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Abstract: Intensive air quality measurements made from June 22-25, 2011 

in the outflow of the Dallas-Fort Worth (DFW) metropolitan area are used 

to evaluate nitrous acid (HONO) sources and sinks. A two-layer box model 

was developed to assess the ability of established and recently 

identified HONO sources and sinks to reproduce observations of HONO 

mixing ratios. A baseline model scenario includes sources and sinks 

established in the literature and is compared to scenarios including 

three recently identified sources: volatile organic compound-mediated 

conversion of nitric acid to HONO (S1), biotic emission from the ground 

(S2), and re-emission from a surface nitrite reservoir (S3). For all 

mechanisms, ranges of parametric values span lower- and upper-limit 

values. Model outcomes for 'likely' estimates of sources and sinks 

generally show under-prediction of HONO observations, implying the need 

to evaluate additional sources and variability in estimates of 

parameterizations, particularly during daylight hours. Monte Carlo 

simulation is applied to model scenarios constructed with sources S1-S3 

added independently and in combination, generally showing improved model 

outcomes. Adding sources S2 and S3 (scenario S2/S3) appears to best 

replicate observed HONO, as determined by the model coefficient of 

determination and residual sum of squared errors (r2 = 0.55 ± 0.03, SSE = 

4.6×106 ± 7.6×105 ppt2). In scenario S2/S3, source S2 is shown to account 

for 25%and 6.7% of the nighttime and daytime budget, respectively, while 

source S3 accounts for 19% and 11% of the nighttime and daytime budget, 

respectively.  However, despite improved model fit, there remains 

significant underestimation of daytime HONO; on average, a 0.15 ppt/s 

unknown daytime HONO source, or 67% of the total daytime source, is 

needed to bring scenario S2/S3 into agreement with observation. Estimates 

of 'best fit' parameterizations across lower to upper-limit values 

results in a moderate reduction of the unknown daytime source, from 0.15 

to 0.10 ppt/s. 
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Managing Editor 

Atmospheric Environment 

 

To Whom It May Concern: 

 

Enclosed please find a revised manuscript entitled ‘Evaluation of nitrous acid sources and sinks in 

urban outflow’ by Elliott Gall (currently at the Nanyang Technological University & Berkeley 

Education Alliance for Research in Singapore, 1 Create Way #11-01 Create Tower, Singapore 

138602) et al.  This manuscript has not been published previously (in whole or in part) nor is it 

currently under consideration for publication in any other journal.  All authors know and approve of 

its submission. 

 

This manuscript provides an updated description of a combination of measurements and modeling to 

elucidate the dynamics of nitrous acid (HONO) in the outflow of the Dallas-Fort Worth (DFW) 

metropolitan area. In this work, we extensively review the literature and develop a two-layer model 

that incorporates various HONO source and sink mechanisms promulgated in the literature. Of these, 

three are recently identified (2013-2014). For all, a range of values spanning a ‘lower-limit’, ‘likely’, 

and ‘upper-limit’ is defined. The three recently identified mechanisms are integrated into the model 

first through a full-factorial screening analysis to observe their potential to resolve disagreement 

between modeled and measured HONO mixing ratios. Promising scenarios are further evaluated in 

two ways: with an evolutionary solver and Monte Carlo simulation. These approaches allow the range 

of possible values for each mechanism to be input stochastically and create a quantitative estimation 

of the likelihood of a combination of source and sink mechanisms to replicate observed HONO 

mixing ratios. Given the incomplete understanding of HONO dynamics in the troposphere, and the 

many proposed mechanisms in the literature to account for “missing HONO”, we believe this 

investigation improves the state of understanding of HONO dynamics. More broadly, the approach 

developed here (deterministic screening analysis, evolutionary solver to compare “best-case” 

parameters for scenarios, followed by in-depth Monte Carlo simulation) is a logical approach that 

may be used to evaluate potential sources and sinks of other atmospheric constituents.  Our response 

to this second round of reviews is included in a separate document.  The SI has been updated 

accordingly.  I also wish to acknowledge the thorough, thoughtful, and helpful reviews that have 

improved our manuscript. 

 

I look forward to your favorable response.  Please let me know if I can be of any assistance. 

 

Sincerely,  

 
 

Robert J. Griffin, Ph.D. 

Cover Letter



Reviewer #3: General comments: 

 
In revised manuscript by Gall et al. a two layer model was developed to describe sources and sinks of 
nitrous acid (HONO) and results were compared to ambient field measurements. Different sources recently 
postulated were added to a base case model and parameters were optimized to best describe the 
experimental observations. 
The revised manuscript was significantly improved and I recommend publication after a few concerns have 
been considered 
 

 Response: 

We thank reviewer 3 for the additional detailed review. We believe the corrections, 
recommendations, and feedback have further improved the manuscript.  

Note that line numbers referring to the SI are called out as Lines SI: XX-XX whereas line numbers 
referring to the main manuscript are called out as Lines XX-XX. 

 
Major concern: 
I still have some concerns with the parameterization of the used sources: 

Response:  

Parameterizations will be updated according to the suggestions made. See below for specific 
responses to each comment/recommendation.  
 

B1 (NO2 conversion on aerosols, Supplement page 2): 
For the surface to volume ratio used (A), the surface of the soot should be subtracted. The soot surface is 
already used for source B3 and cannot react double. 

Response:  

For Source B3, soot particles were measured with an aethelometer that reported in units of µg/m
3
, 

while for sources B1 and B2, a SEMS reported the size-resolved number concentration. As we do 
not have size distribution data for soot particles, we have reduced the number size distribution 
available for Sources B1 and B2 by an approximation of the surface area of soot particles. The 
surface area of soot particles was estimated to first approximation by assuming the ratio of the 
mass contribution of BC to that of the total particle mass loading is the same as the surface area 
contribution of BC to that of the total particle surface area. This assumption reduced the available 
surface area for mechanism B1 by an average of 6% across the model period.  

This change has been implemented to the model and described in the supporting information in 
Lines SI: 41-48 which read:  

The estimate of (SAmeas)i, was reduced to account for black carbon (BC), as BC particles are taken 
to react as described in mechanism B3 and are assumed not available for reaction as described in 
equation S1. As the aethelometer used in this investigation did not provide size-resolved data, 
values of (SAmeas)i were reduced by the ratio of the mass of BC particles determined with the 
aethelometer to the total particle mass determined with an aerosol mass spectrometer (AMS). On 
average, this resulted in the reduction of total particle surface area of 6% from values measured 
with the SEMS.  

 
B2 (Photoenhanced uptake of NO2 on aerosols, Supplement page 3): 
The used uptake kinetics is extremely fast, which has to my knowledge not yet been observed for any 
realistic surfaces in lab studies. The reference to Wong et al. does not help here, since also there no 
reference is specified. Since a yield of 1 is considered the reactant should be oxidized by NO2 (e.g. OC). 
However, typical uptake coefficients vary only between 10^-6 and few times 10^-5 for organic surfaces 
(aromatic VOCs, humic acids, see e.g. Stemmler et al., 2007). The 2NO2+H2O reaction is even slower, not 
photoenhanced and has only a max. yield of 0.5. There is one exception, which is the photocatalytic 
conversion of NO2 on pure TiO2 aerosols, which can reach uptake coefficients >10^-4 (see Gustafsson et 
al., 2006). However, HONO yields can only reach 0.5 and it is not expected that the TiO2 content in 
atmospheric particles is higher than a few % at maximum (=> lower average gamma). Here further 
references (lab studies…?) are necessary, or the kinetics has to be 
defined as speculative, or realistic uptake coefficients (see B8) have to be applied also for source B2. 
In addition also here the surface of soot has to be subtracted (see source B3). 

Response:  

Response to Reviewers



The surface of soot has been subtracted according to the procedure outlined above. We recognize 
that the kinetics implemented here are faster compared to most experimental determinations made 
in the literature. As noted by the reviewer, we based the range shown in Table 1 for B2 on 
modeling work done by others (Wong et al., 2013). We have reduced the ‘lower-limit’ and ‘likely’ 
estimates to be more aligned with the experimental literature, and have left the upper-limit value as 
previously listed to enable exploration and speculation of faster light-enhanced conversion of 
aerosol surfaces (similar to as performed by previous modeling studies). In the text, we have 
added additional description that identifies this upper-limit value as based on previous modeling 
studies, rather than direct experimental evidence.  

Lines SI: 58-66 of the SI now read: 

“The un-scaled uptake coefficient shown in Equation S3 was taken from Stemmler et al. (2007) 
and Wong et al. (2013), ranging from an upper-limit value of 1.0 × 10

-3
 (used when only aerosol 

processes were considered in Wong et al. (2013)) to a lower-limit value of 4.0 × 10
-6

, in the range 
of values determined for humic acid aerosols under irradiation with visible light (Stemmler et al. 
2007). The ‘likely’ parameterization is taken from experimental values determined in Stemmler et 
al. (2007) for RH values similar to those in this investigation. The use of an upper-limit value from 
Wong et al. (2013) is largely speculative, and enables the evaluation of a stronger photoenhanced 
aerosol HONO source in the Monte Carlo analysis and evolutionary solver.  A HONO yield of 1 
was assumed for photoenhanced conversion on aerosols.” 

We also address this in the main manuscript when presenting the results of the “optimized” model 
parameterizations at Lines 365-370:  

“Aerosol processes increase substantially as a result of a speculative upper-limit as described in 
the SI; B1 was allowed to vary over an order of magnitude and B2 over 2.5 orders of magnitude 
based on prior modeling studies, rather than experimental estimates. However, contributions from 
B1 and B2 remain limited (< 1% as can be determined from absence of B1 and B2 in Figure 4), in 
part a result of the two layer box-model used here that emphasizes ground-level phenomena.” 

 
Times used for B1/B2 (Supplement page 2): 
A more simple and correct approach would be a 24 h use of B1 and a use of B2 correlating with J(NO2). It 
is not expected that the slower 2NO2+H2O dark reaction (B1, yield = 0.5) stops during daytime… In 
addition, this would avoid any "steps" in the production rates. 

