5. SITE 574

Shipboard Scientific Party

HOLE 574, 574A, 574B, 574C

Dates occupied: 574—11 to 13 April 1982
574A—13 to 14 April 1982
574B—15 to 16 April 1982
574C—17 to 19 April 1982

Date departed Hole 574C: 19 April 1982

Time on site: 8.9 days

Position: 04°12.52'N, 133°19.81'W

Water depth (sea level; corrected m, echo-sounding): 4561

Water depth (rig floor; corrected m, echo-sounding): 4571

Bottom felt (m, drill pipe): 4571

Penetration (Hole 574C, m): 532.5

Number of cores: 574—31
574A—23
574B—1
574C—37

Total length of cored section (m): 574—206.5
574A—180.2
574B—19.0
574C—338.0

Total core recovered (m): 574—208.93
574A—180.74
574B—9.45
574C—197.35

Core recovery (%): 574—101
574A—100
574B—90
574C—58

Oldest sediment cored:
Depth sub-bottom (m): 517.5
Nature: Metaliferous, siliceous chalk
Age: latest Eocene
Measured velocity (km/s): 1.8

Basement:
Depth sub-bottom (m): 520
Nature: Basalt

Principal results: Site 574 is located at 4°12.52'N, 133°19.81'W, in 4561 m of water, over an elongate basement trough covered by 0.57 s

of flat, acoustically well stratified sediments. The site is just north of the crest of the sediment bulge in the equatorial high-productivity belt, and it is the second of a three-site latitudinal transect along 133°W. The site was drilled to provide detailed documentation of the area's migration across the equator and of Tertiary equatorial Pacific paleoceanography. To this end two holes were drilled with the hydraulic piston corer (HPC) to approximately the same depth (574, 0 to 206.5 m; 574A, 0 to 180.2 m), and two holes were rotary drilled (574B, 185 to 194.5 m; 574C, 194.5 to 525.5 m, i.e., to basement).

The oldest sediments in the sequence recovered are uppermost Eocene (520 m sub-bottom). Except for minor hiatuses, the sequence is continuous from this age through the Quaternary. The bottom cores contain about 60 cm of basalts, placing basement at 520 m sub-bottom. The sedimentary sequence is divided into a basal metaliferous calcareous unit (502.5 to 520.0 m), a calcareous ooze chalk unit in the middle (84.1 to 502.5 m), and a cyclic siliceous calcareous ooze unit at the top (0 to 84.1 m).

All major planktonic microfossils are represented, although the dissolution of the planktonic foraminifers limits their stratigraphic usefulness. Initial data from the foraminifers, diatoms, calcareous nannofossils, and radiolarians indicate that a remarkably complete uppermost Eocene to lowest Oligocene transition was collected near the bottom of Hole 574C (within the metaliferous calcareous sediment unit above basement).

The sediment accumulation rate is variable, ranging between 5 and 35 m/m.y.; it is low between 0 and 12 Ma, high between 12 and 23 Ma, and low again between 23 and 34 Ma. The mass accumulation rates are highest (about 3 g/cm² per 1000 yr) in the lower Oligocene and at about 12.5 Ma, with a low of 0.28 g/cm² per 1000 yr. occurring between 0 and 5 Ma.

The records of calcium carbonate content and the sediment's physical properties show major fluctuations in the last 12 m.y. They are more uniform in the older part of the section. Natural remanent magnetization (NRM) intensity is broadly correlative to lithology; magnetization is strongest in the upper cyclic siliceous-calcareous unit and the basal metaliferous unit and extremely weak throughout most of the middle, calcareous unit. The analysis of inorganic geochemistry suggests the presence of a diffusional control in the section's upper 150 m and of diagenetic reactions in its lower portion.

BACKGROUND AND OBJECTIVES

The JOIDES Ocean Paleoenvironmental Panel considered Site 574 to have the second highest priority of the sites to be drilled in a latitudinal transect along 133°W across the equatorial high-productivity belt. Presently located 4° north of the equator (Fig. 1), and with a basement age of latest Eocene, the sedimentary section at Site 574 presumably recorded the site's migration from south of the equator into the high-productivity belt, and from there to its present position at the northern boundary of the belt. The operational objective was the same as at all Leg 85 sites: to recover a complete and undisturbed upper Eocene to Quaternary section by using the HPC to core the sediment section twice to the limit of penetration and to rotary drill from that level to basement.

Considerable survey data exist for the region as a result of cruises by Lamont-Doherty Geological Observa-
Figure 1. Bathymetry at Site 574 (20-m contour interval). Uncorrected water depth (velocity = 1.5 km/s) is 4553 m. Corrected water depth is 4561 m.

Figure A-A' is the seismic profile shown in Figure 2.

The closest site previously drilled by DSDP is Site 71 (DSDP Leg 8) which, at 4°28.3'N and 140°19'W, is slightly north and considerably farther west than Site 574. At Site 71 uppermost Eocene to Quaternary sediments were recovered during continuous coring operations. The acoustic basement at Site 71 proved to be semi-indurated chalk and chert; the extrapolated lithospheric age of the region was 39 to 40 Ma.

OPERATIONS

The D/V Glomar Challenger arrived in the vicinity of Site 574 1 day after departing Site 573. We steamed on a course of 017° and averaged 9 knots in our 23-hr. transit. During this time we collected continuous seismic profiles (air gun and 3.5 kHz) as well as bathymetric and magnetic data. The valleys and ridges in the region trend north-northwest/south-southeast, so we aimed for a point about 3 n. mi. east of the proposed site so we would approach the site across the grain of the bathymetry. Our target was a broad (2 n. mi. wide) flat region in about 4550 m of water where approximately 0.6 s of sediment fills an elongate basement trough (Figs. 1 and 2).

We entered the area surveyed by the R/V Thomas Washington at around 0720Z on 11 April. We had difficulty matching the Seabeam bathymetry with the bathymetric data we were collecting until, after about 40 min. of steaming, we found we could match the general bathymetric trends by rotating the Seabeam chart several degrees and shifting it several minutes. Even with this offset only the relative bathymetric relationships matched up, not the absolute depth values. The depths indicated
by the Seabeam bathymetry were consistently 10 to 30 m deeper than those we were measuring.

At 0755Z we began to travel along our westerly line, steaming 272° and aiming for our target position of 04° 12.5′N, 133° 19.9′W. We quickly located ourselves relative to the bathymetry and the subsurface structure, and at 0810Z we crossed the proposed drill site. We continued several nautical miles past the site, turned to a point 1 n. mi. due north of it, and at 0852Z turned south on our final pass over the proposed site. At 0905Z, 11 April, we dropped the beacon and then continued 1 n. mi. south beyond the site to complete the presite survey. We pulled the geophysical gear and returned to the beacon, now officially Site 574.

Drill pipe run-in began at 1010Z on 11 April (Table 1). The first hydraulic piston core, which was on deck at 2115Z, established the mudline at 4571 m from the rig floor. The drilling in Hole 574 continued smoothly with the 9.5-m variable-length HPC. The pullout forces necessary for Cores 8 and 9 were 15,000 and 20,000 lb., respectively, but the pullout force for the next three cores was negligible. The pullout force for Core 13 was substantial again, however (more than 30,000 lb.), and the core had to be “washed over” to free it up. At this point we decided to switch to the 5-m HPC. Coring once again proceeded smoothly until Core 29, which required 10,000 lb. of pullout force. Cores 30 and 31 offered little resistance to pullout, but Core 32 stayed in the hole even after the exertion of 75,000 lb. of pullout force. This core, at 206.5 m sub-bottom, marked the end of the drilling in Hole 574. Recovery for the hole was close to 100%, and disturbance was minimal. The biggest problem from an operational standpoint was that many of the core liners shattered, a problem that seemed to occur during the coring of relatively hard intervals.

We began to drill Hole 574A with the 9.5-m variable-length HPC. Coring continued smoothly all the way to the bottom of the hole (at 180.2 m sub-bottom).
switched to the 5-m HPC for the depth interval in which
substantial pullout force had been necessary in Hole 574
(100 to 121 m sub-bottom). We were then able to go back
to the 9.5-m corer and continue to 180.2 m sub-bottom
without difficulty. Our dwindling supply of coring as-
semblies prompted us to stop coring well short of the
largest depth reached in Hole 574 (which was 206.5 m)
Recovery was once again near 100%, and disturbance
was minimal. Occasional shattered liners continued to
be the most severe problem.

We were to use the HPC to core to maximum pene-
tration depth twice and then to drill to basement at each
site, so we ended Hole 574A and began the pipe trip
to switch to rotary drilling. The total time for the (two-
way) trip was 26 hr; the interval was unusually long
because of the need to retighten all joint connections in
the new pipe. We washed to 185 m, and the first drilled
core came on deck at 2130Z on 15 April. Unfortunately,
the next wire run returned with the overshot and the
top end of the coring assembly but no core barrel. There
was no damage to the top assembly, but the core assem-
bly appeared to have backed out of the threaded con-
nexion. The first fishing attempt brought the corer within
300 m of the rig floor, but the corer broke loose and
went back down the pipe. Subsequent fishing attempts
were foiled by liner in the top of the corer. Finally the
liner jammed the corer in the pipe, and we were forced
to abandon the hole (574B) and trip the pipe to recover
the corer.

We completed the second round-trip pipe trip at this
site, and the first core from Hole 574C (from 194.5 m
sub-bottom) was brought on board at 0451Z, 17 April.
The rotary coring continued smoothly; disturbance was
serious in the softer sediment in the upper part of the
section, and recovery was poor (58%). We used different
drilling techniques to try to improve recovery, but noth-
ing seemed to help. The source of the problem appeared
to be the alternation between soft and hard sediment.
The pumping pressure necessary to keep the hard mate-
rial from plugging the bit washed away the soft materi-
al. The drilling in Hole 574C ended when 1 hr of drill-
ing at 525.5 m sub-bottom resulted in the recovery of
120 cm of basalt. The drill pipe was tripped, and the
bottom-hole assembly was magnaluxed. At 0730Z, 20
April, we departed Site 574, running a brief seismic survey over the beacon.

LITHOSTRATIGRAPHY

Lithostratigraphic Subdivision

We divided the section at Site 574 into four lithologic units on the basis of composition: cyclic siliceous calcareous ooze, calcareous ooze chalk, metalliferous chalk, and basalt. The upper two units are subdivided on the basis of color (Table 2).

Unit I: Cyclic Siliceous Calcareous Ooze (middle Miocene to Quaternary)

Unit I (0 to 84.1 m) is characterized by cyclic changes in the relative abundance of siliceous and calcareous ooze. Biogenic silica constitutes 15 to 60% of the sediment; the remainder is predominantly calcareous material. The unit is subdivided into three subunits that are distinguished primarily by color: upper and lower brown ooze subunits are separated by an intervening green gray ooze subunit.

Subunit IA: Upper Brown Ooze (upper Miocene to Quaternary)

The upper brown ooze subunit (0 to 48.1 m) is composed of 5- to 100-cm intervals of alternating pale to very pale brown (10YR 7/2 to 7/4 to 10YR 8/2 to 8/4), brownish gray (10YR 6/2 to 6/4), and brown (10YR 5/3 to 5/4) to dark brown (10YR 3/2 and 4/3 to 4/4) siliceous nannofossil ooze to calcareous siliceous ooze. Sediment color does not appear to be related to variations in microfossil content. The subunit is usually highly burrow mottled (it includes recognizable Planolites burrows), and the contacts are sharp to gradational over 1 to 10 cm.

The sediments of this subunit are of variable grain size and microfossil content. Both clay- and silt-sized materials are rare to abundant (2 to 88% and 4 to 55%, respectively), and sand-sized material is common to abundant (8 to 75%). Calcareous nannofossils are rare to abundant (1 to 88%), foraminifers are rare to common (1 to 25%), diatoms are common to abundant (5 to 35%), and radiolarians are rare to abundant (1 to 64%). Other constituents that occur in trace to rare (1%) amounts are sponge spicules, silicoflagellates, clay, volcanic glass, and iron oxides.

Subunit IB: Green Gray Ooze (upper Miocene)

The green gray ooze subunit (48.1 to 75.8 m) separates the upper and lower cyclic brown ooze subunits. Both the upper and lower contacts are sharply defined by a change in sediment color from brown to green. The subunit is composed of intergrading intervals 10 to 100 cm thick of white (N9) and green white (5G 8/1 to 9/1) to very pale green (5G 7/1 to 8/1) siliceous nannofossil ooze and pale green gray (5G 6/2 to 8/2) nannofossil siliceous ooze. Mottling is common but often subtle as the result of the poor contrast in sediment color. Planolites burrows are abundant.

The sediment varies in composition, although it is more uniform than in the adjacent subunits. Clay- and silt-sized materials are common to abundant (10 to 85% and 9 to 60%, respectively), and sand is common (10 to 30%). Calcareous nannofossils are common to abundant (5 to 70%), as are diatoms (8 to 40%) and radiolarians (6 to 50%); foraminifers are rare (0 to 5%). Trace amounts of sponge spicules, silicoflagellates, volcanic glass, and pyrite occur sporadically.

Subunit IC: Lower Brown Ooze (upper Miocene)

The lower brown ooze subunit (75.8 to 84.1 m) is similar in color and composition to Subunit IA. The base of the lower brown ooze is defined by the sharp change in sediment color from brown to the pastel greens, grays, and purples of the underlying calcareous ooze chalk unit. Planolites burrows are common.

The sediments of the subunit are composed of common to abundant clay- (5 to 85%) and silt-sized (5 to 60%) materials and common sand-sized material (5 to 35%). Calcareous nannofossils occur in trace to abundant amounts (up to 80%), diatoms are rare to abundant (3 to 47%), and radiolarians are common to abundant (5 to 50%); foraminifers are virtually absent. Sponge spicules and silicoflagellates consistently occur in amounts up to 1%; volcanic glass, pyrite, and iron oxides occur only sporadically in trace amounts (rarely in greater amounts).

Unit II: Calcareous Ooze Chalk (lower Oligocene to middle Miocene)

Unit II (84.1 to 502.5 m) is composed of calcareous ooze chalk. Siliceous microfossils are usually a common component (5 to 25%). Two subunits are defined on the basis of color: a green white ooze chalk (84.1 to 470.2 m) and a yellow white ooze chalk (470.2 to 502.5 m). The contact between the two subunits is a sharp color change.

Subunit IIA: Green White Ooze Chalk (upper Oligocene to middle Miocene)

The green white ooze chalk subunit (84.1 to 470.2 m) is composed of white (N9) and pale gray (N7 to 8) to green white (5G 5/1 to 9/1) nannofossil to siliceous nannofossil ooze chalk and very pale green gray (5G 7/1) nannofossil ooze chalk. Purple white (5P 8/1 to 9/1),

Table 2. Lithostratigraphy, Site 574.

<table>
<thead>
<tr>
<th>Lithologic unit</th>
<th>Sub-bottom depth (m)</th>
<th>Unit depth (Hole-Core-Section, level in cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (cyclic siliceous calcareous ooze)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (upper brown ooze)</td>
<td>0-48.1</td>
<td>574-1-1.1 to 574-6-4,106</td>
</tr>
<tr>
<td>B (green gray ooze)</td>
<td>48.1-75.8</td>
<td>574-4-4,9 to 574-10-3,108</td>
</tr>
<tr>
<td>C (lower brown ooze)</td>
<td>75.8-84.1</td>
<td>574-9-4,80 to 574-10-3,108</td>
</tr>
<tr>
<td>II (calcareous ooze chalk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (green white ooze chalk)</td>
<td>84.1-470.2</td>
<td>574-10-3,108 to 574-31,CC</td>
</tr>
<tr>
<td>B (yellow white chalk)</td>
<td>470.2-502.5</td>
<td>574C-30-1,24 to 574C-33-3,100</td>
</tr>
<tr>
<td>III (metalliferous chalk)</td>
<td>502.5-520.0 m</td>
<td>574C-33-3,100 to 574C-35,CC</td>
</tr>
<tr>
<td>IV (basalt)</td>
<td>520.0-532.5 m</td>
<td>574C-36-1,1 to 574C-37-1,1</td>
</tr>
</tbody>
</table>
very pale purple (5P 7/1 to 7/2 and 5P 8/2 to 8/4), and purple gray (5P 4/2 to 6/2) sediments are common above 128 m. The darker purples generally occur as small-scale laminations and bands. The purple sediments occur occasionally between 128 and 315 m, and they are absent below.

