeam and Olex) are
merged on to the base grid at a resolution of 500 � 500 m
in a final step using the remove-restore method [e.g., Hell
and Jakobsson, 2011; Smith and Sandwell, 1997]. This
approach develops a final 500 � 500 m size grid that does
a much better job of preserving details in regions where
source data are denser than in previous versions of IBCAO.
On a broader scale, IBCAO 3.0 is likely to contribute to
substantially improved insight on the geological processes
responsible for the formation of the Arctic Ocean basin.
The higher resolution data resolve canyons along the con-
tinental slopes as well as some of the more prominent
glacial features that were not visible in previously released
versions. While the area covered by multibeam surveys
has increased from �6% in Version 2.0 to �11% in
Version 3.0, there are still huge areas of the Arctic Ocean
remaining to be mapped before we reach the same level of

Figure 1. (a) Bathymetric data new to the IBCAO 3.0 compilation. A complete list with references to each multibeam sur-
vey or set of surveys is found in the auxiliary material. (b–d) Close-up maps of the areas where the newly included multi-
beam surveys are most concentrated.

JAKOBSSON ET AL.: IBCAO VERSION 3.0 L12609L12609

2 of 6



topographic characterization as that of the Moon or Mars
[Mazarico et al., 2012].

2. Methods

2.1. Bathymetric Source Data

[5] The bathymetric data new to IBCAO 3.0 are shown in
Figure 1 and references to each of the multibeam surveys, or
group of surveys, are found in the auxiliary material.1 There
are only a handful of research icebreakers with multibeam
systems capable of operating within the heavy pack-ice-
covered central Arctic Ocean. Along the edges of the pack
ice, however, several multibeam surveys by ice strengthened
research vessels have made substantial contributions [e.g.,
Dowdeswell et al., 2010; Hogan et al., 2010; Pedrosa et al.,
2011; Rebesco et al., 2011; Westbrook et al., 2009;
Zayonchek et al., 2010].
[6] In addition, there is now an additional set of

declassified bathymetric soundings acquired by U.S. Navy
submarines released from cruises between 1993–2005
(Figure 1). These soundings provide depth information in
several sparsely mapped areas but are only partly used in
the Canada Basin. The reason for this is that U.S. and
Canadian surveys conducted with the icebreakers USCGC
Healy and CCGS Louis St-Laurent, carried out to establish
the limits of the extended continentals shelf, are dense
enough to constrain the flat abyssal plain of the Canada
Basin.
[7] The seafloor mapping, navigation, and fishery system

Olex (http://www.olex.no) is manufactured to interface with
both single and multibeam echo sounders. Depths are

collected by the system and merged into a locally stored
depth database. Many Olex users share their data through
Olex which hosts a continuously growing depth database.
Because the majority of Olex users are fishermen there is a
strong bias in the database coverage towards good fishing
areas on the continental shelves (Figure 1). For IBCAO
3.0, a snapshot of the Olex database was captured in
October 2011. Depths were retrieved as median values on
a 0.12 � 0.12 arc minute grid. Fishermen rarely calibrate
their echo sounders (by measuring speed of sound in the
water column). Instead, a nominal sound speed based on
experience is commonly applied in the conversion between
the echo travel-time to depth. This implies that there is an
uncertainty in the Olex depth database regarding the
applied sound speeds, though typically the sound speed
used is between 1460 and 1480 m/s (O. B. Hestvik, Olex,
personal communication, 2011).
[8] To investigate travel time to depth issues, we com-

pared depth values from the Olex sounding database in the
area off the Storfjorden Trough, south of Spitsbergen, where
the Italian RV OGS-Explora and Spanish BIO Hespérides
carried out collaborative multibeam surveys [Pedrosa et al.,
2011] (Figure 2). This area was chosen for the comparison
because the multibeam surveys are of high quality and car-
ried out with regular sound speed control [Pedrosa et al.,
2011]. Individual depths from the Olex database were
paired with depths from the provided 200 � 200 m multi-
beam grid for comparison. The criteria used to form a pair of
depth values was that the two must be located closer than
50 m from each other. The map in Figure 2 shows the
Olex depths paired with multibeam depths; 1999 depth
values were selected for comparison. The mean difference
(1n∑i=1