Response:  
 
We have updated this mechanism such that B1 is ongoing for 24 hours/day and B2 is  
correlated with JNO2 as shown in equation S3 of the supporting information. This change is also 
evident in the revision to equation S4 shown in the Supporting Information 
 

B3 (conversion on soot, supplement page 4): 
In the revised manuscript the dark conversion of NO2 was not any more considered and only the 
photoenhanced conversion on soot was well considered (B3). However, for completeness, I would still add 
the initial fast conversion in the dark (10^14 HONO cm^-2) scaled with the soot loading and the expected 
lifetime of soot since emission, see my last report. If the source strength (small) is the argument, also other 
sources could be neglected… 

 
Response: 

 
The reviewer’s point is well-taken that the source should not be removed only due to small source 
strength. We have made this decision based on not only the source strength being insignificant, 
but also due to the unknowns that manifest in attempting to implement this parameterization. To 
account for the fact that soot may only react once with NO2 to form HONO in the absence of light, 
an estimate of the injection rate of fresh soot is needed. This estimate cannot be obtained without 
extensive assumptions that remove the value of undertaking such an exercise for a 
parameterization that, even in the extreme upper-limit, will not contribute meaningfully to HONO 
mixing ratios. This is explained more fully in the SI at Lines SI: 89-102 which read:  
 
“Conversion of NO2 to HONO on soot during the nighttime is thought to occur once per reactive 
site and therefore soot is likely to rapidly deactivate in the absence of light (Monge et al., 2010). 
For this reason, an accurate estimate of light-independent conversion on soot requires an estimate 
of the “injection rate” of fresh soot (Aumont et al. 1999), an estimate we are not able to obtain in 
this investigation. We justify the exclusion of light-independent conversion on soot by considering 
an upper-limit scenario where BC mass at each time-step is assumed to be “fresh” and conversion 



of NO2 is instantaneous and not limited by availability of NO2. The average BC mass concentration 
is this investigation is 0.35 µg/m

3
 over the duration of the model period. With a BET surface area of 

122 m
2
/g (Monge et al. 2010), fsoot of 1×10

14
 molec/cm

2
 (Kalberer et al. 1999), and a soot lifetime of 

5 days, these upper-limit conditions give an 8-h integrated, light-independent production of HONO 
of only 0.1 ppt, or an equivalent source strength of 4×10

-6
 ppt/s. Given the uncertainty in 

implementing this parameterization (i.e., the injection rate of fresh soot is actually unknown), and 
the insignificant contribution, this source is not considered further in the model here.” 

 
B4 (direct emissions, supplement page 5): 
As likely HONO/NOx emission ratio (0.0029), the tunnel study of Kirchstetter et al. was used. However, in 
this study only gasoline vehicles were studied (diesel trucks were not allowed to pass the tunnel). Since 
diesel vehicles show higher HONO/NOx (and NOx) emissions, a realistic emission ratio for the US should 
be in between both cited studies, since the diesel faction is lower in the US compared to Germany. This is 
confirmed by the "best estimates" parameters (0.0044-0.0061, see table 2). . 
 

Response: 
 
We have updated the range of parameterizations in B4 to better reflect the distribution of traffic in 
the US. The ‘lower-limit’ value remains as taken from Kirchstetter for a gasoline-only tunnel, while 
the upper-limit value is now 0.008 as reported in Kurtenbach 2001 for a tunnel of 6% heavy duty 
trucks, 6% commercial vans, 12.3% diesel and 74.7% gasoline fueled cars. We use an average of 
the two studies (0.0055) as the ‘likely’ value. This change is detailed in Lines SI: 105-112 of the 
Supporting Information:  
 
“where the value of femiss is ranging from a ‘lower-limit’ condition of 0.0029 (Kirchstetter et al.,   
1996) to an ‘upper limit’ of 0.008 (Kurtenbach et al., 2001). The ‘likely’ condition is an average of 
the upper and lower-limit values (0.0055), logical as the value from Kirchstetter et al. (1996) is for a 
tunnel that allowed only gasoline-powered vehicles while Kurtenbach et . (2001) is for a tunnel in 
Germany through which a mixture of 6% heavy-duty trucks, 6% commercial vans, 12.3% diesel 
vehicles, and 74.7% gasoline-fueled cars passed. We expect the typical US to lie in between these 
studies, given the lower fraction of diesel powered vehicles in the US than in Germany.” 
 

B5 (NO+OH, supplement page 5): 
In table 1, k(zero) (=3. order kinetics) and k(infinite) (=2. order kinetics) are mixed (typo?). Please check the 
Troe calculations. 

 
Response:  
 
The values in Table 1 are a typo – we have double-checked the Troe calculations and the correct 
values were used in calculating the effective second order rate constant (that is, as the reviewer 
notes k(zero) with units corresponding to 3

rd
 order and k(infinite) corresponding to 2

nd
 order 

kinetics.  
 

B6 (HNO3-photolysis): 
The first term in equation S9 (supplement page 7) is not correct, since the unit would be ppt s^-2… This 
source should be parameterized with the modelled HNO3 surface concentration (deposition/loss), leading 
to a HONO surface flux density (molec. cm^-2 s^-1) to be converted into ppt/s in the lower box. 
 
 Response:  

 
We have revised the parameterization of B6 to correct the units discrepancy. We have followed the 
parameterization of Zhou et al. (2003) doi:10.1029/2003GL018620 shown there in Equation 1. The 
formulation of B6 is now:  
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 where a is the fraction of deposited HNO3 on surfaces exposed to full noontime sunlight with 
photolysis rate jHNO3 (1/s), assumed to be ¼ as in Zhou et al. (2003) and t the accumulation time of 
HNO3, taken as the timestep of each calculation. These assumptions imply that the surface HNO3 
is exposed to, on a diurnal average, ¼ of the full value of jHNO3, as described by Zhou et al. 
(2003). This updated equation is included and described in Lines SI: 137-147 of the Supporting 



Information. 
 

Parameterization of all ground sources: 
Although indeed the transport limitation may not be significant for the very high wind speed during the 
campaign (high turbulent mixing), the concept shown in equation S12 could be used for all ground 
processes. Otherwise, when the model is used for more calm conditions (low WS) in the future, transport 
limitations may get important again. This would avoid any future discussions… 
 

Response: 
 
Uptake of NO2 at the ground, both light independent and photoenhanced are now parameterized 
with the Ra and Rb calculated as described in Equations S10-S13 of the Supporting Information.  

 
Definition of "upper" and "lower" limits used is confusing and should be once defined at the beginning. For 
loss terms (e.g. L1, supplement page 9) high deposition velocities are used as "lower limit", see e.g. line 
S150. Later I understood that (lower limit = less modelled HONO), but first this was confusing. 
 
 Response:  
 

This approach is described in the main manuscript in Lines 212-216. As some readers may refer to 
the SI before reaching this point in the manuscript, we have added a similar description at Lines 
SI: 30-34 of the Supporting Information. 
 

S1 (Reduction of HNO3 by VOCs, main page 7): 
Although that is partially mentioned at the very end of the document (section 3.6) the used source is highly 
uncertain, unrealistic and is most probably overestimated. The authors used here production rates, which 
were determined for a saturated motor oil steam in the lab (Rutter et al.), with an estimated VOC oil 
concentration of ca. 200 ppb (= several ppmC of a high molecular oil). However these conditions are far 
away from those during the field campaign for which a daytime (HNO3 only high during daytime…) TOC 
concentration of only ca. 10 ppb was measured (2-3 orders of magnitude lower…, see figure S8). In 
addition in Rutter et al., neither the VOC concentration or composition was determined, nor could the 
authors identify the reactive VOC species (most VOCs do not react with HNO3). Thus, for the smaller 
VOCs to be expected in the field campaign the majority will be even less reactive against HNO3 compared 
to motor oil steam. E.g. for propene ("propylene"), I do not know 
any lab study which has shown any fast conversion of HNO3 to HONO, and I am quite sure that the 
reaction will be quite slow (and with NOx as a major product…). But here it is proposed that the HNO3 
normalized HONO formation rate at high atmospheric VOC levels (or high propene/benzene ratio…) is 
similar to the lab study in Rutter et al., see equation (4). In reality the rates will be orders of magnitude 
lower. If this source should still be considered here (and I would not do as long as reactive species are 
identified…), I would use at least the total VOC levels in Rutter et al. (ppmCs…) and the present study (5-
60 ppbC) for normalization (and even than the source is overestimated caused by the different VOC 
composition lab/field…). 
 
 Response:  
 

The reviewer’s concerns regarding the parameterization of source S1 are well-taken. However, the 
reviewer’s recommendations are unclear regarding the suggestion for the additional normalization. 
Rutter et al. (2014) report an estimated VOC concentration of ~200 ppt rather than 200 ppb (three 
orders of magnitude lower than the reviewer states, see Table 1 of Rutter et al. 2014 under 
“estimated oil vapor concentration which ranges from 50-383 ppt). Following the reviewer’s logic, this 
would imply the equivalent of several ppbC, rather than several ppmC of high molecular weight oil 
and would in turn follow that the laboratory conditions are on the order of magnitude of TOC 
concentrations we observe in this field investigation (~10 ppb as noted by the reviewer). 
Furthermore, we re-formulated this parameterization using the propylene/benzene ratio not to 
directly imply that propylene itself is the reactive VOC of interest, but rather as a proxy for reactive 
species as propylene is known to be reactive. Benzene, as a longer-lived constituent is present to 
account for dilution that may occur as air masses travel from downtown DFW to the EML site. This 
parameterization has an effect of tempering the source strength, in alignment with the reviewer’s 
suggestions –Figure S7 of the Supporting Information shows that the ratio of propylene/benzene at 
EML to the same ratio at DFW is only elevated during morning rush hour. At all hours other than the 
06:00-09:00 timeframe, this ratio results in an ~70-90% reduction of the source strength reported in 
Rutter et al. 2014. In the 06:00-09:00 time frame, it results in a 20% reduction. As noted by the 
reviewer, the ratio of HNO3 at the site to the HNO3 value used in Rutter provides a further 



normalization that reduces the source strength from what is presented in Rutter, on average an 
~80% reduction. Therefore, our parameterization seems aligned with the reviewer’s assertion that 
the rates in the field will be lower than that observed in the laboratory (compounding the two 
normalizations results in, on average, a ~96% reduction compared to the source strengths reported 
directly by Rutter et al. (2014)).  Our findings also seem in agreement with the reviewer, in that, we 
see a very small contribution from this mechanism and that the inclusion of the mechanism was not 
observed to improve the model’s ability to reproduce observed HONO.  