The sediments of the green white ooze chalk subunit are much less variable than those of the overlying cyclic siliceous calcareous ooze unit. Sand-sized grains are generally rare to common (2 to 15%), silt-sized material is rare to abundant (1 to 60%), and clay-sized material is usually abundant (35 to 95%). Calcareous nannofossils are abundant (65 to 95%), whereas foraminifers are absent to common (0 to 10%, rarely 15%). Diatoms (0 to 15%, rarely to 30%) and radiolarians (1 to 20%, rarely to 40%) are rare to common. Siliceous microfossils rarely constitute more than 20% of the sediment, but they increase in abundance in the basal 20 m of the subunit. Sponge spicules, silicoflagellates, volcanic glass, pyrite, and iron oxides occur in trace amounts.

The transition from calcareous ooze to chalk occurs from 185 to 480 m, primarily within the green white ooze chalk subunit. The transition progresses from the alternation at about 185 m of very stiff ooze (which occurs in regularly occurring intervals 2 to 5 cm thick) and soft ooze (which occurs in intervals 5 to 130 cm thick) to the alternation at about 400 m of chalk (which occurs in intervals 3 to 20 cm thick) and firm ooze (which occurs in intervals 7 to 25 cm thick). Oozes are absent below 480 m, and there is some question as to whether the “ooze” in the lowest 70 m of the transition is actually the result of drilling disturbance.

Subunit IIB: Yellow White Chalk (lower to upper Oligocene)

The yellow white chalk subunit (470.2 to 502.5 m) is composed of uniform yellow white (10YR 8/2 to 9/2) siliceous nannofossil to nannofossil chalk. The siliceous microfossil content is higher than in the overlying green white ooze chalk. The base of Subunit IIB is defined by the first appearance of faintly banded pale brown chalk. This subunit is composed of common sand- (10 to 15%) and silt-sized grains (5 to 35%) and abundant clay-sized material (60 to 85%). Calcareous nannofossils are abundant (82 to 85%), foraminifers are found in trace to common amounts (10%), diatoms are rare to common (3 to 10%), and radiolarians are found in trace to rare amounts (3%). The subunit appears to be composed entirely of biogenic material.

Unit III: Metalliferous Chalk (upper Eocene to lower Oligocene)

The metalliferous chalk unit (502.5 to 520.0 m) extends from the base of the calcareous ooze chalk unit to basement. The unit is composed of banded and/or highly mottled very pale yellow brown (10YR 8/2 to 8/3, 7/3), light yellowish brown (10YR 6/4 to 7/4), and yellow brown (10YR 5/4) metalliferous siliceous nannofossil chalks. Planolites, Chondrites, Zoophycos, and white halo (rind) burrows are abundant throughout the unit, forming a burrow community as described by Ekdale (1980).

The sediments of this unit are composed of abundant clay material (60 to 80%), common silt material (15 to 30%), and common sand-sized grains (5 to 10%, rarely absent). Calcareous nannofossils are abundant (67 to 98%), foraminifers are absent to rare (0 to 3%), diatoms are absent to common (0 to 15%), and radiolarians are found in trace to common abundances (< 1 to 15%). Of the nonbiogenic components, iron-manganese oxides are generally common (10%, rarely 2%) and pyrite is rare (3 to 5%, rarely trace amounts). Volcanic glass is ubiquitous in trace amounts, although it is more abundant on a macroscopic scale at the base of the unit.

Unit IV: Basalt

We recovered 120 cm (18 pieces) of basalt from Site 574 as we drilled from 520.0 to 532.5 m sub-bottom.

Carbonate Stratigraphy

The Site 574 samples analyzed for physical properties, which were taken at 1.5-m intervals, were also analyzed on board ship for carbonate content by the carbonate bomb method.

The carbonate record (Fig. 3) is similar to that for Site 573: both sites have a late Miocene to Quaternary interval with cyclic high-amplitude carbonate fluctuations and an Eocene to middle Miocene interval with relatively constant carbonate percentages with low-amplitude fluctuations. At Site 574 the interval with cyclic fluctuations extends from the sediment/water interface to 85 m sub-bottom, and the carbonate values range between 10 and 90%. The distinction between the high-carbonate and low-carbonate intervals is clear. Below the interval with cyclic fluctuations, the average carbonate percentage is a relatively constant 90%, with oscillations between 82 and 96%. An abrupt dissolution event occurs at 232 m, but it does not appear to coincide with any major change in lithology.

The change from the older, constant carbonate values to the younger high-amplitude carbonate cycles coincides with the change in lithology at 83.8 m from the calcareous ooze chalk (Unit II) to cyclic siliceous calcareous ooze (Unit I). The change from Unit III to Unit II is visible in the carbonate curve as a pronounced shift from carbonate values near 68% to values above 80%. There are also a number of distinct changes in the sedimentation rate curve for Site 574, and those at 33, 52, 62, and 98 m coincide with carbonate peaks in the high-amplitude cyclic interval. The carbonate data shown in Figure 3 also resemble the Neogene carbonate event stratigraphy of the equatorial Pacific (Dunn, 1981; Dunn and Moore, 1981).

Biostratigraphy

Sediments ranging in age from late Eocene to Quaternary were recovered at Site 574. Figure 4 summarizes the biostratigraphic zonation. An updated version of the biostratigraphic summary is presented in Barron et al. (this volume). The zonal sequence is complete except for the
Siliceous microfossils range from common to abundant throughout most of the section, and preservation is good. There is a decline in diatom abundance and preservation in the upper Oligocene; the upper part of the lower Oligocene; and near the Eocene/Oligocene boundary (in Cores 574C-33 and -34). Core 574C-35 is barren of both diatoms and radiolarians.

The abundance of the calcareous microfossils fluctuates. The foraminifers provide good stratigraphic control only in the lower middle Miocene, the lower part of the lower Miocene, the upper Oligocene, and the 2.5-m interval immediately above the basalt. The nannofossils are usually common to abundant, but many samples contain a high proportion of reworked material.

The most remarkable sequence recovered at Site 574 is an apparently continuous sedimentary sequence across the Eocene/Oligocene boundary. However, the attempt to identify the precise level for the boundary brought to light an interesting problem. According to Hardenbol and Berggren (1978), the Eocene/Oligocene boundary lies at the top of the Priabonian and within the P17 foraminiferal zone at the extinction level of *Hantkenina primitiva* and *Globorotalia cerroazulensis*. The nannofossil zonation of Bukry (1971b) places the Eocene/Oligocene boundary between Zones CP15b and CP16a at the extinction of *Discoaster barbadiensis* and *D. saipanensis*. The radiolarian zonation of Riedel and Sanfilippo (1978) places the Eocene/Oligocene boundary at the evolutionary change from *Lithocylia aristotelis* group to *L. angusta*, which is accompanied by the extinction of *Lophocyrtis (?) jacchia*, *Lynchocanoma amphitrite*, and *Dictyopora pirum* (*Theocampe pirum* in Riedel and Sanfilippo, 1978). The Eocene/Oligocene boundary has not been well defined in the tropics for diatoms. For benthic foraminifers, Miller and Curry (1982), Miller et al. (1985), and Tjalsma and Lohmann (1982) have shown that the last occurrence of *Nuttallides truempyi* coincides with the Eocene/Oligocene boundary as defined by Atlantic Ocean planktonic foraminifers. Thus, these various criteria place the Eocene/Oligocene boundary at slightly different levels in Hole 574C, as noted below.

<table>
<thead>
<tr>
<th>Eocene/Oligocene Boundary</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extinction level of Hantkenina primitiva may be influenced by dissolution</td>
<td></td>
</tr>
<tr>
<td>Identification of Discoaster saipanensis is hampered by overgrowths</td>
<td></td>
</tr>
<tr>
<td>It is inherently difficult to find a boundary defined by the evolutionary transition between two forms that are rather rare (at this site, at least)</td>
<td></td>
</tr>
</tbody>
</table>

3 However, see Radiolarians (this chapter).
Figure 4. Summary of biostratigraphy at Site 574; position of dashed zonal boundaries is uncertain.
SITE 574

Eocene/Oligocene Boundary

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Benthic foraminifers</th>
<th>Diatoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Samples 574C-33-5, 90-92 cm and 574C-33-5, 141-143 cm (sub-bottom depths 505.41 and 505.92 m)</td>
<td>Boundary is placed at the last occurrence of Nuttallides truempyi</td>
<td>Between Sections 574C-33, CC and 574C-34, CC (sub-bottom depths 510.74 and 506.03 m)</td>
</tr>
</tbody>
</table>

Planktonic Foraminifers

Upper Eocene through Pleistocene planktonic foraminifers are present in the recovered sequence. However, foraminiferal abundance fluctuates so markedly that these fossils provide good stratigraphic control in only three sections of the sequence (from 110 to 190 m, 230 to 440 m, and 517.5 m to the basement at 520 m sub-bottom). In the other intervals the assemblages are sparse, and zonal assignments can be made only by referring to other microfossil groups. The dissolution of planktonic foraminifers is shown in Figure 5.

At least three layers occur in the middle Miocene that contain exclusively reworked Oligocene planktonic foraminiferal faunas. One is approximately 9 m thick (from Sample 574A-17-3, 105-108 cm to Sample 574A-18-7, 27-29 cm); another is 6 m thick (from Sample 574A-21-2, 138-140 cm to Sample 574A-21, CC); and one is 4 m thick (from Sample 574A-22-3, 19-20 cm to Sample 574A-22-4, 141-144 cm). A similar layer is also present in the basal part of Core 574-22. The grain size of the sediments in these layers never exceeds 150 µm, and three species of Oligocene planktonic foraminifers (Chiloguembelina cubensis, Cassigerinella chipolensis, and Globorotalia postcretacea) make up almost 100% of the sand-sized sediment fraction (grains larger than 63 µm).

The sediment sequence recovered from the two HPC holes at this site yielded evidence of importance to two subjects in planktonic foraminiferal evolution. One is the well known, so-called Globo-ratalia fohsi-lineage. The evolution of G. fohsi was rapid in the tropical region during the middle Miocene; it progressed from the small nonkeeled G. peripheroronda through the medium-sized G. praefohsi to the robust and well keeled G. fohsi robusta. These species are zonal markers for Zones N9 through N12 and enable us to establish a precise global correlation. Another subject of stratigraphic significance is the position of the Orbulina datum. The first appearance of Orbulina suturalis after evolving from its immediate ancestor Prae-orbulina occurs at the lower/middle Miocene boundary in the European type section and coincides with the foraminiferal zonal boundary between Zones N8 and N9 (Berggren and Van Couvering, 1974). In our section, this datum lies within Cores 574-27 and -26.

Moderately well preserved upper Eocene planktonic foraminiferal assemblages characterize both Sections 574C-35-1 and 574C-35-2. These assemblages, which are assigned to Zone P17, include rare specimens of Hantkenina primitiva and Globorotalia cerroazulensis but lack species belonging to the genera Globigerinatheka and

Figure 5. Foraminifer dissolution curve for Site 574; numbers after Berger and von Rad (1972).
Globigerapsis. At Site 573, the Eocene fauna assigned to Zone P16 contained many species belonging to the latter two genera. Because the sediments that contain the Eocene fauna at Site 574 are overlain by a siliceous nannofossil chalk that contains few foraminifers, the Eocene/Oligocene boundary was difficult to identify with foraminiferal evidence. The extinction level of both H. primitiva and G. cerroazulensis has been regarded as marking the boundary (Hardenbol and Berggren, 1978), and in Hole 574C this level lies between Section 574C-34, CC and Sample 574C-35-1, 126-128 cm. However, the disappearance of these age-diagnostic species may have been hastened by dissolution.

Nannofossils

Nannofossils are usually common to abundant at Site 574. Discoasters are often abundant, but they are rare in the samples where the placoliths are poorly preserved (Sections 574-2, CC, -3, CC, and -10, CC to -16, CC, and Sections 574C-25, CC to -34, CC). The discoasters are overgrown below Zone C6N4 (between 574-17, CC and the bottom of the Hole 574C). Nannofossil species occurrence is shown in Figure 6.

Many samples contain a high proportion of reworked nannofossils. Specifically, these are reworked Miocene discoasters in Hole 574 from Sections 574-1, CC through -4, CC; reworked lower Miocene–upper Oligocene placoliths in Hole 574 (from Sections 574-17, CC through -19, CC and in Sections 574-22, CC and -27, CC) and in Hole 574C (Section 574C-1, CC); and reworked lower Oligocene nannofossils in Hole 574C (Sections 574C-3, CC through -9, CC). The upper middle Miocene and Oligocene samples do not show reworking.

Holes 574, 574A, and 574C contain nannofossils from the top of the Eocene to the Pleistocene. All the zones in Bukry’s stratigraphy (1971b) are represented at this site.

The upper Pliocene nannofossils (Sections 574-3, CC and -4, CC) are too dissolved to allow the subzones in this period to be clearly differentiated. The problem recurs at the boundary between the middle and upper Miocene, where the main stratigraphic species are absent; the appearance of Discoaster intercalar is and D. perclarus places the bottom of Zone C6N4-6 in Hole 574 between Sections 574-11, CC and -12, CC.

Zones C6N4 and C6N3 cannot be distinguished at Site 574. Helicopontosphaera ampliaperta is absent, and the ratio of long- to short-rayed discoasters (Bukry, 1973) cannot be used to place the boundary between the two zones because it can be used only in the uppermost part of Zone C6N4 and the lowermost part of Zone C6N3.

In the lowest Miocene (Zone C6N1), Cyclicargolithus abisectus disappears between Sections 574C-15, CC and 574C-16, CC, and Sphenolithus ciperoensis disappears between Sections 574C-16, CC and 574C-17, CC: thus, Subzone C6N1a is very short.

In the upper Oligocene sediments, small, stratigraphically useful sphenoliths could be distinguished, although the forms were difficult to identify (as has been the case elsewhere in the tropical latitudes; Bukry, 1971a) and occurred only sporadically.

The Eocene/Oligocene boundary occurs in the deepest sediments at Site 574. Reticulofenestra samodurovi, Discoaster barbadiensis, D. saipanensis, and Cyclicargolithus reticulatus characterize the upper Eocene Zone CP15b in Hole 574C between Section 574C-35, CC and 574C-34-2, 93 cm. The lower Oligocene is represented in Section 574C-33, CC by Zone CP16 (Subzones a and b). Between 574C-34-2, 93 cm and Section 574C-33, CC, nannofossils are rare to common but often poorly preserved, and discoasters are overgrown: the age of these samples could not be determined definitively.

Radiolarians

Radiolarians are common and well preserved in most of the material recovered at Site 574. The fauna appears to be less abundant in Cores 574C-33 and -34, although the decline in abundance may result in part from the difficulty of processing the samples. Core 574C-35 is barren of radiolarians. Every radiolarian zone was recognizable to the early Oligocene Theocystis tuberosa Zone (Fig. 4). The sequence in Hole 574A was similarly complete.

Hardenbol and Berggren (1978) show the boundary between the T. tuberosa and Thyrsocystis bromia zones to lie within the lower Oligocene (within P19). Goll (1972) also shows this zonal boundary to lie within the lower Oligocene. However, most of those working with radiolarians agree with Riedel and Sanfilippo (1978), who place the zonal boundary coincident with the Eocene/Oligocene boundary.

