Determining the effectiveness of the Clean Air Act and Amendments on the recovery of surface waters in the northeastern US, 2010

William H. McDowell
University of New Hampshire, bill.mcdowell@unh.edu

Steve Kahl
University of New Hampshire

Sarah J. Nelson
University of Maine

Follow this and additional works at: https://scholars.unh.edu/nh_wrrc_scholarship

Recommended Citation
https://scholars.unh.edu/nh_wrrc_scholarship/48

This Report is brought to you for free and open access by the NH Water Resources Research Center at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NH Water Resources Research Center Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Determining the effectiveness of the Clean Air Act and Amendments on the recovery of surface waters in the northeastern US

Principal Investigators: Bill McDowell1, Steve Kahl1, Sarah Nelson2
1Univ. of New Hampshire, 2Univ. of Maine

Overview of activities during 2010. A schematic summary of progress on the project plan is provided below and discussed on the following pages. We have concluded the fifth year of this five year project that supports the continuing needs of EPA for meeting the Congressional mandate for the agency to assess the effectiveness of the Clean Air Act Amendments of 1990. Field work and data assessment are on schedule, and the supplemental zooplankton component is well underway.

Project coordination is being conducted by the University of New Hampshire, with field and laboratory assistance continuing to come from the University of Maine.
Project background

Objectives. This proposed research is part of the EPA program to collect long-term data on the trends and patterns of response in surface waters sensitive to acidic deposition. The goals and methods are hierarchical from intensive site-specific to regional statistical populations. The objectives are to:

1) document the changes and patterns in aquatic chemistry for defined sub-populations and sites that are known to be susceptible to acidification or recovery;
2) evaluate linkages in changes in surface waters, if any, to changes in deposition that are related to regulatory goals;
3) characterize the effectiveness of the Clean Air Act Amendments in meeting goals of reducing acidification of surface waters and improving biologically-relevant chemistry in the northeastern US; and
4) provide information for assessment of the need for future reductions in atmospheric deposition based on the rate of recovery (or not) of the systems under study.

We continue to explore changes in biological condition using zooplankton collected in 2004 under separate funding from 145 ELS-II lakes in the northeast, as part of our 20th anniversary re-analysis of the Eastern Lake Survey (see Rosfjord et al., 2007). This re-sampling included total and methyl mercury analyses for lake water, GIS analyses of lake context, and creation of an integrated GIS-chemistry database for the 1986 ELS-II lakes and 2004 re-sampling data. Zooplankton size metrics are now in the electronic, coordinated database and final compatibility checks of taxa names across decades are in progress. Initial analyses are in progress by K. Webster in consultation with the project team. In addition to a peer-reviewed journal article in preparation (Nelson et al. 2011), the mercury and methylmercury database was recently included in USGS scientist D. Krabbenhoft’s work to develop national Hg sensitivity maps and models. The lakes in the 2004 re-sampling were unique in their statistical sampling design, collection during the same time period, and inclusion of all major geochemical variables. The lakes from this work represent ~10% of the entire national database used by Krabbenhoft in sensitivity modeling. Krabbenhoft is using the dataset and modeling framework to assess Hg sensitivity in National Parks at the request of the National Park Service.

Approach. The schedule of tasks ranges from weekly to annual, continuing data records that now range from 16 to 29 years. We evaluate chemistry on a weekly basis year-round at the small watershed-scale at BBWM, weekly during the spring melt period at LTM lake outlets when seasonal conditions warrant, quarterly in LTM, and annually during the historical index period for the HELM and TIME lakes. These project components provide a statistical framework for inferring regional chemical patterns using TIME and LTM (and ELS-II under separate funding). The long-term records of LTM, HELM and BBWM provide information on seasonal and annual variability, and thus provide a seasonal context for the annual surveys.

Expected Results. This information is fundamental for EPA to meet the Congressional mandate for reporting on the effectiveness of the Clean Air Act Amendments (CAAA). The combination of site-specific data within the regional context will provide for an effective assessment of the effects of declining pollutant emissions on SO4 concentrations, base cation depletion, and
changes in N-saturation or DOC contributions to acid-base status. The results are also central to the decisions on additional emission reductions that may be needed to produce recovery.