 
 We agree with the reviewer’s caution however, and given the speculative nature of this 

parameterization, we have added the following comments into the main manuscript:  
 

Lines 178-185: Normalizing assumptions shown in equation 4 resulted in, on average, ~95% 
reduction of fHNO3,VOC when calculating FS1. The form of the parameterization in equation 4 is 
speculative; propylene is chosen as a proxy for reactive VOCs while benzene is chosen to account 
for dilution that may occur as air masses move from DFW to EML. Identification of specific reactive 
species participating in the HONO formation process identified in Rutter et al. (2014) would enable 
improvements in developing and assessing parameterizations of VOC-mediated conversion of 
HNO3 to HONO. 

 
S2 (bacterial nitrite production, main page 8): 
If there are no typos in tables 1 and 2 (?), this soil ground source is strongly overestimated. For the cited 
soil surface (grassland and pasture) from Oswald et al. (2013) only optimum HONO fluxes of a few ng N 
m^-2 s^-1 can be estimated from their figure 2. If this is converted into the units specified in Tables 1 and 2, 
I get values for F(soil) of ca. 10^14 molec m^2 s^1 = 10^10 molec cm^2 s^-1, which are in fare agreement 
with direct measured fluxes in the atmosphere (e.g. Ren et al.). However, in table 1 and 2 more than 3 
orders of magnitude higher values are specified (and table 1 and 2 are consistent, thus no typo…). Please 
check the calculations of source S2.  
Besides that, the "optimum" fluxes from Oswald et al. were considered here, which were found to be up to 
250 ng m^-2 s^-1 in the lab. Since these experiments were performed under unrealistic conditions (the soil 
is dried by 0% r.h. air => disturbance of biochemistry + low surface adsorption on the drying soil…) and 
only maximum values are specified (when the soil surface is already dried…), these results do not 
represent realistic average HONO fluxes by this bacterial nitrite production mechanism. This is inline with 
direct observed fluxes over natural surfaces of only 0.5-2 ng m^2 s^1.  
 
 Response:  
 

In this investigation, we use the direct observed fluxes over natural surfaces that are in the range 
of 0.4 –  0.9 ng m^-2 s^-1 that are reported in Figure 2 of Oswald et al. In unifying units for 
presentation in Table 1, there was an error that caused this discrepancy that is not present in the 
model. We have added the full unit conversion into equations S21-S24 in the supporting 
information including units conversion for clarity. For example, using the 0.5 ng m^2 s^1 noted by 
the reviewer: 

 

           
    

    
 

     

      
 

     

        
            

          

     
          

      

    
 

 

     
     

 
 

         
      

    

    
 

             
        

    
  

     

                  
        

     

     
 
     

     
 

    

      
                 

                 
 
 As can be determined from Figure 4 of the manuscript, this in near agreement to source strengths 
 associated with S2 from model calculations.  The ‘likely’ scenario reported there shows S2 
 accounts for 7%  of the total daytime source (0.07*0.22 ppt/s = 0.015 ppt/s).  
 

This example calculation is provided in the SI in equations S21-S24 to illustrate the units 
conversion process undertaken for source S2. 

  
S3 (acid displacement, main page 8): 
May be I not understood correctly the parameterization of the source, but how can the HONO reservoir 
been exhausted until noon (=max. before noon), see line 194. In the recent study by Vandenboer et al., 
2015, where this source was also used in a model, there was a realistic maximum of the source flux in the 
early afternoon (see their Fig. 4c). HNO3 maximize in the afternoon, see Figures 1 and the acid 



displacement is proportional with the acid level, see equation (6)? In addition, the nitrite reservoir will be 
never zero (s. line 193), since HONO is never zero? Here more explanations are necessary.  
 

Response:  
 

We constrained mechanism S3 based on several assumptions that have been given additional 
clarification in the manuscript and SI. The input to the nitrite reservoir was calculated solely based 
on the flux of gas-phase HONO to the surface. This results in a surface nitrite reservoir that is limited 
in quantity such that it can be exhausted based on the displacement from deposition by HCl and 
HNO3 present during the 8:00-12:00 local time and early afternoon hours (our site is characterized 
by relatively high HNO3 concentrations in the 8:00-12:00 local time morning hours). The statement 
that the nitrite reservoir is “exhausted” has been be removed for clarity, as it was intended to refer to 
the first time step during the daytime where displacement by HCl and HNO3 results in a zero value 
for the reservoir. During the next time step, because S3 is effectively 0, the reservoir can be 
replenished due to HONO deposition. Essentially, after the first “exhaustion” of the HONO reservoir, 
Source S3 alternates between 0 and a positive value, a lag at each time step in the model due to 
discretization. Vandenboer, 2015 do in fact state that there does not need to be mass-balance 
closure in any 24-h period and that there may be additional sources supplying the surface nitrite 
reservoir. For these reasons, we state in main manuscript in Lines 205-209 that we assume this is a 
conservative estimate of S3. 

 
“As there may be additional sources of surface nitrite other than gas-phase HONO and surface 
nitrite accumulation over greater than diurnal time-scales, equation 6 likely represents a 
conservative estimate of the source strength of S3. Further description of the constraints on S3 is 
given in the SI and dynamics are depicted in Figure S8, also in the SI.” 

 
We have also updated the SI with additional description and Figure S8 illustrating the dynamics of 
constituents associated with S3 at Lines SI: 273-284 of the SI. 

 
Specific comments: 
The following comments are listed in the order how they appear in the manuscript. 
 
a) main manuscript: 
Line 66: First model studies on this issue may be also mentioned (Staffelbach et al., 1997, or Vogel et al., 
2003). 
 Response:  
 

We have amended this line to include the Staffelbach et al. study. 
 
Line 67, "hypothesized": while some source are indeed speculative, the NO+OH reaction is absolutely 
certain… 
 
 Response:  
 

We have edited the line to separate the confirmed vs. speculative homogeneous sources.  
 
Lines 66-70 now read: “A number of photochemically driven homogeneous reactions have been 
identified or considered: e.g., the known reaction of OH and NO and the hypothesized reaction of 
photolytically excited nitrogen dioxide (NO2) and water (Li et al., 2008). The latter, however, may 
not proceed sufficiently rapidly or at adequate yields to affect HONO mixing ratios in the 
atmosphere (Carr et al., 2009)” 

 
Line 81: Use only references where this source was directly studied (e.g. George et al., 2005). 
 
 Response:  
 

We have reviewed the references and updated according to the reviewer’s recommendation 
(removing Spataro and adding George) 
 

Equation (2): The HONO level by direct emission is overestimated here, since HONO will quickly photolyze 
during daytime during the time until measured NOx was emitted. But I also not know how to improve that in 
a box model. Simply mention as uncertainty… 
 



 Response:  
 

This limitation is addressed following presentation of equation 2 in Lines 142-143 which read:  
 

Equation 2 may overestimate the contribution of B4 in a box-model, as during the daytime, HONO 
will rapidly photolyze prior to the measurement of emitted NOx. 
 

Line 227: If NO2 is photolysed it will be not lost, but converted into NO, and for high O3 during daytime, the 
Leigthon equilibrium will be shifted back to NO2 (see low NO levels in Fig 1). Check if the HONO/NOx ratio 
also shows a maximum during daytime to confirm the daytime source. In addition the argument with the 
convective dilution of NO2 does not hold, since HONO is similarly diluted (delete). 
  
 Response:  
 

The statement after what is now Line 241 (“… although daytime mixing ratios…. During the day) 
has been deleted. (note, line was after “…indicative of a secondary daytime source) 
 

Line 234-235: HONO decrease mainly by the convective dilution during daytime (compare NO2 profile and 
see max. in HONO/NO2 during daytime, strong daytime HONO sources…). 
 
 Response:  
 

The results shown in Figure 4 imply that in the first layer of the box model, the major loss is due to 
photolysis rather than convective transport to the second model layer. Obviously, one limitation of 
this study is the lack of vertical measurements of HONO (e.g., the presence of a stronger gradient 
would increase loss due to convective dilution). Therefore, we have edited this line to include both 
convective dilution and photolysis as dominant loss mechanisms. 

 
Lines 246-248 now read: Mixing ratios of HONO show accumulation over the nighttime and 
suppression during the daytime, a result of the strong loss due to photolysis and convective 
dilution during the daytime hours. 

 
Lines 246-248: The underestimation of HONO when vertical transport was considered in the model, results 
from the fact that here only a two box model was used and that HONO was measured at the lower height 
(10 m) of the lower box (0-36 m). Caused by the continuous gradient of HONO, the modelled average box 
concentration is lower. This may be explained here, with the outlook for future real 1D model calculation 
(finer vertical resolution…). But it is nice that the vertical transport is discussed here!  
 
 Response:  
 

We have included a statement at Lines 263-267 regarding the limitation of single HONO 
measurement in a first-layer box that itself is subject to a vertical gradient.  

 
“The underestimation may also result from the limited vertical resolution in the two-layer box model 
used here and the measurement height in the lower portion of the first layer (10 m); it is likely that 
a continuous HONO gradient is present in the 36 m of the model first layer resulting in a lower 
modeled mixing ratio across the first model layer than the 10 m observation.” 
 

 
Lines 318-321: I cannot understand the contribution of the acid displacement (S3) at night. In line 187 it is 
mentioned that this source is set to zero at night? In addition, while S2 may be active during daytime, it will 
be definitely less important during nighttime (less biological activity, higher soil humidity), besides the 
general issue to that source mentioned above.   
 