We place the Theocystis tuberosa/Thyrsocystis bromia zonal boundary for Site 574 tentatively between Samples 574C-33-4, 49–51 cm and 574C-33-5, 57–59 cm. The latter sample contains the last occurrence of Lithocyclos aristotels and species of Dictyopora. Section 574C-33, CC contains several species of Dictyopora, L. aristotels, and rare specimens of Lophocystis (?).jacchia. T. bromia was not observed, but Cores 574C-33 and -34 do contain several previously undescribed forms.

Diatoms

Diatoms are abundant to common, and preservation is generally good, from the Quaternary through the Miocene part of the section at Site 574. Below Core 574C-14 (327 m sub-bottom), abundance and preservation decline; abundance remains low and preservation remains poor through the upper Oligocene and upper part of the lower Oligocene (to Core 28, 460 m). Cores 574C-29 through -32 (lower Oligocene) contain abundant to common diatoms that are well to moderately well preserved. Preservation and abundance decrease downhole again in Cores 33 and 34, and Core 35, which is immediately above the basalt, is barren of diatoms.

The Quaternary through Oligocene section can readily be zoned (Fig. 4), although the upper Oligocene subzones could not be differentiated. The assemblages in Core 34 of Hole 574C lack Coscinodiscus excavatus and possess a general late Eocene character (C. decrescens, Hemiaulus polycystinorum, and Melosira architecturalis), although they lack the Eocene genera Brightwellia and Rylandsia.

The sequence of diatom datums is straightforward (Barron, this volume), and the Quaternary through middle Miocene sequence is comparable to that at Sites 572
Table 6. Occurrence of nannofossil species at Site 574; position of dashed zonal boundaries uncertain.

<table>
<thead>
<tr>
<th>Zones</th>
<th>(Barron, 1971)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gephyrocapsa caribbeanica</td>
<td></td>
</tr>
<tr>
<td>Cetolithus cristatus</td>
<td></td>
</tr>
<tr>
<td>Pseudacarinina lasuniae</td>
<td></td>
</tr>
<tr>
<td>Circulococcolithina macimyraei</td>
<td></td>
</tr>
<tr>
<td>Discoaster brunieri</td>
<td></td>
</tr>
<tr>
<td>Cetolithus rigipes</td>
<td></td>
</tr>
<tr>
<td>Reticulofenestra pseudoambibulica</td>
<td></td>
</tr>
<tr>
<td>Discoaster intercalaris</td>
<td></td>
</tr>
<tr>
<td>Discoaster pentaradiatus</td>
<td></td>
</tr>
<tr>
<td>Discoaster turriculatus</td>
<td></td>
</tr>
<tr>
<td>Cetolithus triangularis</td>
<td></td>
</tr>
<tr>
<td>Discoaster delicosus</td>
<td></td>
</tr>
<tr>
<td>Discoaster vanablis</td>
<td></td>
</tr>
<tr>
<td>Discoaster asymmetricus</td>
<td></td>
</tr>
<tr>
<td>Cetolithus primus</td>
<td></td>
</tr>
<tr>
<td>Discoaster berggreni</td>
<td></td>
</tr>
<tr>
<td>Discoaster quinquemaratus</td>
<td></td>
</tr>
<tr>
<td>Discoaster brunieri bipolaris</td>
<td></td>
</tr>
<tr>
<td>Discoaster quinquelatus</td>
<td></td>
</tr>
<tr>
<td>Discoaster perlocus</td>
<td></td>
</tr>
<tr>
<td>Discoaster reeculatus</td>
<td></td>
</tr>
<tr>
<td>Discoaster labaviculus</td>
<td></td>
</tr>
<tr>
<td>Discoaster dolioli</td>
<td></td>
</tr>
<tr>
<td>Discoaster nechamatus</td>
<td></td>
</tr>
<tr>
<td>Discoaster belius</td>
<td></td>
</tr>
<tr>
<td>Discoaster diatrus</td>
<td></td>
</tr>
<tr>
<td>Discoaster calcitrans</td>
<td></td>
</tr>
<tr>
<td>Discoaster hamatus</td>
<td></td>
</tr>
<tr>
<td>Coccolithus misolegicus</td>
<td></td>
</tr>
<tr>
<td>Heliozoosphaera granulata</td>
<td></td>
</tr>
<tr>
<td>Discoaster suikos</td>
<td></td>
</tr>
<tr>
<td>Discoaster eisii</td>
<td></td>
</tr>
<tr>
<td>Steronocrystus sp.</td>
<td></td>
</tr>
<tr>
<td>Discoaster morsei</td>
<td></td>
</tr>
<tr>
<td>Discoaster delandai</td>
<td></td>
</tr>
<tr>
<td>Sphenolithus heteromorphus</td>
<td></td>
</tr>
<tr>
<td>Sphenolithus minoriformis</td>
<td></td>
</tr>
<tr>
<td>Discoaster trilobatus</td>
<td></td>
</tr>
<tr>
<td>Reticulofenestra garnier</td>
<td></td>
</tr>
<tr>
<td>Cyclagolithus frondanus</td>
<td></td>
</tr>
<tr>
<td>Discoaster gr. adamentinus</td>
<td></td>
</tr>
<tr>
<td>Discoaster subaequus</td>
<td></td>
</tr>
<tr>
<td>Discoaster brugii</td>
<td></td>
</tr>
<tr>
<td>Triquorhabdus mitrivalis</td>
<td></td>
</tr>
<tr>
<td>Triquorhabdus canatus</td>
<td></td>
</tr>
<tr>
<td>Sphenolithus belenianus</td>
<td></td>
</tr>
<tr>
<td>Diacaster saundersi</td>
<td></td>
</tr>
<tr>
<td>Didycocyclaceae bisectus</td>
<td></td>
</tr>
<tr>
<td>Heliozoosphaera intermedia</td>
<td></td>
</tr>
<tr>
<td>Orthohabitus se saxus</td>
<td></td>
</tr>
<tr>
<td>Sphenolithus dissimilis</td>
<td></td>
</tr>
<tr>
<td>Dicyclocystites scioseae</td>
<td></td>
</tr>
<tr>
<td>Cyclagolithus abieicetus</td>
<td></td>
</tr>
<tr>
<td>Discoaster lani</td>
<td></td>
</tr>
<tr>
<td>Sphenolithus cipresensis</td>
<td></td>
</tr>
<tr>
<td>Coccolithus sphaeroceae</td>
<td></td>
</tr>
<tr>
<td>Sphenolithus distans</td>
<td></td>
</tr>
<tr>
<td>Discoaster lani nodifer</td>
<td></td>
</tr>
<tr>
<td>Chasmosphaera alata</td>
<td></td>
</tr>
<tr>
<td>Sphenolithus predictarius</td>
<td></td>
</tr>
<tr>
<td>Sphenolithus pseuobrachia</td>
<td></td>
</tr>
<tr>
<td>Heliozoosphaera compacta</td>
<td></td>
</tr>
<tr>
<td>Reticulofenestra umbilica</td>
<td></td>
</tr>
<tr>
<td>Reticulofenestra hulke</td>
<td></td>
</tr>
<tr>
<td>Pontosphaera vadosa</td>
<td></td>
</tr>
<tr>
<td>Coccolithus subfusiformis</td>
<td></td>
</tr>
<tr>
<td>Cyclacocollithina formosa</td>
<td></td>
</tr>
<tr>
<td>Cyclagolithus reinhardi</td>
<td></td>
</tr>
<tr>
<td>Discoaster suspenosus</td>
<td></td>
</tr>
<tr>
<td>Discoaster barbiedentus</td>
<td></td>
</tr>
<tr>
<td>Reticulofenestra samordiensis</td>
<td></td>
</tr>
</tbody>
</table>
and 573. The diatoms suggest that part of the lower Pleistocene (= 0.8 to 1.5 Ma) may not be represented (there may be a hiatus or it may be greatly compressed). The fauna in the sample at 574-2-2, 130 cm, which contains *Pseudoeunotia doliolus* and *Nitzschia reinholdi* but lacks the silicoflagellate *Mesocana quadrangulara*, suggests an age for the sample from 0.65 to 0.8 Ma. The sample at 574-2-3, 80 cm contains *Pseudoeunotia doliolus* and *Rhizosolenia praebelongii* var. *robusta* and is 1.8 to 1.55 m.y. old.

A lower Miocene hiatus at 70.5 m sub-bottom (base of Core 8 of both Holes 574 and 574A) is marked by the close stratigraphic proximity of the first appearance datum of *Coccosidiscus yabei* var. *elliptica* (9.8 Ma) (which occurs in Sample 574-9-1, 9–10 cm and in Core 574-9 above the core catcher) and the last appearance datum of *Coccosidiscus vetustissimus* var. *javanicus* (10.7 Ma) (which also occurs in Sample 574A-9-1, 9–10 cm and in Core 574-9 above the core catcher). Samples in the lower parts of Core 8 of both Holes 574 and 574A contain mixed assemblages of older (C. *tempevari* var. *delicata*, *Denticulopsis hustedtii*, and *Actinoecycus ellipticus* var. ‘ovum’) and younger (Thalassiosira *burckliana* and *Nitzschia cylindrica*) diatoms.

This hiatus occurs in an interval in which hiatuses in the eastern Pacific, including Site 77 (Barron, 1981a) and Site 573, are widespread (Keller and Barron, 1983). Hiatuses of this age are also present in the middle-latitude eastern North Pacific (Barron, 1981b), the central North Pacific (Keller, 1980), and the Southern Ocean (Ciesielski et al., 1982), and they have been related to the increased production of Antarctic Bottom Water associated with polar cooling. A more detailed discussion is presented in Barron et al. (this volume).

Benthic Foraminifers

Benthic foraminifers are extremely rare or absent in Samples 574-2, CC through -10, CC (i.e., in the Quaternary, Pliocene, and upper Miocene). They are generally rare in the rest of the cores. Preservation is variable; fragmentation is common in the lower 20 m of the cored interval. The diversity of the section is high (about 50 species per 200 specimens). Diversity does not decrease downhole, and it shows no apparent relation to lithology or dissolution (as indicated by the planktonic foraminifers).

The main constituents of the fauna are *Epistominella exigua* in the Miocene; *Nuttallides umboniferus* and species of *Pullenia*, *Gyroidinoides*, *Oridorsalis*, and *Cibicidoides* throughout the section; and species of *Stilostomella* and *Pleurorostomella* from the lower Miocene downward. The relative abundance of the species fluctuates. The abundance of *Cibicidoides* species is relatively low from the upper Oligocene through the lower Miocene. The Oligocene species of *Cibicidoides* (e.g., *C. grimsdalei*, *C. laurisae*, *C. mexicanus*) are gradually replaced by a more modern assemblage which includes *C. kullenbergi* and *C. wuellerstorfi*) during the early Miocene. *Uvigerina graciliformis* peaks in abundance (it forms up to 30% of the assemblage in Section 574-10, CC) in samples that show extreme dissolution of planktonic foraminifers. *E. exigua* is known to be resistant to dissolution (e.g., Dougla-
Figure 7. Age versus depth-in-hole based on biodatums at Site 574. Average sedimentation rates in m/m.y.

Table 3. Sedimentation rates, carbonate and noncarbonate mass accumulation rates at Site 574.

<table>
<thead>
<tr>
<th>Sub-bottom depth (m)</th>
<th>Age (Ma)</th>
<th>Sedimentation rate (m/m.y.)</th>
<th>Mean dry bulk density (g/cm³)</th>
<th>Mean CaCO₃ (%)</th>
<th>Mean mass accumulation rate ([g/cm²]/1000 yr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.6</td>
<td>5.0</td>
<td>0.53</td>
<td>64</td>
<td>0.27</td>
</tr>
<tr>
<td>15</td>
<td>2.8</td>
<td>8.2</td>
<td>0.35</td>
<td>29</td>
<td>0.29</td>
</tr>
<tr>
<td>33</td>
<td>5.0</td>
<td>15.8</td>
<td>0.49</td>
<td>51</td>
<td>0.77</td>
</tr>
<tr>
<td>52</td>
<td>6.2</td>
<td>4.8</td>
<td>0.74</td>
<td>74</td>
<td>0.36</td>
</tr>
<tr>
<td>62</td>
<td>8.3</td>
<td>7.6</td>
<td>0.58</td>
<td>56</td>
<td>0.44</td>
</tr>
<tr>
<td>81</td>
<td>10.9</td>
<td>12.0</td>
<td>0.79</td>
<td>79</td>
<td>0.95</td>
</tr>
<tr>
<td>99</td>
<td>12.4</td>
<td>10.9</td>
<td>1.00</td>
<td>90</td>
<td>1.6</td>
</tr>
<tr>
<td>142</td>
<td>13.6</td>
<td>6.5</td>
<td>0.99</td>
<td>87</td>
<td>0.64</td>
</tr>
<tr>
<td>157</td>
<td>15.9</td>
<td>32.4</td>
<td>1.03</td>
<td>82</td>
<td>3.33</td>
</tr>
<tr>
<td>280</td>
<td>19.7</td>
<td>19.1</td>
<td>1.20</td>
<td>90</td>
<td>2.29</td>
</tr>
<tr>
<td>341</td>
<td>22.9</td>
<td>7.2</td>
<td>1.22</td>
<td>87</td>
<td>0.88</td>
</tr>
<tr>
<td>369</td>
<td>26.8</td>
<td>12.3</td>
<td>1.3</td>
<td>88</td>
<td>1.5</td>
</tr>
<tr>
<td>464</td>
<td>34.7</td>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
</tr>
</tbody>
</table>

Figure 8. Sedimentation rate and average mass accumulation rates for carbonate and carbonate-free sediments at Site 574.

Figure 9. Carbonate versus carbonate-free mass accumulation rates at Site 574.

Carbonate bomb analyses were used to calculate the mass accumulation rates for the carbonate and noncarbonate sediment fractions. See Theyer et al. (this volume) for further discussion.

Sedimentation rate and the mass accumulation rates are plotted versus time in Figure 8. There are two important differences between the pattern of sedimentation for Site 574 and the patterns for Sites 572 and 573: (1) there is a positive correlation between sedimentation rate and carbonate accumulation rate at Site 574, whereas the correlation is negative at Site 572 and essentially zero at Site 573; and (2) the relationship between carbonate and noncarbonate mass accumulation rate is not as clearly linear at Site 574 as at Sites 572 and 573 (Fig. 9). However, the data plotted in Figure 9 have a correlation coefficient
of 0.7, and the regression equation has a slope of 0.1, half the value for the data from Site 573 overall and equal to the value for data from Site 573 for the Oligocene. The data at Site 574 and the difference between that site and Sites 572 and 573 suggest that sediment accumulation is more strongly affected by the accumulation of carbonate than at Sites 572 and 573.

The sedimentation rate curve for Site 574 (Fig. 7), unlike that for Site 573, gives no clear indication of the presence of hiatuses. The hiatus suggested by diatom stratigraphy at about 10 Ma occurs within an interval of relatively low sedimentation rate, and the low rate may result in whole or in part from short intervals of nondeposition during this time period. The possible hiatus at 23 Ma at Site 573 occurs in an interval at Site 574 of low sedimentation rate; thus, this interval may represent a time of regional decrease in sediment accumulation. The zone of equatorial high productivity during the early Miocene was very narrow, and Site 573 is nearer the margin of the zone than Site 574, so a regional reduction in sediment accumulation might be expressed at Site 573 as a hiatus.

PHYSICAL PROPERTIES

The physical properties measured for this site include wet-bulk density (p_b), sonic velocity (V_p), formation factor (F), thermal conductivity (K), and shear strength. Measurements were made at regular intervals within the HPC-cored sections except where the sediment was disturbed. In the rotary-cored sections, measurements were limited to selected, undisturbed parts of the core rather than at regular intervals. The Introduction (this volume) discusses the data collection techniques and procedures and gives pertinent references. A complete listing of numerical data is given in the Appendix (this volume).

Figures 10 through 15 show the various physical properties plotted against depth. Wet-bulk density (Fig. 10) is highly variable near the top of the section (1.2 to 1.4 g/cm3). At 90 m this range increases in mean value somewhat but is still variable. Just below 90 m there is a shift in densities to values around 1.6 g/cm3. The data are less variable and remain at values near 1.6 g/cm3 until a depth of around 220 m, where there is another fairly abrupt shift to values over 1.7 g/cm3. Density remains between 1.7 and 1.8 g/cm3 for about 200 m and then falls again at a layer of high-porosity material near basement.

