
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Doctoral Dissertations Student Scholarship 

Fall 2001 

Reflexivity, elementary operators and cohomology Reflexivity, elementary operators and cohomology 

Jiankui Li 
University of New Hampshire, Durham 

Follow this and additional works at: https://scholars.unh.edu/dissertation 

Recommended Citation Recommended Citation 
Li, Jiankui, "Reflexivity, elementary operators and cohomology" (2001). Doctoral Dissertations. 40. 
https://scholars.unh.edu/dissertation/40 

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New 
Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of University of New Hampshire Scholars' Repository. For more information, please contact 
Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/dissertation
https://scholars.unh.edu/student
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/40?utm_source=scholars.unh.edu%2Fdissertation%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 
the text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality illustrations 
and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and continuing 
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9" black and white 
photographic prints are available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

R e p r o d u c e d  with p e r m is s io n  o f  t h e  co p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFLEXIVITY, ELEMENTARY OPERATORS 
AND COHOMOLOGY

By 

Jiankui Li 

M .S. Qufu Normal University (1987)

DISSERTATION

Subm itted to the University o f New Hampshire 
in partial fulfillment of 

the requirements for the degree o f

Doctor o f Philosophy 
in

M athematics

Septem ber 2001

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .



UMI Number: 3022960

___ ®

UMI
UMI Microform 3022960 

Copyright 2001 by Bell & Howell Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



This dissertation has been examined and approved.

Director, Don Hadwin 
Professor o f Mathematics

nc Nordgren
Professor o f Mathematics

Rita Hibschweiler 
Professor of Mathematics

Edward Hinson
Associate Professor o f  Mathematics

Ken Haforison
Associate Professor o f  Mathematics 
Murdoch University

& { "X ~7 (&  I 

Date

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .



Dedication

To my family.

iii

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



Acknowledgments

I  would like to thank my advisor, Don Hadwin for his guidance and support, encour­

agement.

I  would like to thank R ita  Hibschweiler for her help during the preparation th is paper 

and when writing up the  paper. She spends a lot time to read carefully the paper.

I would like to thank  to Eric Nordegren. I have learned a lot from him.

I want to thank Edward Hinson and Ken Harrison; the other members of my Dissertation 

Committee.

I also whish to thank my friend Dr. Z. Pan for the successful cooperation.

Last bu t definitely not the least, I would like to thank my friends Hemant Pendharkar 

and Jeff Zak for their help.

iv

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .



CONTENTS

D edication ............................................................................................................................... iii

Acknowledgments i v

A bstract.................................................................................................................................... vi

Introduction 1

1 Reflexive Subspaces and R ank Decom posability 5

1.1 Reflexive subspaces o f  B (H ) ................................................................ 5

1.2 Rank decom posability ...........................................................................17

1.3 Algebraic isom orph ism ........................................................................ 31

2 Bounded Reflexive Subspaces and Some Applications 41

2.1 Bounded reflexive subspaces..............................................................41

2.2 Relation between bounded reflexivity and complete

positivity o f elem entary o p e ra to rs ................................................... 62

2.3 A pplications............................................................................................ 67

3 Cohomology 74

3.1 Derivations on non-selfadjoint operator a lg eb ras ......................... 74

3.2 Norm continuous and normal Cohom ology o f a lg e b ra s ............ 87

References 97

v

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .



Abstract

R eflex iv ity , e lem en tary  operators and coh om ology

by

Jiankui Li

University of New Hampshire, September 2001

Let H  be a  separable complex H ilbert space and let B (H )  be the  set of all bounded 

operators on H .  In th is dissertation, we show th a t if S  is a n-dimensional subspace of 

B ( H ), then S  is [\/2n]-reflexive, where [£] denotes the largest integer tha t is less than  or 

equal to t.

We obtain some lattice-theoretic conditions on a  subspace lattice C which imply algC 

is strongly rank decomposable. Let S  be either a  reflexive subspace or a  bimodule of a 

reflexive algebra. We find some conditions such th a t T  has a rank one sum m and in S  

and S  has strong rank decomposability. Let S(C)  be the set of all operators on H  that 

annihilate all the operators of rank a t most one in algC. Katavolos, Katsoulis and Longstaff 

show th a t if C is a subspace lattice generated by two atoms, then S ( £ )  is strongly rank 

decomposable. They ask whether S(C )  is strongly rank  decomposable if £  is an atomic 

Boolean subspace latttice with more than  two atoms. For any n  > 3, we construct an 

atomic Boolean subspace lattice C on H  with n  atom s such th a t there  is a finite rank 

operator T  in S(C)  such th a t T  does not have a rank one sum m and in  S(C). This answers 

their question negatively. We also discuss isomorphisms of reflexive algebras.
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R e p r o d u c e d  with p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e r m is s io n .



We introduce a new concept called “bounded reflexivity” for a  subspace of operators 

on a  normed space. We explore the properties of bounded reflexivity, and we compare 

the similarities and differences between bounded reflexivity and the usual reflexivity for a 

subspace of operators. We discuss the relations of bounded reflexivity of subspaces of B { H ) 

and complete positivity of elementary operators on B {H ). As applications of bounded 

reflexivity, we give shorter proofs of some well known results about positivity and complete 

positivity of elementary operators. By using those ideas, we study properties of a  C*- 

algebra in  which every n-positive elementary operator is completely positive. We study 

the derivations in nonselfadjoint algebras. We research derivations on a  nest subalgebra of 

von Neumann algebras. We also consider two cohomology theories, the  norm continuous 

cohomology and the normal cohomology on some nonselfadjoint algebras. Those algebras 

contain reflexive algebras whose invariant subspace lattices are tensor products of nests and  

reflexive algebras whose invariant subspace lattices are generated by two atoms. We obtain 

for those algebras A  that H £ (A ,B (H ))  = H™{A,B(H)).
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Introduction

O perator algebras originated in the work of von Neumann, in particular in his search 

for a  natural m athem atical frame for Quantum Mechanics, and in the  work of Gelfand and 

Naimark. O perator algebras can be viewed as a  discipline encompassing Noncommutative 

Analysis, Geometry and Topology. Operator algebras axe undoubtedly one of the  mathe­

matical fields m ost notable for the depth of the problems, the richness of new ideas, and the 

numerous connections to a  variety of other fields. In  addition the field offers great potential 

as a unifying language and as a source of illumination, helping to explain other problems 

and providing a framework for further research.

In the 1960s, because the theory of selfadjoint operators and operator algebras had un­

dergone a  vigorous and moderately successful development, people began to investigate how 

far the theorems of selfadjoint theory could be generalized and what forms they should take 

in the new context. In [54] Kadison and Singer introduced triangular operator algebras. 

Non-selfadjoint operator algebras really began w ith their pioneering paper “T riangular op­

erator algebras” . Nest algebras were introduced by Ringrose as generalizations o f certain 

triangular algebras. Now nest algebras play an im portant role in non-selfadjoint algebras 

(see [20]). It was Ringrose’s proof th a t complete nests are reflexive th a t was the starting 

point for Halmos’s introduction of reflexive algebras and lattices. We can consider th a t the 

non-selfadjoint generalizations of von Neumann algebras are the reflexive algebras. The 

notion of reflexivity was first introduced by Halmos in 1971 for subalgebras of algebra

1
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B (H ) .  Loginov and Salman [79] extend reflexivity to include subspaces B ( H )  which are 

not necessarily algebras.

Now we introduce some basic notation and some definitions. Standard terminology and 

notation will be used. The H ilbert spaces which we consider are all complex and  separable. 

The terms operator and subspace mean bounded operator and closed subspace respectively. 

We denote by B {H )  the set o f all operators on H , K (H )  the set of all com pact operators 

on H  and F (H )  the  set of all finite rank operators on H. For any subset S  of B {H ),  define 

«S(n) =  [ S ^  E B ( H (")) : S  E <S}, where is the  direct sum of n  copies o f H  and is 

the direct sum of n  copies of S  acting on H ^>. For x, y in H ,  let x ® y  denote the  rank-one 

operator u »-»• (u ,y)x ,  whose norm  is ||a;||||y ||. We let S * =  {S* : S  E 5} . In  this paper, 

“ C ” is used for set inclusion while “ C ” is reserved for proper inclusion. For convenience 

we disregard the  distinction between a  subspace of H  and the orthogonal projection on it.

This dissertation contains three chapters. In  Chapter One, we consider reflexivity of 

subspaces of B ( H ), strong rank  decomposability of reflexive algebras and bimodules of 

reflexive algebras and algebraic isomorphisms of some reflexive algebras. In  section 1.1, in 

collaboration Z. Pan, the m ain result is Theorem 1.13. This Theorem answers a  question 

of Magajna [85]. In  section 1.2, we obtain some lattice-theoretic conditions on  a  subspace 

lattice £, which im ply algC is strongly rank decomposable. Let S  be e ither a  reflexive 

subspace or a  bimodule of a  reflexive algebra. We find some conditions such th a t T  has 

a  rank one sum m and in S  and  S  has strong rank  decomposability. Let S (C )  be the set 

of all operators on H  that annihilate all the operators of rank a t most one in algC. In 

[56], Katavolos, Katsoulis and Longstaff show th a t if £  is a  subspace lattice generated by
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two atoms, then S(C)  is strongly rank decomposable. For n  > 3, we construct an atomic 

Boolean subspace lattice C on H  w ith n  atoms such that there is a  finite rank operator 

T  in S(C) such tha t T  does not have a  rank one summand in S(C ).  This answers their a 

question in [56] negatively. In section 1.3, we discuss isomorphisms of reflexive algebras.

Chapter 2 studies bounded reflexivity and applications. In section 2.1, together with 

Z. Pan, we introduce a  new concept “bounded reflexivity” for a subspace of operators on a 

normed space. We explore the properties of bounded reflexivity, study the similarities and 

differences between bounded reflexivity and the usual reflexivity for a  subspace of operators. 

In section 2.2, we discuss the relation between bounded reflexivity of subspaces of B { H ) 

and complete positivity of elementary operators on B(H ).  As applications o f bounded 

reflexivity, we give shorter proofs o f some well known results about positivity and complete 

positivity of elementary operators. In  section 2.3, we use the ideas in sections 2.1 and 2.2, 

to study the properties of a C*-algebra on which every n-positive elementary operator is 

completely positive.

In [99], Sakai proves that if A  is a  von Neumann algebra, then H ^ (A ,A )  =  0. It is an 

open question whether for any von Neumann algebra A , H £ (A ,A )  =  0. For non-selfadjoint 

algebras, in [64], Lance shows th a t if  A  is a  nest algebra then H £ (A ,B (H ))  =  0.

In the last chapter, we unify some results on derivations by considering derivations from 

an algebra A  containing all rank one operators of a  nest algebra into an .A-bimodule B. 

We study derivations on nest subalgebra of von Neumann algebras. We also consider two 

cohomology theories, the  norm continuous cohomology and the normal cohomology on some 

nonselfadjoint algebras. These algebras contain reflexive algebras whose invariant subspace

3
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lattices are tensor products of nests and reflexive algebras whose invariant subspace lattices 

are generated by two atoms.
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C hapter 1

Reflexive Subspaces and Rank Decomposability

Let H  be a  complex separable Hilbert space. For any set T  of subspaces of H ,  we define

a lgT  -  { T  €  B (H )  : T M  C  M ,  for any M  E T } .

Obviously for any collection T  of subspaces, a lg T  is a  weakly closed subalgebra of B(H)  

containing I.

For any subset A  of B(H), the set of invariant subspaces of A  is denoted by la tA .  Thus

la tA  = {M  : T M  C M , for any T  E A ,  M  is a. subspace of H}.

Let A  be a subalgebra of B (H ).  Obviously A  C alglatA. We say tha t A  is reflexive if 

A  = alglatA .

For any subspace S  C B (H ),  define re f{S )  — { T  E B ( H ) : T x  E [cSx], for any x  E H}, 

where [-] denotes norm  closed linear span. S  is called reflexive if r e f ( S )  = S . S  is called 

n-reflexive if is reflexive in B ( H ^ ) .  If .A is a  subalgebra of B ( H ) containing I ,  then 

A  is reflexive as an  algebra if and only if A  is reflexive as a  subspace of B (H ).

1.1 R eflex iv ity  o f  fin ite d im en sion al su b sp aces

Let S  be a  subspace of B (H ).  A  vector x  E H  is called a  separating vector of S  if 

the map Ex : S  —> Sx , S  E S  is injective. Let sep(S) denote the set of all separating

5
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vectors o f S  in H .  T he local dimension of S ,  denoted by k(S),  is defined by k(S)  =  

m a x {d im [S x  : S  €  <S] : x  £ H } .  I t  is clear th a t k(S ) < dim S .  If d im S  <  oo, it is 

not hard  to  see tha t sep(S)  #  0 if and only if k(S) = d im  S .  IV-reflexivity of a subspace 

of B (H )  has been considered, for example, in [8, 61]. In [67], Larson proved th a t if S  

is a finite dimensional subspace of B {H ),  then r e f ( S (”)) =  4- r e f { S ^  ft F ( H ^ ) ) .

It follows immediately th a t S  is n-reflexive if and only if S  fl F (H )  is n-reflexive. Hence 

we are only interested in which finite dimensional subspaces of F (H )  are n-reflexive. In 

[70], we show that if S  is an n-dimensional subspace of B (H ),  then S  is ( [ |]  +  l)-reflexive. 

In this section, our m ain result is Theorem 1.13. Theorem 1.13 proves that if S  is an n- 

dimensional subspace of B (H ),  then S  is [y/2n ]-reflexive. Example 1.14 shows th a t [\/2n ] 

is the smallest integer such that all n-dimensional subspaces of B (H )  are [%/2n ]-reflexive.

In the following, we always assume that S  is a  subspace of B (H ), dim S  < oo, and 

S  C F (H )  unless stated  otherwise. Before we prove our main result, we need several lemmas 

and propositions.

L em m a 1.1[39]. The set sep(S ) is an open subset o f H .

L em m a 1.2[39]. The set sep{S) is either empty or dense in H .

Let M  be a closed subspace of H  and P  be the orthogonal projection of H  onto M .  

Define S m  =  [S  6 5  : R{S)  C M }, where R (S ) is the range of S. Let S%r be any vector 

space complement of S m  in S .  Define P ± S^I =  { P ^ S  : S  € <S^}.

P rop osition  1.3. k(Sjif) + k(P-LS%f ) < k(S).

P ro o f .  If P^-Sfi =  0, it is obvious th a t k(SM ) <  k(S ).

6
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If  S \ f  =  0, it follows that S%f  = S  and

k (P ±S ^ )  =  m ax{d im  [P ^ S x  : S  £  : x  £  H }  < m a x{d im  [«Sor] : x  £ H }  =  k(S).

Now suppose A:(«Sm) = m  =£ 0 and k (P J- S ^ )  =  /  ^  0. Let xq £ H  be a  separating 

vector of s p a n { ^ i,..., Sm} C S m - Similarly there exist P x T x,..., P XT; £  such that 

span{P xT i , P XT*} has a  separating vector. By Lemmas 1.1 and 1.2, we can choose 

y  £ H  with ||y|| small enough so tha t xq + y  is a  separating vector for span{Si, •••, S m} and 

sptm {PxT i , ..., P XT)}. For any £  C, suppose

AiSiC^o -F y) +  ... +  XmSm(xo +  y) +  h\T \ (xq + y) +  ... -F fi[Ti(x o +  y) = 0 .  (1-1)

Applying P x  to  both  sides of (1-1), it follows

pi P x Ti (ar0 +  y) +  ... +  f iiP±T[(xo +  y) =  0. (1.2)

Since i o + y  i s a  separating vector of span{P ^T \ , ..., P x7}}, (1-2) yields p\  =  ... =  pi =  0.

Now (1.1) implies Ax =  ... =  Am =  0, since x o + y  is a sepaxating vector of span{Si,  ..., Sm}- 

Hence k(S) > k(SM)  +  ^ P ^ S ^ f ) .  □

P ro p o s itio n  1.4. I fk {S M ) = dim M , then fc(5jvf) -F k (P x <S^) =  k(S).

P roof.  By Proposition 1.3, we only need to prove k(S) < k^Sw )  +  fc(Px <S£f).

Suppose th a t k(SM ) =  m  and  k (P ±S^f ) = I. If to -F1 =  d im  S ,  it is obvious that 

k ( S ) <  k(SM ) +  k(P-LS^{). If m  + 1 < dim S ,  and m  +1 < n  < d im  S ,  we take n  linearly 

independent operators from S  in  such a way th a t S \ , ..., Smi £  S m -, T i , ..., £ S%j and

m \ + 1\ =  n. For any nonzero xq in H , we show th a t there are Ax,..., Ami, p \ ,..., pix, not all 

zero, such that

Ai-SiXo +  — +  SmiXQ +  p \T \ xq +  ... +  p ^ T ^ x  o =  0. (1-3)

7
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If Zx <  I, then m i  >  m , choose p i  — ... =  pix =  0. Since =  m , it follows that there

are A x , , Am i, not all zero, such th a t AxSixo +  — +  ^miSmiXo =  0. Suppose that Zx >  I. 

If sp an { P J-Txxo,..., P ^ T ^ xq} =  (0), then span{Tixo, —,7 ^ xo} C M .  Because fc(«Sjvf) — 

dim  M ,  and Zx + m \ = n  > m + l,  it follows that there are A x , A mi , m , ..., , not all zero,

satisfying (1.3). W ithout loss of generality, we may assume that { P ± T i Xq, ..., P^-Ttxo}, 1 <  

t < I is linearly independent, and P ^T jX o G spanlP^-T ixo ,..., P ^ T tX o } ^  + I < j  < h-
t t

Suppose tha t P-lTj xq =  X) ai jP ±Ti%o-, t  + 1 <  j  < h-  Let B j  =  Tj  — X) <HjTi- Then
i - 1 i=l

Bj-xo £ AL, t + 1 < j  < l\.  Since Sj-xo € M, 1 <  i <  m i  and dim M  =  m  < m x + li — I < 

m i + h  — t, we may choose A j,..., Ami and pt+1 , —, V-h> not all zero, such tha t

AiS'ixo +  +  XmiS mixo +  pt+iBt+ixo -F ... +  f i ^ B ^ x  o =  0. (1-4)

Hence

t t
AiSixo +  ~.-fAmi5 mixo+/it+ i(7}1 — t+iTi)xo + ...+/j.i1(T[l — hT i)xo =  0. (1.5)

t= l i= l

By (1.5), it follows th a t (1.3) is true. □

L e m m a  1.5[23]. Let V  be a vector space over a field F  and let L (V )  be the set o f all 

linear transformations on V . Suppose S  C L{V) and d im  S  is less than the cardinality of  F . 

Let x  be a separating vector o f S  and W  be a linear subspace o f V  satisfying S x D W  =  (0). 

Then for  each vector y  G V, there is a scalar A G F  so that y  -+- Ax separates S  and 

S{y + X x ) D W  = (0).

L e m m a  1.6. I f  k{S)  =  k, then there exists an M  with dim M  =  k  and dim S f j  < k.

P roo f.  Since k ( S ) =  k, there exist xo G H  and A i , ..., Ak G S  such tha t

m a x{d im  [<Sx] : x G H }  =  dim  [AxXo,..., vlfcXo] =  k.

8
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Let

M  =  [A ix o ,..., A kxo], S  =  span{A \ , ..., ylfc}, and S m  =  { S  € S  : R ( S ) C M }.

I t is enough to  prove S  = sp a n {S  U Sjv/}- Since for any S  €  S , there exist A i,..., A* such
k k _

th a t S x o =  $2 ^iAiXQ. Let S \ = S  — then Sixo =  0. If  S \  =  0, then S  E S .  Next
f=i t=i

we show that if  Si ^  0, then  S i £  S m -

If Si S m ? there exists y  E H  such that S iy  ^  M  — S x o- Let W  =  [Sit/]. Then 

S x o fl W  =  (0). By Lemma 1.5, there exists A G C  such th a t y + Xxq separates S  and 

S{y  +  X x q ) D W  =  (0). Since S i ^  0 and SiXo =  0, it follows { A i , Ak, S i}  is linearly 

independent. Let S  =  s p a n { A \ , A k ,  Si}. Next we prove tha t y + X x q  separates S .  For any 

A  G S , t  G C, if (A+tSi)(t/+Aa;o) =  0, then A(y+Xxo) = —tS iy .  Since S(y+Aaro)nW =  (0), 

it follows that t  =  0 and A {y  +  Aaro) =  0. Since y  +  Aaro is a separating vector o f S ,  we have 

A  =  0. Hence y  +  Aaro separates S , which implies k{S) > k  1, a  contradiction. □

D efin ition  1 .7. Suppose S  is a  subspace of B (H ).  We say S  has property A  if for 

any subspace S i of S , we have fc(Si) >  {y/2dim S i  — 1/2}, where {t} denotes the  smallest 

integer tha t is greater than or equal to t.

