1-1-2016

20.0.B Discussion Heat Transfer Applications

Christopher F. Bauer

University of New Hampshire, chris.bauer@unh.edu

Follow this and additional works at: https://scholars.unh.edu/day20

Recommended Citation

https://scholars.unh.edu/day20/45

This Report is brought to you for free and open access by the Fire and Ice at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Day 20 by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
RECCORDER REPORT, Chem 444A “Fire & Ice”

<table>
<thead>
<tr>
<th>Group Member Name</th>
<th>Role</th>
<th>Date: 4/7/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles</td>
<td>Spokesperson</td>
<td></td>
</tr>
<tr>
<td>Marisa</td>
<td>Recorder</td>
<td></td>
</tr>
<tr>
<td>Kaleigh</td>
<td>Manager</td>
<td></td>
</tr>
<tr>
<td>Tim</td>
<td>Spokesperson</td>
<td></td>
</tr>
</tbody>
</table>

1) Conduction: ashes are a poor conductor so they act as an insulator, the coals are covered by the ash.

2) Time: walking briskly across the coals allows for as little contact with them.

3) It’s not fire walking—it’s coal walking (appears like fire rather than coal).

4) Our body has the ability to withstand some heat.

5) Coal is made of light weight carbon atoms and air spaces; the lightweight carbon structure is a poor conductor of heat and air also has a low heat capacity and a poor thermal conductivity.

6) Levrindenfrost Effect: the moisture on the sole of the foot creates a vapor barrier that prevents the foot from actually contacting the coals.

Experiment:

Inevitable paper acts as the coals, sand acts as the ash and is placed over the paper. We walked our fingers quickly over the paper in the sand area and clean area. The marks in the sand area indicated the heat was lower. Debated with water on one hand and a dry hand. The wet hand left lower heat marks than the dry hand.
Ice

• Historical article rather than scientific
• Important to extend shelf-life of food, so it took a while to find a way to preserve ice while travelling
• Being able to ship ice created a new demand.
• They used hay and sand dust as insulation. It is a bad conductor (heat takes a while to pass through).

Properties of water

• Polarity of water makes % for stronger attractions between molecules, therefore requiring more energy to break apart.
• There is a high melting point.
• They shipped the ice in the ship below the water line, with hay and sand dust as insulation. There is less heat circulating, it was in air.

Issue: if you try to ship ice over a long journey, it will melt. He created refrigerated containers to preserve ice to sell at his destination.

• Water's high melting point makes it more difficult to melt. It takes more energy to melt it, which helps him transporting it.

Poster: Draw ship. Show how water's polarity plays a role...
RECORER REPORT, Chem 444A “Fire & Ice”

Group Member Name	Role	Date: 4/7/15
Nick Bauchard | Recorder |
Samantha Colaw | Spokesperson |
Kyle Reiser | Spokesperson |
Emily Dwyer | Manager |

Important Features:

- **Heat Sink:** Similar discussion to Heat Exchanger article.
 - Tremendous amount of heat loss through windows.
 - There is no gravity so heat doesn’t rise, and thus no air flow.
 - Only option of heat transfer on space is radiation whereas on Earth, convection and conduction occurs.
 - The ISS is coated with MLI. The ISS uses heat exchangers to allow heat generated by the equipment to be removed.
 - The heat exchangers are needed to release excess heat since the ISS is close to perfect insulation with exceptions at the windows.
 - Ammonia is used since it has a lower freezing point.
 - There is an internal water cooling system.

- Heat Sink is used to cool computers and smaller electronic devices such as the ones on the ISS.

From the Heat Exchanger Article:

- Heat is transferred "between mediums" (such as the exchangers on the ISS.)
A fluid is transferred to a different temperature environment resulting in heat transfer.

ISS is designed to trap heat produced in the inside (electronics), and cool by transferring liquid to the outside to cool and then return.

Heat goes in through solar energy to electrical thermal energy (some through the window). Heat goes out through radiators (heat exchangers). Heat sinks are used on the electrical devices to keep them cool.

Questions:

How does the heat exchanger on the ISS work if it's facing the "sun side"?
<table>
<thead>
<tr>
<th>Group Member Name</th>
<th>Role</th>
<th>Date: 4/7/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor</td>
<td>Spokesperson</td>
<td></td>
</tr>
<tr>
<td>Miriam</td>
<td>Recorder</td>
<td></td>
</tr>
<tr>
<td>Eliza</td>
<td>Spokesperson</td>
<td></td>
</tr>
<tr>
<td>Emily</td>
<td>Manager</td>
<td></td>
</tr>
<tr>
<td>Amanda</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy-saving Windows + Features
- Multiple layers of glazing
- Thickness of air space
- Low-conductivity gas fill
- Tinted glass coatings
- Low-e coatings
- Edge spacers

Global Warming
- Energy efficient windows - use less energy and are better for environment

Radiation - glazing & coatings (tinted)

Conduction - glazing, gas fill, edge spacers

Convection - panes of glass, gas fillings, & warm edge spacer, thermally resistant frames

Air leakage - edge spacers

Cold Climate (winter cooling) vs. Warm Climate (summer cooling)

- Low-e vs. high solar heat gain coefficients
- Low conductivity gas fill - reduce heat loss
- Low-e "southern" - low heat gain coefficients
- Tinted glass coatings - reduce heat gain
- Low conductivity gas fill

Christopher F. Bauer, Principal Investigator
This material is based upon work supported by the National Science Foundation under Grant No. 1245730.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Licensed: http://creativecommons.org/licenses/by-nc-sa/3.0/
Ways to improve energy performance of windows:

- Multiple layers of glazing (Radiation)
- Thickness of air space (Conduction)
- Low Conductivity gas fill (Conduction)
- Tinted glass coatings (Radiation)
- Low-emissivity (low-e) Coatings (Radiation)
- Edge Spacers (Conduction) (Air leakage)

Conduction
Radiation
Air Leakage

Christopher F. Bauer, Principal Investigator.
This material is based upon work supported by the National Science Foundation under Grant No. 1245730.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Licensed: http://creativecommons.org/licenses/by-nc-sa/3.0/
The World That Ice Built

*Extra bonding between water molecules gives water a large specific heat capacity, which makes water a good coolant & heat shield

*Specific enthalpy of fusion of water: 333.55 kJ @ 0°C
 this property gives resistance to melting ice (requires a significant amount of heat to melt it)
Staying Cool on the ISS

Christopher F. Bauer, Principal Investigator.
This material is based upon work supported by the National Science Foundation under Grant No. 1245730.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Licensed: http://creativecommons.org/licenses/by-nc-sa/3.0/
Fire Walking

LEINDENFROST EFFECT
- The moisture on the sole of the foot creates a vapor barrier that prevents the foot from contacting the coals. (Exp. 2)

EXPERIMENTS
1. Comparing sand on thermochromic paper to direct skin contact with paper.
2. Comparing wet fingers to dry fingers on thermochromic paper.

CONDUCTION
- Coals are a bad conductor because they are made of light weight carbon atoms and air spaces.

INSULATION
- A layer of ash covers the coals and acts as a good insulator.
- Done at night because the glow of the coals can still be seen (experiment 1).

TIME
- When walking briskly across the coals, there is less time for direct contact with the skin.
- Human skin has a high heat capacity.

Charles, Marisa, Tim, Kaleigh