n (DOlex � Dmultibeam); depths are negative numbers) is
�4.9 m, suggesting a slight bias towards deeper Olex
depths. However, considering that the mean depth of the
compared values is 640 m, the mean difference is less
than 1% of the water depth, which is better than the
accuracy expected from a standard non-survey type single
beam echo sounder. The distribution of depth differences
does not show a clear bias above what can be considered
outside of the accuracy of standard single beam echo
sounders (Figure 2). Therefore, we left the Olex depth
database as originally extracted.
[9] Numerous seismic reflection profiles have been col-

lected by industry along Greenland’s eastern and western
continental margins for oil and gas exploration. Through the
Geological Survey of Denmark and Greenland (GEUS),
single beam soundings acquired along with the seismic
reflection profiles have been released to be used in IBCAO
3.0 (Figure 1). For all surveys the metadata describes
whether the echo sounding depths are in corrected meters,
i.e., depths derived using a measured sound velocity pro-
file of the water column, or referred to a nominal sound
speed. In the latter case, 1500 m/s was used as a standard.
Of the 43 surveys used, 18 contained uncorrected depths
that were recalculated to refer to a harmonic mean sound
velocity of 1463 m/s; a velocity that adjusted the depth
values to fit well with sound speed corrected surveys as
determined from track line cross-overs.
[10] Additional bathymetry were collected as part of the

Norwegian MAREANO mapping program (http://www.
mareano.no). The high quality MAREANO multibeam

Figure 2. (a) Map showing the area south of Spitsbergen
where depths from the multibeam survey of Italian RV
OGS-Explora and Spanish BIO Hespérides are compared
with depths from the Olex sounding database. The black dots
are the soundings from Olex selected for comparison as they
are located closer than 50 m from nodes of the 200 � 200 m
resolution multibeam grid. (b) Histogram showing the calcu-
lated depth differences.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL052219.
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compilation has been provided to IBCAO at a uniform res-
olution of 25 � 25 m on a Universal Transverse Mercator
(UTM) projection. As will be shown in the result section,
these data make a huge improvement in the depiction of the
Norwegian shelf as compared to the previously released
IBCAO 2.0.
[11] Depths extracted from Electronic Navigational Charts

(ENCs) have been provided by several countries’ hydro-
graphic offices to the International Hydrographic Organiza-
tion (IHO) for use in regional mapping projects affiliated
with the General Bathymetric Chart of the Oceans (GEBCO).
Because IBCAO is one of GEBCO’s affiliated regional
mapping projects all the ENC extracted depths within the
compilation area have been used in Version 3.0.

2.2. Land Topography

[12] Narrow fjords, bays, or islands that only are slightly
wider than the final IBCAO DBM resolution, in our case
500 m, are often difficult to preserve. This may, to some
extent, be helped by including land topography in the full
gridding process as it guides the gridded surface. The
recently released Global Multi-resolution Terrain Elevation
Data 2010 (GMTED2010) [Danielson and Gesch, 2011]
has been used in IBCAO 3.0, replacing the GTOPO30
[U.S. Geological Survey, 1997] used in IBCAO 2.0. Over
Greenland the approximately 2000 � 2000 m resolution
Digital Elevation Model (DEM) published by Ekholm
[1996] is still used.