 Response:  
 

The parameterization for “night” and “day” was set based on the photolysis constant of HONO as a 
reference for “daytime” in calculations, subject to slight day-to-day variability when non-zero values 
began and ended. We grouped nighttime from 21:00-07:00 local time to roughly correspond with 
local sunrise and sunset. There were several instances of non-zero jHONO values that extended 
beyond 21:00. Due to the relatively low total nighttime HONO source strength, a small contribution 
from S3 resulted in a few percentage points contribution to the nighttime HONO source. In 
reformulating this mechanism, we no longer consider S3 as a “daytime” only mechanism, 



consistent with Vandenboer et al. (2015), where lower, but non-zero fluxes due to nitrite 
displacement can be observed in Figure 4c of Vandenboer et al. (2015) in the nighttime hours. 

 
Regarding the limitation for the biological source (S2), we have added the following statement to 
the conclusions section regarding this potential impact on the source at Lines 428-431. 

 
“Source S2 was parameterized using a single value for a model simulation; there are likely to be 
diurnal variations in biological activity and soil water content that would impact the 
parameterization of source S2” 
 
Lines 420-421: better mention the order of all important sources (not only S2/S3…). 

 
Response:  
 
The conclusion has been reworked to include other considered sources in addition to S2 and S3. 
Lines 451-455 now read: 
 
 “Model output for GrN S2/S3 accounted for, on average, 33% of the daytime HONO budget and 
103% of the nighttime HONO budget. Major nighttime sources included (in order) NO2 conversion 
at the ground (B7), biotic release from soil (S2), and re-emission from the nitrite reservoir (S3). 
Major daytime sources also include S3, S2, photoenhanced NO2 conversion at the ground (B8), 
B8, and the reaction of OH with NO (B5).“ 
 

 
References general:  
Use subscript numbers in formula. 
Unify stile of the journals names (no abbreviations used in Atmospheric Environment, e.g. line 437: Atmos. 
Environ.). 
 
Line 434: Pätz, H.-W. 
Line 435: …Atmos. 108 (D4), 8247… 
Line 444: 336b 
Line 447: D20303 
Line 484: 1326-e 
Line 504-505: Atmos. Chem. Phys., 2011, 11, 10433-10447 
Line 510-511, Order of the names: Stemmler, K., M. Ndour, Y. Elshorbany, J. Kleffmann, B. D'Anna, C. 
George, B. Bohn, M. Ammann,… Atmos. Chem. Phys., 2007, 7, 4237-4248. 
Line 518: …Surfaces - a Physical-Chemical…, Dissertation, Universität Heidelberg, 
2004, http://www.ub.uni-heidelberg.de/archiv/ 4814. 
Line 520: Pszenny, A. A. P. 
Line 542: 1326-d 
Line 550: 30(23), 2217 
 
 Response:  
 

References have been updated according to the reviewer’s recommendations.  
 
Tab. 1:  
B5: Exchange k(zero) and k(infinite), cf. JPL 
S2: should be in (molec m^-2 s^-1), only typo or also used in the model? 
 
 Response:  
 

As mentioned above, this is a typo that has been corrected in the presentation of the Table 1. 
 
Tab. 2 
B5: Exchange k(zero) and k(infinite), cf. JPL 
S2: should be in should be 5.0x10^13 molec m^-2 s^-1, only typo or also used in the model? 
 
 Response: 

As mentioned above, B5 and S2 have been corrected. 
 

http://www.ub.uni-heidelberg.de/archiv/


Fig. 4 top, right: 
There is no source B1 during daytime, should be B2 which is missing? 
 
 Response:  
 

As previously implemented, B1 and B2 were parameterized together with the value of the uptake 
coefficient used based on time of day, therefore the reviewer is correct in that the daytime aerosol 
uptake of NO2 should be B2. We have now separated these two processes based on the 
reviewer’s recommendation that B1 will occur in parallel to B2 during the daytime. However, this 
separation has resulted in <1% contribution from each of these mechanisms, and neither B1 nor 
B2 are presently included in Figure 4.  
 

b) Supplement: 
Equation S1: typically A stands only for the surface and S/V is used for the term mentioned here. 
 
 Response:  
 

We have changed the naming of this term to be SAmeas consistent with other literature in 
Atmospheric Environment (e.g. Park et al., 2009 doi:10.1016/j.atmosenv.2008.10.020)  
 

 
Line 89: If equation (S7) is used both units should be molecular (hopefully ppt is not used here for NO…). 
 
 Response:  
 

This typo has been corrected; units for NO are molec/cm
3
. 

 
 
Lines 189-191: For both periods daytime temperatures are lower than during night-time? Typo? 
 
 Response:  
 

The daytime and nighttime temperatures were reversed, this typo has been corrected.  
 
 
Line 207: Kh(z,t) is not shown in Figure 1? 
 
 Response: 
 

Kh(z,t) has been added to Figure 1 and the reference in the SI corrected (should have referred to 
Figure S5). 



 A two-layer box model evaluates HONO sources, sinks in outflow of Dallas-Fort Worth 

 Monte Carlo simulation is applied to scenarios with 3 recently identified sources 

 Improved model outcomes result from inclusion of 2 of 3 recently identified sources 

 A substantial unknown source is still required for agreement with observation 

 Missing HONO source is moderately correlated with jNO2, weakly correlated with NO2  
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ABSTRACT 20 

Intensive air quality measurements made from June 22-25, 2011 in the outflow of the Dallas-Fort 21 
Worth (DFW) metropolitan area are used to evaluate nitrous acid (HONO) sources and sinks. A 22 

two-layer box model was developed to assess the ability of established and recently identified 23 
HONO sources and sinks to reproduce observations of HONO mixing ratios. A baseline model 24 

scenario includes sources and sinks established in the literature and is compared to scenarios 25 
including three recently identified sources: volatile organic compound-mediated conversion of 26 
nitric acid to HONO (S1), biotic emission from the ground (S2), and re-emission from a surface 27 

nitrite reservoir (S3). For all mechanisms, ranges of parametric values span lower- and upper-28 
limit values. Model outcomes for ‘likely’ estimates of sources and sinks generally show under-29 

prediction of HONO observations, implying the need to evaluate additional sources and 30 
variability in estimates of parameterizations, particularly during daylight hours. Monte Carlo 31 
simulation is applied to model scenarios constructed with sources S1-S3 added independently 32 

and in combination, generally showing improved model outcomes. Adding sources S2 and S3 33 
(scenario S2/S3) appears to best replicate observed HONO, as determined by the model 34 

coefficient of determination and residual sum of squared errors (r
2
 = 0.55 ± 0.03, SSE = 4.6×10

6
 35 

± 7.6×10
5
 ppt

2
). In scenario S2/S3, source S2 is shown to account for 25%and 6.7% of the 36 

nighttime and daytime budget, respectively, while source S3 accounts for 19% and 11% of the 37 
nighttime and daytime budget, respectively.  However, despite improved model fit, there remains 38 
significant underestimation of daytime HONO; on average, a 0.15 ppt/s unknown daytime 39 
HONO source, or 67% of the total daytime source, is needed to bring scenario S2/S3 into 40 
agreement with observation. Estimates of ‘best fit’ parameterizations across lower to upper-limit 41 

values results in a moderate reduction of the unknown daytime source, from 0.15 to 0.10 ppt/s. 42 

Keywords: air quality; unknown HONO source; Monte Carlo simulation; evolutionary solver  43 
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1.  INTRODUCTION 44 

Atmospheric nitrous acid (HONO) is important due to the role of HONO in generation of 45 

the hydroxyl radical (OH). There are a number of known sources of OH in the troposphere; 46 

however, OH production from HONO is of interest because the sources, fate, and diurnal cycling 47 

of HONO in the atmosphere have only recently begun to be elucidated.  Models of atmospheric 48 

HONO generally employ a mass balance approach that allows evaluation of the HONO budget, 49 

often with a potentially limiting photostationary state assumption. As summarized by Spataro 50 

and Ianniello (2014) models generally include sources, sinks, and transport, the last relevant as 51 

formation processes hypothesized to occur at the ground result in vertical gradients of HONO.  52 

Homogeneous and heterogeneous reactions, as well as direct emission of HONO from 53 

combustion sources, contribute to the presence of HONO in the troposphere (Finlayson-Pitts and 54 

Pitts, 1999). Nitrous acid strongly absorbs sunlight at wavelengths shorter than 390 nm resulting 55 

in photolytic degradation to OH and nitric oxide (NO). This results in suppressed, but non-zero, 56 

mixing ratios of daytime HONO due to the presence of daytime sources (Kleffmann, 2007). At 57 

night, the absence of this photolytic loss mechanism results in HONO accumulation, generally 58 

on the order of  0.1 ppb to 10 ppb (Kleffmann et al., 2003; Su et al., 2008; Young et al., 2012). 59 

The resumption of HONO photolysis after sunrise can lead to substantial formation of OH in the 60 

early morning. Alicke et al. (2003) report that during the BERLIOZ investigation at a rural, 61 

lightly trafficked site with low anthropogenic emissions during the summer months, photolysis 62 

of HONO was the dominant source of OH in the morning, and contributed as much as 20% of 63 

24-h integrated OH production.  64 

Modeling studies generally show the need for an unknown daytime source to close the 65 

HONO budget (Staffelbach et al., 1997; Lee et al., 2015). A number of photochemically driven 66 
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homogeneous reactions have been identified or considered: e.g., the known reaction of OH and 67 

NO and the hypothesized reaction of photolytically excited nitrogen dioxide (NO2) and water (Li 68 

et al., 2008). The latter, however, may not proceed sufficiently rapidly or at adequate yields to 69 

affect HONO mixing ratios in the atmosphere (Carr et al., 2009). Other potential homogeneous 70 

sources are under discussion and review. For example,  Li et al. (2014) proposed an internal 71 

source of HONO that consumed nitrogen oxides, although follow up discussion and further 72 

experiments indicate the source was likely strongly overestimated (Li et al., 2015; Ye et al., 73 

2015).  74 

Nitrous acid formation mediated by aerosol surface area (SA) is a topic of ongoing 75 

research, largely because the complexity of aerosols results in substantial uncertainty regarding 76 

their ultimate role in HONO formation. Static surfaces such as the ground (Stemmler et al., 77 

2006) also may enhance HONO formation. Other hypothesized daytime sources include 78 

emissions resulting from acid/base chemistry in soils (Su et al., 2011) and photolysis of nitric 79 

acid (HNO3) on forest canopy surfaces (Zhou et al., 2011). Photoenhanced conversion of NO2 on 80 

organic surfaces, including the ground and aerosols, are also thought to contribute to the daytime 81 