Porosity (Fig. 11) shows many of the same trends as wet-bulk density and can be divided into a variable zone 90 m deep with porosities in excess of 80%; a less variable zone from 90 to 220 m with values near 60%; and a deep zone, in which porosity gradually decreases to a minimum at 440 m of about 45%. Below 440 m porosity increases as the result of an increase in the silica content of the lowermost sediments; the open structure of radiolarian tests tends to produce higher porosity values than the calcareous nannofossils, which pack more densely. Values of formation factor (Fig. 12) show the same trends, increasing from around 1.5 in the upper section to near 3.0 below 220 m. The induration of the sediments prohibited measurements of formation factor in the lowermost high-porosity zone.

![Figure 10. Wet-bulk density versus depth for Site 574.](image-url)
Figure 11. Porosity versus depth for Site 574.

Figure 12. Formation factor (horizontal) versus depth for Site 574.
Figure 13. Sonic velocity versus depth for Site 574.

Figure 14. Thermal conductivity versus depth for Site 574.
Thermal conductivity increases from values around 1.9 mcal/cm·s·°C to about 2.5 mcal/cm·s·°C in the interval between 50 and 90 m; values increase to about 3.4 mcal/cm·s·°C between 220 and 290 m (Fig. 14).

Shear strength (Fig. 15) is between 100 and 200 g/cm² at depths less than 70 m, exhibits several rather high values near 80 m, and then settles into the range from 200 to 300 g/cm² to a depth of 200 m. Two measurements near 300 m depth indicate a very small increase to values somewhat greater than 300 g/cm².

PALEOMAGNETISM

The magnetic properties of the upper 50 to 60 m of Holes 574 and 574A are reasonably good and permit polarity changes (as evidenced by 180° changes in the measured declination) to be distinguished. The untreated NRM₀ data, however, do not allow the identification of a specific reversal sequence. No AF demagnetization was carried out on board (see Weinreich and Theyer, this volume). The Kuster orientation device worked reasonably well and yielded readable slides in 80% of the cores.

At Site 573 the color of the sediment changed from brown to gray; this color change also occurred in Holes 574 and 574A. The change was again accompanied by a decrease by a factor of at least 10 in NRM₀ intensities. In general, Hole 574C shows very low intensities (about 1×10^{-7} G), although in the lower part (below 370 m), the variations in intensity are greater (sometimes up to 5.6×10^{-6} G). As in Hole 573B, the strongest intensity occurs in the dark brown sediment overlying the basalt; the values measured at Site 574 of 1.7×10^{-5} G are similar to the intensities of the metalliferous sediments of Hole 573B.

The variation of the NRM₀ intensities in the upper 60 to 80 m appears to be caused mainly by the variation of carbonate content. Between 80 and 200 m, however, the carbonate content is high and nearly constant, and NRM₀ intensities are low but variable. The variations in NRM₀ intensities in this part of the section may be due to changes in sedimentation rate. Low sedimentation rate appears to be accompanied by higher intensities, and high sedimentation rate seems to be accompanied by low intensities.

INTERSTITIAL-WATER CHEMISTRY

The profiles of magnesium and strontium and to a lesser extent calcium and alkalinity are roughly linear to sub-bottom depths of 150 to 175 m (Fig. 16). Calcium, strontium, and alkalinity gradually increase, whereas magnesium concentration steadily decreases. Reversals in these trends begin from 300 to 350 m sub-bottom and continue to the base of the section. Chlorinity shows a gradual steady increase and then abruptly decreases.

Large variations occur in the lowermost 150 m. Calcium and alkalinity show abrupt changes to very low values near 430 m sub-bottom. All profiles except pH and strontium contain abrupt concentration decreases in the deepest sample, but there is no evidence for contamination by surface seawater for the deeper samples. The fluctuations are probably related to diagenesis, which is influenced by differences in age, sediment accumulation rate, and sediment composition (especially in the metal-
liferous sediments that occur from 502 to 520 m sub-bottom).

Calcite recrystallization is indicated by the downhole increases in strontium; the values reach a maximum near 300 m sub-bottom. The overall profile is very smooth; it does not show the abrupt changes in the lower 150 m of section found for the other chemical species.

SUMMARY AND CONCLUSIONS

Site 574, located at 4°12.52' N, 133°19.81' W in 4550 m of water, is the second site in a three-site north-south transect across the equatorial high-productivity zone. The drill site, near the crest of the equatorial sediment bulge, was selected to provide a sedimentary record of the migration of this site across the equator as well as to permit recovery of the Eocene/Oligocene boundary. Three holes were drilled at Site 574. The coring may be summarized as follows.

In Hole 574, 32 hydraulic piston cores resulted in 206.5 m of penetration, and recovery was nearly 100%. In Hole 574A, 23 hydraulic piston cores were obtained. Penetration was 180.2 m, and recovery was nearly 100%. Hole 574B represented one rotary-drilled core recovered from 185 to 194.5 m sub-bottom. The corer was lost, and the pipe had to be tripped to recover it. In Hole 574C, 37 cores were recovered by rotary drilling from 194.5 to 525.5 m sub-bottom, where basalt was encountered. Recovery for this hole was 58%.

The sedimentary section at Site 574 was divided into three lithologic units on the basis of sediment composition. Unit I (0 to 84.1 m; upper Miocene to Quaternary) is cyclic siliceous calcareous ooze. It is characterized by cyclic variations in the relative abundance of siliceous and calcareous microfossils and thus ranges from siliceous nannofossil to calcareous siliceous ooze. The unit is subdivided into three subunits, primarily by color: an upper brown ooze subunit, a green gray ooze subunit, and a lower brown ooze subunit.

Unit II (84.1 to 502.5 m; lower Oligocene to upper Miocene) is calcareous ooze chalk. The components of this predominantly calcareous unit range from siliceous nannofossil to nannofossil ooze and chalk. Two subunits are recognized on the basis of color, a green white chalk subunit (83.8 to 470.2) and a yellow white chalk subunit (470.2 to 502.5 m). A gradual transition from ooze to chalk occurs in the green white subunit between about 185 and 480 m sub-bottom.

Unit III (502.5 to 520.0 m; upper Eocene to lower Oligocene) is metalliferous chalk. More specifically, it is a yellow brown siliceous nannofossil chalk with common iron–manganese oxides. This unit directly overlies basaltic basement.

The carbonate content curve for Site 574 is similar to that for Site 573. The upper (upper Miocene to Quaternary) 85 m of the section is characterized by high-amplitude, high-frequency fluctuations in carbonate content. The sediments deposited from the Eocene to the middle Miocene show high carbonate content with little variation.

All the major microfossil groups are represented at Site 574, and the section from the uppermost Eocene to the Quaternary is fairly complete. Siliceous microfossils are abundant and well preserved in most of the section. There is, however, a decline in diatom abundance and preservation in the upper Oligocene, the upper part of the lower Oligocene, and near the Eocene/Oligocene boundary. Planktonic foraminiferal abundances fluctuate and provide good stratigraphic control only in the lower mid-
dle Miocene. Calcareous nannofossils are common to abundant throughout the section. Both the foraminifers and the nannofossils indicate that there are at least three zones of reworked Oligocene microfossils in the middle Miocene sediments.

Several of the events recorded in the Site 574 sediments are of stratigraphic significance. The planktonic foraminifers reveal the Globorotalia fohsi lineage and the Orbulina datum. The transition from the uppermost Eocene to the lowermost Oligocene is remarkably complete. The transition occurs in the metalliferous unit (502.5 to 520.0 m) directly above basement; the criteria for each microfossil group differ, and the precise location of the boundary varies accordingly. The apparently continuous sequence offers an unusual opportunity to study the Eocene/Oligocene boundary. The Oligocene/Miocene boundary occurs in Core 574C-17 (=350 m), and the Miocene/Pliocene boundary occurs in Core 574-5 at approximately 35 m sub-bottom. The diatom stratigraphy suggests hiatuses in the lower Pleistocene (0.8 to 1.5 Ma) and the lower upper Miocene (9.1 to 10.8 Ma), whereas the sedimentation rate curves indicate these to be times of decreased sedimentation.

The sedimentation rate at Site 574 is moderate; it averages 12 m/m.y. during the Oligocene and increases to 32 m/m.y. in the early Miocene (15 to 20 Ma). There is a short interval of low sedimentation rate (13.6 to 15.9 Ma), which is followed by a middle Miocene interval (12.4 to 13.6 Ma) with a relatively high (about 36 m/m.y.) rate. After the middle Miocene, the sedimentation rate decreases sharply (to about 12 m/m.y.), and except for a short interval of increased rate (about 16 m/m.y.) between 5 and 6.2 Ma, remains low into the youngest sediments recovered. The sedimentation rate and calcium carbonate curves for Site 574, unlike those for Sites 572 and 573, show positive correlation. Carbonate and non-carbonate mass accumulation rates continue to exhibit a linear relationship, but the regression has a much lower amplitude than at the previous sites. (See also Theyer et al., this volume.)

Paleomagnetic studies at Site 574 were once again hampered by the extremely low NRM intensities that characterize much of the section, but the shipboard analyses produced interesting results nonetheless. Polarity reversals could be identified in lithologic Unit I (the cyclic calcareous siliceous ooze), where NRM intensities are an order of magnitude higher than in the rest of the section (except for the metalliferous sediments). In the part of section where NRM intensities are highest (about 0 to 80 m), the correlation between carbonate content and NRM intensity is extremely good, low carbonate content corresponding to high intensity. Below 80 m sub-bottom the carbonate content increases and shows little variation, and the NRM intensities decrease and appear to vary as a function of sedimentation rate (higher intensity is accompanied by lower sedimentation rate). The NRM intensities increase again in the metalliferous sediments at the base of the section.

Shipboard analyses of interstitial water reveal linear trends for alkalinity, calcium, and magnesium in the upper 150 m. Departures from linearity in this interval may be a function of changes in diffusion coefficients, which are suggested by variations in formation factor (see Physical Properties). Deeper in the section, variations in alkalinity, calcium, and magnesium are influenced by sedimentation rate, depth of burial, and compositional changes, and are probably indicative of diagenetic processes. High alkalinity values are associated with high sedimentation rate and sulfate reduction; low alkalinity occurs in intervals where calcium is at a minimum and there is an increase in the amount of chalk, indicating possible calcite precipitation. Most intriguing are the changes in the geochemical parameters associated with the metalliferous sediments at the base of the section (Jarvis, this volume).

Physical property measurements (wet-bulk density, sonic velocity, thermal conductivity, and formation factor) show an upper zone of large-amplitude variations (0 to 90 m), which is underlain by an interval of fairly consistent values (90 to 220 m), the mean of which is offset from that of the upper interval. Below about 220 m there is another major shift in mean values that appears to be associated with the beginning of chalk formation. In the lowermost part of Site 574 (420 to 510 m), unlike the previous sites, saturated wet-bulk and grain densities decrease (porosity increases). This unexpected result is associated with the abundance of siliceous microfossils in this interval.

The seismic section of Site 574 is characterized by numerous closely spaced reflectors that vary in strength and character. As in other Leg 85 sediments, variations in sonic velocity are minimal until about 380 m sub-bottom; thus, impedance contrasts above that depth are a function of changes in wet-bulk density only. The reflection pattern in the upper 0.1 s correlates extremely well with the density cycles in the upper 80 m of the section. Below this level several individual reflectors can be correlated with shifts in wet-bulk density, but the reflectors may also be interference composites. Acoustic basement correlates with a zone of rapid velocity and density excursions (deeper than about 400 m) and probably does not represent basalt (see Mayer et al., this volume).

By interpolating the migration tracks (van Andel et al., 1975) of nearby drill sites, a rough estimate of the paleodepths and latitudes of Site 574 can be made. The crust upon which Site 574 sits was generated 37 to 39 Ma at about 5°S and in water about 3000 m deep. The presence of a metalliferous chalk in contact with basalt is consistent with our present understanding of ridgecrest processes. Despite the shallow depth, the lower Oligocene sedimentation rate was fairly low, a result of the site's distance from the equator (the equatorial productivity zone was narrow during this time) and the generally decreased sedimentation rate (van Andel et al., 1975). The foraminiferal dissolution index during this interval is moderate to high. The deepening of the site with time is not apparent from the carbonate or noncarbonate mass accumulation rate curves. In fact, CaCO₃ content increases in the first few million years of the site's existence, probably as the result of the oceanwide tendency of carbonate to increase from the Eocene to the Oligocene.
Sonic velocity (Fig. 13) exhibits fairly uniform values throughout most of the core. Values are near 1.50 km/s at the top and generally increase with increasing depth to 1.60 km/s by a depth of 240 m. Below about 360 m the velocities increase and become more variable, an effect of the differing amount of lithification near the basement.

The Miocene part of the section is characterized by generally higher carbonate and noncarbonate mass accumulation rates and high, fairly constant carbonate values. The dissolution index is moderate and fairly stable. The carbonate and noncarbonate mass accumulation rates increase and decrease together, with carbonate accumulating faster than noncarbonate (unlike the carbonate at Site 572, which accumulates slower than noncarbonate). These data are indicative of moderate productivity that increases as the site migrates under the equatorial high-productivity zone.

At approximately 15.9 Ma there is a sharp drop in the carbonate and noncarbonate mass accumulation rates. The dissolution index does not increase steeply. Van Andel et al. (1975) show a distinct peak in sedimentation rates at this time, but our dates are based on a different time scale.

After this decrease there is a sharp increase in both the carbonate and noncarbonate mass accumulation rates that corresponds to the crossing of the equator (which took place from 13.6 to 12.4 Ma). Dissolution is moderate to low during this interval. After the equatorial crossing we see a sharp and then a slower but steady decrease in carbonate and noncarbonate accumulation rates with minor fluctuations. There are two periods (6.2 to 8.3 Ma and 10.9 to 12.4 Ma) in which the abundance of diatoms that are indicative of upwelling increases. At Site 572, the presence of these upwelling diatoms is associated with enhanced dissolution. At Site 574, however, it is associated with decreased dissolution of carbonate. The contrast is further evidence that, whereas sedimentation at Site 572 is characterized by extremely high productivity and biogenic silica, the sedimentation at Site 573 and 574 is characterized by lower productivity and is dominated by calcareous components.

REFERENCES
SITE 574

CORE 1

CODE INTERVAL 0.0-4.5 m

FOSIL CHARACTER

LITHOLOGIC DESCRIPTION

1. **UPPER BROWN OOZE (SUBUNIT IIA)**
 - Alternating brown (10YR 7/3 and 7/4) and grayish (10YR 6/2 and 6/4) intervals. All highly mottled with mottling most common in core interval 1.5-2.0 m.
 - Due to the apparent lack of correlation between the observed variation in sediment color and composition in the brown (10YR 4/4 and 5/4) foram diatom ooze to calcareous radiolarian ooze. All highly mottled with mottling most common in core interval 1.5-2.0 m.

2. **SMEAR SLIDE SUMMARY (%):**
 - Upper brown ooze (Subunit IIA): 10YR 4/4 and 6/4 Texture: 10YR 7/3 and 7/4 Note: Due to the apparent lack of correlation between the observed variation in sediment color and composition in the brown (10YR 4/4 and 5/4) foram diatom ooze to calcareous radiolarian ooze. All highly mottled with mottling most common in core interval 1.5-2.0 m.

 - Composition:
 - Silt 20 40 100
 - Sand 30 50 200
 - Clay 50 100 400
 - Calcareous nannofossils 30 50 200
 - Radiolaria 30 50 200
 - Sponge spicules 30 50 200
 - Fe-mats 30 50 200

NOTE: Graphic lithologies represent average compositions derived from smear slides and do not always reflect the detailed alternation of sediment types. Major lithologic boundaries are shown but gradational contacts, small-scale cyclicity and undeclared intervals are represented schematically. Color changes approximate lithologic changes.