2.3. Gridding Algorithm and Source Identification

[13] The gridding algorithm used in IBCAO 3.0 is a
further improvement of that developed to compile IBCAO
2.0 [see Jakobsson et al., 2008]. The main improvement
consists of adding the source data with a spatial horizontal
resolution approximately equal to, or better than, 500 m in
a final step using the remove-restore method [e.g., Hell
and Jakobsson, 2011; Smith and Sandwell, 1997]. Fur-
ther details about the gridding algorithm are described in
the auxiliary material. Along with the IBCAO Version 3.0
DBM, a source identification grid (SID) has been com-
piled (auxiliary material). At a resolution of 2000 � 2000
m, this SID allows the user to identify the grid cells that
are constrained by source data and not interpolated. The
SID contains six codes distinguishing between data sour-
ces categorized as land, multibeam, single beam, Olex,
contours from digitized maps, and other gridded bathy-
metric compilations (auxiliary material).

3. Results and Discussion

[14] The IBCAO 3.0 DBM is, from several perspectives,
best described by comparison to the preceding Version 2.0.
One general, but striking, difference with 3.0 is the higher
resolution of 500 � 500 m in all areas where the source data
density permits compilation at this scale. This is the case in
the shelf regions around the North Atlantic where Olex,
MAREANO, and the released single beam soundings from
industry seismic data add substantially to the bathymetric
source database (Figure 1). For example, it is possible in
Version 3.0 to distinguish seafloor imprints from the paleo-
ice streams draining the Scandinavian Ice Sheet during past
glacial periods (Figure 3). Glacigenic features now visible

that were barely seen in 2.0 include mega-scale glacial
lineations (Figure 3), lateral and terminal moraines, and
large iceberg plow marks. The full resolution MAREANO
multibeam grid with 25 � 25 m cells provides an additional
level of detail and can be requested directly from the
MAREANO project (http://www.mareano.no).
[15] Denmark, the U.S., and Canada all agreed to con-

tribute their Arctic Ocean UNCLOS Article 76 bathymet-
ric surveys to IBCAO 3.0. The continental slope along
southern Greenland, the Barrow Margin and the perimeter
of the Chukchi Cap is, for this reason, better mapped in
Version 3.0 (Figure 1). In Version 2.0, depths of the
deeper parts of Canada Basin were corrected after it was
found that several of the declassified single beam datasets
from nuclear submarines had not been treated properly due
lack of metadata information regarding applied sound speeds
[Jakobsson et al., 2008]. Yet another change, albeit smaller
than the previous correction, is imposed in Version 3.0
owing to the UNCLOS surveys by icebreakers USCGC
Healy and CCGS Louis St-Laurent. GPS-based navigation
on the icebreakers is better than the inertial navigation on
submerged nuclear submarines. The submarine soundings
were thus removed from the gridding procedure in the
deep Canada Basin, but only after being investigated for
previously unmapped shoals. As a result of this update,
the flat Canada Basin seafloor deeper than 3500 m is, on
average, approximately 64 m deeper in Version 3.0 than in
2.0 (auxiliary material). However, the average depth
adjustment due to the new data in the region deeper than
3500 m is less than 2%, estimated along a bathymetric
profile across the entire basin (auxiliary material). Canyons
formed in the slopes offshore of the Arctic continental
shelves are usually not precisely captured in DBMs grid-
ded from randomly oriented sparse single beam tracklines
and/or digitized bathymetric contours. This became evident
along the continental slope of northern Alaska when
IBCAO 1.0 was updated by incorporation of multibeam
surveys from this area [Jakobsson et al., 2008]. Carto-
graphers who specialized in compiling bathymetric maps
commonly interpret slope-canyon systems from sparse
depth soundings using their geological knowledge and
conceptually drawn depth contours in order to illustrate the
canyons’ anticipated morphology. IBCAO 3.0 is still
gridded from digitized depth contours where no other data
are available. One should keep in mind that, in these
regions, the precise locations of portrayed bathymetric
features, such as canyons, may deviate from reality. Con-
tours are used from six published maps [Cherkis et al., 1991;
Intergovernmental Oceanographic Commission et al., 2003;
Matishov et al., 1995; Naryshkin, 1999, 2001; Perry et al.,
1986], although large areas relying on contours in Version
2.0 can now be gridded directly from single or multibeam
data (see SID in the auxiliary material). The overall IBCAO
goal is to minimize the use of digitized bathymetric contours
in the gridding process.
[16] The approach of first gridding all the data while