We say S  has property B  if there exists a nonzero subspace M  of H  such th a t k(SM) = 

dim  M .

R em ark I t is clear th a t if S  has property A, then so does any subspace of S . If S  has 

property B,  then so does any subspace of B ( H ) containing S.

For x , y  E H ,  let x  <g> y denote the rank-one operator u —> (u, y )x .

Lem m a 1.8[49]. Let A , B e  B (H ) and S  =  s p a n { A ,B }. Then k{S) =  1 i f  and only 

i f  one of the following holds:

9
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(1) d im  S  =  1,

(2) there exist xo, X \,X 2  6 H  such that A  =  x q  <8> x i ,  B  =  x q  ® X2 -

L em m a 1.9. Suppose dim S  =  n  > 2. I f  k(S) < {y/2n — 1/2}, then S  has property

B .

P roof.  If n  =  2, then fc(<S) =  1. Lemma 1.8 now implies that S  has property B .

Suppose the statem ent is true for all S  with 2 <  dim  S  < n  — l , n  >  3. For any S  

with dim S  =  n, let k(S )  =  fc. By Lemma 1.6, there exists a subspace M  of H  such that 

dim M  — k  and dim S m  < k.

If S m  — «S, clearly k(SM)  =  k(S)  =  dim  M .

If S m  C S ,  then let P  be the orthogonal projection of H  onto M .  We have, for any 

S CM ,P XS CM ±  (0), so k(P-LS^4) > 1. Hence k(SM) <  k  — 1, by Proposition 1. 3. Since 

k  < ( \/2 n  — 1/2}, we have {V2n — 1/2} — 1 <  {y/2[n — k) — 1/2}. So A; — 1 <  {y/2n — 

1/2} -  1 <  W 2 ( n  -  k) -  1/2}. Hence k (S M) <  W 2(n  ~  k ) ~  l / 2} < {V2dim  S M ~  1/2}- 

( Since dim  S m  + dim S%j =  n, it follows tha t dim S m  = n  — dim S f^ .  Since dim S ^  < k, 

it follows that dim S m  > n  — k.) By the induction hypothesis, S m  has property B .  It 

follows tha t S  has property B.  □

Lem m a 1.10. I f  d im  S  =  n and S  has property A  then S  is [y/2n [-reflexive, where 

[t] denotes the largest integer that is less than or equal to t.

P roof.  If  n  =  1, Lemma 1.10[60] implies that S  is reflexive.

Suppose the statem ent is true for all S  with property A  and d im  S  < n  — l , n  > 2. 

Suppose dim  S  = n, S  has property A, and k(S) = k. Since S  has property A , k >  

{y / 2 n -  1/2}. If k  = n, then S  has a  separating vector, so S  is 2-reflexive. Hence S  is
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[\/2n ]-reflexive, since n  >  2 and  \y/2n ] >  2.

Suppose that {V 2n  — 1/2} < k  < n  — 1. Let m  =  [\/2n]. Since fc(<S) =  k,  there

exist x \  £ H  and {Ai, —,A k}  Q S  such tha t {A iX \\i=l is a basis of S x Suppose S  =

sp a n {A i , ..., Ai}. There exists a  unique k  x  n  complex m atrix (a,-y) with =  0(i ^  j) ,
k

ajj  =  1 {j < k ) and 3 =  1> --j n - Nest we prove th a t if £  re/(<S^m^),
i=l

then T  E S. For any X2 ,.--,xm E -ET, there exist scalars fi,...,£n such that

( \  
T x  i

Y TXm y

=

(  \  
A\X\

-F ... -F tv

( \  
A nx  i

AxXjn j

Since T x \  E spa7i-{ylixi,.-.,.<4nx i} , there exist / i i ,  such th a t

y  ^4.71^771 J
(1.6)

T x \  — }  ] fijA jX j. 
i= 1

By (1.6) and (1.7), we have

Let

fc n k
T i g  — }  ] [i jAjXg -F }  '  t j ( A j  5  '  )2-gi 9 =  2 , ..., m.

7 = 1  j =  1 7 =  1

fc fc
=  T  }   ̂fJ'iAi. and B j  —-  }  ] (^ij A-i.

7 = 1  7 = 1

Note By =  0 for j  =  1,..., fc. By (1.8) and (1.9), we have

/  \
T \x 2

y 'I'\xTn j

{  \  
Bk+l%2

=  £fc+l +  ••• +  tn

(  \  
BnX\

y B nx m j

(1.7)

(1.8)

(1.9)

y Bk+\Xjn j

By the induction hypothesis, we have that span{Bfc+1, ..., B n } is [y/2(n — fc) ]-reflexive.

Since fc >  {\/2ra — 1/2}, we have [\/2n ] — 1 =  m  — 1 > [y/2{n — fc) ]. It follows that 

7 \ £  span{Bk+i, ..., B„}. Therefore T  £ 5 . □
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P rop osition  1 .11 . I f  dim  [<5>.ff] =  fc, then S  is k-reflexive.

P ro o f .  Since d im  S  — n, S  C F (H ),  and d im  =  k, there  exists an orthogonal 

projection P  satisfying dim P H  =  m  < oo and P S P  =  S .  So we may assume th a t S  is 

a  subspace of M m(C ). Let { e i , e * }  be an orthonorm al basis of S C m C C m. Extend 

this to  an orthonormal basis {ei, ...,efc,efc+i , .. . ,em} of C m. C learly S  is a  subspace of 

TZ =  {(r ij) € Mm(C ) : rij =  0, for any i >  fc}. I t  is easy to prove that 7Z* is reflexive. 

Since has a separating vector, it follows th a t 7 is elementary, by Proposition 3.2

[8]. By Proposition 2.10 [8], it follows that S * ^  is reflexive. Hence S ^  is reflexive. □

T heorem  1.12. I f  dim S  =  n, k(S )  =  fc, then S  is k-reflexive.

P ro o f .  If S  has property A, by  Lemma 1.10, we have S  is [\/2n  ]-reflexive. Since 

fc >  {y/2n  — 1/2} >  [\/2n  ], it follows that S  is fc-reflexive.

(i) Suppose S  does not have property  >1. Thus there exists a subspace S\ of S  such that 

fc(«Si) <  {V2n — 1/2}. By Lemma 1.9, has property B .  Hence S  has property B .

(ii) Let M  be a  maximal subspace of H  such th a t fc(«S,v/) =  d im  M . Let P  be the 

orthogonal projection of H  onto M .

If S m  C S, we prove next P ^ S  has property A .  If  property A fails, then (i) implies 

th a t P-^S  has property B .  Thus there exists a  subspace N  of H  such that

fc((P XS ) N) = d im  N .  (1.10)

By (1.10), we have N  C P ^ H .  Let M  = M  © N .  By Proposition 1.3,

k (S u )  > M ( ^ ) M) +  fc(P-L( ^ ? ) ^ )

=  f c ^  +  f c C P - ^ )
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=  k (P ±S fj )  + dim  M  

=  fc((Px <S)^) 4- dim M  

= fc((Px <S);v) 4-d im  M  

= dim  N  4- d im  M  =  dim  M .

Thus k{Sfrj) =  d im  M ,  contradicting the maximality of M .

Suppose dim  M  = m  and dim  ( P X«S) =  I. Let r  =  [v^J]. We show S  is (m 4-r)-reflexive 

by induction on 1.

If I = 0, then =  M .  By Proposition 1.11, it follows th a t S  is m-reflexive.

Suppose the statem ent is true for all dim  (P X«S) < 1  — 1, I > 1- Suppose d im  P X<S =  1. 

Since S  = Sm  +  S ^ ,  we have P X«S =  P x <S£f. If  { A x , , As} is a  basis of S ^ ,  we can easily 

prove tha t {Px At} |_ 1 is linearly independent, so s =  I. If fc(Px «S) =  J ,  then there exists 

an x i  G H  and {Ax,..., Ay} C so tha t { P ^ A \X i , ...,P x Aya;i} is linearly independent. 

Let {Aj+i , ...,An } be a  basis of S m - It follows tha t (Ax,..., A n } is a  basis of S .  Since 

P ^ A j x i 6 span{P x AxXx,..., P ^-A jx i} ,  J  4-1 <  j  < n, we have

J
P ^ A j x i =  ^ 2  ai jP ±AiXx, J  4- 1 <  j  < I and P x AjX\ =  0 , 1 4- 1 <  j  < n. 

2 =  1

( 1.11)

If T  G B{H) and T^m+r) G ref{S^m+r^). For any x 2, ~  , x m+r G H , there exist so

that
/  \

T x i

T^-m+r

(  \  
A ix i

= ti

A i x m+r

4-... 4- tn

f  \
A nx  x

 ̂ Arj^m+r y

(1.12)

Since T x \  G span{A x^i,..., A„xx}, it follows tha t P ^ T x i  G s p a n {P 1-AiX\,...,P-LA j x x}-
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Hence there exist t/i, v j  so that

J
P ^ T x i  =  5 3 n iP J-AI-a;1. (1.13)

t=i

By (1.11) to (1.13), we have

J  l n

T x 9 = '52(v i -  Y 1  tj<Hj)AiXg+ ^ 2  tiAiXg, g = 2 ,.. . ,m  + r. (1-14)
i= 1 j=J+1 »=J+l

Let

J  J
C = T  — ^ 2  viAi, B j  =  A j — ^ 2  aijA i, J  +  1 <  j  < I, B j  =  A j, I 4- 1 <  j  < n. (1-15)

i=l t=l

By (1.14) and (1.15), we have

(  \ (  \ (  \
C x  2 B j+ \x i B nx  2

; — tj+ l : +  — +  in ;

y C xm+r j  ̂ B j+  iXjn+r j  ̂ B nXm+r j

Let S  =  sp a n {B j+i , ..., B n }. Then dim P ^ S  < l  — J  and k[SM ) =  k{SM ) =  dim M . Since 

P ±S  has property A, we have tha t J  > {y/2l — 1/2}. S o m  +  r - 1  >  m  + [y/2(l — J ) ] > 

m  + [V2dim  P ^ S  ]. By the  induction hypothesis, we have C  €  sp a n { B j+i , ..., Bn}. Hence 

T  G s p a n { A \ , A n} =  <S. By Proposition 1.4, k =  fc(<Sjvr) +  ^(-P^^m ) =  m  +  k(.P^S).  

Since P ^ S  has property A, and k (P ±S)  >  {\/2Z—1/2}, it follows tha t k  > m + {y/2 l—1/2} > 

m  -+- [y/2I ]. Hence S  is fc-reflexive.

If S m  =  <5, then S  is fc-reflexive by Proposition 1.11. □

T h e o re m  1.13. I f  d im  S  = n, then S  is [%/2n ]-reflexive.

Proof. I f  n  =  1, 2 and 3, Theorem 3 [70] implies the result. Suppose the result holds for 

dim S  < n  — 1, n > 4. Let dim  S  = n  and suppose k(S)  =  k. If fc <  [\/2n  ], by Proposition 

1.12, it follows that S  is [\/2n  ]-reflexive.
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If  fc >  [y/2n ] then  fc >  {V2n — 1/2}. If fc =  n , then S  is 2-reflexive. Hence S  

is [y/2n  ]-reflexive. I f  [y/2n ] < fc <  n  — 1, using the  same argument as Lemma 1.10, 

we have dim  span{Bk+i, < n  — fc. By th e  induction hypothesis, it follows tha t

span{Bk+ 1, B n} is [y/2(n — fc) ]-reflexive. Since fc >  {y /2n—l/2 } ,  it follows tha t [y/2n ] — 

1 >  [\/2 (n  — fc) ]. Thus span{Bk+i, B n } is ([\/2n ] — l)-reflexive, so S  is [\/2n]-reflexive. 

□

E x a m p le  1.14. Let Sk be the set of all fc x  fc upper triangular matrices with zero 

trace. We may show d im  Sk  =  — 1 and Sk is not (fc — l)-reflexive. For any positive

integer Z, one can easily show that there exists a positive integer fc such tha t

_  ! <  , <  ( * + ! ) ( * +  2) _  ! (1 16)

For any positive integer I, choose fc such tha t (1.16) holds and let m  =  I — _  j) Let

S  =  Sk  © «4m, where ^4m =  {diag(a\ , ..., am) : a.i £  C}. I t is easy to prove tha t S  is not 

([\/2Z] — l)-reflexive.

R e m a rk s  (1) Theorem  1.13 answers a  question of M agajna [85]. It indicates tha t 

if S  is n-dimensional subspace of B { H ), then [\/2n ] is the smallest integer such that all 

n-dimensional subspaces of B ( H ) are [y/2n ]-reflexive.

(2) By the proof of Theorem 1.13, we have th a t if  k(S) > n  — 1, then S  is 2-reflexive 

and th a t if fc(<S) > n  — 4, then S  is 3-reflexive. This improves Theorem 3.6 [23].

In the following, we give an application of Theorem  1.13.
n

T h e o re m  1.15. !/$>(■) =  £  a,(-)6j is an elementary operator on A ,  {a*-}, {&*} are sub-
2=1

sets o f  a C*-algebra A ,  then $  is completely positive i f  and only i f $  is max{[y/2{n  — 1) ], 1}- 

positive.
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T h e  proof is similar to the proof of Theorem 6 [13], so we leave it to  the reader. 

R e m a r k  In section 2.2.1, we improve Theorem 1.15. We show th a t if <f> is [y/n ]-positive, 

then <f> is completely positive.
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1.2 D ecom p osab ility  o f fin ite rank operators

Let H  be a complex Hilbert space. By a subspace lattice on H ,  we mean a  collection £  

of subspaces of H  w ith (0), H  in £  and such th a t for every family {M r } of elements of £, 

both  HMr and VMr belong to £ , where VMr denotes the closed linear span of {Mr}- Let 

£  be a  subspace lattice on H  and let £ J- =  { I  — P  : P  E £}. We have algC1- =  (algC)*. 

A totally ordered subspace lattice is called a  nest.  A subspace lattice £  is distributive  if 

K  n  (£  V M) = ( K  fl L) V (K  D M ) holds identically in £. We say th a t £  is complemented 

if for every L  E £ ,  there exists L' E C such th a t L' D L  =  (0) and L' C\ L  = H .  A 

complemented and distributive subspace lattice is called a Boolean lattice. An element L  

of a subspace lattice £  is called an atom  if the condition (0) C K  C L  (K  E £ ) implies 

either K  =  (0) or K  =  L. A subspace lattice is atomic  if each element of the lattice is the 

closed linear span of the atoms it contains. If K , L  E £ , we denote by L_ the subspace 

L_ =  V{M E £  : L  £  M }, by K #  =  V{L E £ :  K  g  £_}  and by K+ =  A{£ 6 £  : £  g  K}.  

By convention H + =  D0 =  H, (0)_ =  V0 =  (0). Complete distributivity  is a  much stronger 

condition than distributivity. The complete distributivity of £  is equivalent to K  = K #  for 

all K  E £ . An element L  in £  is completely m ee t  prim e  if L  2  £+- An element M  in £  is 

completely jo in t p r im e  if  M  2  M_.

If M  is a subset of jH, we denote by [M] the  norm closure o f span{x  : a; 6 M }. Let 

R  and T  be finite rank operators on H .  We say th a t R  is a  su m m a n d  of T  if ra n kT  = 

r a n k R  rank(T  — R).  If S  is a  subset of B ( H ) ,  S  is said to  be rank decomposable 

if  each finite rank operator in S  is a  sum of rank  one operators in S .  We say th a t S  is
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strongly rank  decomposable if, for each r  > 1, each operator in S  o f rank r  can be expressed 

as the sum of r  rank one operators in S.

Finite rank operators and rank  one operators have been used extensively in the study of 

nest algebras and  related non-self-adjoint reflexive algebras. By [46], we know th a t if C is a 

nest or an atomic Boolean subspace lattice on H ,  then algC is strongly rank decomposable. 

In [75], we improve these results. Erdos and Power [30] prove th a t if AT is a  nest and S  

is a  cr-weakly closed bimodule of algN, then S  is strongly rank decomposable. In [48], 

Hopenwasser and  Moore construct a  totally atom ic commutative subspace lattice C  and a 

rank two operator in algC which cannot be w ritten  as a sum of rank one operators in algC.

Let S  be either a  reflexive subspace or a bim odule of a reflexive algebra. In this section, 

we find some conditions which imply T  has a  rank one summand in S ,  where T  E S  f 1 

F (H ).  We also obtain  some necessary and sufficient conditions such tha t S  is strongly rank 

decomposable. For n  > 3, we construct an atom ic Boolean subspace lattice C, on H  with 

n  atoms for which there is a  finite rank operator T  in S(C) such th a t T  does not have a 

rank one sum m and in S (£ ), where S(C) is the set of all operators on H  th a t annihilate 

all the operators of rank at m ost one in algC. T his answers a question in [56] negatively. 

We obtain some lattice-theoretic conditions on a  subspace lattice C which imply algC is 

strongly rank decomposable. Theorems 2.12 and 2.13 generalize the  main results of [75].

In  [29], Erdos gives some necessary and sufficient conditions such tha t a  reflexive sub­

space of B ( H ) contains a rank one operator. In the  following we obtain another equivalent 

condition.

L em m a 2 .1 . Let S  be a reflexive subspace o f  B (H ).  Then e ® /  belongs to S  i f  and
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only i f  f  G (span{y : e £  [«Sy], y  G H })1-.

P ro o f. Suppose th a t e <8> /  G S . Since S  is reflexive, it  follows th a t for any y in H , 

e ® /(y )  =  (y ,/ ) e  G [«Sy]. Hence if e £  [Sy], (y , / )  = 0 .  So /  G (span{y : e £  [«Sy], y G

B } ) \

Conversely, suppose /  G (span{y : e £  [«Sy], y G H})-1-. Let y G fL. Since e <g> f ( y )  =  

( y , f ) e  and /  G (span{y : e £ [Sy], y G -ff})J',  it follows th a t e ® /(y )  =  (y ,/) e  G [<Sy]- 

Since «S is reflexive, it follows th a t e <S> f  E S .  □

The following Lemma will be used repeatedly.

L em m a 2.2[46]. Let T  be a finite rank operator and let A  be a rank one operator 

in B(H) .  Then A  is a summand of T  i f  and only i f  A  is o f the form  {Ty)  ® (T*/) (or  

equivalently, T (y  <g> f ) T ) ,  where y  and f  are vectors in H  and ( T y , f )  =  1 .

T heorem  2.3. Suppose that S  is a reflexive subspace o f B ( H )  and T  is a finite rank 

operator in S .  Then T  has a rank one sum m and in S  i f  and only i f  there is an e in H  such 

that e G T ( H ) and e ^  sp a n {T y  : e £ [<Sy], y €  H }, where T ( H )  is the range o f T .

P roo f. Suppose tha t e G T ( H ) and e £ span{T y : e [<Sy], y G H }.  Choose g G H  

such tha t g G (span{Ty : e £  [<Sy], y G Lf})_L, (e,y) =  1, and take y G H  such th a t 

T y  =  e. Thus (T y ,g ) =  (y,T*y) =  1 . Hence for any y  satisfying e ^  [<Sy], we have 

(y,T*y) =  0. I t follows th a t T*g G (span{y  : e £  [<Sy], y G Using Lemma 2.1,

e <g> T*g =  (Ty) <g> (T*y) G S .  Using Lemma 2.2, e <8 > (T*g) =  (Ty) ® (T*g) is a  rank one 

summand of T  in S.