INTERVAL 4.5-14.0 m

UPPER BROWN OOZE (SUBUNIT IIA):

3. **SMEAR SLIDE SUMMARY (%):**
 - Alternating brown (10YR 7/3 and 7/4) and grayish (10YR 6/2 and 6/4) intervals. All highly mottled with mottling most common in core interval 1.5-2.0 m.

 - Composition:
 - Silt 20 40 100
 - Sand 30 50 200
 - Clay 50 100 400
 - Calcareous nannofossils 30 50 200
 - Radiolaria 30 50 200
 - Sponge spicules 30 50 200
 - Fe-mats 30 50 200

NOTE: Graphic lithologies represent average compositions derived from smear slides and do not always reflect the detailed alternation of sediment types. Major lithologic boundaries are shown but gradational contacts, small-scale cyclicity and undeclared intervals are represented schematically. Color changes approximate lithologic changes.
UPPER BROWN OOZE (SUBUNIT IA):

Interbedded pale brown (10YR 7/4, 8/3, and 6/2) and darker brown (10YR 4/3-5/3) calcareous diatom ooze, both mottled with each other, the dark intervals usually more highly mottled.

Upper 3 meters of pale brown (10YR 7/4) calcareous diatom ooze mottled with darker brown (10YR 4/3-5/3) is underlain by interbedded pale brown (10YR 6/3-8/3 and 8/4), gray brown (10YR 7/1-7/2 and 8/2), and dark brown (10YR 5/3 and 6/4) ooze; lighter color apparently indicative of more calcareous material. Beds 10 cm to 1 m and usually highly mottled.

TEXTURE:
- Sand
- Silt
- Clay

COMPOSITION:
- Volcanic glass
- Carbonate unspec.
- Foraminifers
- Calc. nanofossils
- Diatoms
- Radiolaria
- Sponge spicules
- Silicoflagellates
- Fe oxides

CARBONATE SCORE:
- 2.75 cm = 21%
- 5.75 cm = 17%
- 7.75 cm = 32%
- 1.25 cm = 9%
- 1.75 cm = 15%
- 2.75 cm = 23%
- 5.75 cm = 24%
- 7.75 cm = 49%
- 2.75 cm = 20%
- 1.25 cm = 9%
- 1.75 cm = 15%
- 2.75 cm = 23%
- 5.75 cm = 24%
- 7.75 cm = 49%

NOTE: Graphs above represent average compositions derived from single slides and do not always reflect the detailed admixture of sediment types. Minor lithologic units are shown but gradational contacts, small scale variations and mosaic lithologies are represented schematically. Color changes approximate lithologic changes.
SITE 574 HOLE CORE S CORED INTERVAL 33.5-42.5 m

LITHOLOGIC DESCRIPTION

UPPER BROWN OOZE (SUBUNIT IA):
Pale brown (10YR 8/4-8/2) diatom nanno ooze interbedded with gray brown (10YR 7/2-7/4) and brown (10YR 6/3 and 3/2-4/2) radiolarian calcareous ooze. Upper 4.6 m most highly variable throughout.

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Text</th>
<th>Sand</th>
<th>Gravel</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper 4.6 m</td>
<td>35</td>
<td>10</td>
<td>55</td>
</tr>
</tbody>
</table>

Texture:
- Sand 45
- Gravel 45

Composition:
- Foraminifers 3
- Calc. nannofossils 60
- Diatoms 10
- Radiolarians 7
- Sponge spicules Tr
- Silicoflagellates Tr

CARBONATE BOMB:

<table>
<thead>
<tr>
<th>Sample</th>
<th>10YR 8/3</th>
<th>10YR 8/2</th>
<th>10YR 8/1</th>
<th>10YR 8/0</th>
<th>10YR 7/1</th>
<th>10YR 7/2</th>
<th>10YR 6/3</th>
<th>10YR 3/2</th>
<th>10YR 2/1</th>
<th>10YR 1/2</th>
<th>10YR 1/1</th>
<th>10YR 0/1</th>
<th>10YR 0/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>30</td>
<td>45</td>
<td>55</td>
<td>54</td>
<td>53</td>
<td>25</td>
<td>29</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>62</td>
<td>30</td>
<td>19</td>
<td>61</td>
<td>47</td>
<td>48</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>7</td>
<td>47</td>
<td>47</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>1</td>
<td>47</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>2</td>
<td>47</td>
<td>47</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>3</td>
<td>47</td>
<td>47</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>4</td>
<td>47</td>
<td>47</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

UPPER BROWN OOZE (SUBUNIT IB):

About 1.5 m of dominantly blue-green white (N9) diatom nanno ooze overlying interbedded white (N9) and green (10YR 7/2-7/4) diatom radiolarian oozes mottled indistinctly.

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Text</th>
<th>Sand</th>
<th>Gravel</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper 4.6 m</td>
<td>35</td>
<td>10</td>
<td>55</td>
</tr>
</tbody>
</table>

Texture:
- Sand 45
- Gravel 45

Composition:
- Foraminifers 3
- Calc. nannofossils 60
- Diatoms 10
- Radiolarians 7
- Sponge spicules Tr
- Silicoflagellates Tr

CARBONATE BOMB:

<table>
<thead>
<tr>
<th>Sample</th>
<th>10YR 8/3</th>
<th>10YR 8/2</th>
<th>10YR 8/1</th>
<th>10YR 8/0</th>
<th>10YR 7/1</th>
<th>10YR 7/2</th>
<th>10YR 6/3</th>
<th>10YR 3/2</th>
<th>10YR 2/1</th>
<th>10YR 1/2</th>
<th>10YR 1/1</th>
<th>10YR 0/1</th>
<th>10YR 0/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>30</td>
<td>45</td>
<td>55</td>
<td>54</td>
<td>53</td>
<td>25</td>
<td>29</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>62</td>
<td>30</td>
<td>19</td>
<td>61</td>
<td>47</td>
<td>47</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>7</td>
<td>47</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>1</td>
<td>47</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>2</td>
<td>47</td>
<td>47</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>3</td>
<td>47</td>
<td>47</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>4</td>
<td>47</td>
<td>47</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

UPPER BROWN OOZE (SUBUNIT IIA):

Pale brown (10YR 8/4-8/2) diatom nanno ooze interbedded with gray brown (10YR 7/2-7/4) and brown (10YR 6/3 and 3/2-4/2) radiolarian calcareous ooze. Upper 4.6 m most highly variable throughout.
SITE 574 HOLE CORE 7 CORED INTERVAL 52.0-61.0 m

LITHOLOGIC DESCRIPTION

GREEN GRAY OOZE (SUBUNIT B):

- Dominantly very pale green (5G 7/1-7/1 and 6/2) and pale green gray (5G 6/2-7/1) nanno diatom ooze interbedded with lesser amounts of white (N9) diatom ooze and calcareous ooze. Mottled throughout.

SMEAR SLIDE SUMMARY (%):

- **Sand**: 22 15
- **Silt**: 43 40
- **Clay**: 35 40

Composition:

- **Carbonate unspec.**: 15 20
- **Foraminifers**: 5 5
- **Calc. annofossils**: 25 50
- **Radiolarians**: 30 15
- **Sponge spicules**: Tr Tr
- **Silicoflagellates**: Tr

CARBONATE BOMB:

- 1, 15 cm = 85%
- 2, 15 cm = 90%
- 3, 15 cm = 95%
- 4, 15 cm = 95%

SITE 574 HOLE CORE 9 CORED INTERVAL 61.0-70.5 m

LITHOLOGIC DESCRIPTION

GREEN GRAY OOZE (SUBUNIT B):

- Green white (5G 8/1-9/1) nanno diatom ooze interbedded with white (N9) ooze in the upper 4 m and overlying light green gray (5G 6/1-7/2 and 5G 6/1-7/1). Mottled throughout.

SMEAR SLIDE SUMMARY (%):

- **Sand**: 15 30
- **Silt**: 40 60
- **Clay**: 45 15

Composition:

- **Carbonate unspec.**
- **Foraminifers**
- **Calc. annofossils**: 10 10
- **Radiolarians**: 30 10
- **Sponge spicules**: Tr Tr
- **Silicoflagellates**: Tr

CARBONATE BOMB:

- 1, 5 cm = 85%
- 2, 5 cm = 90%
- 3, 5 cm = 95%
- 4, 5 cm = 95%

LITHOLOGIC DESCRIPTION

GREEN GRAY Ooze (SUBUNIT IB) (0.0-5.3 m):
Upper 5.3 m of interbedded intervals of mottled green
white (5G 8/1-9/1) diatom rad nanno ooze and light green
gray (5G 7/1-7/2) to green gray (5G 6/1-6/2) nanno
diatom ooze.

LOWER BROWN Ooze (SUBUNIT IC) (5.3-9.5 m):
Transitional over 80 cm to a section of interbedded inter-
vals of medium to very pale shades of slightly mottled
yellowish brown (2.5Y 4/2-4/3) to very pale brown
(2.5Y 6/4-6/5) diatom ooze.

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Pyrite</th>
<th>Carbonate unspec.</th>
<th>Calc. nannofossils</th>
<th>Diatoms</th>
<th>Radiolarians</th>
<th>Sponge spicules</th>
<th>Silicoflagellates</th>
<th>Fe-oxides</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>62</td>
<td>36</td>
<td>16</td>
<td>59</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

CARBONATE BOMB

1.75 cm = 73%
2.75 cm = 22%
3.75 cm = 2%
LITHOLOGIC DESCRIPTION

SITE 574 HOLE 11 CORED INTERVAL 89.5-98.6 m

GREEN WHITE Ooze/CaHalk (Subunit IIA):
Bilaterally white (N9-8) to blue white (5B 9/1) and greenish white to yellowish green (5G 8/1-9/1) and orange very pale yellow (5Y 8/1-9/1) ooze.

SMEAR SLIDE SUMMARY (%):
1. 100 3.63

Texture: Sand 15 5
Silts 40 43
Clay 60 61

Composition:
Foraminifers 3 1
Nannofossils 60 64
Diatoms 15 30
Silex 15 5
Porcellanite 1 1
Siliceous oozes 1 1

CARBONATE BOMB:
1. 75 cm - 89%
2. 75 cm - 90%
3. 75 cm - 78%
4. 75 cm - 90%
5. 75 cm - 90%
6. 75 cm - 90%

SITE 574 HOLE 12 CORED INTERVAL 98.6-108.1 m

GREEN WHITE Ooze/CaHalk (Subunit IIA):
Bilaterally white (N9-8) to blue white (5B 9/1-8/1) and greenish white to yellowish green (5G 8/1-9/1) and orange very pale yellow (5Y 8/1-9/1) ooze.

SMEAR SLIDE SUMMARY (%):
2. 60 3.20

Texture: Sand 15 15
Silts 40 43
Clay 60 45

Composition:
Carbonate grains - 1
Porcellanite - 1
Diatoms 80 69
Nannofossils 10 10
Silex 10 10

CARBONATE BOMB:
1. 75 cm - 89%
2. 75 cm - 90%
3. 75 cm - 90%
4. 75 cm - 90%
5. 75 cm - 90%
6. 75 cm - 90%
GREEN WHITE Ooze/Chalk (Subunit 11A): White, grey, to greenish white (N8-9) radially banded with dusky purple (SP 5.5/2-7.5/2) and very pale purple (SP 6/2-7/2) laminae. Very fine grained, very light textured. Minor mottling.

CARBONATE BOM: 1.5 cm = 90% 2.75 cm = 87% 3.75 cm = 85% 4.75 cm = 81% 5.75 cm = 75% 6.75 cm = 60%

SHEAR SLIDE SUMMARY (FU):
1. 100 1 14

LITHOLOGIC DESCRIPTION
GREEN WHITE Ooze/Chalk (Subunit 11B): Dominantly white (N8-9) to greyish white (N8.5/9) radially banded with dusky purple (SP 5.5/2-7.5/2) and very pale purple (SP 6/2-7/2), and purple white (SP 6/2-7/2). Minor mottling.

CARBONATE BOM: 1.75 cm = 96% 2.75 cm = 91% 3.75 cm = 88% 4.75 cm = 88% 5.75 cm = 88% 6.75 cm = 88%
SITE 574 HOLE CORE (HPC) 15 CORED INTERVAL 122.6-127.6 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT I1A):
White (5B 3/2-4/2) and very pale purple (5P 7/2-8/2) rich foraminiferous ooze with inner bands of light grayish purple (5P 4/2 and 5B 5/2) foraminiferous ooze.

SMAR SLIDE SUMMARY (%):
- Texture:
 - Sand: 25
 - Silt: 15
 - Clay: 60
- Composition:
 - Foraminifera: 10
 - Radiolarians: 10
 - Sponge spicules: 10
 - Silicoflagellates: 10
- CARBONATE BOMB:
 - 2.75 cm = 92%
 - 4.75 cm = 93%

SITE 574 HOLE CORE (HPC) 16 CORED INTERVAL 127.6-132.6 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA):
Dominantly blue white (5B 9/1) and green white (5G 9/1) nanno ooze with minor laminated bands of creme gray (4M 3/2) and NS. Subtle mottling in upper 3 meters with pale purple (5P 4/2 and 5P 6/2).

SMAR SLIDE SUMMARY (%):
- Texture:
 - Sand: 7
 - Silt: 5
 - Clay: 90
- Composition:
 - Foraminifera: 5
 - Pyrite:
 - Diatoms: 2
 - Radiolarians: 6
- CARBONATE BOMB:
 - 1.75 cm = 92%
 - 2.75 cm = 93%
 - 4.75 cm = 93%
Lithostratigraphic Description

SITE 574 HOLE (HPC) 17 CORED INTERVAL 132.6-137.6 m

<table>
<thead>
<tr>
<th>METER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>132.6</td>
<td>Green White Ooze/Chalk (Subunit 11A): Dominantly intergrading blue white (5G 9/1) and green white (5G 9/1) nanno ooze mottled with pale gray (N7). Burrows also filled with pale gray.</td>
</tr>
<tr>
<td>133.0</td>
<td>SMEAR SLIDE SUMMARY (%): 2,74</td>
</tr>
<tr>
<td>133.5</td>
<td>5G 9/1 Texture: Sand V E Silt 5G 8/2 Q</td>
</tr>
<tr>
<td>134.0</td>
<td>Composition: Carbonate unspec. 35G9/1.N7 CalTnTnrmfosjils 90 Diatoms 2 Silicoflagellates Tr</td>
</tr>
<tr>
<td>134.5</td>
<td>Carbonate Bomb: 1,75 cm = 92% 2,75 cm = 93% 3,75 cm = 88%</td>
</tr>
</tbody>
</table>

SITE 574 HOLE (HPC) 18 CORED INTERVAL 137.6-142.6 m

<table>
<thead>
<tr>
<th>METER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>137.6</td>
<td>Green White Ooze/Chalk (Subunit HA): Dominantly green white (5G 9/1), with lesser amounts of blue white (5B 9/1), gray (N6-N8), and pale purple (5P 6/2) nanno oozes. Mottling and color changes subtle.</td>
</tr>
<tr>
<td>138.0</td>
<td>Clay:</td>
</tr>
<tr>
<td>138.5</td>
<td>Carbonate unspec. 17 5G9/1 N6-5P 6/2 Radiolarians 3 Silicoflagellates Tr</td>
</tr>
<tr>
<td>139.0</td>
<td>Carbonate Bomb: 1,75 cm = 89% 2,75 cm = 82% 3,75 cm = 90%</td>
</tr>
</tbody>
</table>
SITE 574 HOLE CORE (HPC) 19 CORED INTERVAL 142.6 - 147.6 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA):
Fairly uniform green white (5G 8/1-9/1) nanno ooze mottled with very pale gray (N7).