HONO budget (George et al., 2005; Stemmler et al., 2006, 2007). 82 

Given the many identified and proposed HONO source and sink mechanisms, single 83 

value estimates of parameterizations of HONO sources and sinks limit the ability to understand 84 

the impact of variability in multiple input parameters on models of HONO dynamics in the 85 

atmosphere. Monte Carlo simulation (MCS) provides a tool to observe the combined effects of 86 

ranges of input parameters and the resulting impact on the agreement between model output and 87 

measurements. In this work, we identify fourteen HONO sources or sinks established in the 88 

literature, including three sources that have recently (2013-2014) been identified. We evaluate 89 
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these recently identified sources through incorporation into a baseline model with a full-factorial, 90 

deterministic screening analysis. We then identify scenarios for which we stochastically 91 

parameterize source and sink mechanisms with MCS to determine probability distributions of 92 

modeled HONO mixing ratios. 93 

2. METHODS 94 

2.1 Measurements 95 

Measurements of gas- and particle-phase constituents were made from May 30 to July 1, 96 

2011 in a semi-urban area approximately 68 km northwest of the Dallas-Fort Worth (DFW) 97 

metropolitan area. The monitoring site was co-located with the Texas Commission on 98 

Environmental Quality Eagle Mountain Lake (EML) continuous ambient monitoring station 99 

(CAMS 75).  Further details regarding the geography, surrounding industrial and biogenic 100 

activities, and site conditions have been outlined previously (Rutter et al., 2015) 101 

Temperature, humidity (Vaisala, HMP-45C in a RM Young 10-plate solar radiation 102 

shield), and planetary boundary layer (PBL) height (Vaisala, CL31) were measured throughout 103 

the duration of the campaign. Mixing ratios of HONO and HNO3 were measured every five 104 

minutes using a method that coupled a mist chamber with ion chromatography (Dionex, CD20-105 

1), described in greater detail elsewhere (Dibb et al., 2004).  First-order photolysis rate constants 106 

(j-values) were determined with radiometric measurements of actinic flux determined with a 2-pi 107 

double monochrometer with photomultiplier and subsequent calculations following IUPAC 108 

recommendations. Nitrogen oxides were recorded every minute using a chemiluminescence trace 109 

level NO-NO2-NOx analyzer (Thermo Electron Corp., Model 42C) equipped with a Blue Light 110 

Converter (Air Quality Design, Inc.) for NO2 quantification. Hydroxyl radical was observed 111 

using atmospheric pressure chemical ionization mass spectrometry (Kim et al., 2013). One-hour 112 
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averaged mixing ratios of volatile organic compounds (VOCs) were measured using a thermal 113 

desorption gas chromatograph with flame ionization detection (Perkin-Elmer O3 Precursor 114 

Analyzer System).  Continuous measurements of number-based particle size distributions 115 

(diameter range of 20 nm to 500 nm) were made every ten minutes with a scanning electrical 116 

mobility sizer (SEMS, Brechtel Inc. Model 2002) and were converted to SA distributions 117 

assuming spherical particles. Concentrations of particulate phase nitrate were determined with an 118 

Aerodyne high-resolution time-of-flight aerosol mass spectrometer, as described by Rutter et al. 119 

(2015). Black carbon concentrations were measured using an aethalometer. 120 

2.2 Baseline model 121 

A two-layer box model describing HONO mixing ratios was developed, with the height 122 

of the first layer set to 36 m to represent a surface layer and the height of layer 2 set to 72 m to 123 

facilitate use of HONO observations above the surface layer that are available in the literature. 124 

Established source (labeled as ‘B1-B8’ in Table 1) and sink mechanisms (labeled ‘L1-L3’ in 125 

Table 1) are described in full in the Supporting Information (SI) (including Figures S1-S5 and 126 

equations S1-S20). The timeframe selected for continuous modeling was 22 June 01:00 to 25 127 

June 14:00 (all times local) based on the longest uninterrupted period during the campaign with 128 

observations of HNO3, HONO, aerosol SA, NO2, NO, gas-phase chloride (assumed to be 129 

hydrochloric acid, HCl), and jHONO. Mixing ratios of constituents during this period were 130 

generally typical of the broader study period.  Equation 1 describes baseline sources and sinks 131 

modeled with a transient approach: 132 

 
  transLLLBBBBBBB

trans FFFFFFFFFF
dt

d
 3218765321

HONO

 
(1)
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where [HONO]trans is the mixing ratio of HONO from modeled transient sources and sinks (ppt),  133 

dt is the time step (s) between measurements for which observations of all constituents present in 134 

Equation 1 were made, F represents the source or sink strength of the indicated mechanism 135 

(ppt/s), and Ψtrans is the loss (or source) of HONO from layer 1 to (or from) layer 2 due to vertical 136 

transport (ppt/s).  137 

Equation 1 describes the transient processes occurring in the model; source B4 was 138 

incorporated into the model after accounting for transient processes as shown in Equation 2: 139 

     xemisstranstotal NOHONOHONO  f
 

(2) 

where [HONO]total is the mixing ratio of HONO at a time step resulting from transient and 140 

instantaneous processes (ppt) and femiss  is the direct HONO emission factor described in Table 1. 141 

Equation 2 may overestimate the contribution of B4 in a box-model, as during the daytime, 142 

HONO will rapidly photolyze prior to the measurement of emitted NOx.  143 

Vertical transport, Ψtrans (ppt/s), is calculated using a first-order flux-gradient relationship 144 

simulated with the 1D CACHE model (Bryan et al., 2012) where mass is transported by eddy 145 

diffusion at a magnitude proportional to the eddy diffusivity for heat (Kh), shown in equation 3:  146 

 
 

hz

tzC
tzK htrans

1,
,




  (3) 

where Kh (z,t) is the eddy diffusivity (m
2
/s) at height z (m) and time t. As shown in equation 3, 147 

estimates of flux are divided by h, the height of the second layer in the model (m), prior to 148 

inclusion in equation 1.  149 

Two 1D simulations during the campaign were used to derive Kh, including one 150 

simulation for 7-9 June and one for 10-12 June.  For the layers corresponding to the upper 151 

boundary that are used in the results here, Kh is derived based on a length scale, vertical wind 152 
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shear, and a stability parameter (Forkel et al., 1990). It is calculated at each time step within the 153 

model, providing a diurnal cycle that is based on meteorological conditions during the campaign. 154 

Observations of HONO were made at one elevation, approximately 10 m above surface, 155 

and were used to represent the HONO mixing ratio in layer 1 of the model. Equation 3 requires 156 

an estimate of the HONO mixing ratio in layer 2 to estimate the HONO gradient. Three scenarios 157 

were considered: 1) no gradient (i.e., [HONO] in layer 1 equals that in layer 2 at all times); 2) a 158 

gradient created using fractions of [HONO] presented in Vandenboer et al. (2013), representative 159 

of a stronger nighttime gradient and a weaker daytime gradient (GrN); and 3) a gradient created 160 

from fractions of [HONO] presented in Villena et al. (2011) that is representative of a stronger 161 

daytime gradient and weaker nighttime gradient (GrD). Diurnal profiles of the three gradient 162 

conditions are shown in Figure S6 of the SI and implications of this limitation are discussed in 163 

Section 3.2. 164 

2.3 Parameterization and evaluation of newly identified HONO sources 165 

Three recently identified HONO source mechanisms were parameterized to assess the 166 

potential of these mechanisms (in conjunction with B1-B8 and L1-L3) to independently or 167 

jointly account for HONO mixing ratios observed in DFW.  The three mechanisms, listed in 168 

Table 1 as S1, S2, S3 are incorporated into Equation 1 as additional sources of HONO. 169 

 Source S1 is the formation of HONO from the reduction of HNO3 to HONO mediated by 170 

VOCs emitted from motor vehicles (Rutter et al., 2014).  The source strength (FS1, ppt/s) was 171 

parameterized using HONO source strength and reactant mixing ratios presented in Table 1 of 172 

Rutter et al. (2014) and is shown in equation 4: 173 
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(4) 

where fHNO3,VOC is the observed HONO formation rate (ppt s
-1

) in Rutter et al. (2014), and 174 

normalizing ratios are further described in the SI. Estimates of ‘likely’ fHNO3,VOC  were taken for 175 

experiments conducted at 50% RH while ‘lower-limit’ and ‘upper-limit’ estimates were taken as 176 

the minimum and average across experiments shown in Table 1 of Rutter et al. (2014). 177 

Normalizing assumptions shown in equation 4 resulted in, on average, ~95% reduction of 178 

fHNO3,VOC when calculating FS1. The form of the parameterization in equation 4 is speculative; 179 

propylene is chosen as a proxy for reactive VOCs while benzene is chosen to account for dilution 180 

that may occur as air masses move from DFW to EML (see Figure S7 in the SI for a diurnal 181 

profile of propylene/benzene). Identification of specific reactive species participating in the 182 

HONO formation process identified in Rutter et al. (2014) would enable improvements in 183 

development and assessment of parameterizations of VOC-mediated conversion of HNO3 to 184 

HONO. 185 

Source S2 is HONO emissions from soil bacteria as described by Oswald et al. (2013). 186 

Emission from the soil (FS2, ppt/s) was assumed to mix instantaneously through the first model 187 

layer as shown in equation 5: 188 

22 S
soil

S
h

f
F 

 
(5) 

where fsoil is the “optimum” HONO flux from a soil type (molec cm
-2

 s
-1

), h is the height of the 189 

model layer, and ГS2 represents the conversion factor to ppt/s prior to inclusion in equation 1 (see 190 

the SI equations S21-S24 for an example calculation). The ‘lower-limit’ value of fsoil was taken 191 
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as the value of HONO flux for pasture, and the ‘upper-limit’ value was taken as that for 192 

grassland. No ‘likely’ value of fsoil was selected, as pasture and grassland were the only two 193 

relevant soil types for the DFW region.  Despite specifying a ‘lower-limit’ value, this 194 

investigation may be effectively considering the high end of contribution of soil bacteria to 195 