Conversely, suppose th a t T  has a rank one summand in  S .  By Lemma 2.2, there exist
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m  and f  in H  such th a t

T (m  <8 > f ) T  =  (T m ) <g> (T*f )  G «S,

and

(T m ,/)  =  l  =  ( m ,r * / ) .

Let T m  =  e. Using Lemma 2.1, we have T * / € (span{y : e £ [<Sy], y G Hence for

any v  G span{y : e £ [«Sy], y G S'}, (v ,T * f ) =  (T u ,/)  =  0. Since (e ,/)  =  (T m , f ) =  1 , it

follows th a t e T (span{y  : e [«Sy], y G i?}) =  span{Ty : e ^  [<Sy], y G iif}. □

C orollary 2 .4 . Let M  and N  be nonzero subspaces of H  satisfying M  f\ N  =  0 and 

M  V N  =  H  and let C, =  { ( 0 Then every cr-weakly closed algC-bimodule S  is 

strongly rank decomposable.

P ro o f. By Theorem 2.2[61] and Theorem 3.1[4], it follows that S  is reflexive. By 

Theorem 2[45], we know tha t S  is determined by an order homomorphism of S . Let cf> 

be any order homomorphism of C and let

M  =  {T  G B{H)  : ( I  -  cf>(E))TE =  0 , £ g  £}.

By the symmetry of M  and N ,  we only need to prove M. has strong rank decomposability 

in the  following cases.

(1) 4>: M  M , IV i—► 0,

(2) 4>: M  N , N  0,

(3) : M  N , N  (-> M ,

(4) N  N ,

(5) <j> : M  ^  H, N ^ O ,

2 0
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For cases (1) to (4), we can easily prove the result using Theorem 2.3.

In case (5), M  =  { T  G B ( H)  : T N  =  0}. Let P denote the projection on N.  Then T  is 

in M  if and only if T P  =  0. Hence M.  has strong rank decomposability. □

R e m a rk  In Corollary 2.4, we can prove that if V is any normed closed subspace of 

B  (H)  which is a/g£-bimodule, then V is strongly rank decomposable.

If C is a  subspace lattice on the Hilbert space H,  let S ( £ )  denote the  set of all operators 

on H  tha t annihilate all the  operators of rank at most one in algC, th a t is

S (£)  = { T  G B ( H )  : tr (T R ) =  0, for every R  G algC of rank a t most one}.

Thus S(£)  is an aZ<?£-bimodule.

L em m a  2.5[56]. For any subspace lattice £  on H ,

S(£)  =  { T  G B{H)  : T ( K )  C for every K  G £ } .

L em m a 2.6[56]. Let C be a subspace lattice on H  and e, /  G H . The following are 

equivalent.

(1) e <g> /  G S(C),

(2) e G L  and f  G (L f o r  some L  G C.

T h e o re m  2.7. Let £  be a subspace lattice and let T  G S(C)DF(H) .  Then T  has a rank 

one summand in S(C) i f  and only i f  there exists an L  G C such that T ( H )  D L  g  T{L# ).

P ro o f. Suppose tha t there exists L  G C such that T( H)  n  L g  T ( L # ) . Choose g in H  

such tha t v G L #,  (T v , g ) =  0, and let e G L  such that T y  = e, (e,g) =  (Te,g) = 1. We 

have

(Ty,g) = (y ,T * g ) =  1 and T { y ® g ) T  = (Ty)  <g> (T*g) G S ( £ ) .
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By Lem m a 2.2, it follows th a t T  has a  rank one sum m and in S(£) .

Conversely, suppose T  has a  rank one sum m and in S(£) .  By Lemma 2.2, there exist 

e , f  in H  such tha t

T (e  <g> f ) T  =  (T e ) <g> (T*f )  G S ( £ )  and (Te , f )  =  1.

By Lem m a 2.6, there exists L  in £  such tha t T e  G L  and T * f  G (L # )1-. Since T e  G L, 

(Te, / )  =  1 and for any v G L #, (Tv,  f )  =  0, we have th a t T(H)  fl L  £  T(L#) .  □

E x a m p le  2.8. For n  >  3, there is an atomic Boolean subspace lattice £  with three 

atoms such tha t S ( £ )  is not strongly decomposable.

P r o o f.  Let H  be a  finite dimensional Hilbert space and let A  be an  invertible operator in 

B (H ). Define L \ =  {(x, 0,0) : x G H }, L 2  =  {(x, A x , 0) : x G H }  and  L 3  =  {(x, A x, A x )  : 

x G H }. By Lemma 6.3[2], it follows tha t {Li, L 2 , £ 3 } is the set o f atoms of an atomic 

Boolean subspace lattice.

Define T  : L \ —► L2  V L 3, by (x, 0,0) (0,0, P x ) , T  : L 2  —► L i  V L 3, by (x,Ax,  0) f-v

(0, P x , Px) ,  and T  : L 3  —> L 2 VL 1 , by (x, Ax,  Ax)  1—» (0, P x , 0), where P  is a  finite projection 

in B ( H ) .  We can extend T  to a bounded finite rank  operator in B ( H  © H  © H).  By the 

definition of T, it follows th a t T  G S ( £ ) .  We have th a t T ( H )  fl L x =  0, T( H)  D £ 2 =  0 and  

T ( H)  D L 3  =  0. We can check that T( H)  n  (L2 V L 3) C T ( L 2  V L 3), T ( H)  n  (L2  V L{)  C 

T ( L 2  V L i )  and T( H)  fl (L\  V I r 3 )  c  T(L i V L3 ). Hence by Theorem 2.7, T  does not have a  

rank one summand in S(C) ,  where £  is the subspace lattice generated by L\ ,  L 2 and L 3. 

Let m  =  n  — 3 and let £ \  be an atomic Boolean subspace lattice w ith  m  atoms on H ilbert 

space H\ .  Define

£  =  £  x A  =  {L  © M\ L  G £ ,  M e  £ x}.
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T hen  £  is an  atom ic Boolean subspace lattice on H  © H\  with n  atoms. Since

algC  =  < : A  6  algC , B  E algC\ ,

V 0 B
\

it follows th a t

\
: A n  E S ( C ) , A 2 2  6  S ( A M i 2  €  B ( H \ , H )  and A 21 E B ( H , H X) >.

a  1 2  a 2 2  j

Let
(  \  

T  0
T  =

Then T  does not have a  rank one summand in S(C) .

R e m a rk  The above Example answers a question in [56, p31] negatively.

T h e o re m  2 .9 . Suppose that C, is a subspace lattice and Rad(algC) is the radical of 

algC. Let T  E Rad(algC) fl F(H) .  Then T  has a rank one summand in Rad(algC) i f  and 

only i f  there exists an M  in C such that T{H)  fl M  2  T(M _ V M) .

Proo f .  Suppose th a t T( H)  D M  £  T(M_ V M ). Choose g in (T(M _ V M ) ) 1-, e in 

H  such tha t (T e , g ) =  1 and Te  E M .  Then (e,T*p) =  1, (T x , g ) =  (x,T*g) =  0 for 

any x  E M — V M .  By T*g E (M _ V M)^-, T e  E M  and Lemma 3[55], it follows that 

(Te) <S> (T*g) E Rad(algC). By Lemma 2.2, T  has a  rank one sum m and in Rad(algC).

Conversely, suppose T  has rank one summand in Rad(algC). It follows that there exist 

e, f  E H  such th a t T (e ® f ) T  =  (Te) ® (T * f ) E Rad(algC). By Lemma 3[55], there exists 

M  in L  such th a t T* f  E (M_ V M ) ^ ,  (Te, f )  =  1. Hence T( H)  n M  g  T(M _ V M ). □ 

Let Ci  and C 2  be subspace lattices on Hilbert spaces H i and H 2. Then the ordinal sum
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£ i  +  £ 2  is defined as the set of subspaces of H\  © H i  given, by

Ci  -F Ci — {L  © 0 : L 6  C i } U {Hi  ffi M  '. M  G £ 2 }-

T h e o re m  2.10. Let C\ and C i be subspace lattices on Hilbert spaces H i and H i . I f  S ( £ 1 ) 

and S{Ci)  are strongly rank decomposable, then S(C i + Ci) is strongly rank decomposable. 

P ro o f. Since

a.lg{Ci +  C i) — <

i f  \
A i T

\ 0  A i
t A-i G algCi, for i  — 1,2, T  G B ( H 2, Hi)

we have

< S ( £ i  +  Ci )  =  <
f /  N

Bi  A

\ 0  B i
-. B i e S { C i ) ,  fo r i  =  1,2 and A g B { H 2 ,Hi )

Let T  be a  finite rank operator in <S(£i +  £ 2 )- Then

/  \
Ti  A

T  =  , where Ti G <S(£j) for i =  1, 2 and A  G B ( H 2, Hi).

(2 .1)

\ /0  Ti

Suppose Ti 7̂  0. Since <S(£i) is strongly rank decomposable, we may choose ei G Hi,  

f i  G Hi  such tha t T i(e i Cg> f i )T i  is a rank one summand of Tj in S (C i). Let e =  ei ©0. For

any x  =  xi  ® x 2  G H i  ®H i ,  let /  =  f i  © 0 G H i ® H i ,  then (x ,/ )  =  (x i, f i ) .  It follows tha t 

T( e  O f ) T  =

(  \  
Tx{ e i ® f i ) T i  Tx{ e i ® f i ) T A

\ /0  0

Since (T e ,/)  =  (T iex ,/i)  =  1, (2.1) and T ( e ® /)T  G (£ i +  £ 2 ), it follows from Lemma 2.2 

that T (e  ® f ) T  is a  rank one summand of T  in «S(£i +  C2).

If Ti =  0 and T 2  ^  0, we can similarly prove th a t T  has a  rank  one sum m and in 

S{CX 4- Ci).

24

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .



Suppose th a t 2 \  =  Ti  =  0. Then T  =

( \  
0 A

v °  ° /

. Since B {H i, H i)  is strongly rank

decomposable, it follows th a t T  has a  rank one summand in S (C \  +  £ 2 ).

Since T  is any finite rank operator in <S(£i -F £ 2 ), it follows th a t S{C \ -t- £ 2 ) is strongly 

rank decomposable. □

Let

J c =  {L<e C:  L  #  (0) and £ _  #  H} ,  Vc = { L e C : L < £  £ _ } .

By [17], we know th a t L  G £  is completely meet prime if and only if L  =  M -  for some 

M  G Vc-
n

L em m a 2.11[90]. Let K  and L  be subspaces of H  and let F  = 52 ei ® f i  be a
t'=l

rank n  operator in B(H) .  I f  F { L ) C K  and f \  £ then F  can be written as F  =
n  _

ei<8 > f i  + 52 <g> f i  with e\ G K .
t= 2

T h e o re m  2 .12 . Let £  be a subspace lattice on H  such that J c  =  'Pc and V{L : L  G 

J c }  =  H- Then algC is strongly rank decomposable.

Proof .  Suppose that algC  is not strongly rank decomposable. Then there is a  rank n
n

operator T  =  52 Q ® f i  iQ olgC. such tha t T  does not have a  rank one summand in algC.
i= i

Since H  =  V {M  : M  G J c } ,  it follows th a t there exists an M  in J c  such th a t f \  £  M-1-. 

By Lemma 2.11, T  can be w ritten  as

n

T  =  ex <g> f i  + ^ 2  ei <g> ft ,
i= 2

w ith e\ G M . Let

N  =  D{L e J c : e  1 G L}.  (2.2)

Then N  G J c  and  e\ G N.
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Now we show th a t ex E W_. Suppose e\ £  N - . Since .F* =  /x  ® e 1 +  f )  /* ® e,-, by
t=2

n _
Lemma 2.11, we have tha t F* =  5i ® ei +  ^  f i  ® with <71 E ( iV _ ) .

i=2

By ex E iV and <71 E (JVL)-1-, we have th a t <7x ® ex is a  rank one summand of F* in 

algC-*■- Hence F  has a  rank one sximmand in algC , a  contradiction.

Let W  — iV_ fl N .  We have ei E W  and W  E Jc- By the assumption, W  C. N  and 

ex E W . It contradicts (2.2). □

T h e o re m  2 .13 . Let C be a subspace lattice on H  such that J c  — Pc and n{L _ : L  E 

Jc} =  0. Then algC is strongly rank decomposable.

Proof .  By Proposition 2.1 [84], it follows th a t

Jc± =  { ( M _ ) X : M  E Jc}.

Since J c  =  Pc-, for any M  E Jc-, we have th a t ( M _ ) x  is completely joint prime. Hence 

for subspace lattice £ x , we have J c 1- — P c1-- Since fl{M_ : M  E J c }  =  0, it follows that 

V{iV : N  E J c 1-} — H- Since algC  is strongly rank  decomposable if and only if algC1- is 

strongly rank decomposable, by Theorem 2.12, to  prove the theorem, it is sufficient to show 

tha t (L_)x £  ( (L - )x ) -  for any L  E VC- Since ((£_)-•-)- =  V{MX : M x  2  E

£-*-}, it follows tha t

((L_)x )_ C  L x . (2.3)

Suppose (£_)■*■ C ((L -)-1-) By (2.3), it follows th a t (T -)x C L x . Hence L  C Since

L  £  L —, it is impossible. □

C o ro lla ry  2.14[75]. Let C be a subspace lattice on H . I f  C satisfies one of the 

following conditions
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(1 )  y { K  : K  £  J c }  — H  and fo r  each K  in J c ,  K -  V K  — H ,

(2) fl{iT : K  G J c }  — 0 and fo r  each K  in  J c ,  K -  V K  =  H , 

then algC is strongly rank decomposable.

If  £  is a  completely distributive subspace lattice, by [80] we have V{L : L  G J c }  =  H  

and n{L_ : L  G J c }  =  0. By Theorem 2.12 or Theorem 2.13, we have the following result.

C o ro lla ry  2.15[90]. Let C be a finite distributive subspace lattice on H  which satisfies 

J c  — “Pc- Then algC is strongly rank decomposable.

L em m a 2.16. Let H  be a nest and let <f> : E  E  be an order homomorphism of f f  

into itself. Let

M  = { T e  B { H )  : ( /  -  E ) T E  =  0, for all E  G J f }

and

S( fA)  = { S  £ B ( H ) : t r ( RS)  — 0 for every R  £ A i o f rank at most one }.

Then T  £ S ( A i )  i f  and only i f T ( E )  C E„, where E ^  =  V {F  £  A f : F  C E }.

Proof .  By [30, p220], it follows that e ® /  G A i  if and only if there is an E  £  Af  such 

th a t e £ E  and /  G ( ^ ) - L. Hence t r(Se  ® / )  =  {Se, f )  =  0 for all f? in Af of rank at most

one if and only if S (E ) C E  □

Let M  is a  nest. Define <f> : E  i-> E„,  where E ~  =  V {F  £  A f  : F  C E}.  It is easy to 

check that <f> is also an order homomorphism of Af.  By Lemma 2.16, S (A i )  =  { T  £  B{H)  : 

( I  — <f>(E))TE =  0, for all E  £  Af}.  By Lemma 1.2[30] , we know the following result is 

true.

C o ro lla ry  2.17. I f  Af  and S ( A i )  are as in Lemma 2.16, then S ( A i )  has strong rank 

decomposabiliy.
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If A  and £ 2  are subspace lattices, a m apping (f>: A  —»• £ 2  is called a  complete lattice 

homorphism  if

<£(VaA) =  V<£(aA) and 4>{f\ax) =  n ^ (a A)

for every non-empty family {aA} of elements of A -

L em m a 2 .1 8 . Let A  and £ 2  be subspace lattices on H  and let <f> : E  ■-> E  be a 

complete lattice homomorphism of A  onto £ 2 - Define

M  = { T E  B( H)  : (I  -  E ) T E  =  0 for all E  E A } .

Then e <g> /  € A i i f  and only i f  there exists an M  in  A  such that f  6  e £ M .

Proof .  Suppose e ® /  G A i.  Let M  =  C\{E G £ 2  : e G -B}. Let M  =  f){B G £ 1  : 

<i>{E) =  M}. Since <£ is a  complete lattice homomorphism, it follows th a t =  M .

If N  G A ,M  £  JV, then 4>(N) 2  $(Af) =  M . Hence (n, / )  =  0 for any n  E N , and 

(m, / )  =  0, for n  G M _.

Conversely, suppose th a t there exists an M  G £ 1  such th a t e G M  and /  G (M _)x . If 

JV G A  and N  D M , then N  D M , e®  f ( N )  Q M  Q N .  I f  N  G A  and JV 2  M , then 

e <g> /(IV) =  0. Hence e <g> /  G .M. □

T h eo rem  2 .19 . Let A ,  £ 2  and A i be as in  Lemma 2.18. Suppose that V{M : M  G 

J c , } =  H  and K — fl K  =  0, /o r  any K  G J c ,-  Then A i is strongly rank decomposable.

Proof:  Suppose that T  € A i n  F(H)  and r / 0 .  Since T / 0  and V { M  : M  G J c ,}  =  

H , it follows th a t there exists E  in J c ,  such th a t T E  ^  0. Choose e E E  such tha t T e  ^  0. 

Using T  E A i,  we have T e E E . Since <f> is a  complete homomorphism of £ 1  onto £ 2 , it 

follows that E  fl E — =  0. Hence there is /  in E — such tha t / (T e )  =  1. Using T  E A i,  we 

have T * E l± C (B _ )X- Thus T * / E (B_)x . By Lemma 2.18 (Te) ® (T * /) G .M. Lemma
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2.2 implies th a t T  has a  rank one summand in  A f. Since T  is any non-zero finite  operator, 

it follows th a t A f has strong rank decomposability. □

T h eorem  2 .20 . Let be as in Lemma  2.18. Suppose that fl{.F_ : F  £ 3 c \} =

0 and F  V F _ =  H  for any F  £ 3 c \ - Then Af has strong rank decomposability.

Since the  proof is similar to the proof of Theorem  2.19, we leave it to the reader.

L em m a 2 .21 . Let C be a subspace lattice. I f  H  =  V {K  : K  £  3 c } and K -  V K  =  H  

fo r  any K  in 3 c , then K -  D K  =  0.

Proof .  Suppose K  £ 3 c , K — H K  ^  0. Since ( K  fl if_ )_  C K -  ^  H,  it follows that 

K  fl K -  £  3 c - By hypothesis, (K  fl KJ)  V { K  n  K J ) -  = H . Hence (K  fl K - )  V K -  = H  

and K -  =  H . This is impossible, since K  £ 3 c - a

A complex unital Banach algebra A  is sem i-sim ple  if and only if it has no non-zero left 

ideals consisting entirely of quasinilpotent elements. A  is said to be sem i-prim e  if it has no 

non-zero left ideal whose square is zero. Clearly, A  is semi-simple implies A  is semi-prime.

By Theorem  1[82], and Lemma 2.21, we can obtain the following result

C orollary 2 .22 . Let C be a subspace lattice satisfying V {L  : L  £ 3 c }  =  H - The 

following are equivalent.

(1 ) algC is semi-simple,

(2) algC is semi-prime,

(3) fo r  every L  £ 3 c , L  D L_ =  0 and L  V L _ =  H ,

(4) fo r  every L  £ 3 c , L  V L _ =  H ,

(5) fo r  every L  £ 3 c , L  Cl L -  =  0.

R em arks 1. In  [82], Longstaff shows that (1) to (4) are equivalent.
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2. Corollary 2.22 implies th a t condition L —V L  = H  in Corollary 2.14(1) can be replaced 

by any of the conditions (1) to  (4) of Corollary 2.22.
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1.3 Isom orphism s o f reflexive a lgebras

Let .Ai C B (Hi )  and A 2  Q B^H?) be algebras. An algebraic isomorphism 4> from A \  

onto A 2  is said to be spatial (or spatially induced  ) if there exists an  invertible operator 

S  E B ( H i , H 2 ) such tha t 4>{A) =  S A S -1 , for every A  E A i-  A slightly weaker condition 

is tha t <f> be quasi-spatial; in this case we drop the assumption th a t S  be bounded b u t we 

require that S  be a  closed densely defined, injective linear transformation, from H i onto a 

dense subset of H 2 . with the properties that

(1) if x  belongs to the domain of 5, then A x  belongs to the domain of 5 , for every 

A  E A i;

(2) if x  belongs to the domain of S , then <f>(A)Sx =  S A x , for every A  E A i.