SMEAR SLIDE SUMMARY (%):

CARBONATE BOMB:
2, 75 cm = 92%
3, 75 cm = 86%
SITE 574 HOLE CORE (HPC) 21 CORED INTERVAL 152.5-157.5 m

SITE 574 HOLE CORE (HPC) 22 CORED INTERVAL 157.5-162.5 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA):

Green white (5G 8/1—9/1) nanno ooze mottled more obviously in the darker (5G 8/1) sections by the lighter (9/1) material.

SMEAR SLIDE SUMMARY (%):

- Texture:
 - Sand: 3
 - Silt: 2
 - Clay: 94
- Composition:
 - Pyrite: Ty
 - Carbonate: Ty
 - Foraminifers: 1
 - Calc. nannofossils: 65
 - Diatoms: Ty
 - Radiolarians: 1
 - Silicoflagellates: Ty

CARBONATE BOMB:

- 1.75 cm = 86%
- 2.75 cm = 95%
- 3.75 cm = 90%

GREEN WHITE OOZE/CHALK (SUBUNIT IIA):

Green white (5G 9/1) nanno ooze very weakly mottled by very pale gray (N8-N9).

SMEAR SLIDE SUMMARY (%):

- Texture:
 - Sand: 2
 - Silt: 3
 - Clay: 95
- Composition:
 - Carbonate: Ty
 - Foraminifers: 70
 - Calc. nannofossils: 25
 - Diatoms: 3
 - Radiolarians: 1
 - Silicoflagellates: Ty

CARBONATE BOMB:

- 1.75 cm = 87%
- 2.75 cm = 90%
- 3.75 cm = 90%
GREEN WHITE Ooze/Chalk (Subunit IIa):

About 1.8 m of light purple (5P 4/2 and 6/2) to pale green (N7) nannofossil ooze overlain by 1.6 m of green white (5G 8/1-9/1) ooze of the same composition. Marking apparent only below 2 m.

SPEAR SLIDE SUMMARY (%):

Texture: Sand 2 Sil 2 Clay 96
Composition: Pyrite 7%
Carbonate minerals 18%
Ferricarbonates 2%
Calcite nannofossils 80%
Oxides 1 Radiolarians 3 Silicoflagellates 2%

CARBONATE BONE:

2.75 cm = 91%
3.75 cm = 92%
1.75 cm = 88%
2.75 cm = 92%
3.75 cm = 90%
LITHOLOGIC DESCRIPTION

SITE 574 HOLE CORE (HPC) 25 CORED INTERVAL 172.5-177.5

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Depth Interval</th>
</tr>
</thead>
</table>
| Green White Ooze/Chalk (Subunit 1IA) | Dominantly green white (5G 8/1-9/1) nanno ooze with lesser amounts of blue white (5B 9/1), and minor light gray (N6-N8), pale yellow (2.5Y 7/1-4) and blue green (5BG 6/4) oozes from 3.1 to 4 m. Mottled in the green. Carbonate unspec.: 70%.

SITE 574 HOLE CORE (HPC) 26 CORED INTERVAL 177.5-182.3

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Depth Interval</th>
</tr>
</thead>
</table>
| Green White Ooze/Chalk (Subunit IIA) | 0.9 to 1.3 m intergrading intervals of green white (5G 7/1-8/1) to very pale green (5G 6/1-7/1) and light bluish purple (5P 7/2) nanno to rad diatom nanno oozes. Oozes 60% of fossils: 80% Radiolarians, 60% Silicoflagellates, Trinitillids, and 60% sponge spicules. Carbonate bomb: 3.75 cm = 82%, 2.75 cm = 95%, 1.75 cm = 81%.
SITE 574 HOLE CORE (HPC) 27 CORED INTERVAL 182.3-187.3 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA): Dominantly green white (5G 9/1) diatom nannofossils and radiolaria, blue gray (5BG 8/1-9/1) or green-gray (5G 8/2-9/2).

SMEAR SLIDE SUMMARY (%):
- Volcanic glass: Tr
- Foraminifers: 10
- Calc. nannofossils: 75
- Diatoms: 15
- Radiolarians: 5
- Sponge spicules: —
- Silicoflagellates: —

CARBONATE BOMB:
- 1.76 cm = 95%
- 2.75 cm = 73%
- 3.75 cm = 85%

SITE 574 HOLE CORE (HPC) 28 CORED INTERVAL 197.3-192.3 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA): Dominantly white (N9) to green white (5G 9/1) diatom nannofossils and radiolaria, interbedded with cm intervals of pale green gray (5G 7/2-8/2) clay silts and silt clays.

SMEAR SLIDE SUMMARY (%):
- Calc. nannofossils: 45
- Foraminifers: 45
- Radiolarians: 5
- Sponge spicules: —
- Silicoflagellates: —

CARBONATE BOMB:
- 1.76 cm = 95%
- 2.75 cm = 73%
- 3.75 cm = 85%
SITE 574 HOLE CORE (HPC) 29 CORED INTERVAL 192.2-197.2 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT MA):
- SMEAR SLIDE SUMMARY
- Foraminifers
- Calc. nannofossils
- Diatoms
- Radiolarians
- Sponge spicules

CARBONATE BOMB:
- 5 cm = 86%
- 6 cm = 90%
- 7 cm = 91%

SITE 574 HOLE CORE (HPC) 30 CORED INTERVAL 197.2-202.2 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT HA):
- White (N9) to pale green gray (5GY 8/2-9/2) radiates
- Sand 20%
- Silt 45%
- Clay 35%
- Composition:
 - Carbonate unspec. - 5%
 - Foraminifers - 10%
 - Calc. nannofossils - 60%
 - Diatoms - 20%
 - Radiolarians - 10%
 - Sponge spicules - 10%

CARBONATE BOMB:
- 2.75 cm = 81%
- 3.75 cm = 89%
SITE 574 HOLE A CORE 1 CORED INTERVAL 6.0-6.3 m

LITHOLOGIC DESCRIPTION

GREEN WHITE Ooze/Chalk (Subunit 1A):
Unlithified very pale green gray (5G 9/2-5N) foraminiferal ooze with minor wackestone.

SMEAR SLIDE SUMMARY (%):

- Texture: Sand 10, Silt 40, Clay 50
- Composition: Pyrite Tr, Calc. nannofossils 70, Diatoms 20, Radiolarians 10

CARBONATE SORBED:
1. 1/3 cm = 75%
2. 1/3 cm < 75%
3. 1/3 cm < 50%

5G 9/2-5N

UPPER BROWN OOZE (Subunit 2A):
Yellowish brown (10YR 5/4) and pale brown gray (10YR 7/2-7/3) foram nannofossil ooze.

SMEAR SLIDE SUMMARY (%):

- Texture: Sand 15, Silt 25, Clay 60
- Composition: Pyrite 5, Foraminifers 15, Calc. nannofossils 65, Diatoms 5, Radiolarians 5, Fe-oxides 5

Graphite lithologies represent average compositions derived from smear slides and do not always reflect the exact lithology of sediment cores. Minor lithologic boundaries are shown but gradational contacts, small out crosstransitions to chalk and ooze chalk interbeds are represented schematically. Other changes appear unrelated to lithologic changes.
DANIEL ALKAN

LITHOLOGIC DESCRIPTION

UPPER BROWN Ooze (SUBUNIT IA):
Alternating intervals of highly mottled very pale brown (10YR 3/3, 4/3, 6/3-6/4), and dark brown (10YR 3/3-3/5) calcareous oozes to diatom- and foraminiferal ooze.

UPPER BROWN Ooze (SUBUNIT IA):
Alternating intervals of highly mottled very pale brown (10YR 3/3-3/5) calcareous oozes to diatom- and foraminiferal ooze.
SITE 574 HOLE A CORE 4 CORED INTERVAL 22.9-33.1 m

LITHOLOGIC DESCRIPTION

UPPER BROWN Ooze (Subunit IA)
Alternating intervals of highly mixed very pale brown (10YR 7/2 and 8/4), light brownish gray (10YR 6/2), and dark brown (10YR 4/2 and 5/3) radiolarians and sponge spicules. Silicoflagellates are abundant. Color changes approximate lithologic changes.

LITHOLOGIC DESCRIPTION

UPPER BROWN Ooze (Subunit IA)
Alternating intervals of very pale brown (10YR 7/2 and 8/4), light brownish gray (10YR 6/2), and dark brown (10YR 4/2 and 5/3) radiolarians and sponge spicules. Silicoflagellates are abundant. Color changes approximate lithologic changes.
SITE 574 HOLE A CORE B CORED INTERVAL 61.4-70.4 m

SITE 574 HOLE A CORE B CORED INTERVAL 70.4-79.9 m

LITHOLOGIC DESCRIPTION

GREEN GRAY OOZE (SUBUNIT IB): Upper 4.5 m of sorted, dominantly green white (5G 8/1-9/1) rad nanno ooze underlain by highly mottled diatom rad nanno oozes of blue white (5B 8/1), blue green (5G 7/1), light green gray (5GY 6/1-7/1), and pale gray (5G 7/7).

SMEAR SLIDE SUMMARY (%):
- Texture: Sand 20
- Silt 10
- Clay 70
- Composition: Volcanic glass Tr
- Pyrite Tr
- Foraminifers Tr
- Calc. nannofossils 15
- Radiolarians 18
- Sponge spicules Tr
- Silicoflagellates Tr

CARBONATE BOMB:
- 1.75 cm = 75% 4.75 cm = 89%
- 3.75 cm = 85% 6.75 cm = 95%
- 5.75 cm = 90% 8.75 cm = 97%

LOWER BROWN OOZE (SUBUNIT IC) (5.6-9.5 m):
- interbedded and mottled very pale brown (10YR 7/3-7/5 and 8/2-8/4), light brownish gray (10YR 6/2-6/4) and dark brown (10YR 6/2) oozes of the same composition.

SMEAR SLIDE SUMMARY (%):
- Texture: Sand 20
- Silt 10
- Clay 65
- Composition: Carbonate grains 15
- Foraminifers Tr
- Calc. nannofossils 55
- Diatoms 10
- Radiolarians 10
- Sponge spicules Tr
- Silicoflagellates Tr

CARBONATE BOMB:
- 1.75 cm = 75% 4.75 cm = 89%
- 3.75 cm = 85% 6.75 cm = 97%
SITE 574 HOLE A

CORE 10

CORED INTERVAL: 79.9-89.2 m

LITHOLOGIC DESCRIPTION

- **LOWER BROWN OOZE (SUBUNIT IC):** (0.0-4.6 m)
 - Relatively uniform, very pale brown (10YR 8/2) siliceous ooze
- **GREEN WHITE OOZE/CHALK (SUBUNIT HA):** (4.6-9.3 m)
 - Mottled very pale green gray (5G 6/1 and 8/1 and 5BG 7/1)
- **SMEAR SLIDE SUMMARY (%):**
 - Clay: 60%
 - Pyrite: 5%
 - Carbonate: 9%
 - Diatoms: 1%
 - Radiolarians: Tr
 - Sponge spicules: Tr
 - Silicoflagellates: Tr
- **CARBONATE BOMB:**
 - 1.75 cm = 73%
 - 2.75 cm = 79%
 - 3.75 cm = 42%
 - 4.75 cm = 76%
 - 5.75 cm = 90%

SITE 574 HOLE A

CORED INTERVAL: 89.2-99.7 m

LITHOLOGIC DESCRIPTION

- **GREEN WHITE OOZE/CHALK (SUBUNIT IIA):**
 - Interval of dominantly very pale yellow gray (2.5Y 8/2-9/2) diatom nanno ooze to the underlying white (N9) and purple white (5P 9/1) nanno oozes. The latter frequently contains 5 to 25 cm bands of grayish purple (5P 4/2) to very pale purple (5P 7/2).
- **SMEAR SLIDE SUMMARY (%):**
 - Clay: 60%
 - Pyrite: 5%
 - Carbonate: 9%
 - Diatoms: 1%
 - Radiolarians: Tr
 - Sponge spicules: Tr
 - Silicoflagellates: Tr
- **CARBONATE BOMB:**
 - 1.75 cm = 73%
 - 2.75 cm = 79%
 - 3.75 cm = 42%
 - 4.75 cm = 76%
 - 5.75 cm = 90%
 - 6.75 cm = 92%

Graphic Lithology

- **Subunit IC:** Lower Brown Ooze
- **SUBUNIT HA:** Green White Ooze/Chalk
- **SUBUNIT IIA:** Green White Ooze/Chalk (I was incomplete)
SITE 574

HOLE A

CORE 12

CORED INTERVAL 98.7 - 108.5 m

LITHOLOGIC DESCRIPTION

GREEN WHITE Ooze/Chalk (Subunit IIA)

White (N8-9) to green white (5G 9/2), diatom ooze to marl; ooze occasionally tinted with light gray (N6-7) and pale purple (5P 6/2 and 6/3).

SAND 2, 10

SLIM 30

SILT 35

Diatoms 65

Calc. foraminifers 10

Calc. nannofossils 10

Diatom 10

Radiolarians 10

Sponge spicules 10

FORAMINIFERS 10

CALK. NANNOFOSILS 10

DIATOMS 10

RADIOLARIANS 10

SPONGE SPICULES 10

SILICICALESSATES 10

CARBONATE BOMB:

1. 75 cm = 89%

2. 75 cm = 85%

3. 75 cm = 84%

4. 75 cm = 83%

5. 75 cm = 82%

6. 75 cm = 81%

7. 75 cm = 80%

8. 75 cm = 79%

9. 75 cm = 78%

10. 75 cm = 77%

11. 75 cm = 76%

12. 75 cm = 75%

13. 75 cm = 74%

14. 75 cm = 73%

15. 75 cm = 72%

16. 75 cm = 71%

17. 75 cm = 70%

18. 75 cm = 69%

19. 75 cm = 68%

20. 75 cm = 67%

21. 75 cm = 66%

22. 75 cm = 65%

23. 75 cm = 64%

24. 75 cm = 63%

25. 75 cm = 62%

26. 75 cm = 61%

27. 75 cm = 60%

28. 75 cm = 59%

29. 75 cm = 58%

30. 75 cm = 57%

31. 75 cm = 56%

32. 75 cm = 55%

33. 75 cm = 54%

34. 75 cm = 53%

35. 75 cm = 52%

36. 75 cm = 51%

37. 75 cm = 50%

38. 75 cm = 49%

39. 75 cm = 48%

40. 75 cm = 47%

41. 75 cm = 46%

42. 75 cm = 45%

43. 75 cm = 44%

44. 75 cm = 43%

45. 75 cm = 42%

46. 75 cm = 41%

47. 75 cm = 40%

48. 75 cm = 39%

49. 75 cm = 38%

50. 75 cm = 37%

51. 75 cm = 36%

52. 75 cm = 35%

53. 75 cm = 34%

54. 75 cm = 33%

55. 75 cm = 32%

56. 75 cm = 31%

57. 75 cm = 30%

58. 75 cm = 29%

59. 75 cm = 28%

60. 75 cm = 27%

61. 75 cm = 26%

62. 75 cm = 25%

63. 75 cm = 24%

64. 75 cm = 23%

65. 75 cm = 22%

66. 75 cm = 21%

67. 75 cm = 20%

68. 75 cm = 19%

69. 75 cm = 18%

70. 75 cm = 17%

71. 75 cm = 16%

72. 75 cm = 15%

73. 75 cm = 14%

74. 75 cm = 13%

75. 75 cm = 12%

76. 75 cm = 11%

77. 75 cm = 10%

78. 75 cm = 9%

79. 75 cm = 8%

80. 75 cm = 7%

81. 75 cm = 6%

82. 75 cm = 5%

83. 75 cm = 4%

84. 75 cm = 3%

85. 75 cm = 2%

86. 75 cm = 1%

87. 75 cm = 0.5%

88. 75 cm = 0.25%
GREEN WHITE OOZE/CHALK (SUBUNIT IIA):

White (06) diatoms nano core excepting bands with light to very pale purple (5P 6/2-8/2) and encrusted with pale yellow (5Y 7/3) between 2.2 and 4.1 m.