HONO because “optimum” values of flux are used for both soil types. 196 

 Source S3 is the re-emission of HONO from a surface nitrite reservoir by displacement 197 

from HNO3 and HCl, as in Vandenboer et al. (2014, 2015) and shown in equation 6: 198 

   
dS v

h
F

ClHHNO3
3




 
(6) 

where FS3 is the source strength of S3 (ppt s
-1

), vd is the deposition velocity of HNO3 and HCl, 199 

taken as 1 cm s
-1

, and η is the displacement efficiency, ranging from 1% to 9% to 20% for 200 

‘lower-limit’, ‘likely’, and ‘upper-limit’ values, respectively (VandenBoer et al., 2014). This 201 

parameterization was constrained by the calculation of a ‘reservoir’ of nitrite from deposited 202 

HONO, approximated from a material balance on the ground where the source of nitrite is 203 

mechanism L1 and loss is due to displacement from mechanism S3. Mechanism S3 was set to 0 204 

when the reservoir was equal to 0. As there may be additional sources of surface nitrite other 205 

than gas-phase HONO and surface nitrite accumulation over greater than diurnal time-scales, 206 

equation 6 likely represents a conservative estimate of the source strength of S3. Further 207 

description of the constraints on source S3 is given in the SI and dynamics are depicted in Figure 208 

S8, also in the SI.  209 

2.4 Model calculation and assessment 210 

Nitrous acid mixing ratios were first modeled with the baseline scenario using the B and 211 

L parameterizations summarized in Table 1. The ‘likely’ parameterization incorporates HONO 212 
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source and sink estimations thought most representative of each mechanism, while ‘upper-limit’ 213 

and ‘lower-limit’ are values that result in maximum or minimum HONO production, 214 

respectively, e.g. in the ‘upper-limit’, parameterizations of sources result in greater formation 215 

while those of sinks result in lower loss rates. Predictions of HONO mixing ratios were assessed 216 

through the residual sum of squared errors (SSE) and the coefficient of determination (r
2
), both 217 

determined from differences between modeled and measured HONO mixing ratios. 218 

Model scenarios were constructed to assess the three new mechanisms (mechanism ID = 219 

S1, S2, and S3 shown in Table 1) and gradient conditions (GrN or GrD); scenarios are named 220 

according to the gradient used and sources added, e.g., GrN S2/S3 refers to a model scenario 221 

with the stronger nighttime gradient as described previously and with sources S2 and S3 added to 222 

baseline sources B1-B8 and sinks L1-L3. Sources S1-S3 were added to the baseline model in a 223 

full-factorial deterministic screening analysis (using ‘likely’ estimates of parameterizations) to 224 

identify scenarios for further analysis. Monte Carlo simulation (Crystal Ball v. 11.1.2.3, Oracle) 225 

was used to evaluate the probability of model scenarios to account for observed HONO mixing 226 

ratios. Input distributions of source and sink parameterizations were assumed to be triangular 227 

probability distributions, bounded by ‘lower-limit’ and ‘upper-limit’ values with the ‘likely’ 228 

value as the most frequently occurring. Model sensitivity to the number of trial simulations was 229 

performed to ensure a trial-independent solution was achieved; all MCS were conducted with 230 

5,000 iterations. A bounded evolutionary solver was applied to the baseline model scenario and 231 

to the model scenario with the highest r
2
 and lowest residual SSE in the deterministic screening 232 

analysis. The evolutionary solver used a genetic algorithm to estimate source and sink 233 

parameterizations with a minimum SSE across the range of ‘lower-limit’ to ‘upper-limit’ values 234 

for each source or sink mechanism.  235 
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3. RESULTS AND DISCUSSION 236 

3.1 Ambient air monitoring in the outflow of DFW 237 

Experimental observations of mixing ratios of ambient gases and particles input to the 238 

model are shown in Figure 1; diurnal profiles of selected constituents across the full monitoring 239 

campaign are shown in Figure S9 of the SI. Values of HONO/NO2 are variable and elevated 240 

during the daytime, possibly indicative of a secondary daytime source of HONO. Mixing ratios 241 

of HNO3 are suppressed in the morning and evenings and elevated during daytime hours, likely a 242 

result of strong daytime HNO3 production from the reaction of NO2 and OH (Aneja et al., 1994). 243 

The highest observed mixing ratios of HNO3 across the full monitoring campaign are included in 244 

the model period shown in Figure 1, exceeding 5000 ppt in the early evening of June 22, 2011. 245 

Mixing ratios of HCl exhibit similar trends to those observed for HNO3. Mixing ratios of HONO 246 

show accumulation over the nighttime and suppression during the daytime, a result of the strong 247 

loss due to photolysis and convective dilution during the daytime hours. Aerosols and aerosol-248 

phase constituents appear elevated during the nighttime hours of 6/23 and 6/24 compared to 249 

daytime concentrations, but are suppressed during the nighttime of 6/25. Across the model 250 

period, the SA of particulate matter averages 125 µm
2
 cm

-3
, consistent with typical values across 251 

the month-long monitoring campaign (Figure S1), and ranges 22 µm
2
 cm

-3
 - 392 µm

2
 cm

-3
.  252 

3.2 Baseline model 253 

Mixing ratios of HONO are first calculated with the model under the baseline scenario 254 

for ‘likely’ estimates of parameterizations. Predicted and measured mixing ratios of HONO for 255 

the baseline scenario with three HONO gradient conditions described in Section 2.2 are shown in 256 

Figure 2.  The “no gradient” condition results in substantial over-estimation of nighttime HONO 257 

mixing ratios, logical given the role of the ground surface in HONO formation processes 258 
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included in the baseline scenario and the first layer height of 36 m. Conversely, the GrN and GrD 259 

conditions both result in underestimation of nighttime HONO, with relatively small differences 260 

between the two conditions.  A strong daytime sink, due to photolysis, results in suppression of 261 

modeled daytime mixing ratios below observation for all three gradient conditions, implying the 262 

need for daytime sources beyond those considered in the baseline scenario. The underestimation 263 

may also result from the limited vertical resolution in the two-layer box model used here and the 264 

measurement height in the lower portion of the first layer (10 m); it is likely that a continuous 265 

HONO gradient is present in the 36 m of the model first layer resulting in a lower modeled 266 

mixing ratio across the first model layer than the 10 m observation.  267 

While relatively few studies report measurements of vertical gradients of HONO, 268 

available profiles generally show higher HONO mixing ratios in surface layers than aloft, 269 

indicative of ground surface HONO formation. Michoud et al. (2014) summarize several studies 270 

reporting vertical gradients, four of which show the presence of a vertical gradient (Veitel, 2002; 271 

Zhang et al., 2009; Villena et al., 2011; Wong et al., 2012) and one that does not (Häseler et al., 272 

2009). Vandenboer et al. (2013) report high-resolution vertical profiles measured from a tower in 273 

Boulder, CO, and show the presence of both daytime and nighttime HONO gradients. Veitel et 274 

al. (2002) report that over 13 months of measurements, HONO mixing ratios were observed to 275 

decrease with height under nearly all atmospheric conditions. For the present investigation, we 276 

interpret the over-prediction of HONO mixing ratios in the nighttime for the “no gradient” 277 

condition, when convective mixing is most likely to be diminished, to indicate a HONO vertical 278 

gradient. Thus, conditions GrN or GrD better represent the vertical structure of HONO mixing 279 

ratios in the outflow of DFW. While this appears to be in agreement with the preponderance of 280 

available HONO vertical gradient measurements, a site-specific HONO gradient would clearly 281 
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improve the present study. Nevertheless, parameterizations here allow an estimation of the 282 

source and sink processes in the outflow of DFW and exploration of two estimates of gradients 283 

to assess model sensitivity to the HONO vertical profile. The impact of the vertical gradient and 284 

of parameterizations of established and recently identified HONO sources and sinks are further 285 

explored in Sections 3.3-3.5.       286 

3.3 Deterministic screening analysis 287 

A deterministic screening analysis was employed to evaluate model outcomes when 288 

sources S1-S3, acting independently or in any combination, are incorporated into the model. This 289 

full-factorial analysis, consisting of 24 possible scenarios, is conducted for only the ‘likely’ 290 

parameterizations of the mechanisms, as shown in Table S1 of the SI. Full output of model runs 291 

across all gradient conditions and scenarios of parameterizations are provided in Figures S10-292 

S12.  293 

Generally, ‘likely’ estimates of parameterizations showed improved model fit compared 294 

to ‘upper-limit’ estimates, implying additional sources of HONO, rather than increased 295 

production from baseline sources result in improved model outcomes. Subsequent discussion in 296 

this section reflects ‘likely’ parameterizations.  Scenarios identified for further investigation are 297 

those with a combination of low SSE and high r
2
. The baseline model generally is characterized 298 

by the highest model SSE, and the addition of source mechanisms S1-S3 generally lowers SSE 299 

and increases r
2
. In cases, however, the SSE is lowered while the r

2 
decreases (for example, from 300 

GrN Baseline to GrN S1). This is a result of improvement in model prediction for only a subset 301 

of times in the modeling period. The screening analysis identified scenario S2/S3 and scenario 302 

S1/S2/S3 as having the lowest SSE and highest r
2
 (SSE range: 4.3×10

6
–6.7×10

6
; r

2
 range: 0.42-303 
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0.58). These scenarios, along with baseline scenarios for comparison, are further explored with 304 

MCS and an evolutionary solver.  305 

3.4 Monte Carlo simulation  306 

Six model scenarios that vary the new sources and vertical gradient conditions were 307 

evaluated with MCS to incorporate uncertainty and variability in each mechanism into the 308 

model; model estimates of HONO are determined as probabilistic distributions at each model 309 

time step. Summarized output of MCS are shown in Figure 3 as hourly-averaged diurnal profiles 310 

of measured and modeled distributions of HONO mixing ratios across the model period. The 311 

MCS reinforces the conclusions that ‘baseline’ source mechanisms cannot explain observed 312 