In  [97], Ringrose proves tha t if  algNi and algN 2  are nest algebras, then every algebraic 

isomorphism from algNi onto algN 2  is spatially induced. In [37], Gilfeater and Moore 

partially improve the result of Ringrose, by proving th a t if £* is a  completely distributive 

commutative subspace lattice, then  every rank-preserving algebraic isomorphism from algCi 

onto algC.2  is quasi-spatially induced. Panaia [89] proves tha t if £* is a  finite distributive 

subspace lattice, then every rank-preserving algebraic isomorphism of algC, 1 onto algC. 2  is 

quasi-spatially induced. In [57], an  example is given of an algebraic isomorphism between 

two identical algebras determined by an atomic Boolean subspace lattice for which the 

algebraic isomorphism is not spatially induced.

In this section, we prove th a t if £ , £,• (2 =  1,2) are jT-subspace lattices, then every 

non-zero single element of algC is rank-one, and any algebraic isomorphism between algCi
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and algC2  is quasi-spatially induced. If £  is a  reflexive and V-distributive subspace lattice 

such tha t H  =  V{M : M  E J c } ,  we also prove (algC)" =  a lg T , where T  is atom ic Boolean.

Let £  be a  subspace lattice. The importance of J c  lies in its intim ate relation with the 

set of rank-one operators in algC. The following lemma is due to Longstaff, and we will 

use it repeatedly.

L em m a  3.1[80]. Let £  be a subspace lattice. Then the rank-one operator e g ) /  belongs 

to algC i f  and only if there is L  in  £  such that e E L  and f  E  L i-

D efin itio n  3.2 A subspace lattice £  is called a ./-subspace lattice if

(1) V{L : L E  J c }  = H ,

(2) n {L _  : L e J c }  =  0,

(3) L  V L_ =  H , for any L  E Jc-,

(4) L  fl L_ =  0, for any L  E Jc-

The class of /-subspace  lattices is rich. Every atomic Boolean subspace is a  /-subspace  

lattice and for any /-subspace  lattice both £ J~ and latalgC  are jT-subspace lattices. The 

non-distributive pentagon subspace lattice is also in the class. We know th a t an atomic 

Boolean lattice is determined by its atoms and a  jT-subspace lattice is not; different J -  

subspaces can have the same sets of atoms. In  [84], the connections between j7'-subspace 

lattices and M-bases are studied

Let £  be a  ./-la ttice  and let {Afr }rer  be its set of atoms. Then J c  =  {Mr }rer- Let I  

and J  be disjoint subsets of T. Then

(VreiMr) n  (Vre J M r ) =  0.

D efin itio n  3 .3. An element T  of algC is called single if whenever A T B  =  0 with
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A , B  E A , then A T  =  0 or T B  =  0.

L e m m a  3.4[73]. Let C be a subspace lattice such that fl{Af_ : M  E J c }  =  0 and 

V{M : M  E J c }  — H . I f  T  is single in algC, then there exists an M  € J c  such that 

T \m #  0  and T \m  is an rank-one operator.

T h e o re m  3.5. Let C be a J-subspace lattice. Then a non-zero element T  in algC is 

single i f  and only i f  r a n k T  =  1.

P r o o f .  Let T  be a  non-zero single element in algC. By Lemma 3.4, there exists an  M  

in J c  such tha t T \m  ^  0  and T \m  is rank-one. For any L  E J c  an d  L  ^  M , we will show

th a t T ( H ) C L  Since Af is an atom, it follows th a t M  C L_, and  T { M ) C M C  L  Let

/  E L i  be arbitrary. Choose e E L, e ^  0 and m  E M i ,  m  ^  0. L et n  E M  with T n  7  ̂ 0. 

By Lem m a 3.1, e®  f  and  n ® m  belong to algC. Since T n  E L_ and  /  E L i  it follows th a t

( e ® f ) T ( n ® m )  = {Tn, f ) e ® m  =  0. (3-1)

Since T  is single and T { n ®  m)  7  ̂ 0, by (3.1), it follows th a t (e ® f ) T  =  0. Hence for any x

in H,

(Tar, f ) e  = {e® f ) T x  =  0. (3.2)

By (3.2), we have tha t

T x  E ( L i )-*- =  L _ . (3.3)

By (3.3), it follows th a t T{H)  C n{L _ : L  7  ̂M , L  E J c}-

Let K  be an atom and  K  7  ̂M . In  the following, we show th a t

K  n  (L _  : L  #  Af, L  E =  0. (3.4)
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Suppose th a t th is is not true. Then

K  D {£_ : L ^ M ,  L e J c } =  K .  (3.5)

Since K  ^  M  and K  is an atom, (3.5) implies th a t for any L  ^  M,  K  C L  Thus

K  C K  This contradicts the fact th a t K  fl K -  =  0. For any K  ^  M ,  K  G J c ,  we

have th a t T ( K )  C K  and T ( K )  C T{H)  C D{L_ : L  ^  M , L  G Ji:}. By (3.4), it follows

that T ( K ) =  0. Hence T(span{L  : L  6  J7):}) C T (M ). Since T  is continuous and

V{L : L  G =  if ,  it follows that T{H)  C T( M) .  T hus T  is a  rank-one operator.

The converse is obvious. □

If £  is a  subspace lattice on H,  the ordered product C > L  is the set of subspaces of 

H  © H  given by {L  © M  : L, M  € £, M  C £}.

L em m a 3.6[73]. Let C be a subspace lattice as in Lemma  3.4. Then every non-zero 

single element o f alg(C > C) has rank-one i f  and only i f  every non-zero single element o f 

algC has rank-one.

The following result is an easy conseqence of Theorem 3.5 and Lemma 3.6.

C orollary 3.7 . Lf C is a J-lattice, then the non-zero element T  o f alg(C > C) is

single i f  and only i f  rank T  =  1.

T h eorem  3 .8 . Let C\ and be J-lattices. I f  (j) is an algebraic isomorphism of algCi 

onto algC.2 , then is quasi-spatially induced.

Using Theorem  3.8 and an argument similar to the proof of Theorem 7.2[37], we can 

prove the following result.

C orollary 3 .9 . Let £  be as in Theorem 3.8 and let 5 be a derivation on algC. Then 

there is a linear transformation T  such that 5(A)x = T A x  — A T x , for any x  G span{M  :
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M  €  J c }-

To prove Theorem 3.8, we need several lemmas. By Theorem 3.5, we have

Lem m a 3 .10 . Let C\ and Ci be as in Theorem 3.8. Let <f> be an algebraic isomorphism  

o f algC\ onto algCi- Then <f> maps rank-one operators inalgC i onto rank-one operators in 

algCi.

Let Ci, i  =  1,2 be J^-subspace lattices and 0  be an algebraic isomorphism of algC\ 

onto algCi- For any K  £ J Cl, since K  g  K - ,  we can choose S k  €  K  and e x  £  K f: 

such that ( f x  , e x )  =  1- Since 4> is an algebraic isomorphism from algC\ onto algCi and 

f x  <0 ex  is a  single element of algC\, it follows th a t 4>(fx 0  e x )  is a single element of 

algCi. By Theorem 3.5, 4>(fx 0  ex )  is an rank-one operator in algC i, and thus is of the 

form of bx  0  ok-  Let L  =  fl{M  £  Ci : bx  € M }.  Then bx  € L . In  fact a x  €= L i  and 

L £ Jc?- If M  £ C i , M  2  L, then bx £ M.  Since b x  0  &K €  a lg C i, it follows tha t for 

any x  £ M , b x  0  ax(x )  =  0- Hence a x  € M x . Since L i  =  n { M x  : M  2  L , M  £  C i }, 

a x  € L i .  Finally, since (f K 0  e x ) 2  =  f x  ® eK, (bx ® a x ) 2 = aK ® b K and (bx,  a x )  =  1.

Lem m a 3 .11 . Let K , L, e x ,  f x ,  a x  and b x  be given as above. Then the map 

S x  ■ x  <f(x 0  f x ) b x  Is a linear bijection of K  onto L  and { S x K  : K  £ J c x} =  Jc?-

Proof .  I t  is clear th a t S x  is linear. The relation

(SKx) ® a K = (<t>(x 0  eK )bK) 0  aK — <f(x 0  eK )(bx  ® aK)

=  ( f (x®ex)<f >( f x®eK) =4>( x®ex) ,

implies tha t if x 6  K , S x x  =  0, then <p(x<g>ex) =  0. Since <f> is an algebraic isomorphism, it 

follows tha t x  =  0 , and S x  is injective on K . Now we prove that S x  is surjective. For any 

I £ L  and 1 ^ 0 ,  Lemma 3.1 implies th a t 10  a x  €  algCi. Let $-1 (Z 0  a x )  = t ) 0 u €  algCi-
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Since I®  o k  =  (I® afc)(a K ® bx),  it follows th a t v ® u  =  (» ® « )(/if® e /f )  =  (/*•, u)u 0  e*-. 

Hence ( / a t ,  u) 7  ̂ 0. Since v  0  u(K)  C iT, it follows th a t v £  K .  I f  x  =  (f K , u ) v , then 

S k x  = <t>(x ® ef()bK = <p(v ® =  (I 0  a^ )bK = I-

It is obvious that { S k K  : K  £ J c x} Q Jc?.- Conversely let L £ Jc-i- Choose aK S L^z 

and bK 6  L  such tha t (bK, clk) =  1- Since is an algebraic isomorphism from algC2 

onto algCi, an  argument sim ilar to the argument for (f> proves tha t there exists K  in  J c x 

such tha t <p~l (bK ® clk) =  / k  with e x  6  Kjz, / k  €  K  and ( / k , e/c) =  1- For this K,  

we have tha t S k  is a linear bijection from K  onto L.  □

L em m a 3 .12 . Let K ,  L, e*,, f k , aK,bK be as in Lemma 3.11. Then the map Tk  '■ x  •-* 

(4>(fK®x))*aK is a linear bijection of K fz onto L± and {Tk (K±) : K  £  f f cx} = { L -  '■ L  £  

J c 2h

Proof .  I t is obvious th a t T k  is linear and T k (K^z) C L i .  For any x  £  Kfz,  the relation 

bK ® (Tk x ) =  (4>(/k  ® x))*bK ®a«- =  (bK <8 > dK)4>(fK ® x) =  4>(fK ® x),

implies tha t ef>(fK 0  2 ) =  0, if T k x  =  0. Hence Tk  is injective. For any I £  Lb,  1 ^ 0 ,  let 

<f>~l (bK <8 > 0  =  v  0  u and let y  =  (v , e^ )u . Then Tk V =  I and y £ K b .

It is clear th a t {Tk (K±r) : K  £ J c x} C {L b  : L £ J c 2}-

Conversely, for any L  £  J c 2, choose b £ L, and a £ L b  such tha t (b, a) =  1 . By Lemma

3.11, there exists K  in J c x such that <f>~1(b 0  a) =  fK  0  e/e, £ K b  and fK  € K  with

( I k , £k ) =  1- We have th a t T k (K^z) =  Lb- □

L em m a 3 .13 . Let S k  °nd  T m  be as in Lemmas 3.11 and 3.12 and let K i £ * =

1 1 11 , t. Then fo r  any m  £  M ± ,  ( £  S ^ X i ,  T m m)  = (x, m) ,  where x  = Xi, x x £ K i.
1=1 i= i

Proof .  Suppose tha t S m (M)  =  N.  By Lemma 3.12, T m (M±)  = Nfz .  If  K  7  ̂M ,  for
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n
any i  =  1, ...,n , then Lemma 3.11 implies S x ^ K i)  C JV_. Thus (5Z =  0 =

t=i
( x ,m) .  If there exists Iq such th a t K {0 =  M  (say «o =  1), then

n

( F .  SKjXj ,TMm)  =  ( S ^ a ^ T ^ m )  =  (a;x ® ^{eK^bjc^  (0 (/a"i ® ^))*«iCi)
t=i

=  (0 ((/k ! ® m)(xx Qetc^bK^ciKi )  =  (<H/a' 1 ® e ^ x ) ^ ,  aKl ){xu m) = {xx,m) .  □

p
Let H  = span{M  : M  E J c x}- For any a: in H , x  =  53 a:y w ith xy 6  My and My €

y=i
p

Let 5 x  =  X) SMjXj-  
i =i

L em m a 3 .14 . Zef 5  : sp a n {M  : M  E Jc^S span{N  : IV E J c 2} be the linear map

as defined above. Then S  has a closed extension.
n

Proof .  Let x  = Xi, X{ E Mi and Mi E J c x- Suppose tha t S x  =  0. By Lemma
i=i

3.11, we have th a t if i ^  j ,  D Smj =  0. Since Sm, is injective, it follows th a t S  is also 

injective. Let (0 ,u) be in the  closure of the graph of S. Let {xn} C span{M  : M  6  J c x] 

such that {xn, S x n) —*■ (0, u ) , n  —> oo. Let v E span{N ±  : N  E Jc-fif- By Lemma 3.12,
t

v  =  5Z TMim i, M i E J c i ,m i  E M if. By Lemma 3.13, ( 5xn , =  (xn,m ,), for
t=i

2 =  1, ...,f, S O

t t
2 2 (x n ,m i)  =  (S xn,Y ^ T Mim i) = ( Sx n , v). (3.6)
5=1 i=l

In (3.6), when n  goes to infinity, we have (u,v) =  0 for any v  E span{N ± : N  E J c 2}- 

Since £ 2  is a  J^subspace lattice, it follows that u  =  0. □

Let S  denote the closed extension of S  in Lemma 3.14. By (3.6), we have that if y  

belongs to the domain of S  then  (Sy,  TMm) = (y, m ), for any m  E M  and M  E J c x • Hence 

S  is also injective.

P ro o f o f  Theorem  3.8.
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To show that <f> is quasi-spatially induced, we only need to prove that (i) the domain 

of S  is an invariant linear manifold of algCi, and (ii) <f>(A)Sx =  S A x  for any x  in the 

domain of S. By the definition o f S k ,  we have tha t S k A x  =  4>(A)Sk%, for any x  E K . 

Hence S A x  = 4>(A)Sx, for any x  E sp a n {K  : K  6  J c x }• For any x  in D(S),  there exists 

{xn } Q span{K  : K  E J c y} such tha t (xn, S x n) —> (x, Sx) .  Since S A x n =  <f>{A)Sxn and 

xn —¥ x, S x n —> S x  we have th a t A xn —> A x  and S A x n =  S A x n —> <f>(A)Sx. Since S  is 

closed, it follows tha t A x E D(S)  and S A x  =  cf>(A)Sx. □

In the remainder of the section, we consider the properties o f double commutants of 

some reflexive algebras.

P ro p o s itio n  3 .15 . Let C be a subspace lattice such that H  =  V{M : M  E J~c}- Then 

(algC ) 1 is abelian.

Proo f .  Let A , B E  {algC)'. By Corollary 2.3[72], for any M  E J c ,  there exist scalars 

and \ b  such th a t M  C her (A  — A ̂ / )  and M  C ker (B — \ b I ) -  Hence for any m  E M, 

A B m  =  B A m . Since H  = {M  : M  E J c ) ,  it follows th a t A B x  =  B A x ,  for any x  E H.  □ 

C o ro lla ry  3 .16 . I f  C is a J-subspace lattice, then (algC)' is abelian.

A subspace lattice C is called V-distributive  if L  fl (V,e/Lf) =  Vt€/(L  fl L,-), for any 

index set I  and any L , Li E C. A subspace lattice C. is said to be completely distributive  

if the following identity holds for arbitrary  index sets:

V  ( A  L n )  =  V  ( A ^ + w ) -
ieA jSBi ipeUBi ieA

T h e o re m  3.17. Let C be a reflexive subspace lattice such that H  =  V{M  : M  E Jc}-

Suppose that C is V-distributive. Then

(1) (algC)" =  algT , where T  is an atomic Boolean lattice.
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(2) For each finite set L \ , ..., L n o f atoms o f T , L \  +  ... +  L n is closed.

Pr oo f .  (1 ) By Corollary 2.3[72], for any M  £ J c  and for each T  £  (algC)' there is a 

unique eigenspace M t  of T  containing M . Define

K m  =  n{M T : T  £  {algC)'}.

By remark [72, pl75], it follows th a t for any M, N  £  J c ,  either K m  =  K n  or K m ^ \K n  =  0. 

Let T  be the subspace lattice generated by 0, H  and  all K m  for any M  in Jc -  By the 

hypotheses, T  is V-distributive. By Proposition 3.2[84] and the fact th a t T  is V-distributive, 

we have tha t T  is a  J'-subspace lattice. By Theorem  2.1 [84], it follows that T  is atomic 

and Boolean.

(2) We prove (2) by induction. For n  =  2, by Proposition 3.2[84] and (1), there exist 

M l £  Jc-, i =  1 ,2  such th a t Li =  K Mi-,i =  l j 2, where M % £ Jc-  Since K M* =  n{A fV  : T  £ 

(algC)'}, i  =  1,2, where M 1 is the unique eigenspace of T  containing M %, and L i  PI L i  =  0, 

it follows tha t there exist T  £ (algC)' and distinct scalars A, fj. such th a t L \ C ker (T  — XI) 

and L i  C ker(T  — g.1). Let P  = (T  — XI)/(g, — X) £  {algC)'. Then P \ l x =  0, P \ l 2 =  ^  ^ d  

therefore the sum of L \  +  L i  is closed.

Let Z-i,..., L n+i be distinct atoms of T .  For the pairs {L\ ,  Li } , i  =  2, . . . ,n + l ,  there exist 

operators Pi £ (algC)' such that Pi|z,i =  I , PiUf =  0, * =  2,..., n -f 1 . Let Q =  Px ■ ■ ■ Pn+i- 

By Proposition 3.15, (algC)' is abelian. Thus th is product is independent of the order of 

Pi. Thus Qi\Ll =  0, i  =  2 , ...,n  +  1  and  Q i\h  =  1- Hence L \  +  V /J^L i  is closed. By the 

induction hypothesis, L \ + ... +  L n+i is closed. □

Suppose tha t £  is a  commutative subspace on H  and C is not completely distributive. 

Then C is V-distributive and reflexive. Let C =  {L  ® 0 •. L  £ C.} U {H  ® H }. Then C is
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V-distributive and reflexive such th a t H  © H  =  {M  : M  €  J c \-  This shows tha t Theorem 

3.17 improves Theorem 5.4[62].

R e m a r k  When I finished section 1.3, W. Longstaff told me th a t O. Panaia has inde­

pendently proved Theorem 3.8.
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C hapter 2

Boundedly Reflexive Subspaces and Applications 

2.1 B ou n d ed ly  reflexive subspaces o f B ( H )

In this section, we study a new type of reflexivity, which we call “bounded reflexivity” , 

of a  subspace of operators on a normed space. The concept of “bounded reflexivity” is 

implicitly contained in some papers, for instance, [50] and [76]. I t plays an im portant role 

in the study of complete positivity of elementary operators (see [16]).

Let Y  be a complex normed space and B ( Y )  be the set of all bounded linear operators 

on Y,  and F(Y)  the set of operators with finite rank. We use Fn {Y) to denote the set of 

operators in B( Y )  w ith rank less than  or equal to n.  If 5  is a  subspace of B( Y) ,  we let 

Sp  =  5  fl F(Y) .  If S  is a subset of B{ Y)  and r  >  0, define S r =  { T  E S  : ||T || <  r} . Let 

S  be a  subspace of B ( Y ) ,  and let r e f a{S) =  { T  E B ( Y ) : T y  E S y , for all y  € Y} .  S  is 

said to be reflexive if  re f ( S )  =  S  and S  is said to be algebraically reflexive if r e f a(S) = S.  