SMEAR SLIDE SUMMARY (%):

- 2,75 cm = 90%
- 2,75 cm - 81%
- 3,76 cm = 80%
- 4,9 cm - 89%

CARBONATE ZONE:

1. 1.7 cm - 90%
2. 1.7 cm + 81%
3. 1.7 cm + 80%
4. 1.7 cm - 90%
SITE 574 HOLE A CORE (HPC) 16 CORED INTERVAL: 122.8–127.8 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT HA):

White (N9), very pale purple (5P 7/2–9/2), and very pale red purple (5RP 7/2–8/2) rad diatom nanno ooze.

Warning: Material transferred from broken core liner; not necessarily in correct stratigraphic sequence.

SMEAR SLIDE SUMMARY (%)

- Calc. nannofossils: 70%
- Radiolarians: 30%
- Silicoflagellates: 2%

CARBONATE BOMB:

1. 75 cm = 89%
2. 75 cm = 91%
3. 75 cm = 91%

SITE 574 HOLE A CORE (HPC) 17 CORED INTERVAL: 127.8–131.9 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT HA):

Dominantly white (N9) to green white (5G 9/2) diatom nanno ooze with some mottling in the uppermost 65 cm.

SMEAR SLIDE SUMMARY (%)

- Calc. nannofossils: 83%
- Radiolarians: 18%
- Silicoflagellates: 2%

CARBONATE BOMB:

1. 75 cm = 83%
2. 75 cm = 90%
3. 75 cm = 86%
SITE 574 HOLE A
CORE 18 CORED INTERVAL 131.9-141.4 m

LITHOLOGIC DESCRIPTION

- **N7 + 5P 7/2**
- **N9, N7 + 5G 8/2**

GREEN WHITE OOZE/CHALK (SUBUNIT 1IA): Dominantly white (N9) diatom nano to foram nano oozes tinted blue-green white (5BG 9/1) in the upper 3.3 m and banded with 5 to 50 cm laminated intervals of pale gray (N7) and pale purple (BP 7/2) below 5.2 m.

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Component</th>
<th>2,70</th>
<th>4,11</th>
<th>6,10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc. nanofossils</td>
<td>73</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>Diatoms</td>
<td>15</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Radiolarians</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sponge spicules</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td>Silicoflagellates</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
</tbody>
</table>

CARBONATE BOMB:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,75 cm</td>
<td>89%</td>
</tr>
<tr>
<td>2,75 cm</td>
<td>90%</td>
</tr>
<tr>
<td>3,75 cm</td>
<td>90%</td>
</tr>
<tr>
<td>4,75 cm</td>
<td>94%</td>
</tr>
<tr>
<td>5,75 cm</td>
<td>86%</td>
</tr>
<tr>
<td>6,75 cm</td>
<td>93%</td>
</tr>
<tr>
<td>7,25 cm</td>
<td>88%</td>
</tr>
<tr>
<td>8,25 cm</td>
<td>84%</td>
</tr>
</tbody>
</table>

SITE 574 HOLE A
CORE 19 CORED INTERVAL 141.4-150.9 m

LITHOLOGIC DESCRIPTION

- **GREEN WHITE OOZE/CHALK (SUBUNIT 1IA):** Dominantly white (N8—9) diatom foram nano to nanno oozes which, in the upper 6.6 m, are tinted purple white (5P 9/1) and red purple white (5RP 9/1-9/2), and frequently banded with 5 to 50 cm intervals of pale gray (N7) with pale to very pale purple (5P 7/2-8/2) or light to very pale red purple (5RP 6/2-8/2). Below 6.6 m they are mottled with very pale yellow (5Y 7/2-9/2).

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Component</th>
<th>2,80</th>
<th>6,11</th>
<th>6,10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>28</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Compositio</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
</tbody>
</table>

CARBONATE BOMB:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,75 cm</td>
<td>86%</td>
</tr>
<tr>
<td>2,75 cm</td>
<td>96%</td>
</tr>
<tr>
<td>3,75 cm</td>
<td>87%</td>
</tr>
<tr>
<td>4,75 cm</td>
<td>84%</td>
</tr>
<tr>
<td>5,75 cm</td>
<td>84%</td>
</tr>
<tr>
<td>6,75 cm</td>
<td>93%</td>
</tr>
<tr>
<td>7,25 cm</td>
<td>91%</td>
</tr>
<tr>
<td>8,25 cm</td>
<td>91%</td>
</tr>
</tbody>
</table>
GREEN WHITE OOZE/CHALK (SUBUNIT SI5): Intergrading intervals of mottled, dominantly light green gray (BG 7/1-8/1) and green white (BG 8/1-9/1) pale gray ooze. Blanked in a couple 10 to 30 cm laminated intervals.

SMERALS SLIDE SUMMARY (%):
Texture:
- Sand 15
- Silt 5
- Clay 80
Composition:
- Pyrite Tr
- Carbonate unspec. 8
- Foraminifers 20
- Radiolarians 18
- Sponge spicules Tr
- Silicoflagellates Tr

CARBONATE BOMB:
1. 75 cm - 83% 2. 75 cm - 80%
3. 75 cm - 83% 4. 75 cm - 80%

LITHOLOGIC DESCRIPTION
GREEN WHITE OOZE/CHALK (SUBUNIT SI5): Intergrading intervals of mottled, dominantly green white (BG 8/1-9/1) and pale gray (BG 7/1-8/1) pale gray ooze. Blanked in a couple 10 to 30 cm laminated intervals.

SMERALS SLIDE SUMMARY (%):
Texture:
- Sand 15
- Silt 5
- Clay 80
Composition:
- Pyrite Tr
- Carbonate unspec. 8
- Foraminifers 20
- Radiolarians 18
- Sponge spicules Tr
- Silicoflagellates Tr

CARBONATE BOMB:
1. 75 cm - 83% 2. 75 cm - 80%
3. 75 cm - 83% 4. 75 cm - 80%
Site 574 Hole B Core 1 Cored Interval 185.0-194.5 m

Lithologic Description

GREEN WHITE Ooze/Chalk (Subunit IA):
Lightly mottled very pale green gray (5G 8/1) to green white (5G 9/1-N9) siliceous nanno ooze with semi-indurated 5-10 cm sections at intervals of 10-30 cm.

Smear Slide Summary (%):
- 1, 100%
- 2, 75 cm - 84%
- 3, 75 cm - 87%

Composition:
- Foraminifers
- Calc. nannofossils
- Diatoms
- Radiolarians
- Sponge spicules
- Silicoflagellates
- Fish remains
- **Carbohydrate Bone:**
 - 1. 75 cm - 89%
 - 2. 75 cm - 27%
 - 3. 75 cm - 27%

Site 574 Hole B Core 1 Cored Interval 194.5-204.0 m

Lithologic Description

GREEN WHITE Ooze/Chalk (Subunit IB):
Green white (5G 8/1-9/1) to pale gray (5G 9/1-N9) diatom nanno ooze. Minor mottling apparent in soft ooze; 2 to 5 cm intervals of semi-indurated ooze every 5 to 15 cm.

Smear Slide Summary (%):
- 1, 100%
- 2, 75 cm - 86%
- 3, 75 cm - 70%

Composition:
- Foraminifers
- Calc. nannofossils
- Diatoms
- Radiolarians
- Sponge spicules
- Silicoflagellates
- **Carbohydrate Bone:**
 - 1. 75 cm - 88%
 - 2. 75 cm - 27%
 - 3. 75 cm - 27%
SITE 574 HOLE C CORE 2 CORED INTERVAL 294.0-213.5 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT II):

SGY B'/-B'/

Light green gray (SGY 7/1) to green white (SGY 8/1-9/1) soft diatom ooze with intervals of 2 to 5 cm sections of well-indurated ooze at 9-10 cm intervals. Wren notation.

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Texture</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Foraminifers</th>
<th>Calc. nannofossil</th>
<th>Diatoms</th>
<th>Radiolarians</th>
<th>Sponge spicules</th>
<th>Silicoflagellate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>10</td>
<td>6</td>
<td>Tr</td>
<td>Tr</td>
<td>9</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARBONATE BOMB:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75 cm = 80%</td>
</tr>
<tr>
<td>3.75 cm = 32%</td>
</tr>
</tbody>
</table>

SITE 574 HOLE C CORE 3 CORED INTERVAL 213.5-222.0 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT III):

SGY B'/-B'/

Soft diatom ooze with intervals of 2 to 5 cm sections of well-indurated ooze at 9-10 cm intervals. Wren notation.

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Texture</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Foraminifers</th>
<th>Calc. nannofossil</th>
<th>Diatoms</th>
<th>Radiolarians</th>
<th>Sponge spicules</th>
<th>Silicoflagellate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>80</td>
<td>15</td>
<td>Tr</td>
<td>Tr</td>
<td>9</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARBONATE BOMB:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75 cm = 80%</td>
</tr>
<tr>
<td>3.75 cm = 76%</td>
</tr>
</tbody>
</table>
Lithologic Description

SITE 574 HOLE C

Cored Interval 223.0-232.5 m

GREEN WHITE Ooze/ZACKLE (Subunit IIA)
Uncommonly green white (5GY 8/1-9/1) siliceous ooze 2 to 5 cm sections of well-indurated ooze at intervals of 5 to 10 cm.

Smear Slide Summary (%)
- Texture: Sand 5
- Silty 60
- Clay 5
- Composition:
 - Silica-wool: 5
 - Foraminifers: 7
 - Calc. nannofossils: 85
 - Diatoms: 3
 - Radiolarians: 7
 - Sponge spicules: 3
- Carbonate Bomb:
 - 1.75 cm = 87%
 - 2.75 cm = 81%

SITE 574 HOLE C

Cored Interval 232.5-242.0 m

Lithologic Description

GREEN WHITE Ooze/ZACKLE (Subunit IIA)
Dominantly light gray (N7) siliceous nanno to nanno oozes occasionally mottled or banded with pale green gray (5G 7/2-9/2). Two to 5 cm sections of well-indurated ooze at intervals of 5 to 30 cm.

Smear Slide Summary (%)
- Texture: Sand 3
- Silty 36
- Clay 37
- Composition:
 - Foraminifers: 2
 - Calc. nannofossils: 85
 - Diatoms: 3
 - Radiolarians: 5
- Sponge spicules: Tr
- Carbonate Bomb:
 - 1.75 cm = 89%
 - 2.75 cm = 82%
 - 3.75 cm = 88%

SITE 574 HOLE C

Cored Interval 242.0-251.5 m

Lithologic Description

GREEN WHITE Ooze/ZACKLE (Subunit IIA)
Light gray (5G 7/2-9/2) to white (N6-7) silt-matrix oozes occasionally banded with pale green gray (5G 8/2-9/2) and green white (5G 8/1-9/1). In undisturbed intervals, 2 to 5 cm sections of well-indurated ooze at intervals of 5 to 30 cm.

Smear Slide Summary (%)
- Texture: Sand 3
- Silty 36
- Clay 37
- Composition:
 - Foraminifers: 2
 - Calc. nannofossils: 85
 - Diatoms: 3
 - Radiolarians: 5
- Sponge spicules: Tr
- Carbonate Bomb:
 - 1.75 cm = 89%
 - 2.75 cm = 82%
 - 3.75 cm = 88%
SITE 574 HOLE C
CORED INTERVAL 251.5-261.0 m

LITHOLOGIC DESCRIPTION
- Void
- N7-5 + 5P7/2
- N5-7 + 5P7/2
- 5G9/1
- N7
- 5G
- N7
- 5G
- N8+ 6P 8/2

Composit Carbonate
Foraminifera
Calc. nanofossils
Diatoms
Radiolarians
Sponge spicules

CARBONATE BOMB:
1.75 cm = 92%
2.75 cm = 85%
3.75 cm = 75%
4.75 cm = 65%
5.75 cm = 55%
6.75 cm = 45%
7.75 cm = 35%
8.75 cm = 25%
9.75 cm = 15%
10.75 cm = 5%
11.75 cm = 0%

GREEN WHITE Ooze/Chalk (Subunit IA):
Dominantly pale gray (N7-8) to green white (5G 9/1) nanno ooze, with some intervals containingoxy clastic ooze (5F1-2/2) which are usually quite different and have only soft ooze. Elsewhere 2 to 5 cm sections of well-indurated ooze occur every 5 to 50 cm.

SMEAR SLIDE SUMMARY (%):
Texture:
Sand: 3
Silt: 40
Clay: 57
Composition:
Foraminifera: 3
Calc. nanofossils: 83
Diatoms: 3
Radiolarians: 3
Sponge spicules: 17

CARBONATE BOMB:
1.75 cm = 92%
2.75 cm = 85%
3.75 cm = 75%
4.75 cm = 65%
5.75 cm = 55%
6.75 cm = 45%
7.75 cm = 35%
8.75 cm = 25%
9.75 cm = 15%
10.75 cm = 5%
11.75 cm = 0%

SITE 574 HOLE C
CORED INTERVAL 261.0-270.5 m

LITHOLOGIC DESCRIPTION
GREEN WHITE Ooze/Chalk (Subunit IA):
Dominantly pale gray (5G 9/1) and green white (5G 7/1-8/1) nanno ooze. Two to 5 cm sections of very stiff ooze at intervals of 3 to 30 cm occur above the bed below about 2.3 m.

SMEAR SLIDE SUMMARY (%):
Texture:
Sand: 1
Silt: 40
Clay: 59
Composition:
Foraminifera: 3
Calc. nanofossils: 83
Diatoms: 3
Radiolarians: 3
Sponge spicules: 17

CARBONATE BOMB:
1.75 cm = 90%
2.75 cm = 88%
3.52 cm = 88%
4.75 cm = 76%
5.75 cm = 65%
6.75 cm = 53%
7.75 cm = 41%
8.75 cm = 30%
9.75 cm = 15%
10.75 cm = 0%
11.75 cm = 0%

SITE 574 HOLE C
CORED INTERVAL 270.5-280.0 m

LITHOLOGIC DESCRIPTION
GREEN WHITE Ooze/Chalk (Subunit IA):
Dominantly slightly mottled green white (5G 7/1-8/1) to pale green gray (5G 7/1-8/1) nanno ooze. Two to 5 cm sections of very stiff ooze at intervals of 3 to 30 cm above 3 m; continuous very stiff ooze below 3 m.

SMEAR SLIDE SUMMARY (%):
Texture:
Sand: 4
Silt: 1
Clay: 95
Composition:
Foraminifera: 1
Calc. nanofossils: 3
Diatoms: 1
Radiolarians: 2
Sponge spicules: 17

CARBONATE BOMB:
1.75 cm = 90%
2.75 cm = 88%
3.52 cm = 88%
4.75 cm = 76%
5.75 cm = 65%
6.75 cm = 53%
7.75 cm = 41%
8.75 cm = 30%
9.75 cm = 15%
10.75 cm = 0%
11.75 cm = 0%
SITE 574 HOLE C
CORE 10
CORED INTERVAL 280.0-289.5 m

LITHOLOGIC DESCRIPTION

GREEN WHITE Ooze/Chalk (Subunit EIA):
Green white IG 6/1-8/1) and light gray IG 6-8) nanno
ooze/chalk. Two to 5 cm sections of very stiff ooze grading
to soft chalk at intervals of 5 to 60 cm. Minor mottling.

SMEAR SLIDE SUMMARY (%): 3, 140
Clay
Composition:
Pyrite
Carbonate unspec.
Foraminifers
Calc. nannofossils
Diatoms
Radiolarians
Sponge spicules
Silicoflagellates

CARBONATE BOM:
1,75 cm - 85%
2,75 cm - 89%
3,75 cm - 90%
5,75 cm - 88%
7,75 cm - 88%
9,75 cm - 91%
4,75 cm - 90%
6,75 cm - 85%
8,75 cm - 88%
10,75 cm - 90%

SITE 574 HOLE C
CORE 11
CORED INTERVAL 289.5-299.0 m

LITHOLOGIC DESCRIPTION

GREEN WHITE Ooze/Chalk (Subunit EIA):
Dominantly green white IG 6/1-8/1) nanno ooze/chalk,
with two 8 cm bands of light gray IG 6-7) above 3,5 m
and strongly laminated or banded by mottled pale purple
IG 6/2-7/2) below. Upper 1,5 m of chalk underlain by
stiff ooze with 2 to 5 cm sections of chalk at 15 to 30 cm
intervals and finally by 1,5 m of very stiff ooze.