HONO mixing ratios; in the GrN Baseline condition, 90
th

 percentile values of model output 313 

underestimate observed HONO mixing ratios in 23 of 24 reported hours, and 75
th

 percentile 314 

values underestimate observed HONO mixing ratios all 24 reported hours.  315 

The addition of source mechanisms S2 and S3 to the model (Figure 3) results in 316 

improved agreement between the model and observations for nighttime mixing ratios of HONO 317 

for both GrN and GrD conditions. GrN S2/S3 shows 9 of the 10 hours in the 21:00-07:00 318 

nighttime period are between the 10
th

 and 90
th

 percentile values determined in the model. GrD 319 

S2/S3 shows improvement over the GrD Baseline condition; however, metrics of goodness of fit 320 

are lower than GrN S2/S3, and there is less improvement over baseline. This appears to be a 321 

result of sustained accumulation over the nighttime period, due to the smaller HONO nighttime 322 

vertical gradient in the GrD condition. Under both GrN and GrD conditions for scenario S2/S3, 323 

daytime mixing ratios of HONO remain substantially underpredicted as in the baseline condition.  324 
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The addition of all three sources (S1, S2, and S3) does not appear to resolve 325 

underprediction of the daytime HONO mixing ratio. In the GrN condition, the addition of source 326 

S1 results in a small increase in over-estimation of nighttime HONO mixing ratios and metrics of 327 

model fit worsen. In the GrD condition, there is a limited impact from the combined effect of 328 

sources S1, S2 and S3, with a modest reduction in both SSE and correlation coefficient when 329 

comparing GrD S1/S2 to GrD S1/S2/S3. Figure 3 shows GrN S2/S3 results in improved model 330 

fit compared to other scenarios, although daytime HONO remains substantially underestimated. 331 

An estimation of average total and relative source and sink strength across both nighttime 332 

(21:00 – 07:00) and daytime (07:00 – 21:00) is shown in Figure 4 for GrN S2/S3.  Estimates of 333 

sources and sinks are reported for ‘likely’ values of parameterizations for the indicated time 334 

period.  Considerable temporal differences in the contributions of various source and sinks to the 335 

HONO budget exist.  At night, HONO from NO2 conversion at the ground (B7) is the major 336 

source, contributing 53% of the HONO budget.  Biotic release from the ground (S2) and re-337 

emission from the nitrite reservoir (S3) are the next two largest contributors at 25% and 19%, 338 

respectively. Nighttime HONO is slightly over-estimated; an ‘unknown’ nighttime sink of 339 

0.0016 ppt/s, or 3% of the total, is required to bring the model into agreement with observations. 340 

Major nighttime sinks are vertical transport and deposition of HONO at the ground surface, 341 

contributing 73% and 21%, respectively. These nighttime sources and sinks are in general 342 

agreement with relative estimates of mechanisms reported by Czader et al. (2012), who report 343 

71% of HONO production due to heterogeneous surface chemistry and losses due to transport 344 

and deposition of 77% and 23%, respectively, during the nighttime and pre-sunrise morning.  345 

During the daytime, a missing HONO source dominates; however there are meaningful 346 

contributions to the daytime HONO budget from S3, S2, B8, B7 and B5.  A missing daytime 347 
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source of 0.15 ppt s
-1

, or 67% of the total HONO source budget shown in Figure 4, is needed to 348 

bring modeled and measured results into full agreement. This “missing” source is in the range of 349 

magnitudes identified in other investigations, ranging from 0.03 - 0.3 ppt s
-1

 (Su et al., 2008; 350 

Elshorbany et al., 2009; Sörgel et al., 2011; VandenBoer et al., 2013; Lee et al., 2015). Unless 351 

there is a positive artifact that depends on sunlight, a strong daytime source is needed to balance 352 

the substantial sink of HONO due to photolysis (89% of the total sink). In section 3.5, we 353 

explore the potential for ‘best fit’ estimates of parameterizations in GrN S2/S3 to close some 354 

portion of the HONO budget through optimization of parameterizations across the range of 355 

values presented in Table 1.  356 

3.5 Evolutionary solver and sensitivity analysis 357 

An evolutionary solver was employed to estimate the optimal combination of input 358 

values within ‘lower-limit’ to ‘upper-limit’ ranges of parameterizations and the resulting impact 359 

on the estimate of the “missing” HONO source or sink. The evolutionary solver was applied to 360 

the GrN baseline scenario and GrN S2/S3. Model outcomes with optimal estimates for GrN 361 

baseline and GrN S2/S3 are shown in Figure 5 and parameterizations are reported in Table 2.  362 

Across optimization of both GrN Baseline and GrN S2/S3, the largest changes to the 363 

parameterizations relate to heterogeneous conversion of NO2 on aerosol (B1 and B2) and on the 364 

ground (B7, B8), and HONO uptake to the ground (L1). Aerosol processes increase substantially 365 

as a result of a speculative upper-limit as described in the SI; B1 was allowed to vary over 1.5 366 

orders of magnitude and B2 over 2.5 orders of magnitude based on prior modeling studies, rather 367 

than experimental estimates. However, contributions from B1 and B2 remain limited (< 1% as 368 

can be determined from absence of B1 and B2 in Figure 4), in part a result of the two layer box-369 

model used here that emphasizes ground-level phenomena. In both GrN Baseline and GrN 370 
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S2/S3, the optimization resulted in B8 at the upper-limit of the parameterization. Source B7 371 

increased by ~2× in GrN Baseline, but more moderately in GrN S2/S3, a result of the 372 

contribution of sources S2 and S3 in GrN S2/S3. In GrN S2/S3, deposition loss (L1) increased, a 373 

result of the need to balance increases in parameterizations of sources that act over both daytime 374 

and nighttime periods (e.g., S3) and contribute to reductions in the daytime “unknown” source 375 

but also nighttime accumulation.   376 

Figure 5 shows greater improvements in metrics of model goodness of fit for the optimal 377 

solution of GrN S2/S3 compared to the optimal solutions of the GrN Baseline. This indicates that 378 

baseline mechanisms are not able to similarly explain HONO observations under any 379 

combination of input parameters compared to the scenario with S2/S3 present. This appears to 380 

largely result from stronger parameterizations of S2/S3 resulting in improved estimates of 381 

daytime HONO mixing ratio, although levels are still lower than observed. Best-fit 382 

parameterizations of GrN S2/S3 result in a missing daytime source of 0.10 ppt/s, reduced from 383 

0.15 ppt/s (Figure 4), implying that a substantial missing HONO source remains even across a 384 

statistically optimized range of parameterizations.   385 

The “best-fit” estimates of GrN S2/S3 reflect an improved statistical outcome for the 386 

model when parameterizations are allowed to vary across a range of values. Parameterizations in 387 

Table 2 with larger percentage changes imply a combination of model sensitivity to the 388 

parameter as well as uncertainty in the value of the parameterization. We conducted a sensitivity 389 

analysis to identify the most important parametrizations impacting the estimates of goodness-of-390 

fit, the model r
2
 and SSE. The sensitivity analysis for GrN S2/S3 is summarized in Table S2 of 391 

the SI, reported as the Spearman’s rank correlation coefficient (ρ) between each mechanism’s 392 

input parameter and the model output r
2
 or SSE. Uptake of NO2 at the ground (B7) is the 393 
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parameter with the largest impact on both the model SSE and r
2
, by a comparatively large 394 

margin. Given that there is a wide range of estimates of the uptake coefficient parameterizing B7 395 

in the literature, this source represents a large source of uncertainty in the model. Sources S3, B8, 396 

and S2 are the next three strongest correlations with model SSE; interestingly, all four sources 397 

with highest sensitivity (B7, B8, S2, and S3) are ground-level phenomena. Source B7 was 398 

strongest correlated with night-time (21:00-07:00) HONO mixing ratios while source S3 was 399 

strongest correlated with daytime HONO. This underscores the importance of characterizing the 400 

role of the ground surface mechanisms, including biotic release and ground-level chemical 401 

transformations.  402 

The presence of a substantial missing daytime source is further explored via estimation of 403 

correlation coefficients between measured constituents and products of constituents with the 404 

missing HONO source, similar to the analysis presented by Lee et al. (2015). This analysis 405 

employed time-series measurements for constituents and the estimate of missing HONO at each 406 

time step required for model agreement with observation. Outcomes are shown in Table S3 for 407 

‘likely’ and ‘best-fit’ estimates of GrN S2/S3. Relatively strong correlation coefficients (r
2
 > 0.5) 408 

were observed for jNO2 and jNO2 × temperature with the missing HONO source, the latter in close 409 

agreement to the results of Lee et al (2015). However, the correlation of jNO2 × NO2 with the 410 

missing HONO source is weak (r
2
 = 0.09 - 0.17), as is the correlation of jNO2 × SEMS SA× NO2 411 

(r
2
 = 0.08 - 0.16) and with NO2 alone (r

2
 = 0.21-0.25). The stronger correlation with jNO2  and 412 

jNO2 × temperature may imply photosensitized conversion on organics, including humic acids, 413 

which are mainly ground surface sources (Stemmler et al., 2006, 2007), are underestimated. The 414 

weak correlation of the missing HONO source with NO2 and products containing NO2 mixing 415 

ratios appears aligned with a recent analysis of weekday-weekend HONO and NO2 relationships 416 
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that shows HONO production rates do not increase with increases in NO2, implying daytime 417 

HONO production may not be rate-limited by NO2 (Pusede et al., 2015). Weakening correlations 418 

for products of gas- and particle-phase constituents and jNO2 also may result from the two-layer 419 

model that lends greater emphasis to interactions at the ground level, consistent with the results 420 

of the sensitivity analysis in Table S2 and discussed previously.  421 

3.6 Model limitations 422 

  The model described in this work is subject to a number of important limitations. Source 423 