Let refb{S)  =  { T  E B ( Y ) : there exists M t  such that T y  E [*?Mt v \> for all y E Y},  

where [•] denotes the norm closure, and let r e f ab(S) =  {T E B { Y )  : there exists an M t > 

0 such tha t Ty  E Sm tV i f°r all V £  T }. S  is called boundedly reflexive if S  =  refb{S) 

and algebraically boundedly reflexive if re f ab{S) = S.  S  is said to be boundedly (resp. 

algebraically boundedly) n-reflexive, if is boundedly (resp. algebraically boundedly) 

reflexive.
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Throughout th is section, X  denotes a  complex Banach space. I f  S  is a  weakly closed 

subset of B ( X ) ,  then  [<Sa/x] =  Sm x. Thus re fab(S) =  refb(S).  For any x  € X ,  define the 

map (f>x : S  —*■ X  by <fxT  =  T x  for all T  G S . A vector x  is called a  separating vector of 

S  if <f)x is injective and x  is called a  strictly  separating vector of S  if  <f>x is bounded below 

on S . Let M s  be the  set of strictly separating vectors of the subset S  of B( X) .  T hen M s  

is called linearly dense in X  if M s  is nonempty and for any x  G M s  and y G X ,  the  set 

G =  {A € C  : a: +  Xy  G M s }  is dense in the complex plane C .

Let H  be a  separable complex Hilbert space and let T ( H)  be the  trace class operators. 

For any operator T  G B ( H ) ,  we use W (T) to denote the weakly closed algebra generated 

by T  and the identity operator. Let T  G B(H) .  T  is said to be boundedly n-reflexive, if 

W(T(”)) is boundedly reflexive. For any subset W  of B { H ), define Wo =  {T  G T( H)  : 

[£r(AT)[ <  1, for all A  G W }. Similarly, for any subset of V of T{ H) ,  we define V° =  {A  G 

B ( H ) : \tr{AT)\ < 1, for all T  G V}. I f  A t is a subset of B {H ), we let A fj. =  {A  G T ( H)  : 

tr{AB)  =  0 for all B  G A t}.

2.1.1 B ounded reflex iv ity

The following proposition follows immediately from the definition of bounded reflexivity.
OO

P ro p o s itio n  1 .1 . I f  S i are subspaces o f B ( X) ,  f o r i  =  1 ,2 ,..., then  ©5t- is boundedly
z=i

OO

n-reflexive in ©A,-) i f  and only i f  Si is boundedly n-reflexive, i  = 1 , 2 ,...
i=i

It follows from the definitions th a t if  S  is reflexive then S  is boundedly reflexive. The 

following example shows the converse is false. In fact, S  can be boundedly reflexive and 

not n-reflexive for any n.
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E x am p le  1 .2 . Let
/

S n — <

I \

a n  a i2  - 

0  0 2 2

0 0 ..

«2n

aT

E M n (C) : ^ 2  an =  0 ► , n  >  2.
Z—1

/
Then is boundedly reflexive.

Proof .  The set of all n x n  upper triangular m atrices is reflexive. Thus if T  E refb(Sn),

T  must be an upper triangular m atrix. Suppose th a t
/  \

t i l  £12 . . .  t in

T  =
0  £22

y 0  0  . . .  tnn j

and there exists an M t  > 0 such th a t for any %k =  (2 :^ , . . . ,  x ^ ) c E C ^ ,  there  exists

Ak  =

a ll “ 12 lWI n

0 (42  . - - 4 n

0  0

with |[Afc|| < Mt  satisfying Txk  =  A ^x^, or equivalently,

£nx^fc) +  £i2®2r) +  -  +  t\nx ^  =  a ^ )ar^) +

t22X<2 ) +  -  +  t2nx {n ) =  +  ... +  a ^ x ^ \

t  x { k )  _  (fc) (fc) 
tnriJ'n  — un n J'n  •
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i <  j . Solving for ta  from the above system of equations, we have tnn =  cJk2 and ta =

/ l,\ It /j-\  X̂ -̂
a\i ) 4 - J2 (a\- — 1  < i  < n . Since a\- is bounded and lim ^ o o  =  0, for

j=i+1 Xi Xi
(k) n (k)any i  <  j .  we have lim ^ o o  au =  Ui, for any 1  <  i  < n . Since au =  0 for any fc,

j=i
n

we have Ui =  0» th a t is T  £ S n . Hence S n is boundedly reflexive. However, S n is not 
2 = 1

OO

(n — l)-reflexive. Let <S =  ®Si- By Proposition 1 .1 , S  is boundedly reflexive, b u t S  is
i=i

not n-reflexive for any n. □

Prom the previous example, one might be tem pted to think, for any n  >  1, could n- 

reflexivity imply bounded reflexivity? Although reflexivity implies bounded reflexivity, our 

next example shows th a t 2 -reflexivity does not guarantee bounded reflexivity.

E x a m p le  1.3. Let

I
I  =

\ °  V

, E 1 2  -

(  \  
0  1

0  0

\
, E 2 1  =

0  0  

1 0

and S  =  span{I, E 1 2 , E 2 1 }. Then S  is 2-reflexive. However, S  is not boundedly reflexive.

Proof .  To see this, we only need to show

T  =

(  \  
0  0

\
0  1

6  r e f b (5).

For any x  =  {x\ ,X2 )t £ C 2, it suffices to  show we cam find scalars fi, £2 , and tz w ith [f,-| <  1 , 

for i =  1,2,3 such th a t T x  =  t \ I x  4 - <2 -^1 2^  4- tzE z ix , or equivalently

If a;2 =  0, we choose t \  =  0, t 2  =  0 , and tz =  0. I f  X2  7^ 0, and |rci | <  |x2 |, we choose
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=  lj <2 =  — <3 = 0 . If  x i  7^ 0, and |a:i| >  la^l, we choose <i = 0 ,  <2 =  0, and

<3 =  2 i- □J Xi

T h e o re m  1.4. Suppose that S  is a weakly closed subspace o f B ( X )  and M s  is the 

set o f strictly separating vectors o f S .  I f  M$ is linearly dense in H , then S  is boundedly 

reflexive.

Proof .  By Proposition 2.3[9], M s  is an open set in H.  Suppose th a t T  E refb(S).  For 

a  fixed xq E M s and any y E H,  define V  =  {A E C : xq +  Ay E M s}-  For each A E V , let 

H XtV(X) be the unique operator in S m t  such that T(xq  +  Ay) =  H x^(X)(xq  +  Ay). I t follows 

from Proposition 2.8[9] th a t Hx y (X) is analytic in V.  Since HXfV(A) is bounded in V  and V  is 

dense in C, we can extend H XiV(A) to  a  bounded analytic function in  C . Therefore, H XtV(A) 

is a constant function. Thus there exists A  E Smt  such that T(xq + Xy) =  A(xq +  Ay) for 

all A in C. Let A =  0, to  get Txq  =  Axq- Since xq is a  separating vector of S, A  is unique. 

Since T  nad A  are linear, we get T y  =  Ay. Since y is arbitrary, T  =  A , i.e., T  E S .  □

A special case of the following corollary is proved in [50].

C o ro lla ry  1.5. I f  S  is a finite dimensional subspace of B ( X )  and S  has a separating 

vector, then S  is boundedly reflexive. In  particular, i f  d im S  =  n and every non-zero operator 

in S  has rank greater than or equal to n , then S  is boundedly reflexive.

Proof .  For any finite dimensional subspace of B ( X ) ,  all separating vectors are strictly 

separating vectors. By Proposition 4[39], the set of separating vectors o f S  is linearly dense. 

The conclusion follows. If d im S  =  n  and every nonzero operator in S  has rank greater 

than  or equal to n, by Theorem 2[7], we have that S  has a  separating vector. Hence S  is 

boundedly reflexive. □
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Let P(t )  denote the  set o f all complex polynomials and V { T )  =  {P(T)  : P( t )  6  V{t)}.

C orollary 1.6. For every operator T  €  B ( X ) ,  V{T) is algebraically boundedly reflex­

ive.

P roof. K T  is not an  algebraic operator, then V(T)  is algebraically reflexive by Theorem 

1[41], so V ( T )  is algebraically boundedly reflexive. If T  is an  algebraic operator, then V{T)  

is finite dimensional and has a  separating vector. The conclusion now follows from Corollary 

1.5. □

Next we give an example of an infinite dimensional subspace of B ( H)  w ith a dense 

subset of H  of strictly separating vectors.

E xam ple 1.7. Let H  = I2  with the standard  orthonormal basis {e*-}^ and K  6  B { H ) 

such that C \cr(K ) is dense in C . Let S  be  the set of all bounded operators with m atrix 

representions of the form (x , K x ,  0,..., 0...) for any x  G H , th a t is, x  for the first column, 

K x  for the second column, and 0’s for the other columns. Clearly S  is weakly closed. Let 

W  = {u =  (ui,U 2 ,U3 , ...)t £  H  : U2  #  0, £ a(K)} .  One can check th a t all vectors

in W  are strictly  separating vectors and the density of W  in H  follows from the fact th a t 

C \cr(K) is dense in C.

Next, we prove a theorem  which provides an alternative description of bounded reflex­

ivity.

T heorem  1.8. Suppose that S  is a subspace o f B ( H)  and S \ =  {T €  S  : ||T[| <  1}. 

Then the following are equivalent.

(1) S  is boundedly n-reflexive,

(2) ((<Si) 0 fl Fn(H))° =  S i .
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P ro o f.  Suppose th a t (1 ) is true. It is obvious th a t ((«Si)o H Fn (H))° D S \ .  We only 

need to  prove th a t ((«->i)o H Fn(H ))°  C <Si- For any operator T  G B (H )  w ith ||T || < 1, 

if y W  f- «s£n\  then  £ r e fb ( S ^ ) .  Therefore, there exists an  xq g such that

T ^ x o  [<s|n^xo]- Since [S ^xo] is a  convex and balanced set, there is a  j/o 6  such 

tha t Re(u,yo) < 1 <  (T ^ x o , yo), for all u G [tS^^xo]- Equivalently, |(A ^xo ,yo)l <  1 <  

( T ^ x 0 ,yo), for all A  G S x. Let x 0 =  (x i ,. . . ,x n)£, y 0 = (y i,—,y n )t and U =  Y
i=l

We have that \tr{AU)\ =  |tr(A^n^(xo <8 >yo))| <  1, for any A  G S \,  and therefore U G 

(Si)o n  Fn(H). Since tr{TU ) = ( T ^ x 0 ,y 0) >  1, T  £  ((50c n  Fn (H ))°.

Suppose tha t (2) is true, and let T  G re/&(<S(")). Since r e fb ( S ^ )  C it follows

that T  =  for some U G B {H ). For any T  =  U^> G re fb (S ^ ) ,  there exists a  nonzero

scalar A such tha t AT x  G [<S{"̂ x], for any x G H^nK Hence for any x, y G H^n\

(ATx,y) G {(S(")x,y) : S e S i } .  (1.1)

For any V  G (SOonFnCff), let V  =  £  x,®?/,, x  =  (xi, ...,xn )£, y =  (yt , ...,yn )£ G H^n\
1 = 1

We have that

|(5^x,y)| = |tr(5F)|<l

for any S  G S \. Relation (1.1) implies that |£r(ATV)| < 1. This implies XT  G ((«?i)o H 

Fn(H ))° = S i, thus T  G S . □

Corollary 1.9 is an  immediate consequence of the above theorem.

C orollary 1.9. A subspace S  o f B (H ) is boundedly reflexive i f  and only i f  S* is

boundedly reflexive.

C orollary 1 .10 . A subspace S  o f B{H ) is boundedly reflexive if and only i f  S\ is 

w*-closed and S  is algebraically boundedly reflexive.
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R em ark  We can view (2) of Theorem 1.8 as an alternative definition of bounded 

reflexivity. One advantage of doing this is tha t it enables us easily to ad ap t the techniques 

used in [10] to construct counterexamples. It follows also from Theorem  1.8 that if S  is 

boundedly n-reflexive, then S  is boundedly m-reflexive for n  < m  and S  is u/*-closed.

Using Theorem 1.8, we can prove the following result about bounded reflexivity of direct 

integrals. Since the proof involves many definitions and notation, we om it it.

P rop osition  1.11. Let (A, fi, p) be a complete cr-finite measure space. Suppose that 

{(flu : lj 6  A} is a measurable families o f w*-closed linear subspaces o f B (H ). Then

re/&(/® <Pujd(x(u>)) =  refb(<pu)dij,(uj).

T h eorem  1.12. Let T  6 T (H ) and S  =  {A  G B{H ) : tr (A T ) — 0}. Then the 

following are equivalent.

(1) ra n k T  < n,

(2) S  is n-reflexive,

(3) S  is boundedly n-reflexive.

P ro o f. I t is obvious th a t (1 ) implies (2) and (2) implies (3).

Suppose (3) is true. We will prove (1 ) is true. We only need to show th a t if ra n kT  > 

m >  n , then S  is not boundedly (m — l)-reflexive. Hence S  is not n-reflexive.

Suppose m  > n. Choose invertible operators U, V  € B (H )  such th a t U TV  has an
/  \

operator m atrix  of the form relative to H  = C © H \. Since

(  r

V ~ xS U ~ l = {A  € B{H ) : tr{
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we may assume th a t

T  =
I m B

C  D

Note (m +  2)T  €  (<Si)o- Theorem 1.8 now shows that to prove tha t S  is not boundedly 

(m  — l)-reflexive, it is enough to prove

(m +  2 )T  $ co((S{)o fl

Suppose tha t (m  +  2)T € co((«Si)o fl Fm_i(fT))^ Choose A j >  0 with At- =  1 and At-
i= 1

e  («?i)o n F m -iiH )  satisfying

t
| | ^ A fXi - ( m  +  2 )T ||1 < l .  (1.2)

t=i

Let Eij denote the  m  x m  m atrix with 1 in  ( i , j )  place and zeros elsewhere. Let

/  _

2sfc =
E ij 0

V
0  0

be an operator m atrix relative to H  = © H i. Relation (1.2) implies

t
II Ai-Ei l ^ t F n  — (m +  2 )E \\T E \i\\i < 1. (1.3)

i=i
t

Since Ai =  Ai > 0, by (1.3), there exists an io such th a t | |F n  Ai0 i? ii || > m  + 1 . Let
i=i

/  \  
A n  4i2

V 4 2i 4 22

be a  matrix representation of 4 l0  relative to  H  =  © H i, where A n  =  (aij)mxm- Then

|a-ii | > m  +  l .  Since Ejj 6  S i for i  ^  j  and 4 i 0 € (<Si)oj it follows th a t \tr(E ijA i0)\ < 1, 

and therefore

| a  j-£ | <  1  for i j. (1.4)
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Similarly, since E \\  — Ea  G S \  for i =  2,..., rre, we have |fr (( i? ii — £ ,ti)At0)| <  1, and 

therefore

ja n  — Oii| <  1, for i =  l ,  (1.5)

Relation (1.5) and the fact |a n | >  m  +  1 imply

|a« | >  to, for i  =  2 , (1 -6 )

By (1.4), we obtain
m

y  lay | <  m  — 1 , for i  =  1 ,..., m. (1-7)
3  = I

J#*
By (1-6) and (1.7), it follows tha t

m
|ai,-| >  y > |otj| < m  — 1, for i  — 1,

3 = i  

j#*

i.e., A n  is diagonal-dominant. So A \\  is invertible and rank A n  =  m . This contradicts the 

fact tha t rankA i0 < m  — 1 . □

R e m a rk  Theorem 1.12 provides a simple way of constructing subspaces of B (H )

th a t are boundedly (n +  l)-reflexive, but not boundedly n-reflexive. Theorem 1.12 also

generalizes Proposition 1.3[42j.

The next corollary is an easy consequence of Theorem 1.12.

C o ro lla ry  1.13. Suppose that S  is a subspace of Mn(C) with d im S  = n 2 — 1. Then 

S  is boundedly k-reflexive i f  and only i f  S  is k-reflexive.

D efin itio n  1.14. Suppose S  is a  tt/*-cIosed (resp. weakly closed) subspace of B (H ). 

We say tha t S  has the property W *Pn (resp. W P n) if for every w*-closed (resp- weakly 

closed) subspace S  of S , for any A G S \S ,  and for any M  > 0, there exists an operator
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n  _

T  =  E  X{ ® yi such tha t T  separates A from S m -, i.e., 
2 = 1

r t  n
^ 2  tr (A (x i  ® y,-)) <£ ( ^ 2  tr (B (x i  ® y,)) : B  G «Sw},
2 = 1  2 = 1

or E  yi) £  {E f= i(-S**.y<): 5  e  <Stw}- 
2 = 1

P ro p o s it io n  1.15. Let S  be a w*-closed (resp. weakly closed) and boundedly n -

reflexive subspace o f B {H ). Then every w*-closed (resp. weakly closed) subspace of S  is

boundedly n-reflexive i f  and only i f  S  has property W*Pn (resp. W Pn).

Proof. We give a  proof for the case th a t S  is iw’-closed. The other case can be proved

similarly.

Suppose th a t S  has property W*Pn. Let S  be a  -u;*-closed subspace of S ,  and let A £ S .

We need to prove A ^  £ re fb (S (")). If A  £  S ,  then = re fb (S ^ ) .  Then,

clearly, A ^  ^  r e fb ( S ^ ) .  Suppose A G S \ S .  Since S  has property W*Pn, we have, for any

M  >  0, there exists a  T  =  E  x i ® yi such th a t E  (Ax,-, y i)  {E ?= i ( # x t-, Vi) '■ B  G <Sa/}.
2 = 1  2 = 1

This implies A ^ x  <£ [<Sj^x], where x  =  (xi, ...,x n)£. Thus A £ re/&(«S).

Conversely, suppose tha t S  does not have property W *Pn. Then there exist a w*-
^  ^  71

closed subspace S  of <S, A G S \ S ,  and M  > 0 such th a t for any T  =  E  x i ® Vi, we
2 = 1

have that J2 (A x i,y i)  G (E iL iC ^ iiy i)  : B  G <Sjw}- This implies A ^ x  G [6 ^ x ] ,  for any 
1 = 1

x  =  ( x i , x-n)1. Therefore, A ^  G refb(S^ ) ,  thus <S is not boundedly reflexive. □

P ro p o s it io n  1.16. Let S  be a subspace o f M n(C), n >  2. I fd im S  <  n 2 — 1, £/ien 5

/ias property W *Pn- \ .

P roo f. Let S  be any subspace of S . For any A G S \ S ,  and M  > 0, there exists an 

R  G Mn{C) th a t separates A from 671/- Let T  be in S±. Then for any scalar 2 , zT  + R  

separates A from S m - If we choose any R q very close to R , then R q separates A from S m
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also. Choose such R q  s o  tha t det{zT  - F  R q )  is not a  constant function of z. Let z q  be any 

solution of the equation d e tfa T  +  R q )  =  0. Then z q T  -f- R q  separates A  from Sm  and 

rank(zoT  +  R q )  < n  — 1. □

It is not hard to show that property Pn, or n-elementary, implies property  W*Pn. 

T he following example shows th a t property W*Pn for a subspace of B (H ) is weaker than 

property  Pn, or n-elementary as defined in [8 ].

E x a m p le  1.17. Let Exn be the n  x n  matrix, n  > 2, w ith 1 in ( l ,n )  place and zeros 

elsewhere. Let S  =  {A  G Mn(C) : tr (E inA) =  0}. By Theorem 1.12, S  is reflexive, and 

thus S  is (n — l)-reflexive. Let S  be the subspace S n in Example 1.2. Clearly S  Q S ,  but S  

is not (n — l)-reflexive, and thus S  does not have property Pn—i~ However, S  has property 

W *P n - 1  (resp. W P n- 1 ), by Proposition 1.16. □

Suppose that U  and V  are isometries acting between Hilbert spaces H  and  K .  If A  is 

a  subset of B (H )  and B  is a subset of B (K )  satisfying UAV*  C B  and U *BV  C A ,  then 

we say tha t A  is a  spatial direct summand of B.

The next proposition follows directly from the definition of bounded reflexivity.

P ro p o s it io n  1 .18. Suppose U and V  are isometries from  H  into K  and S  is a 

subspace of B (H ). Then U {refb(S))V* = r e fb{U SV m).

The following is similar to Lemma 3.1 [10].