SMEAR SLIDE SUMMARY (%): 3,70
Clay
Composition:
Pyrite
Carbonate unspec.
Foraminifers
Calc. nannofossils
Diatoms
Radiolarians
Sponge spicules
Silicoflagellates

CARBONATE BOM:
1,75 cm - 85%
2,75 cm - 89%
3,75 cm - 90%
5,75 cm - 88%
7,75 cm - 88%
9,75 cm - 91%
4,75 cm - 90%
6,75 cm - 85%
8,75 cm - 88%
10,75 cm - 90%

NOTE: Graphic lithologies represent average compositions derived from smear slides and do not always reflect the
detailed alternation of sediment types. Major lithologic boundaries are shown but transitional contacts, small-scale
lithology and accretionary alternations are represented schematically. Color changes approximate to lithologic changes.
Lithologic Description

Site 574 Hole C Core 12 Cored Interval 299.0 - 308.5 m

Green White Ooze/Chalk (Subunit IA):
- Dominantly green white (5G 8/1-9/1) nanno ooze marked by light gray (N7-8) and containing 2 to 3 cm sections of very stiff ooze at intervals of 6 to 20 cm.

Smear Slide Summary (%):
- Sand 3.135
- Silt 27.335
- Clay 80
- Pyrite Tr
- Carbonate unspec. 15
- Foraminifers 3.125
- Calc. nannofossils 70
- Radiolarians 6
- Sponge spicules Tr

Carbonate Bomb:
- 3.75 cm = 94%
- 4.75 cm = 94%

Site 574 Hole C Core 13 Cored Interval 308.5 - 318.0 m

Green White Ooze/Chalk (Subunit IA):
- Light gray (N7-8) to green white (5G 8/1-9/1) and pale purple (5P 6/1) nanno ooze with 3 to 5 cm sections of very stiff ooze at intervals of 10 to 20 cm.

Smear Slide Summary (%):
- Sand 3.235
- Silt 2.745
- Clay 82
- Pyrite Tr
- Carbonate unspec. 13
- Foraminifers 8
- Calc. nannofossils 75
- Radiolarians 7
- Sponge spicules Tr

Carbonate Bomb:
- 3.75 cm = 94%
- 4.75 cm = 94%

Site 574 Hole C Core 14 Cored Interval 318.0 - 327.5 m

Green White Ooze/Chalk (Subunit IA):
- Medium to light gray (N5-7) and white (N8-9) to green white (5G 8/1-9/1) nanno ooze with three 5 cm sections of very stiff ooze about 30 cm apart in the undisturbed lower interval. Minor mottling. Moderate light gray (N7-8) to green white (5G 8/1-9/1) nanno ooze with three 5 cm sections of very stiff ooze about 30 cm apart in the undisturbed lower interval. Minor mottling.

Smear Slide Summary (%):
- Sand 2.735
- Silt 12
- Clay 82
- Pyrite Tr
- Carbonate unspec. 33
- Foraminifers 1
- Calc. nannofossils 66
- Radiolarians 6
- Sponge spicules Tr

Carbonate Bomb:
- 1.90 cm = 89%
- 2.84 cm = 86%

Site 574 Hole C Core 15 Cored Interval 318.0 - 327.5 m

Green White Ooze/Chalk (Subunit IA):
- Medium to light gray (N5-7) and white (N8-9) to green white (5G 8/1-9/1) nanno ooze with three 5 cm sections of very stiff ooze about 30 cm apart in the undisturbed lower interval. Minor mottling.

Smear Slide Summary (%):
- Sand 2.735
- Silt 12
- Clay 82
- Pyrite Tr
- Carbonate unspec. 33
- Foraminifers 1
- Calc. nannofossils 66
- Radiolarians 6
- Sponge spicules Tr

Carbonate Bomb:
- 1.90 cm = 89%
- 2.84 cm = 86%
SITE 574 HOLE C CORE 16 CORDED INTERVAL 327.5-337.0 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA):
Highly disturbed core of green white (SG B1-6/1) marine ooze with 2 to 6 cm sections of very stiff core every 8 to 36 cm in undisturbed intervals.

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Component</th>
<th>1,75</th>
<th>5.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate unspec.</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foraminifera</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Calc. nannofossils</td>
<td>75</td>
<td>77</td>
</tr>
</tbody>
</table>

CARBONATE BOMB:
1,80 cm = 94%

SITE 574 HOLE C CORE 16 CORDED INTERVAL 337.0-346.5 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA):
Green white (SG B1-6/1) marine ooze/chalk with minor light gray (N7) and pale green gray (5GY 7/1). Two to 6 cm sections of soft chalk at intervals of 5 to 30 cm.

SMEAR SLIDE SUMMARY (%):

<table>
<thead>
<tr>
<th>Component</th>
<th>2.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcanic glass</td>
<td>Tr</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Tr</td>
</tr>
<tr>
<td>Carbonate unspec.</td>
<td>15</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>5</td>
</tr>
<tr>
<td>Calc. nannofossils</td>
<td>15</td>
</tr>
<tr>
<td>Oolites</td>
<td>Tr</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>5</td>
</tr>
<tr>
<td>Sponge spicules</td>
<td>Tr</td>
</tr>
</tbody>
</table>

CARBONATE BOMB:
1, 80 cm = 91%
2, 75 cm = 66%
3, 73 cm = 88%

NOTE: Graphs and tables represent average compositions derived from smear slides and do not always reflect the detailed alternation of sediment types. Major lithologic boundaries are shown but gradational contacts, small-scale heterogeneity, and non-deposition areas are not always represented. Color changes approximate to lithologic changes.
SITE 574 HOLE C
CORED INTERVAL 346.5-356.0 m

LITHOLOGIC DESCRIPTION
GREEN WHITE OOZE/CHALK (SUBUNIT I1A):
Uniform green white (5G 9/1-8/1) nanno ooze/chalk

SMEAR SLIDE SUMMARY (%):
Composition:
- Carbonate: unspecified
- Foraminifers: 1,50 cm = 88%
- Calc. nannofossils: 1,75 cm = 86%
- Radiolarians: 2.75 cm = 87%

NOTE: Graphic lithologies represent average compositions derived from detailed alternations of sediment types. Major lithologic boundaries are cyclicity and ooze-chalk alternations represented schematically.

SITE 574 HOLE C
CORED INTERVAL 356.0-365.5 m

LITHOLOGIC DESCRIPTION
GREEN WHITE OOZE/CHALK (SUBUNIT HUA):
Uniform green white (5G 8/1-9/1) nanno ooze/chalk

CARBONATE BOMB:
1.75 cm = 88%
2.75 cm = 90%

NOTE: Graphic lithologies represent average compositions derived from detailed alternations of sediment types. Major lithologic boundaries are cyclicity and ooze-chalk alternations represented schematically.

SITE 574 HOLE C
CORED INTERVAL 365.5-375.0 m

LITHOLOGIC DESCRIPTION
GREEN WHITE OOZE/CHALK (SUBUNIT I1A):
Two m of uniform green white (5G 8/1-9/1) diatom ooze/chalk underlain by 74 cm of very pale green gray (5G 8/1-8/2). Three to 8 cm sections of chalk every 5-40 cm.

SMEAR SLIDE SUMMARY (%):
Composition:
- Carbonate: unspecified
- Foraminifers: 1,75 cm = 86%
- Calc. nannofossils: 2.75 cm = 86%
- Radiolarians: 3.5 cm = 85%
- Sponge spicules: 4.75 cm = 85%

NOTE: Graphic lithologies represent average compositions derived from detailed alternations of sediment types. Major lithologic boundaries are cyclicity and ooze-chalk alternations represented schematically.
SITE 574 HOLE C CORE 20 CORED INTERVAL 375.0-384.5 m

LITHOLOGIC DESCRIPTION
GREEN WHITE OOZE/CHALK (SUBUNIT IIA): Uniform green white (5G 8/1-9/1) nanno ooze/chalk with 2 to 8 cm sections of chalk at intervals of 5 to 30 cm.

SMEAR SLIDE SUMMARY (%):
1, 90 3, 140
ofossils 94 81
Radiolarians 2
Sponge spicules Tr

CARBONATE BOMB:
1. 75 cm = 88%
2. 85 cm = 88%
3. 55 cm = 86%

NOTE: Graphic lithologies represent average compositions derived from smear slides and do not always reflect the detailed alternations of sediment types. Major lithologic boundaries are shown for practical context. Small scale cyclicity and alternate lithologies are represented schematically. Color changes approximate to lithologic changes.

SITE 574 HOLE C CORE 21 CORED INTERVAL 384.5-394.0 m

LITHOLOGIC DESCRIPTION
GREEN WHITE OOZE/CHALK (SUBUNIT IIA): Sponge spicules Tr
CARBONATE BOMB:
1. 66 cm = 88%
2. 85 cm = 91%
3. 75 cm = 89%

NOTE: Graphic lithologies represent average compositions derived from smear slides and do not always reflect the detailed alternations of sediment types. Major lithologic boundaries are shown for practical context. Small scale cyclicity and alternate lithologies are represented schematically. Color changes approximate to lithologic changes.
SITE 574 HOLE C CORE 22 CORED INTERVAL 394.0 - 403.5 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA):
- Dominantly green white (5G 8/1-9/1) nanno chalk/ooze with 3-20 cm sections of highly deformed to soupy ooze at intervals of 7 to 25 cm in a dominantly chalk core.

SMEAR SLIDE SUMMARY (%)

<table>
<thead>
<tr>
<th>Texture</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>30</td>
<td>69</td>
</tr>
</tbody>
</table>

CARBONATE BOMB:

1. 15 cm = 87%
2. 25 cm = 91%
3. 90 cm = 91%

NOTE: Graphs detailed alternations and cyclicity and carbonate associations are represented schematically. Color changes approximate to lithologic changes.

SITE 574 HOLE C CORE 22 CORED INTERVAL 403.5 - 413.0 m

LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA):
- Dominantly green white (5G 8/1 and 5G 8/1-9/1) nanno chalk/ooze with 1 to 1.5 m interval of pale blue (5B 7/1) and pale blue gray (5BG 7/1) with minor finely laminated or laminated green gray (5G 5/2 and 7/2). Two to 50 cm sections of thin sand 2 to 40 cm thick interspersed.

SMEAR SLIDE SUMMARY (%)

<table>
<thead>
<tr>
<th>Texture</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>30</td>
<td>69</td>
</tr>
</tbody>
</table>

CARBONATE BOMB:

1. 90 cm = 91%
2. 60 cm = 94%
3. 12 cm = 90%

NOTE: Graphs detailed alternations and cyclicity and carbonate associations are represented schematically. Color changes approximate to lithologic changes.
LITHOLOGIC DESCRIPTION

GREEN WHITE OOZE/CHALK (SUBUNIT IIA): Mottled green white (5G 8/1-9/1) nanno chalk with two 1 to 10 cm intervals of fossil chalk from 3 to 3.5 m.

SMEAR SLIDE SUMMARY (%): 2, 20
- Carbonate unspec. 21
- Calc. nannofossils 75
- Radiolarians 1
- Sponge spicules 1

CARBONATE BOMB: 1.66 cm = 91%
2, 80 cm = 91%
3, 71 cm = 93%
4, 75 cm = 93%

NOTE: Graphic lithologies represent average compositions derived from smear slides and do not always reflect the detailed alteration of sediment types. Major lithologic boundaries are shown but gradational contacts, small-scale variability and aspen chalk alternations are represented schematically. Other changes approximate lithologic changes.
LITHOLOGIC DESCRIPTION

SITE 574 HOLE C
CORE 27 CORED INTERVAL 441.5-451.0 m

GREEN WHITE OOZE/CHALK (SUBUNIT IA):
Mottled very pale green gray (5G 8/1) to green white (5G 11/1) calcareous ooze/chalk; several 8-10 cm intervals of firm ooze to thin bedded 2 m.

SMEAR SLIDE SUMMARY (%):

- Texture:
 - Sand: 19
 - Silt: 6
 - Clay: 80

- Composition:
 - Pyrite: Tr
 - Detrital angular:
 - Foraminifers: 1
 - Calcaneal casts:
 - Foraminifers: 70
 - Dendrospores:
 - Nannofossils: 0
 - Sponge spicules: Tr

CARBONATE BOMB:
1. 13 cm = 86%
2. 64 cm = 82%
3. 70 cm = 85%

SITE 574 HOLE C
CORE 28 CORED INTERVAL 451.0-460.5 m

GREEN WHITE OOZE/CHALK (SUBUNIT IA):
Mottled very pale green gray (5G 8/1) calcareous ooze/chalk.

SMEAR SLIDE SUMMARY (%):

- Texture:
 - Sand: 4
 - Silt: 3
 - Clay: 93

- Composition:
 - Pyrite: Tr
 - Detrital angular:
 - Foraminifers: 1
 - Calcaneal casts:
 - Foraminifers: 94
 - Dendrospores:
 - Nannofossils: 4
 - Sponge spicules: 1
SITE 574 HOLE C CORE 30 CORED INTERVAL 470.0-479.5 m

LITHOLOGIC DESCRIPTION

5G 9/1-8/1 Void

GREEN WHITE OOZE/CHALK (SUBUNIT (470.0-470.2 m):
Twenty-four cm of mottled green WHITE CHALK (SUBUNIT 11B)
(470.2-479.5 m):
Very pale brown (10YR 8/2) siliceous nannomamm
mottled in the top 120 cm. Five to 20 cm chalk separated by 5 to 30 cm intervals of ooze.
Composition:
- Carbonate unspec.
- Sponge spicules

CARBONATE BOMB:
1. 148 cm = 79%
2. 62 cm = 80%
3. 70 cm = 79%

SITE 574 HOLE C CORE 31 CORED INTERVAL 479.5-489.0 m

LITHOLOGIC DESCRIPTION

YELLOW WHITE CHALK (SUBUNIT IIB):
Uniform pale brown (10YR 8/2) diatom nanno chalk with a few intervals of mm-scale banding of yellow white (2.5Y 8/4). Minor mottling.

SMEAR SLIDE SUMMARY (%):

Texture:
- Sand
- Silt
- Clay

Composition:
- Foraminifers
- Calc. nannofossils
- Diatoms
- Radiolarians
- Sponge spicules

2. 110 cm = 86%
2. 62 cm = 80%
SITE 574 HOLE C
CORE 33 CORED INTERVAL 498.5-508.0 m

LITHOLOGIC DESCRIPTION

METALLIFEROUS CHALK (UNIT III) (140-183 m):
White and bluish white very pale yellow chalk (10YR 8/2) overlain by a light yellowish brown chalk (10YR 6/4). The upper 1 m of metaliferous chalk contains numerous 1 to 2 mm sized olivine glass (10YR 6/3) volcanic glass.

SMEAR SLIDE SUMMARY (%):

- Clay: 5%
- Diatoms: 40%
- Radiolarians: 15%
- Fe-oxides: 10%

SITE 674 HOLE C
CORE 34 CORED INTERVAL 508.0-517.5 m

LITHOLOGIC DESCRIPTION

METALLIFEROUS CHALK (UNIT III): 2.3 m of light yellowish brown (10YR 5/4) metalliferous rad nanno chalk and underlain by mottled yellow brown (10YR 6/4) metalliferous rad nanno chalk.

SMEAR SLIDE SUMMARY (%):

- Clay: 30%
- Sand: 20%
- Silica: 15%
- Calc. nannofossils: 12%
- Diatoms: 3%
- Radiolarians: 2%
BASALT (UNIT IV):
Dark fine-grained basalt.

Depth 520.0-525.5
Depth 525.5-532.5