LTM/TIME annual field schedule

<table>
<thead>
<tr>
<th>LTM-Maine</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bean</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2 Partridge</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Jellison Hill</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4 Crystal</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Duck</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6 Bracey</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7 Newbert</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8 Wiley</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9 Abol</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10 Mud</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Salmon</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12 Tunk outlet</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>13 Second</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>14 Little Long</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>15 Tilden</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>16 Anderson</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME-Maine</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Round Pond</td>
<td>w/ TIME NH</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Mountain Pd</td>
<td>fly with HELM</td>
<td></td>
<td></td>
<td></td>
<td>fly w/ HELM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Bog Pd Hartland</td>
<td>w/ Bean in spring and summer</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 East Branch Lake</td>
<td>(Penobscot Nation sample)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME NH</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIME New Engl</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME NY</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HELM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring weekly drainage lake samples: weather and snowcover dependent

Project Status: Water Chemistry

Field sampling. All project field objectives in 2010 were accomplished as planned with the exception of the spring drainage lake samples. Maine experienced an extremely wet spring making spring sampling logistically difficult and potentially unsafe for field crews.

Analytical. Analyses are complete for all samples collected through 2010. All laboratory analyses for TIME, RLTM, and HELM are conducted at the University of New Hampshire Water Quality Analysis Laboratory (WQAL) except for aluminum. Total and organic aluminum samples are processed on an ICP at the USDA Forest Service Region 1 laboratory in Durham, NH. All analyses for TIME, RLTM, and HELM continue to be conducted by, or under the supervision of, Adam Baumann as it has been since 2006.

Samples from East Bear Brook at BBWM, which are collected on a regular basis year around, continue to be analyzed at the University of Maine Sawyer Environmental Chemistry Research Lab.
Data reporting. All data collected through 2009 have been delivered to EPA. The next delivery of data to EPA is expected in June 2011, after evaluation of inter-laboratory comparisons and regular QA analyses by UNH and UMaine.

Presentation of findings. Several publications and presentations have resulted from this project since the final report for the previous LTM/TIME grant, listed at the end of this report. The completion of Adam Baumann’s M.S. thesis work is expected in July and will yield multiple publications focusing on results from the HELM project (see appendix).

New developments: We requested and were awarded funding to continue our work on the previously outlined objectives through FY2011. During the next sampling year group to explore climate related research objectives such as DOC quality using SUVA and fluorescence analysis, as well as dissolved greenhouse gases (CH₄, CO₂, and N₂O) in surface waters.

Recent publications using related project information

Kim, Jong-Suk; Shaleen, Jain; Stephen, Norton, 2010, Streamflow variability and hydroclimatic change at the Bear Brook Watershed in Maine (BBWM), USA, Environmental Monitoring and Assessment, 171(1-4): 47-58.

Amirbahman, Aria; Brett, Holmes; Ivan, Fernandez; Stephen, Norton, 2010, Mobilization of metals and phosphorus from intact forest soil cores by dissolved inorganic carbon, Environmental Monitoring and Assessment, 171(1-4): 93-110.

SanClements, Michael; Ivan, Fernandez; Stephen, Norton, 2010, Soil chemical and physical properties at the Bear Brook Watershed in Maine, USA, Environmental Monitoring and Assessment, 171(1-4): 111-128.

Elvir, Jose; G. Wiersma; Suzanne, Bethers; Peter, Kenlan, 2010, Effects of chronic ammonium sulfate treatment on the forest at the Bear Brook Watershed in Maine, Environmental Monitoring and Assessment, 171(1-4): 129-147.

Recent presentations using project information

Kahl, J.S., 2005 (invited). The intersection of environmental science and environmental policy. NH Charitable Foundation Lakes Region annual meeting, Meredith, NH, September, 2005.