constraining output values to not exceed 0.1 m depth, and
subsequently adding the topography in a separate step, in
combination with the higher resolution GMTED2010,
improved the coastline constraint dramatically in Version
3.0 compared to 2.0 (Figure 3). This makes IBCAO much
more useful for nearshore applications ranging from simple
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map making to regional ocean circulation modeling [e.g. Lu
et al., 2010].

4. Conclusions and Outlook

[17] Mapping of the world oceans’ seafloor has resulted in
some of the major breakthroughs in our understanding of
earth system processes. The mapping of oceanic rift zones
by Heezen [1960] led Hess [1962] directly to the formulation
of the concept now known as seafloor spreading. Similarly,
it was after submarine ridges and basins appeared on Arctic
Ocean maps towards the end of the 1950s that geological
provinces could be defined, allowing evaluation of hypoth-
eses concerning the opening of the Arctic Basin [Dietz and
Shumway, 1961; Heezen and Ewing, 1961].
[18] Nuclear submarines have collected echo sounding

data ever since they began to explore the Arctic Ocean
during the Cold War. In 1993 the U.S. Navy delighted the
scientific community by committing to a trial cruise for what
would become the Science Ice Exercise Program (SCICEX)
[Edwards and Coakley, 2003; Newton, 2000]. Bathymetric
mapping by nuclear submarines and our most powerful

icebreakers have been instrumental in producing our current
view of the perennially sea ice covered central Arctic Ocean
seafloor. In addition, new innovative methods to map in
severe pack ice are beginning to emerge, such as echo
sounding from hovercraft and the deployment of autono-
mous drifting echo sounding buoys [Hall and Kristoffersen,
2009].
[19] As new data comes in we will continue to update the

view of the Arctic Ocean seafloor through IBCAO, however,
the pace at which its central part is currently mapped is much
too slow for the scientific community’s need for a better
bathymetric portrayal so critical for oceanographic, geolog-
ical, geophysical and biological research and applications.
The seafloor has a profound influence on numerous pro-
cesses not obvious at a first glance. Its role in sea ice for-
mation and evolution, which recently has been shown using
IBCAO 2.0, may serve as one such example [Nghiem et al.,
2012]. Even considering a scenario where sea ice continues
its declining trend that may eventually lead to sea-ice free
summers [Wang and Overland, 2009], the short Arctic
summer period (and possibility of some ice hazard) will
severely limit the pace of Arctic mapping. Large coordinated

Figure 3. Comparison between IBCAO (a) 3.0 and (b) 2.0 in the area of northwestern Norwegian continental margin where
the MAREANO multibeam data makes a significant difference. Note the difference in portrayal of canyons along the slope;
even the large Andøya Canyon (AC) and Malangen Canyon (MC) are barely visible (d) in IBCAO 2.0 compared to (c) in
IBCAO 3.0. MSGL = Mega Scale Glacial Lineations.
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efforts as well as new innovative mapping methods adapted
to the harsh Arctic Ocean environment are therefore needed.
The IHO contribution with depths extracted from ENCs
serve as one good example of such coordinated effort. The
“crowd source” data from Olex have shown that a collective
is capable of producing results far beyond what could be
imagined by the mapping community!

[20] Acknowledgments. We thank all contributors to IBCAO. Cap-
tains and crews of all vessels listed in the auxiliary material are specifically
thanked for their contributions. IHO is acknowledged for providing the
ENC data, in turn contributed by their Member States. Funding agencies
providing support for the multibeam mapping cruises that provided new
data to IBCAO 3.0 are listed in the auxiliary material.
[21] The Editor and authors thank Barry Eakins and an anonymous

reviewer for assisting in the evaluation of this paper.
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