7-19-2018

Genome Sequence of the Halophilic Bacterium Kangiella spongicola ATCC BAA-2076T

Aria Underriner
Seacoast School of Technology

Tyler Silverwood
Seacoast School of Technology

Carolyn Kelley
Seacoast School of Technology

Kyle S. MacLea
University of New Hampshire, Manchester, kyle.maclea@unh.edu

Follow this and additional works at: https://scholars.unh.edu/unhmbiology_facpub

Recommended Citation

Genome Sequence of the Halophilic Bacterium Kangiella spongicola
ATCC BAA-2076T

Rights
© 2018 Underriner et al.

Comments
This is an Author's Original Manuscript/Accepted Manuscript of an article published by American Society for Microbiology in Microbiology Resource Announcements in 2018, available online: https://dx.doi.org/10.1128/MRA.00847-18

This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/unhmbiology_facpub/57
Genome Sequence of the Halophilic Bacterium *Kangiella spongicola* ATCC BAA-2076T

Aria Underriner,a Tyler Silverwood,a Carolyn Kelley,a Kyle S. MacLeab,c,d

aBiomedical Science and Technology Program, Seacoast School of Technology, Exeter, New Hampshire, USA
bBiology Program, University of New Hampshire, Manchester, New Hampshire, USA
cBiotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
dDepartment of Life Sciences, University of New Hampshire, Manchester, New Hampshire, USA

ABSTRACT The Gram-negative genus *Kangiella* contains a number of halophilic species that display high levels of iso-branched fatty acids. *Kangiella spongicola* was isolated from a marine sponge, *Chondrilla nucula*, from the Florida Keys in the United States. A genome assembly of 2,825,399 bp with a 44.31% G+C content was generated from strain A79T (=ATCC BAA-2076T).

Bacteria within the family *Alcanivoraceae* and class *Gammaproteobacteria* include the genus *Kangiella*. *Kangiella* is notable for being a newly described genus of halophilic bacteria with an unusually high production of iso-branched fatty acids (1, 2). *Kangiella spongicola* ATCC BAA-2076T is a member of this genus recently discovered from the marine sponge *Chondrilla nucula*, collected from the Florida Keys in the United States (2). This organism is a Gram-negative nonmotile rod-shaped bacterium that is able to survive in environments with up to 15% NaCl and a wide range of growth temperatures and pH values. The genome sequence generated for *K. spongicola* may be a useful data point in the understanding of sponge microbiota in marine environments, especially in combination with the five other members of the genus (1, 3, 4) that have been sequenced thus far (5, 6).

Kangiella spongicola ATCC BAA-2076T was bought in lyophilized form from ATCC (Manassas, VA, USA). It was rehydrated in marine broth 2216 (BD, Franklin Lakes, NJ, USA) and incubated in a shaking incubator at 30°C for 24 h. Inoculated marine broth was spread on marine agar 2216 (BD), incubated at the same temperature, and, from the streak plate, a single colony was selected from which to grow a larger liquid culture for production of genomic DNA (gDNA) using a DNA minikit (Qiagen, Valencia, CA, USA). Pure gDNA was tagged with sequence adapters concurrent with fragmentation using the Nextera library prep kit (Illumina, San Diego, CA, USA) instrument. The generated 250-bp paired-end read sequences were bioinformatically trimmed before assembly using Trimmomatic (7). Paired and trimmed reads were assembled into a draft genome using the default settings of SPAdes version 3.11.1 (8). Small contigs and contaminants were removed, and the 140 remaining contigs were analyzed with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) process for gene prediction and annotation (9) and found to have a total sequence length of 2,825,399 bp, representing an average coverage of 326×. Its closest relatives, *K. koreensis* and *K. aquimarina*, are of similar size at 2.85 Mbp and 2.68 Mbp, respectively. Of the 140 contigs, the bulk of the sequence data were found in four contigs with lengths of 1,220,304 bp, 675,233 bp, 545,949 bp, and 83,637 bp. Of the remaining 136 contigs, all were less than 6,001 bp in length. The N50 value was 675,233 bp with an L50 value of 2, as determined by QUAST (10). The G+C content of 44.31% was consistent
with the initial report of 44.9% (2). A total of 2,544 genes, 2,460 coding DNA sequences (CDS), 36 pseudogenes, 5 tRNAs, and 38 tRNAs were annotated using NCBI PGAP. **Data availability.** This *Kangiella spongicola* ATCC BAA-2076\(^T\) whole-genome shotgun sequence (WGS) project has been deposited in DDBJ/ENA/GenBank under accession number QICH00000000. The version described in this paper is the first version, QICH01000000.

ACKNOWLEDGMENTS

Sequencing and bioinformatics analysis were undertaken at the Hubbard Center for Genome Studies at UNH, supported by NH-INBRE, with the kind assistance of Kelley Thomas, Toni Westbrook, and Stephen Simpson. K.S.M. thanks lab associate Oliver Harvon for the inspiration to sequence a bacterium from a marine sponge. This work was a project of the Microbiology Education through the Genome Annotation-New Hampshire (MEGA-NH) program.

The Department of Life Sciences at UNH Manchester provided funds for purchasing the bacterial strain. Sequencing costs were supported by New Hampshire-INBRE through an Institutional Development Award (IDeA), P20GM103506, from the National Institute of General Medical Sciences of the NIH. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