S1 assumes the source strength determined in the laboratory is possible in the ambient 424 

environment, with several normalizing assumptions. However, as we did not observe meaningful 425 

formation of HONO from source S1, the impact of the speculative parameterization is therefore 426 

limited in this investigation. Future field efforts should further investigate the potential for VOC-427 

mediated reduction of HNO3 to HONO in near-source environments. Source S2 was 428 

parameterized using a single value for a model simulation; there are likely to be diurnal 429 

variations in biological activity and soil water content that would impact the parameterization of 430 

source S2. Source S3 considered only gas-phase HONO as an input to the surface nitrite 431 

reservoir and that the reservoir was empty at the beginning of the model period. This may result 432 

in a conservative estimate of the contribution of source S3.  433 

Input distributions in MCS were assumed to be triangular. This assumption may over-434 

weight estimates of parameterizations at the ‘upper-limit’ and ‘lower-limit’ extents of the 435 

distribution as compared to a normal distribution. A triangular distribution was chosen, in part, to 436 

ensure parameterizations did not exceed upper or lower-limit estimates in MCS. The two-layer 437 

box model uses instantaneous and in-situ mixing ratios to constrain the model, with the 438 

assumption of instantaneous mixing up to the first layer height. Transport between layers was 439 
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estimated using an approximation of HONO vertical gradients at similar heights taken from 440 

literature. We assume transport time for NOx sources that exceeds the atmospheric age of HONO 441 

(Lee et al. 2013). During the daytime periods (07:00-21:00), the atmospheric age of HONO 442 

across the modeling period in this work averaged 19.4 min and ranged from 8.9 to 128 min. We 443 

assume NOx sources input to the model originate from the metropolitan DFW area (~70 km 444 

away), while the wind speed averaged 19 km/h, resulting in a transport time of 220 min.   445 

4. CONCLUSIONS 446 

Model predictions of HONO that account for ranges in parameterizations of HONO 447 

source and sink mechanisms enable a statistical assessment of the likelihood of the model to 448 

match observation. Observations of HONO appear most accurately simulated when emission 449 

from soil biota (S2) and re-emission from a ground level nitrite source (S3) are included in the 450 

model. Model output for GrN S2/S3 accounted for, on average, 33% of the daytime HONO 451 

budget and 103% of the nighttime HONO budget. Major nighttime sources included (in order) 452 

NO2 conversion at the ground (B7), biotic release from soil (S2), and re-emission from the nitrite 453 

reservoir (S3). Major daytime sources include S3, S2, photoenhanced NO2 conversion at the 454 

ground (B8), B7, and the reaction of OH with NO (B5).  Model fit improved after application of 455 

an evolutionary solver, resulting in a reduction of the estimate of the unknown daytime source 456 

for GrN S2/S3. However, the presence of a substantial unknown daytime source (on average 457 

0.10 ppt/s) even with a statistically optimal fit for GrN S2/S3 implies additional sources of 458 

HONO than those evaluated here must be included to reproduce accurately daytime HONO 459 

mixing ratios. Analyses of model sensitivity and correlations between the missing HONO source 460 

and constituents imply the presence of additional, or underestimation of considered, ground-level 461 

HONO sources in this investigation. 462 
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Table 1. HONO source and sink mechanisms considered for modeling HONO in the outflow of the DFW metropolitan area.  595 

Mechanism ID Parameter Lower-limit Likely Upper-limit Reference 

Aerosol uptake of NO2 B1 γNO2 (-) 2.0 × 10
-7

 1.0 × 10
-6

 5.0 × 10
-6

 
Kleffmann et al. (1998); Aumont 

et al.(2003) 

Photoenhanced aerosol 

uptake of NO2 
B2 γNO2,hv (-) 4.0 × 10

-6
 1.0 × 10

-5
 1.0 × 10

-3
 

Stemmler et al. (2007); Wong et 

al. (2013) 

Photoenhanced 

conversion of NO2 soot 
B3 

γsoot,BET (-) 4.0 × 10
-7

 5.0 × 10
-7

 6.0 × 10
-7

 
Monge et al. (2010) 

BET surface area (cm
2
/g) 9.7×10

5
 1.2 × 10

6
 1.3 × 10

6
 

Direct HONO 

emission 
B4 femiss (%v, ΔHONO/ΔNOx) 0.0029 0.0055 0.0080 

Kirchstetter et al. (1996); 

Kurtenbach et al. (2001) 

OH + NO   B5 
k∞(T)   (cm

3
 molec

-1
 s

-1
) 3.0 × 10

-11
 3.6 × 10

-11
 4.3 × 10

-11
 NASA (2011) 

ko(T)  (cm
6
 molec

-2
 s

-1
) 5.8 × 10

-31
 7.0 × 10

-31
 8.4 × 10

-31
 NASA (2011) 

HONO from surface 

HNO3 photolysis 
B6 

jHNO3-HONO (s
-1

) 1.0 × 10
-5

 1.2 × 10
-5

 1.4 × 10
-5

 Zhou et al. (2003)  

vd, HNO3 (cm s
-1

) 1.50 1.75 2.25 Walcek et al. (1986) 

HONO from NO2 

conversion at ground 
B7 γNO2, gr (-) 1.0 × 10

-6
 5.0 × 10

-6
 1.0× 10

-5
 

Kleffmann et al. (1998); 

Kurtenbach et al. (2001) 

Photoenhanced NO2 

conversion, ground 
B8 γNO2,gr,hv (-) 1.7 × 10

-5
 2.0 × 10

-5
 6.0 × 10

-5
 

Stemmler et al. (2006); Wong et 

al. (2013) 

HNO3 →HONO, VOC S1 fHNO3, VOC (ppt s
-1

) 3.6 × 10
-2

 5.8 × 10
-2

 8.3 × 10
-2

 Rutter et al. (2014) 

Biotic release, ground S2 fsoil (molec cm
-2

 s
-1

) - 1.7 × 10
9
 4.0 × 10

9
 Oswald et al. (2013) 

Re-emission from 

NO2-(p) reservoir 
S3 vd×η (cm s

-1
) 1.0 × 10

-2
 9.0 × 10

-2
 2.0 × 10

-1
 Vandenboer et al. (2014) 

HONO uptake at 

ground 
L1 γHONO,gr (-) 1.0 × 10

-4
 2.0 × 10

-5
 1.8 × 10

-5
 

Vandenboer et al. (2013); Wong 

et al. (2013); Trick (2004) 

HONO + OH L2 kHONO+OH (cm
3
 molec

-1
 s

-1
) 6.75 × 10

-12
 4.5 × 10

-12
 3.0 × 10

-12
 NASA (2011) 

HONO photolysis L3 jHONO (s
-1

) 1.8 × 10
-3 

- 3.9 × 10
-5 a

 This investigation 
a
Maximum-minimum range of the experimentally determined time-series values of jHONO input to the model (not varied).  596 
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Table 2. Best estimates of parameterizations of sources and sinks of HONO in the outflow of 597 

DFW for baseline and scenario GrN S2/S3.  598 

  

Best-fit estimate (% difference from 'likely') 

ID Parameter GrN S2, S3 GrN Baseline 

B1 γNO2 (-) 3.9 × 10
-6

 (294%) 2.5 × 10
-6

 (152%) 

B2 γNO2,hv (-) 8.5 × 10
-4

 (8500%) 1.0 × 10
-3

 (9900%) 

B3 
γsoot,BET (-) 5.3 × 10

-7
 (6%) 5.3 × 10

-7
 (7.1%) 

BET surface area (cm
2
/g) 1.1 × 10

2
 (-6.5%) 1.2 × 10

2
 (-3%) 

B4 femiss (%v, ΔHONO/ΔNO2) 0.0043 (-22%) 0.0049 (-10%) 

B5 
k∞(T)  (cm

3
 molec

-1
 s

-1
) 3.7 × 10

-11
 (4.4%) 3.8 × 10

-11
 (4.8%) 

ko(T)  (cm
6
 molec

-2
 s

-1
) 7.6 × 10

-31
 (9%) 7.3 × 10

-31
 (4.8%) 

B6 
jHNO3-HONO (s

-1
) 1.2 × 10

-5
 (-3%) 1.3 × 10

-5
 (7.7%) 

vd, HNO3 (cm s
-1

) 1.8 (4.6%) 2.0 (17%) 

B7 γNO2, gr (-) 6.1 × 10
-6

 (22%) 9.9 × 10
-6

 (97%) 

B8 γNO2,gr,hv (-) 6 × 10
-5

 (200%) 6 × 10
-5

 (200%) 

S1 fHNO3, VOC (ppt s
-1

) n/a n/a 

S2 fsoil (molec cm
-2

 s
-1

) 2.8 × 10
9
 (66%) n/a 

S3 vd×η (cm s
-1

) 0.18 (105%) n/a 

L1 γHONO,gr (-) 5.7 × 10
-5

 (185%) 2.0 × 10
-5

 (-1.1%) 

L2 kHONO+OH (cm
3
 molec

-1
 s

-1
) 5.7 × 10

-12
 (28%) 4.6 × 10

-12
 (2.1%) 

L3 jHONO (s
-1

) unchanged unchanged 

  
Missing source or sink: 

daytime, nighttime (ppt s
-1

) 
0.10, -0.0112 0.15, -0.006 

  599 
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Figure 2. Model output for ‘likely’ estimates of parameterizations under conditions of no 
gradient, stronger nighttime gradient (GrN), and stronger daytime gradient (GrD).
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Figure 3. Summary of Monte Carlo simulation output for baseline scenarios, and scenarios with S2/S3 and 
S1/S2/S3 added to the baseline scenario. 

SSE = 8.9 × 106 ± 1.8 × 106 

r2 = 0.51 ± 0.05 

SSE = 4.6 × 106 ± 7.6 × 105 

r2 = 0.55 ± 0.03 

SSE = 4.6 × 106 ± 6.7 × 105 

r2 = 0.50 ± 0.04 

SSE = 8.9 × 106 ± 1.5 × 106 

r2 = 043 ± 0.03 

SSE = 6.5 × 106 ± 1.5 × 106 

r2 = 0.46 ± 0.03 

SSE = 6.3 × 106 ± 1.6 × 106 

r2 = 0.44 ± 0.03 
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Figure 4. Relative contribution to HONO source or sink strength in GrN S2/S3 with ‘likely’ estimates of parameterizations.  Contributions are 
averaged for the time period indicated above each pie chart across the modeling period (6/22/2011 01:00 – 6/25/2011 14:00 local time). 
Unknown source or sink is determined by stepwise addition of HONO source or sink such that modeled HONO equals measured HONO.
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Figure 5. Model performance with best-fit parameters for the nighttime gradient (GrN) scenario with 
sources S2 and S3, compared to the nighttime gradient scenario with only baseline sources included. 
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