L e m m a  1.19. Let A  and B  be subsets o f B{H ) and B { K ) , respectively. Suppose 

that U, V  are isometries from H  into K  such that UAV*  C B and U *BV  C A . Let 

A x =  {A  € A  : ||A || <  1} and Bx =  {B  <E B : ||B || <  1}. Let G (H ) stand for

T (H ), F {H ), or Fn (H) and G (K ) stand for T (K ) , F {K ), or Fn (K ), respectively. Then
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(1) U*B{V = A u

(2)  V*(Bi)qU = ( A i ) 0 ,
( V  ( B i ) 0 =  V ( A i ) 0i r ,
(4) ^ ( (B O o  +  G {K ))U  =  MOo +  G (K ),

(5)  ( C A i ) o  n  G ( K ) ) °  =  CTUBOo n  G ( K ) ) ° v ,
(6 )  co((«4i)o fl G(.K’))^ ^  =  V*co((B\)o fl G(.K’))^ ^lU, where co denotes the convex hull. 

P ro o f. (1) Since U A XV* C Bu  i t  follows th a t U *U A iV *V  = Ax C U*BXV. Since 

U*BXV  C A u  we have U *B \V  =  A u

(2) If T  G (#i)o, let X  =  F*TG. For any A 6  A i, we have \tr{AX)\ =  \tr(AV*TU )\ =  

|£r(Z7AV*T)| <  1, so V *(B i)0U C (Ai)o- K T  G (A i ) 0 let y  =  VTG*. For any B  G S l5  we 

have |tr {B Y )\ =  |fr(W T 17*)| =  |tr(G * B y T )| <  1, i.e., V { A x)qU* C (tfOo. This implies 

(AOo c  y ^ O o t r .

(3) This part is contained in the p roof of (2).

(4) Clearly, V*G (K )U  C G{K) an d  V G {K )U ‘ C G {K ). Hence V*G {K )U  =  G(.ff). It 

foUows from (2) that V * ((Hx ) 0 +  G (K ))U  =  (A i ) 0 +  G {K).

(5) Let X  G ((.AOo n G (H ))° . Let Y  G ( £ i ) 0 C\G{H). We have V*YXJ G (A x)o nG (fT ). 

Therefore |<r(C7XF*y)| =  \tr{X V *Y U )\ <  1, which implies U XV*  G ((# i)o  n  G (K ))°. 

This shows ((A i ) 0 n  G (H ))°  C Cf*((Si) 0  n  G {K ))°V .

T he reverse inclusion is similar.

(6 ) To show “ D ” , let P  be the projection UU* and Q be the projection VV*. For any 

X  G co((B i) 0  n  GCK" ) ) 11 " S  take any Y  G ((A i)0 nG(i<:))0. By (5), Y  = U * Z V  for some Z  G 

((£ i)o  n  G (K ))°. Therefore, \tr (Y V * X U )\ =  \tr(U *ZV V *X U )\ = \tr(ZV V *X U U *)\ =
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\tr{Z Q X P )\ < \tr(Z Q X )\  =  \tr (X Z Q )\ < \tr (X Z )\  <  1 .

I t remains to  prove “ C ” . For any X  G co((.Ai)o n  GCK"))^ and Y  G ((# i)o  nG (Iir))0, 

by (5), U *Y V  G ((A)0 nC(if))°. Therefore, \tr(Y V X U *)\ = \tr{U *Y V X )\ <  1, which 

imphes VXU *  G co{{Bx ) 0  n G (JO )IHil. Thus X  G F*co((£ i) 0  D G(IiQ)IH|lG. □

P ro p o s it io n  1.20. Suppose A  and B are w*-closed subspaces o f B ( H ) and B {K ), 

and A  is a spatial direct summ and o f B. I f  B is boundedly n-reflexive, then A  is boundedly 

n-reflexive.

P ro o f. If  B  is boundedly reflexive, then by Theorem 2.8, co((,Bi)o D ^  =

OBOo- By (2) and (6 ) of Lem m a 1.19, V*{B{]QU = {Ax)o =  co ((A )o  n  F „ (J f ) ) IH |1 =

V*co((Bi)o D F n fii’))" ^lU. So A  is boimdedly reflexive. □

The following corollary answers a  question from [42].

C o ro lla ry  1.21. For any natural number k, there is a compact operator A  such that 

W (A) is not boundedly k-reflexive.

P roo f. Let n  be large enough and let S  be a  subspace of M n (C) such th a t S  is not 

boundedly fc-reflexive. By Proposition 1.1 [10] and Theorem 2.3 [10], there exist a  compact 

operator A  and isometries U, V  satisfying

U SV*  C {P(^4) : P  is a  polynomial with P(0) =  0}^

U*{P(A) : P  is a  polynomial w ith P(0) =  0}^ C S .

By the proof of Theorem 2.3[10], we can choose U*V  =  0. Then we have th a t W {A) D

U SV*, S  D U *W {A )V . Now, Theorem  1.8 implies th a t W(A) is not boundedly A:-reflexive. 

□

Based on [108], it is na tu ra l to  ask the following questions about bounded reflexivity.
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(1) Is W {A ) =  {T }' n  refb (W (T ))  ?

(2) Is T  © T  always boundedly reflexive ?

(3) If Ti and  T2  are boundedly reflexive, is Ti © T2  boundedly reflexive ?

Corollary 1.21 implies th a t (2) is not true. Since (1) implies (2), it follows that (1) is 

not true.

To answer question (3), we need the following lemma.

Lem m a 1 .22 . There exists a subspace S  o f B (H  @ H) so that <S|#@o and <5|o©/r o.re 

reflexive but S  is not boundely n-reflexive.

P roo f. Let M. be a subspace of B (H ) such th a t M. is not boundedly n-reflexive. Define 

<S =  { j1 © B 6  B {H  © H) : A  — B  6  M.}. Clearly, <S|jr©o =  B {H )  © 0, <S|o©/f =  0 © B (H ), 

they are both reflexive.

Since M. is not boundedly n-reflexive, we can choose that T ^  €  r e f { , ( M ^ ) \M .^ .  Let

^(n) =  T (n) 0 O g B (H W  @ # (" )) . Then U £ S <"> and U W G re /6(«S(")). Hence S  is

not boundedly n-reflexive. □

Replacing Lemma 7[108] by Lemma 1.22 and using the same techniques as those in 

Example 7[108], we can construct the following example.

Exam ple 1.23. If 1 <  n  <  0 0 , then there are reflexive operators T\ and T2 such tha t 

T\ © T2 is not boundedly n-reflexive.

2.1.2 A lgebraic bounded reflexivity

It follows from Corollary 1.9 that a subspace S  is boundedly reflexive if and only if 

S* is boundedly reflexive. O ur next example shows this is generally not true for algebraic 

bounded reflexivity.
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E x am p le  1 .24 . There exists an  algebraically boundedly reflexive subspace S  of B (H )  

such th a t S * is not algebraically boundedly reflexive.

P ro o f. Let {ei}“  x be a  orthonormal basis for a  Hilbert space H , and let S  = span{e{ <g> 

e\ : i  — 1 , 2 , The n  S  is algebraically boundedly reflexive and S* = span{ei ® e,- : i =

1 , 2 , We claim th a t r e fab(S*) =  {ex®y : y  E H } . Clearly, r e / a&(<S*) C {ei<g>y : y E H }. 

To see the reverse inclusion, take any x, y  E H  such tha t ||x || =  ||y|| =  1. We show
n

th a t ex <2 > y(x) E S%x. Let x n = Y K x iei)ei- Then lim ^ o o  x n = x. Choose N  so that
i=i

||xa / - | |2 >  1/2. Then there exists a  £ r̂ with 0 <  |£iv| <  2 so th a t £yvi|^iv| | 2 =  (x ,y ) . Define
AT

A ft =  tf t  J2(x ,e i)e i ® ei. Then ||>liv|| < 2 and  A ftx  = t^vlJarjvlpei =  {x ,y)ex = ex ® y(x).
i=l

Thus, S* is not algebraically boundedly reflexive. □

T h e o re m  1.25 . Suppose that S  is a linear subspace o fB (X )  with a denumerable Hamel 

basis. Let S[ be any vector space complement o f S f  in S . Suppose that, fo r  any subspace 

E  o f X  with a denumerable Hamel basis, there exists a separating vector y  6  X  fo r S j such 

that S ty  fl E  =  0 and S p y  is fin ite dimensional in  X .  Then r e fab(S) = S  + refabiSp). In  

this case, S  is algebraically boundedly reflexive i f  and only i f  S f  is algebraically boundedly 

reflexive.

Before proving Theorem 1.25, we give several corollaries of the result.

C o ro lla ry  1 .26. Let S  and S p  be as in Theorem  1.25. I f  S p X  =  sp a n {S X  : S  € «Sp} 

is a finite dimensional subspace o f X ,  then r e fab{B) =  S  + r e fab{Sp). In particular, i f  S  

is a finite dimensional linear subspace of B (X ) , then r e fab(S) =  S  + r e fab(Sp).

P ro o f. By Lemma 3.1[67], for any subspace E  of X  with a  denumerable Hamel basis 

there exists a separating vector y  E X  for S j  such that S jy  fl E  =  0. Since S p y  C S p X
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and S p X  is finite dimensional, the conclusion follows immediately from Theorem 1.25. □ 

The next example indicates that Corollary 1.26 is no t true  for algebraic reflexivity. 

E x a m p le  1.27. Let {et } ^ 1 be an  orthonorm al basis for a  Hilbert space H, S f  be 

the span of {ei <g> ej : j  =  2,3,...}  and S  =  C l  +  S f - Clearly, S  satisfies the  conditions of 

Corollary 1.26, so the conclusion of the corollary follows. However, r e fa[S ) ^  S  +  r e fa(S). 

To see this, we show tha t ex ® ex £  S  +  r e fa(SF) b u t ex ® ex £ r e fa(S). It follows 

from Theorem 3.5[67] th a t S p  Q r e fa(SF ) Q S f  +  F (H )  =  F (H ), so S  + r e fa{SF) =  

C l  + r e fa{Sp). For any S  £ r e fa(SF), we have .Sex £ S p e \ =  0. Since ex ®ex(ex) =  

ex, ex ® ex ^  r e fa(Sp ). Thus ex ® ex ^  S  + r e fa(Sp)- Next, we show ex 0  ex £ r e fa(S). 

For any x  £ H , if x  =  Aex, then ex <2> e i(x )  =  Aex =  I x .  I f  (x, ej) =  a  ^  0 for some j  > 1, 

let (x, ex) =  13. Then ex ® ex(x) =  ^ex =  §e i ® ey(x), so ex ® ex £ r e fa(S). □

C o ro lla ry  1.28. Let S  and S f  be as in Theorem  1.25. I f  {x  : S f x  =  0} has finite  

codimension in X , then r e fab(S) = S  +  r e fab(SF)•

P ro o f.  Suppose th a t {x  £ X  : S f x  = 0} has finite codimension in X .  Lemma 

3.1[67] implies that for any subspace E  of X  with a  denumerable Hamel basis, there exists 

a  separating vector y  £  {x  £  X  : S f x  =  0} for S[ such th a t S iy  fl E  =  0. Clearly, for any 

S  £ S p , S y  =  0, so S p y  is finite dimensional. The conclusion now follows from Theorem 

1.25. □

Next, we prove a  technical lemma, which we need to prove Theorem 1.25.

L e m m a  1.29. Let X  be a finite dimensional Banach space and {un}“ x be a sequence 

in X  such that limn_*oo un =  u. Then there exists a positive integer d with d < d im (X ) 

such that for any e >  0 , there exist positive integers n i  < ,. . . ,  <  n<j and scalars t i , ..., with
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d
|<i| +  ... +  |£rf| <  1  +  e such that u =  £) tiUn i.

i=i
P roof. I f  u  =  0, we can take any positive integer d < d im X  and any positive integers

n \ < n-d h  =  --- = td =  0. Suppose u ^  0. Let E n =  span{un ,u n+1,....} and

d„, =  d im E n . It follows th a t {dn} is a  non-increasing sequence of positive integers. Let

d  =  limn-voo dn. Then 1 <  d < d im X . I t  is easy to see th a t u  €  E n for each n  and there

exists an N  such that dn =  d  for all n > N .

If d — 1, then dn = 1 and E n = C u  for all n  >  N . This implies th a t un =  anu for some •

scalar an as n  > N .  Since l im n - ^  un — u, we have limn-^oo =  1- For any e >  0, choose

no large enough so that 0 <  |0* | <  1 +  e. Now, we can write u =  .

If d >  1 , choose positive integers n i , ..., n ^ - i  so that N  <  raj, ..., rid-i and {um ,...,un<f_ 1 ,

u]  form a  basis of E n - For any un 6  E n , write

d -1
u n =  ^ 2  <4n ^Uni +  a(n)U. (1.8)

2=1

It is not hard  to show th a t limn-yoo un — u  implies tha t limn-nx, a ^  =  0 for i =  1,..., d— 1
d— 1 (n)

and limn_>oo =  1 . Solving for u from (1.8), we obtain  u  =  For

i  d ~ l  a ( n )any e >  0 , choose rid large enough so tha t |^ ^ y | +  .£ <  1 +  e. Let ti — for

i =  l , ..., d — 1 and td =  Then we have u =  £  t{Uni w ith  |tx| +  ... +  \td\ < 1 -F e. □

P ro o f o f  Theorem  1.25.

Clearly, r e fab{S) D <S +  r e fab{SF). We only need to  prove the other direction. By 

Theorem 3.5[67], r e fa(S) C S  +  F (X ). Therefore, r e fab(S )  C S  -t- F (X ).  Thus, we only 

need to show th a t r e fab(S) n F ( X )  C r e f ^ S r ) -  For any T  6  r e fab{S)C \F{X ), let Ran(T) 

denote the range of T. For any z  € X ,  we define Ez = sp a n {R a n (T ),A z , R an(B ) : A  G 

S , B  e  <Sf}- Then E z has a  denumerable Hamel basis. By our assumption, there exists a
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separating vector y  G X  for S i  so th a t S iy  fl E z =  0 and d im (S p y ) <  For a  fixed vector 

y and for each positive integer n, Ly has the same property as y. Since T  G r e fab(S), there 

exists a fixed M p > 0, such that T x  G S mt % for all x  G X .  In particular, for any positive 

integer n, we have T {z  -F Ly) G S mt (z  -I- ^y)- Let A n G S mt such tha t

T {z  +  - y )  = A n(z  + - y ) .  (1.9)n n

Suppose tha t A n =  B n +  Cn with B n G S i and Cn G Sp. Replacing A n by B n +  Cn in 

equation (1.9) and solving for £ B ny , we get ^ B ny  = T {z  +  ^y )  -  (B n + Cn)z -  Cn (±y). 

This implies th a t B ny  G E z. Since S iy  fl E z — 0, B ny  =  0. This implies B n =  0, since y  is 

a  separating vector of <5/. Therefore, equation (1.9) can be reduced to

T {z  + - y ) = C n( z + - y ) .  (1.10)n  n

Solving for Cnz  from (1.10), we obtain

Cnz  = T ( z + - y ) - - C ny. ( 1 .1 1 )n  n

Since ||Cn || =  ||-<4n || <  M t , it follows th a t limn_voo Cnz  =  T z. Let X  =  span{R an(T ),Spy}. 

Since T  G E (X )  and dim (Spy) < oo, we have d im X  < oo. Equation (1.11) implies tha t 

the sequence Cnz  is in X .  By Lemma 1.29, there exists d < d im X  such th a t for e =  1 

there exist positive integers n \ < ,..., <  nd and scalars t \ ,  ...,td w ith  |t i | +  ... +  <  2  with

T z =  E  UCniz. Since E  UCni € S p  and || E  UCni\\ < E  l<i| IIC'n.H <  E  \U\Mr  <  2MT,
i=l i=l i=l 1 = 1  i=l

we have T z  G (S f ) 2 mt z ■ Since z  is arbitrary, we obtain  that T  G re fa ^ S p )-  □

T h e o re m  1.30. Let S  be a subspace of B (X ) with a separating vector x . Suppose that

M  is an invariant vector space of S  containing x  and M  has an invariant complement N
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in X .  Let y  G N  and let S  =  {A G S  : A y  =  0}. I f  S \m  Is algebraically boundedly reflexive, 

then S  is algebraically boundedly reflexive.

P ro o f.  Let T  G r e fab{S). Then there exists an  M t  >  0 such th a t for any v  6  X ,  

T v  G Sm t v. Thus there exists A  G Sm t  such tha t T x  = Ax. For any y  G N , choose 

A G Sm t  w ith  A{x  +  y) =  T (x  +  y), and A y G Smt  w ith  T y  =  A yy. Then T {x  + y) = 

T x  + T y  =  A x  -f- A yy, and A (x  +  y) =  A x  -F Ay. Thus we have (A  — A )x  =  (Ay — A)y. 

Since M  n  N  =  0, we have (A — A )x  =  0. Since a; is a  separating vector of S , A  =  A  and 

A yy  =  A y . Thus T y  =  A y. Let T  = T  — A . Hence we may assume th a t T N  =  0. To prove 

that T  G S ,  it suffices to  prove that T M  =  0. For any u G M , there exist A u, A u+y G Smt  

such tha t

T u  =  A uu, T (u  +  y) =  Au+y(u +  y), ||AU|| <  M T  and ||^4u+y|[ <  M T . (1-12)

By (1.12) and Ty =  0, it follows that T u  =  T(u +  y) =  4̂u+yu +  A u+yy  =  Auu. Hence

(Au-|-y A u)u — A u+yy. (1.13)

Using M  n  N  = 0 and (1.13), we have that A u+yy  =  0 and A u+y G S .  By (1.12) and 

(1.13), it follows tha t T u  =  A u+yu. Hence T \m  G r e fab{S\M)- Since r e fab(S\M) =  «S|Af, 

we have th a t T \m  € S \m  and T|^f =  B \m , for some B  G S . Since x  in M , T x  = 0 and x  is 

a separating vector for S ,  we have B  =  0. Hence T \m  =  0. □

C o ro lla ry  1.31. Let S  and S  be as in Theorem 1.30. I f  dim (S\br) is finite, then S  is 

algebraically boundedly reflexive.

P ro o f. By Theorem  1.30, it suffices to prove th a t is algebraically boundedly 

reflexive. Since bounded reflexivity implies algebraic bounded reflexivity, we only need
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prove th a t «S|m is boundedly reflexive. Let T  G refb (S \M ). Let T  be the  extension of T  

to  [M], where [M] is the  norm  closure of M .  Since T  6  refb{S\M ), there exists M r  such 

tha t for any x  G M , T x  G [Smt x\. Thus for any x  G [M], T x  G [5jVfr x]. Since dim{S\M ) 

is finite, we have th a t d im {S |[m]) is finite. Since [M ] contains a  separating vector of S , by 

Corollary 1.5, we have T  G Hence T  G <S|m and «S|a  ̂ is boundedly reflexive. □
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2.2 R elations b etw een  bounded  reflex iv ity  and com p lete  

p ositiv ity

Let S  be any subspace of B (H )  and d im S  =  n. By Theorem 1.1.13, S  is [\/2n  ]- 

reflexive, where [£] denotes the  largest integer th a t is less th an  or equal to t. By Example 

1.1.14, it follows tha t for any n > 2, there exists a  subspace S  of M m(C) with d im S  =  n  

such that S  is not ([\/2n ] — l)-reflexive.

The situation is different for bounded reflexivity. In the case of bounded reflexivity, we 

can prove the following:

T h o e re m  2 . 1 . Let S  be a subspace o f B (H ) with d im S  = n . Then S  is boundedly 

[y/n + 1  ]-reflexiue, where [£] denotes the largest integer that is less than or equal to t.

To prove Theorem 2.1, we first prove a lemma.

L em m a 2 .2 . I f  S  is a subspace of Mk+i(C ) and d im S  < (k + l ) 2  — 2, then is 

boundedly reflexive.

P roof. Since dim (S±) > 2, there exists A  in S±  such th a t rankA  < k  and A  ^  0. 

By Theorem 1.12, M  =  {B  € M^+i(C) : tr (A B )  =  0} is boundedly Ar-reflexive. By 

Proposition 1.16, A4 has property W*P^. Since S  C A4, S  is boundedly fc-reflexive by 

Proposition 1.15. □

P ro o f o f  Theorem  2.1.