Kahl, J.S., and Catherine Rosfjord, 2005 (invited). Acid rain and the Clean Air Act in the northeastern US. Annual meeting of the NH-ME Androscoggin River Watershed Council, Bethel, June, 2005

Kahl, J.S., 2004 (invited). The Clean Air Act Amendments of 1990; testing a program designed to evaluate environmental policy. Lecture, Colby College. April, 2004

Changes in surface water chemistry in Maine high elevation lakes in response to the 1990 Clean Air Act Amendments

ABSTRACT:
The 1990 U.S. Clean Air Act Amendments (CAAA) set target reductions for both sulfur and nitrogen emissions to reduce acidic deposition and improve the biological status of low alkalinity surface waters in the United States. The Maine High Elevation Lake Monitoring (HELM) project was designed to complement assessments from other acid rain monitoring programs in the northeast that had underestimated the number of acidic lakes. HELM lakes are more susceptible to the effects of acid deposition than lowland lakes typically included in other surveys because they receive higher amounts of precipitation, and the watersheds are less able to neutralize acidic inputs because of steep slopes, shallow soils, and resistant bedrock. Since 1986, decreases in HELM surface water SO4 concentrations of 1.6µeq/L/yr. combined with lesser decreases in base cations (0.68 µeq/L/yr.) have led to significant increases in ANC (0.58µeq/L/yr.) and significant decreases in hydrogen ion (-0.05µeq/L/yr.). These improvements have led to a 50% decrease in the number of acidic (ANC <0) HELM lakes since 1986-87, and a 10% increase in the number of lakes projected to resist spring acidification (baseflow ANC > 30). Toxic inorganic aluminum comprises 9% less of the total aluminum in HELM lakes today than in 1986-87, due to the decrease in acidity and a 0.03mg/L/yr. increase in DOC which complexes inorganic Al. At current rates of change in both surface waters and deposition, we predict a recovery scenario for 2025 in which HELM lakes reach a background 24µeq/L SO4 and non-dystrophic lakes have pH ≥ 6 and ANC ≥ 30µeq/L as depositional SO4 becomes undetectable.
Appendix II. Draft abstract from MS candidate Baumann thesis (partially supported by this IAG).

Increasing organic acidity as an indicator of recovery from acid rain in Maine high elevation lakes.

ABSTRACT:
Reduced acidity in precipitation in the northeastern U.S. has led to improvements in surface water chemistry in some of the most affected waters. Nowhere is this more apparent than in Maine high elevation lakes (HELM). An important result of decreased acid rain has been an increase in the amount of dissolved organic carbon (DOC) across the northern hemisphere. This response has led to a shift in the source of acidity from anthropogenic inorganic (acid rain), to natural organic DOC sources. This shift in acidity source has minimized the long-term increase in lake pH compared to the decrease in pH in precipitation.

We have previously established that HELM lakes have responded rapidly to changes in deposition and are thus well suited to look at the impacts of increased DOC on recovery from acid rain. Sulfate fraction (SF, the relative contribution of SO$_4$ to the total anionic charge) has decreased 5% to 40% in HELM lakes since 1986-87, yet decreased H$^+$ is not widespread. Over the same time period, DOC has increased at 0.03mg/L/yr, the equivalent of 0.13 µeq/L/yr. We estimate that organic anions (OA) now contribute 10% to 15% more to anionic charge than in 1986-87.

The influence of increased OA$^-$ is magnified because the HELM lakes are becoming increasingly dilute as acidic deposition declines and ionic leaching from watersheds decreases. Conductivity in HELM lakes has decreased from 17.6 µS/cm to 13.4 µS/cm since 1986-87. Overall, HELM lakes have experienced a shift in the SO$_4$:OA$^-$ ratio from 3.4 to 1.3 since 1986-87. We found significant differences between lakes with a small change in OA$^-$ (low ∆OA) and those with large increases in OA$^-$ (high ∆OA). Declines in H$^+$ in the low ∆OA group of 0.09 µeq/L/yr. were twice that of the population median and 10x that of the high ∆OA group. Furthermore, only the low ∆OA group exhibits a strong acidic deposition recovery pattern, with a significant decline in SF corresponding to a decrease in H$^+$. This means that HELM lakes are recovering in one of two ways. Low DOC lakes have experienced decreased H$^+$ as a direct result of decreased mineral acid inputs, while high DOC lakes have undergone a shift towards a natural organic source of acidity. While recovery in ANC may take an additional 10 to 30 years, recovery in pH is essentially complete in many lakes because their pH was not controlled by mineral acids and was relatively unaffected by acidic deposition. This conclusion is consistent with ample paleolimnological evidence from the northeastern US.

Figure 2. Shift in anion concentrations of the median HELM lake from 1986-87 to 2008-09. [inset: decrease in median HELM conductivity since 1986].

Figure 3. Shift in the relative influence of inorganic acid anions and organic anions in HELM lakes.