By Corollary 1.26, we can assume that S  consists of finite rank operators. Since d im S  

is finite, we can assume th a t S  is a  subset of M n(C) for some n  and H  — with

the standard orthonormal basis {ei}f=1. To prove the conclusion of the theorem, we only
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need to  show th a t if  m  <  (k +  l ) 2  — 2 then S  is boundedly fc-reflexive. We may also

assume that k  < n  — 1, since the  result is obvious for other k. Take T  E M n (C ) so tha t

yffc) g  refb (SW ). We will prove T^k+X  ̂ E refb(S^k+x^). Suppose this is not true. Then 

there exists a n r o  €  such th a t

r<*+1>x0 i  [s[k+1)x 0} =  s { k+1]x 0.

Since [<Sp+1 :̂ro] is a  closed convex set, it follows th a t there exist yo € H^k+X  ̂ and real 

numbers a, b such th a t for any A  E S i,

f? e (^ fc+1 2̂;o,yo) < a < b  < Re(T^k+x^xo,yo). (2 .1 )

fc+i
Let x 0  =  (ar^.-.arA+i)*, yo =  (yi, Vk+iY and B  =  £  *i ® yi- By (2.1), it follows tha t

i=l
for any A  E <Si,

R e[tr{A B )) < a < b <  R e{tr{T B )). (2.2)

Choose invertible matrices U ,V  E M n{C), such th a t

U B V  =

( \  
IT 0

°  0

where I T is r  x r  identity matrix w ith  r  < k  +  1 .

Let e =  (e i , ..., er )1. By (2.1) and (2.2), it follows th a t for any A  G S \,

R e(P *V ~ x A U ~ xe, e) < a < b <  R e{P *V ~xT U ~ xe, e), (2.3)

where P  is the orthogonal projection from C n onto C r © 0. If  r  <  k, then (2.3) would 

contradict the fact G refb(S^ ) .  Therefore we have r  =  fc-Fl. Since d im (P V ~ xS U ~ xP)

< m < ( k  +  l ) 2  — 2, we can consider P V ~ XSU ~ XP  as a  subspace of Mk+i(C ). B y Lemma
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2.2, P V - 'S U - 'P  is boundedly fc-reflexive. By T<*> €  r e fb(S <*)) we have (P V ~ lT U ~ lP ) ^  

G r e fb((P V ~ 1S U ~ 1P )W ). Since P V ~ lS U ~ 1P  is boundedly A;-reflexive, it follows that 

P V ~ l T U ~ lP  G P V ~ lS U ~ xP. This contradicts (2.3). Therefore S  is boundedly fc-reflexive. 

□

The following example shows th a t [y/n 4 -1 ] is the smallest integer such th a t all 72- 

dimensional subspaces of B (H ) are boundedly [y /n +  1 ]-reflexive.

E x a m p le  2 .3 . For any n > 3, there exist m  and a  subspace S  of M m (C) with 

d im S  =  t i  such tha t S  is not boundedly ([y/n 4- 1  ] — l)-reflexive.

P ro o f. For any 72 >  3, choose a  positive integer I such th a t I2  — 1 <  n  <  (I 4- l ) 2 — 1. 

Let k  =  72 — (I2  — 1), M. =  {T  G M /C )  : t r ( T ) =  0}, A k  — {diag(ai, ...,ak) : at- G 

C , i =  1,..., k}  and S  =  M. © Ak Q Mi+k(C) =  M m (C), where m  = I + k. It follows from 

Proposition 1.1 and Theorem 1.12 tha t S  is boundedly I-reflexive, bu t S  is not boundedly 

(I — l)-reflexive, where I =  [y/n -t- 1  ]. □

Next, we consider the relations of bounded reflexivity and complete positivity of ele­

m entary operators on B (H ). One of the m otivations for this paper is the following result.

P ro p o s i t io n  2.4[50]. Let A \ , ..., An and T  be operators in  B ( H ) and sp a n {A i, ..., A n} 

= S .  Then the following are equivalent.

(1) A \P A \  4 -... 4 - A nP A * > T P T *  for every positive operator P  G B (H ),

(2) For every x  G H , there are complex numbers a \(x), ...,a n (x) with |a i(x ) | 2 4-... +  

|an (a: ) | 2 <  1 such that T x  = a i(x )A \x  4-... 4- O n(x)Anx .

Using the concept of bounded reflexivity, we write the above equivalent conditions as 

follows:
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(1)' There exists a positive scalar t  such tha t A \P A \  + . . .  + A nP A ^ > tTP T*  for every 

positive operator P  G B (H ).

(2)' T  G r e fb{S).
n

If we define $(x) =  YZ A ixA *—tT xT *  for any operator x  in B {H ) 1 then  (1)' is equivalent
i = i

to saying th a t the elementary operator $  is positive. From (1)' and (2)', we know that there 

exists a positive scalar t  such that $  is positive if and only if T  G refb(S). This is exactly the 

technique used in [76]. W ithout appealing to  the idea of bounded reflexivity, only sufficient 

conditions are obtained for complete positivity of elem entary operators in [76] using the 

theory of reflexivity of operator spaces. From the above, one can see th a t it is the bounded 

reflexivity tha t describes the positivity of elementary operators.
71

C orollary 2.5. Let $(-) =  YI A i(-)B i be an elementary operator on B (H ) and let
i = i

S  = s p a n { A \ , An }. Suppose that every proper subspace o f S  is boundedly k-reflexive. 

Then $  is completely positive i f  and only i f  $  is k-positive.

R em ark Corollary 2.5 improves Theorem  1 [71].

The following corollary is the m ain result of [104]. Applying Theorem 2.1 and the 

technique used in Theorem 6[76], we can give a shorter proof of it.
n

C orollary 2.6. I f  A  is a C*-algebra, A i,B {  G A  and  4>(-) =  YZ A  an elemen­
tal

tary operator on A , then $  is completely positive i f  and only i f  $  is [y/n \-positive, where 

[f] denotes the largest integer that is less than or equal to t.

In the following, we give another application of Theorem  1.12.

C orollary 2.7. For any 1 <  k  < n  — 1, there exists an elementary operator $  on 

M n(C) such that $  is k-positive and $  is not (k +  1)-positive.
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P ro o f. Choose T  G M n{C) such th a t ra n kT  = k  + 1. Let S  =  {A  G Mn (C) : tr (A T ) = 

0}. By Theorem 1.12, S  is boundedly (fc 4- l)-reflexive, but S  is not boundedly fc-reflexive. 

Suppose S  = span{A \ ,..., An2 _ 1}. Since d im S  =  n 2  — 1 and r e fb ( S ^ )  ±  S ^ ,  it follows 

tha t r e / 6 (5t*>) =  Af„(C)<*>. Hence G r e fb(S <*>). By (1)' an d  (2)', there exists a  t  > 0

such tha t
n2—1

$ 0 )  =  A.xyl* -  tTxT*
i= 1

is fc-positive. Since <S is boundedly (k  +  l)-reflexive, it follows th a t $  is not (k  +  l)-positive. 

□

Corollary 2.7 gives another proof of Theorem 1[16].
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2.3 A p p lica tion s

In  this section, A  denotes a C*-algebra. A  denotes the space o f all equivalence classes 

of irreducible representations of a  C*-algebra A , topologized so th a t th e  closure of a  subset

W  of A  is the set all those R  in A  such that [") ker(S )  C ker (R ). A positive element
se w

x  in A  is called abelialn  if the norm  closure of x A x  is commutative. I f  J  is an ideal in a 

C*-algebra A , then we say that J  is essential in A  if each non-zero closed ideal of A  has 

a  non-zero intersection with J . We say that A  is an tilim in a ry  if  it contains no non-zero 

abelian elements. A  is said to have a  continuous trace  if it is a  lim inary C*-algebra, A  is 

Hausdorff, and if, for each T  in A ,  there is an A  in A  and a  neighbourhood U  of T  such 

th a t for all 7r in U , 7r(A) is a one dimensional projection in H ^. A n elem entary operator
n

on A  is a  mapping of the form S  : x  —>• £  &i%bi, where a* and  6 t- are fixed elements of
i=i

A . A  linear map $  on A  is positive  if <&(T) is positive for any positive element T  in A . 

We define $ „  =  $  ® I n : Afn(.A) ->■ M n{A) by $  0  In ((Tij)nx.n) =  (&(Tij))nxn. $  is said 

to  be n-positive  if $  <8 > I n is positive. If $  is n-positive for ail n , then $  is said to be 

completely positive. Let ||<&||c& =  s« p { ||$ n || : n  > 1}.

A C*-algebra A  is an extension  o f a  C*-algebra B  by a C*-algebra C if there is a  short 

exact sequence

0 — > B  — > A — >C — »• 0.

A C*-algebra A  is said to be subhomogeneous w ith bounded degree n  if every irreducible 

representation of A  is finite dimensional with dimension not greater th an  n, or equivalently 

if  A  is a  C*-subalgebra of M n(B) for some commutative C*-algebra B. We say th a t a  C*-
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algebra A  is a n tilim ina l by a subhomogeneous C*-algebra w ith  bounded n  if there exists 

an exact sequence

0 — y j — y A — > B — ► 0

satisfying tha t J  is subhomogeneous with bounded degree n  and  B  is an antilim inal C*- 

algebra.

Let H  denote a  complex Hilbert space and let B (H )  denote the set of all bounded 

operators on H , K (H )  the set of all compact operators on H . Let H (n) denote the direct 

sum of n  copies of H .

In  [74], we prove th a t if A  is separable and antilim inal, then every positive elementary 

operator on A  is completely positive. In [3], Archbold, M athieu and Somerset establish 

some equivalent conditions on A  which imply th a t every positive elementary operator on 

A  is completely positive. In this section, we generalize Theorem 6[3], the main result of [3].

By Theorem 1.2[15], we know tha t every n-positive linear m ap of A  into itself is com­

pletely positive if and  only if A  is subhomogeneous w ith  bounded degree n. For elementary 

operators on A , we will find that the situation is very different (see Theorem 3.7).

Let

0 —>• J7 —y A  —y B  —y 0

n
be an  extension of B  by J . Let S (x ) =  ]T) a{xbi be an elem entary operator on A .  In

i=l

this paper, we use th e  notation of [3]. We denote the  ‘ restriction ’ of S  to an elementary 

operator on J  by S \ j  and the induced elementary operator on B  by S/B- 

Tensoring the above extension by M n

0  —y Mn ® JT —̂ Mn ® A  —̂ M n ® B  —► 0 
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we may canonically identify (Sn)|M„®j- with (5 |y )„  and  (Sn)/Mn<S)B w ith (S /B)n .

L e m m a  3.1[3]. Let A  be an extension of B  by J . Then for every n  > 1 ,

(1) S  is n-positive i f  and only i f  S \ j  and S /B are n-positive.

(2)  ||S n || = m a x { | | ( % ) n | | , | | ( 5 / 5 )7l||} .

L e m m a  3.2[3]. The following conditions on a C*-algebra A  are equivalent:

(1 ) Every positive elementary operator on A  is completely positive.

(2) For every elementary operator S  on A , ||S || =  | |5 | |c&.

L e m m a  3.3[3]. Let A  be an antiliminal C*-algebra. Then there is a dense subset W  

o f A  such that ir(A) is antiliminal fo r  all n  in W .

L e m m a  3.4[91]. Each C*-algebra A  has a largest postliminal ideal T  and A / T  is 

antiliminary.

L e m m a  3.5[91]. Let A  be a postliminal C*-algebra. Then A  contaims an essential 

ideal which has continuous trace.

L e m m a  3.6[107]. Let 9(n) be the transpose map in M n(G). Then

k, i f  k  < n,

n, i f  k  > n.

T h e o re m  3.7. Let A  be a C* -algebra and n  > 1. The following statements are 

equivalent.

(1 ) Every n-positive elementary operator on A  is {n +  1)-positive.

(2) Every n-positive elementary operator on A  is completely positive.

(3) For every elementary operator S  on A , ||5 „ || =  ]]iS||C6 .
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(A) For every elementary operator <f> on A ,  ||5„ || =  11 11.

(5) There is a dense subset T o f A , where A  is the space o f all equivalence classes o f

irreducible representations o f A , such that A  —»• ©7r\(.A) is a fa ith ful representation of
Aer

A  with fo r  any A €  I \  dim H ^x < n  or d im H Vx =  oo and rr\(A) fl K {H nx) =  0, where ir\ 

means that we pick a representation rr\ from  the equivalence class A in  A .

(6 )  There exists an exact sequence

0 — > J — > A  — > B — ► 0

satisfying that is subhomogeneous with bounded degree n  and B is an antiliminal C*- 

algebra.

P ro o f. (3) => (4). I t is obvious.

(5) => (2). Suppose tha t S  is a  n-positive elementary operator on  A .  Let it be any 

irreducible represention of A  on H  and let S K be the induced elem entary operator on tt(A). 

Let 7rn be the representation of M n(A) on H ^  defined by 7rn ((ajj)) =  (7r(ai j ))nxn. The 

following commutative diagram

Sn
Mn(A) -------------------  Mn(A)

*n(Mn(A)) ------ — --------  rrn(Mn(A))
K îrjn

and Lemma l(iv)[3] show th a t to prove (5) => (2), we only need to prove is completely positive.

If ir(A) is an irreducible representation of A  on H  w ith  d im H  < n , then  7r(>4 ) =  B (H ).

By Theorem  1[71], we have th a t every n-positive elementary operator on B (H )  is completely
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positive. By Lem m a l(iv)[3], S-  ̂ is n-positive. Hence Sv is com pletely positive. Let ir be 

an  irreducible representation of A  on H  such th a t dim H  =  oo and  tt(A )  fl K (H ) =  0. Since

7r is an irreducible representation of A  on H , it follows th a t 7t(^4 ) =  B {H ). Thus we can 

extend S w to an  elem entary operator S,r on B (H ).  By Sn is n-positive, it follows that 5^ 

is n-positive on B (H ).

By n(A )  fl K (H )  =  0, we have

k (A )/K (H )  =  it {A).

Let r  be the canonical map from B (H )  into B (H )/K (H ) .  Let <&(t(A)) =  £  r ( a 1)r(a:)r(6 t ),
t=i

n ——
if $ (x ) =  53 aixbi on B (H ). Thus by Theorem 4[74], S n is completely positive on

i=i

B ( H ) /K (H ) .  Hence is completely positive, and  S 7T is completely positive.

(1) => (6 ). Suppose th a t (6 ) is not true. Let X the largest postlim inal ideal of A . Then 

X is not subhomogeneous with bounded degree n.

Let 7r be an  irreducible representation of X on H  such th a t d im H  >  n  + 1 . By Theorem 

6.1.5[91], we have th a t K {H )  C 7r(X). By section 2.2, we can construct an  elementary 

operator S  on X such th a t S T is n-positive and S n is not (n -I- l)-positive on 7r(X). Hence
m

S  is not (n -I- l)-positive. Let ^ ( a ; )  =  53 onxbi, ai, bi E X be th e  elementary operator we
i=l

construct. Then S  is n-positive and S  is not (n +  l)-positive on X. Let

m
S (x )  =  ajxbj^ i G A

t=i

By Lemma 3.1, it follows that S  is n-positive and 5  is not (n  +  l)-positive. This is a 

contradiction.

(4) =>• (6 ). We denote by X the largest postliminal ideal of A .  By Lemma 5, let J  be
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an essential ideal of X  with, a  continuous trace. Suppose that (6 ) is not true. Since J  is 

an essential ideal, it follows that J  is not subhomogeneous with bounded degree n. Let 

x  be an  irreducible representiou of J  w ith  dim H n > n  +  1. Since J  has a continuous 

trace, we have 7r(j7 ) D K (H )  and J  is a  locally compact and Hausdorff space. We may 

assume that 7r ( ^ )  =  Afre+ i(C ). Let {£*7 } be matrix units of M n+1 . By [31, 3.1, 3.3, 4.1], 

there is an open neighbourhood F  of 7r in  J  and {e^} C J  such th a t 7r(e,j) =  E{j, and 

cr(ea), (i = 1 ,..., n  +  1 ) are rank-one projections and cr(efy), (i <  j )  are partial isometries 

with initial projection cr(ejj) and final projection cr(ea). for all cr G F . Let eJt- =  e*j for 

j  < i -

Since J  is a  locally compact Hausdorff space, there is a continuous function g : J  -*
t

[0,1] supported in F . Let 6  be the transpose map of M n+i(C ). Let 9(x) =  ^  cciUixVi
i=l

t
on M n4 -1  (C), where F  G { } ,  oti €  C. For x  €  A , let S (x )  =  ccidixbi, where

t=i
t

OiM e  {e^-}, 7r(oi) =  U{, 7r(6 i) =  F*. For cr €  J  define ^ ( y )  =  (5Z <Xi&{ai)yv{bi))g{<r),
i—1

on cr(J). Then S a =  0, for any a  G J \ V .  For cr G F , by Lemma 3.6, ||(<So-)jfc|| =  9 ^ ) ^  if 

k < n  + 1  and ||(S ,<r)*|| =  y(o-)(n+l), iffc >  n + 1 . Hence ||(S |y)n|| =  n , ||(S |y)„.fi|| = n + l .  

Since S /s  =  0, where B  =  A f  J ,  by Lemma 1, ||5 n|| ^  ||5 n+i||. This is a  contradiction to

(4).

(6 ) =4- (5). Let W  =  {cr G B : cr(B) fl K {H a) — 0}. By the proof Lemma 3[3], we 

have th a t W  is dense in B. Let r  be an isomorphism from A/J~  onto B. For any a  G B, 

define irtT{x) =  <j{t[x)) for x  in A. Then is an irreducible representation of A . Let 

r  =  {tz G A  : 7r| j  7^ 0} U {7ra : a  G W }. Let x  in A . Suppose that x  G J .  Then there exists 

7T G r  such tha t 7r(x) 0. Suppose x  ^  J . Since W  is dense, it follows th a t there exists a
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cr in W  such th a t a (r (x ))  ^  0. Thus r-a(x) ^  0. Hence T  is dense in A .

(5) => (3). Let 5  be an  elementary operator on A . By Lemma l(iv)[3], it follws th a t 

for n > 1 ,

| |5 n || =  s«p { ||(5 a)b || : A €  r } .

For A € T, by Proposition 7.9[93], then ||(5A)n || =  I|*S'a| |C6- For A 6  T, if  n \{A )C iK (H \)  =  0, 

then ||S a |! =  ||5 A|U .

(2) => (1 ). It is obvious. □

By Lemma 3.6 and Theroem 3.7, it is easy to show

C o ro lla ry  3.8[16]. Pn- i( M n(C ),M n{C)) D P„(M „(C ), M „(C)) where Pt(M n(C ), 

M n{C)) is the set o f all i-positive maps from M n{C) into itself.

R e m a rk  Let A  be a  prime C*-algebra and let A  ®h A  denote the Haagerup tensor 

product of A  with itself. Define 0 : A  <g>A A  —> C B (A ), (where C B (A )  is the algebra of 

completely bounded operators on A  with the completely bounded norm  jj - ||ct) by

71

0 (^2  ® ~  S (c)
i=l

71
for c 6  A , where 5(c) =  ]T) o*c6 i- By Corollary 3.9[2], 9 is an  isometry. Hence by Theorem

i= l

7, if A  is prim e and antilim inal by a subhomogeneous C^-algebra w ith bounded n, then

II E O i O M f t  =  l|5n||.
1 = 1
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C hapter 3 

Derivations and Cohomology

3.1 D erivations

3.1 .1  D erivations on certa in  subalgebras o f  B (H )

In this section, we unify some results on derivations by considering derivations from an 

algebra A  containing all rank one operators of a  nest algebra into an A-bimodule B. Cher- 

noff [15] proves th a t every derivation from F (H )  into B{H ) is inner. In [18], Christensen 

proves that every derivation from  a nest algebra into itself or into B (H ) is inner. In [18], 

Christensen and Peligrad show th a t every derivation of a quasitriangular operator algebra 

into itself is inner. Knowles [59] generalizes the result of [18] and  gets tha t any derivation 

from a nest algebra into an ideal J  of B (H )  is inner. Let A f  be  a  nest of subspaces of a  

Hilbert space H , let .A be a subalgebra of B (H ) containing all rank one operators of algAf, 

and let S be a derivation from A  into B (H ). We prove that if one o f the following conditions 

holds:

1. H .  ±  H ,

2 . 0 + ^ 0 ,

3. there exists a  nontrivial P  G W, such tha t P  G A, 

then 6  is inner.

We also prove th a t for any nest, if 5 is a  norm continuous derivation from A  into B (H ), 

then S is inner. We discuss some applications of these results.
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Let F i(H )  be the subset of all operators in F (H ) w ith rank less than  or equal to  1. We 

call a  subalgebra A  o f B ( H ) standard  provided A  contains F (H ).  For a  nest A f  on H, 

algAf is said to be the n e s t algebra associated with Af. If  A  is a  subalgebra of B (H ), then 

we say th a t A  is a triangular  operator algebra, if A  fl A* is a  maximal abelian selfadjoint 

subalgebra of B (H ). I f  J  is maximal triangular, by Lemma 2.3.3[54], it follows th a t l a t j  

is a  nest. For a  maximal triangular algebra J  if la tA  is a maximal nest, we say th a t A  is 

strongly reducible. A derivation 8  o f an algebra A  into an A-bimodule B  is a linear map 

satisfying 8 (AB) = A 5(B )  +  8 (A )B , for any A, B  E A . In this section, we do not assume 

that the  derivation is bounded. A derivation 8  is called £ -inner if there exists T  6  B, such 

that 8  {A) =  A T  — T A . W hen we say th a t a  derivation 5 : A  —> B  is inner, we mean S-inner.

Let A f  be a nest. In  the following, we consider the derivation from a subalgebra A  of 

B (H )  containing all rank  one operators of algAf into B (H ).

T h eorem  1.1. I f  A f is a nest such that H -  ^  H , A  is a subalgebra of B (H ) containing 

(algAf) D F i(H ), and 5 is a derivation from A  into B (H ), then 5 is inner.

P ro o f.  Since H -  H , for any /  €  (ff_ )x , /  ^  0, we choose y  in H  such that 

(y, / )  =  1. For any x  in  H , by Lemma 3.7[96], it follows that x  <8 > /  €  algAf. Now define

T x  =  —5(x  ® f ) y ,  for x  in H.

Now for A  in A ,

T A x  =  — 5(A x  ® f ) y  =  — 8 (A )x  — A 8 (x  <g> f ) y  =  —8 (A )x  -f A T x.

Hence for any x  e  H, —T A x  + A T x  =  <5(A)r; thus

5(A) = A T -  T A .
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It remains to show th a t 8  is bounded.

Let limn_+0 0 arn =  x , and limn _>.0 0  T x n = y. Now for any rank one operator A  E algAf, 

we have th a t 8  (.A) an d  T A  are bounded. It follows th a t A T  =  5(A) +  TA is bounded, and 

limn-^oo A T x n =  A T x  = A y. Since A  contains ail rank one operators of algAf, and every 

finite rank operator o f algAf is a  sum of some rank  one operators of algAf ( Proposition 

3.8[20]), we have, for any finite rank operator B  in algAf, B T x  =  B y .  By Theorem 3.11[20], 

choose a  bounded net {£?a} of finite rank operators in algAf such th a t lim* B \  =  I  in the 

strong operator topology. We have T x  = y. By the  Closed Graph Theorem, it follows that 

T  is bounded. □

Corollary 1.2. I f  A f is a nest such that 0+ #  0, and A  is a subalgebra of B (H )  

containing all rank one operators o f algAf, then every derivation 8  from A  into B (H ) is 

inner.

P ro o f. Let A f1- =  { N 1- : N  E Af}. Then A f 1  is a  nest such that H -  ^  H . Since 

algAf1- =  (algAf)*, it follows tha t A* contains all rank one operators of algAf-1. Define 

8 * (A) =  (8 (A*))* for any A in A*. It is easy to prove th a t 8 * is a  derivation from A* into 

B (H ). By Theorem 1.1, we have th a t 8 * is inner. I t  follows that 8  is inner. □

We now consider a  nest A f such th a t =  H .

L em m a 1.3. Let A f be a nest, E \ ,E 2  E A f and E \  C Ei- I f T  is a linear map from E 2  

into H  such that S T  =  T S  on E? fo r  any rank one operator S  o f algAf, then there exists 

X such that T x  = Xx, fo r  any x  E E \.

P ro o f. For x  E E \,  choose y E E 2  — E \ such th a t ||y || =  1. Since x  <S> y E algAf, by
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hypothesis

x  <S> Ty(y)  =  (x  ®  y )T y  =  T x  = (T y, y)x .

Since every one dimensional subspace of L(E 2 , H )  is reflexive, it follows that there exists A 

such th a t T  =  AT. □

Lem m a 1.4. Let A f be a nest such that H _ =  H , and let M  =  U{JV : N  C H, N  G Af}. 

Then there exists a linear map T  from  M  into H  such that 5 (A) x  = (A T  — T A ) x , fo r  any 

x  in M .

P ro o f. Since H -  = H, we may choose an  increasing sequence {P,} C A f such that 

Pi —> I  in the strong operator topology. Also choose /  G P^~, and y  G H, such that 

ll/I! =  1) ( y , f )  =  1 and ||y || <  2 . Define

Tix = - S ( x  <S> f ) y  (1.1)

for x  G Pi. Using an  argument similar to the p roof of Theorem 1.1, we may prove that 

for A  in A , 5 (A) x  =  (ATi — T{A) x  for x  in P{. I f  j  > i , then for x  G Pi, (ATi — T iA )x  =  

(ATj — T jA )x . Hence

A(T{ — T j)x  =  (Ti — T j)A x ,  for x  G Pi. (1.2)

By Lemma 1.3, we have Ty—Ti =  At-y on Pt_i. Now for j  > 2, let T j = T i+ X ij .  We have, for 

k > j  > 2, Tjx  =  TkX  for all x  G P j- i-  Now for any x  G U{Pj} =  U{iV : N  C H ,N  G Af}, 

choose a  j  > 2 such th a t x  G Pj and let T x  =  T jx .  Then, T  is well defined and for x  in M , 

6 (A )x  = (A T  -  T A )x .  □

R em ark Using the  idea in the proof of Theorem  1.1, we can prove th a t in Lemma 1.4, 

Ti is a bounded operator from Pi into H .
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T h eo rem  1.5. I f  A f is a nest, A  is a subalgebra o f B (H ) containing all rank one 

operators o f algAf, and 5 is a norm  continuous derivation from A  into B (H ), then 8  is 

inner.

P r o o f.  If Af satisfies ^  H , then  by Theorem 1.1, 5 is inner. If  A f  satisfies H — =  H, 

then by Lemma 1.4, there exists a  linear map T  such th a t

5(A)x = (A T  - T A ) x ,  for any x  in M  =  Li{N : N  C H , N  G Af}.

By (1.1) and the boundedness of 5, it follows th a t ||T ix|| <  2||£|| ||x ||. Since |Ay| <  | |7 i | |  +  

|[3j|| <  4||(5|[, it follows th a t ||T || <  6 ||5 ||. Thus T  is bounded on M . Let T  be the unique 

bounded extension of T  to H . T hen T  is bounded and for A  in A , 5(A) =  ^4T — T A .  □

T h eorem  1.6. Let A f be a nest satisfying H — =  H. I f  there exists a nontrivial 

projection P  G Af, such that P  G A ,  and 8  is a derivation from A  into B (H ), then 8  is 

inner.

P r o o f.  As in the proof of Lemma 1.4, we choose Pi =  P . Let H  =  P  © P-1. Then T  

can be decomposed as

T  =

f  \
T u  T 1 2

\ /T 2 1  T 2 2

Let Q =  U {N  -  P  -. P  C N  G A f,N  ^  H } , Tn  : Q -»  P , T2 2  : Q -> Q.

By the  definition of T , T n  and T 2 1  are bounded. We now prove th a t Ti2 and T22  are 

botmded. Since

A  =

(  \  
1 0

0 0
e  A ,
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\  /
holds on M . Since 5 (A) is bounded, it follows tha t Ti2  is bounded. Now, for any rank one 

operator A  E B (H ), we have P A ( 1 — P) E A .  Hence,

5 ( P A ( 1 - P ) )  =

( \  
P A ( l - P )  PA(1 -  P )T 2 2  -  Tu

v 0 —T21P  A ( 1  — P ) f

holds on M . Since 5(PA(1 — P )) is bounded, it follows th a t PA ( 1 — P )T 2 2  is bounded. 

Hence for any /  E P x and e E P , e ^  0, eT2 2  <8 > /  is bounded on Q. Thus there exists c such 

tha t |(T2 2 x, / ) |  <  c, for any x  E Q, and ||x || <  1. By the Uniform Boundedness Theorem, 

we have tha t {||T2 2 x|j : ||x || <  1} is bounded. Hence T22  is bounded. As in Theorem 1.5, 

there exists a  bounded extension T  of T  to H  such that for A  in A, 5(A) =  A T  -  TA . □ 

Now we apply the results above to some special subalgebras of B (H ). If A D F (H ), 

then by Theorem 1.1, we have the following:

C orollary 1.7[15]. Every derivation from  a standard operator algebra into B (H ) is

inner.

C o ro lla ry  1 . 8  [18]. I f  5 is a derivation from  algM into itself, then 5 is inner.

P roo f. By Theorems 1.1 and 1.6, there exists T  in B (H )  such tha t for any A in A , 

5(A) =  A T  — T A . Now we prove tha t T  is in a lg /f. For any P  in  M , since 5(P ) =  P T  — T P  

in algAf, we have tha t (I  — P )5 (P )P  =  0 =  —{I — P )T P . This completes the  proof. □

Let B be a  subalgebra of B { H ), and let S  be any subset of B (H ). We denote by C(B, S )  

the collection {T E B (H ) : A T  — T A  E S , for A E B}.
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L em m a 1.9[58]. Let B be a nest algebra and J  be an ideal in  B (H ). Then C{B, J )  =  

C I  +  J .

Using this Lemma and Theorem 1.6, we easily prove the following result.

Corollary 1 .10. I f  B is an algebra containing algAf, then any derivation 5 : B —> Cp 

is inner for  1 <  p  <  oo.

Corollary 1 .11. I f  B is a triangular operator algebra containing every rank one 

operator in algAf, then every derivation 5 from B into B (H ) is inner.

P roo f. Suppose J\f is a m axim al nest containing Af. By hypothesis we have tha t 

B  D (algAf) D F i{H ) D (algAf) D F \{H ). Since B  contains all rank  one operators of alg Af, 

we have that latB  C  Af. By Theorem  4[27], it follows that la tB  = A f  =  Af. Since $  is a 

triangular operator algebra, it follows that Af C. B.

If  if_  ^  if , then by Theorem 1.1, we have th a t 5 is inner.

If i f -  =  H, A f C B, and Af is a  maximal nest, by Theorem 1 .6 , it follows tha t S is inner.

□

R e m a rk  By Corollary 1.7, it follows that every derivation 8  : F {H ) —¥ B {H ) is inner. 

However if B is a unital algebra containing F{H ) and B ^  B (H ) ,  then  there is a derivation 

from F{H ) into B  th a t is not inner, e.g., 5 = S t  with T  £  B. Also if A  = K {H ) +  C f, 

and T  £ A , then 5r • A  —>■ A  is a  derivation tha t is not inner, b u t A  contains all rank one 

operators of B{H ).

By Lemma 2.3.3[54], we know th a t if B is a  strongly reducible maximal triangular 

algebra, then la tB  is a  nest and B  contains all rank one operators of alglat(B). Hence by 

Theorem 1.6 and Corollary 1 .1 1 , we have the following result:
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C o ro lla ry  1 .12. Every derivation from a strongly reducible maximal triangular algebra 

into B (H ) is inner.

3.1 .2  D e r iv a tio n s  o n  n e s t-su b a lg e b ra s  o f  v o n  N e u m a n n  a lg e b ra s

Let TV/* be a  nest on H . A n A/"-interval is a  projection E  =  M  — N  w ith  M , N  €  A/*. A 

com m utative subspace la ttice  is a  subspace lattice which consists of m utually commuting 

projections. A commutative subspace lattice has fin ite -w id th  if  it is generated by finitely 

many nests. We have in descending order of the following classes of lattices: commutative 

subspace lattices, finite-width lattices, tensor products of nests, nests. If  Ad is a  von 

Neumann algebra and £  is a  subspace lattice in  Ad, we denote algj^C  =  Ad Pi algC and 

T>c =  algM£  n  (algM^■)*• I f  A/" is a nest in Ad, a lg j^N  is called a  nest-subalgebra  of Ad.

Suppose 5 is a  derivation from a lg ^ N  into Ad and E  is a  Af-interval. Let 8 \{E A E ) = 

E 5(A )E  for any A  G a lg j^N . Then is a derivation from E{algjo{N~)E =  alg^M EEAf 

into E M .E . In  the following, we study the derivations on nest-subalgebras of factor von 

Neumann algebras.

In [25], Hongke Du and Jianhua Zhang show tha t every derivation on a  nest-subalgebra 

of a  factor von Neumann algebra is inner. B ut their proof has some gaps. By using some 

results in [94], we can only show tha t if A is a  nest-algebra of a  type I  loo or type I I I  factor, 

then every derivation from A. into itself is inner. Lance [64] shows tha t A  is a  nest-algebra 

of a  type I  factor then every derivation from A  into itself is inner.

L em m a 1 .13 . Let A4 be a factor von Neumann algebra and let £  be a commutative 

subspace lattice in  Ad. I f  8  is a derivation from  T>c into a weakly closed algj^jO.-bimodule 

B in  Ad containing algj^C, then 6  is inner.
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P roo f. Since C" is a  commutative von Neumann algebra, by Theorem  10.8 [20], it 

follows that there  exists m  E B  such tha t 5\c> =  5m. Let 6  =  6  — 6 m. For T  in T>c and P  

in £ , by T P  =  P T , it follows tha t

5 (T )P  = 6 (TP ) = 6 (P T) = P 6 (T ).

Hence 5(T) belongs to T>c and 6  is a  derivation from T>c into itself. By Theorem 1[99], we 

have 5 = 5a for some a €  Vjy. Thus 5 = 6 m+a and m  + a €  B. □

Lem m a 1 .14 . Let Af be a factor von Neumann and let A. be a nest-subalgebra of Af- 

The following are equivalent.

(1) Every derivation from A  into itself is inner.

(2 ) Every derivation from  A  into every weakly closed A-bimodule in  Af containing A  

is inner.

(3) Every derivation from A  into every weakly closed A-bimodule in  Af containing A  

such that 5(Djy) =  0 is inner.

(4) Every derivation from  A  into itself such that 5(D tf) =  0 is inner.

P roo f. We only prove (1 )=>- (2). The rest are proved using the same method. Let B  be 

a  weakly closed .A-bimodule in Af containing A . Since Af" is a  commutative von Neumann 

algebra, by Theorem  10.8[20], there exists an element m  €  B  such th a t =  Sm- Let

5 =  6  — 5m. T hen for any a in Af" , 5(a) =  0. For any 6  £ algj^Af, by

P J-tf(6 )P  =  J ( P J-6 P ) =  5(0) =  0

it follows tha t 5 is a  derivation from alg j^A f into itself. By (1), it follows th a t 5 = 5a w ith 

a in algMAf . Hence 6  =  5a + 6 m =  5a+rn, a + m  e  B. □
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R e m a rk  In  [25], Du and Zhang show tha t (1) and (4) are equivalent.

L em m a 1.15[25]. Let M\ and M 2  be nests in a factor von Neumann algebra Ml such 

that M\ C A/2 . I f  every derivation from algjAM 2  into Ml is inner, then every derivation 

from algj^M i into Ml is inner.

Lem m a 1.16[25]. Let M  be a nest in  an infinite factor von Neumann algebraMl and 

let 5 be a derivation from a lg j^M  into Ml such that 5{Dtf) =  0. I f  there exists a infinite 

M -interval E  such that 5\ is inner, where 5 \{E A E ) =  E 6 (A )E  for A  6  alg j^M , then 5 is 

inner.

L em m a 1.17[94]. Let Ml be a factor, A  be an atomic nest-subalgebra o f Ml and <f> 

be an automorphism of A  such that <f>(x) =  x  for any x  € 'Dtf. Then <f> = au(A) fo r  an 

invertible element A  in A .

L em m a 1.18[94]. Let A  be a nest-subalgebra of a factor von Neumann algebra M . 

For every T  in M ,

d (T ,C I) <2\\6t \a \\.

C orollary 1.19. Let A  be an atomic nest-subalgebra of a factor von Neumann algebra M  

and let be an automorphism o f A  such that 4>{x) =  x  for x  in and ||id — <f>|| <  1 / 2 . 

Then there is an invertible element A  in A  with ||A  —/ | |  < A\\<fi — id\\ such that <f> =  au(A) 

P roo f. By Lemma 1.17, = au(A) w ith A  € algMM. By Lemma 2.6[35], we have that

A  is unique up  to a scalar factor. We can choose ||A || =  1 . For T  6  algj^M ,

| |J 4 (T)|| =  \ \A T - T A \ \  =  ||(*(T) -  T)A || <  \\<f>-id\\ | | r | | .

By Lemma 1.18 there exists a  scalar A such tha t ||A — A/|| < \\<f> — id\\. Since \\<f> — id\\ < 1/2
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and |[A|| =  1, we have A 0. By ||A || =  1, it follows tha t

||A  — AI|| >  |1 — |A| |.

Hence ||A -  A /|A |/|| <  4\\<f> -  id\\. Replace A  by A/|A|A. □

P rop osition  1.20. Let A  be an atomic nest-subalgebra of a factor von Neumann 

algebra M . Suppose that 8  is a derivation from  A  into itself. Then 8  is inner.

P ro o f. By Proposition n  1 [94], it follows tha t 8  is bounded. Let fa  =  ef5, t  E R  be 

the continuous group of automorphisms. By Lemma 1.14, we can assume th a t 8 (T>jy) =  0. 

Then fa(x) =  x, for any x  6  £>Jv  and any t  G R . By Lemma 1.17, it follows that there 

exists At € algj^AT such th a t fa =  au(A t). By Corollary 1.19, we can choose A t  such tha t

\\At - I \ \ < A \ \ f a - i d \ \ .

By Lemma 19.3[20], t~ l \\4>t —id\\ is bounded. Let Dn =  n (A x/ n —I). So {D n } is a  bounded 

net. Let D  be the weak* lim it of the subnet D nx of Dn. By a  second application of Lemma 

19.3 [20], we have

8 d (T) = \ im (D nxT - T D nx) = l i m n x (A 1/nxT - T A 1/nx)
A A

=  lim n x (fa /nx -  id )(A )A l/x = 8 (T ). □

L em m a 1.21[36]. Let fat be an infinite factor, and let J f  be a maximal nest o f projections 

in M .. Then M  contains either (perhaps both) an infinite increasing sequence p \ <P 2  < — 

with the M-intervals pn+i —pn mutually equivalent in A4 or an infinite decreasing sequence 

Pi > P2  > — with the ff-in terva ls pn — pn+i mutually equivalent in M..

T heorem  1.22 Let N i be a type 7/qo factor andAf be a nest in A i . I f  8  is a derivation 

from  algM-hf into A4, then 8  is inner.
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P ro o f. By Lemma 1.15, we may assume tha t AT is a  maximal nest in  M .  By Lemma 

1 .2 1 , we divide the proof into three cases.

Case 1. Let us first consider the  case in which A f  contains an infinite sequence 0 =  

Po <  Pi <  P2  <  — w ith Pn —l I  in the strong operator topology such th a t pn+i — Pn are 

equivalent in M .  Let Vn in A4 such tha t V*Vn = pn+i — Pn and VnV* = pn — pn- 1 - Let
OO

V  =  53 Ki- Then V  is in a lg j^A f such tha t VV* = I  and for any A  €  u£p.m{po>P2 , —
71=0

A V  and V * A V 2  belong to  algj^A f. Let B  =  o^7.m{P0 jP2 > For any A  6  B, define 

8 (A) =  (8 (A V ) — A 8 (V ))V * . In  the following we will show that 5 is a  derivation from B  

into A i.

8 (A )B  +  A 8 (B ) =  [<5 (A V ) -  A 5(V )\V *B  4- A[8 (B V ) -  B 8 (V)]V*

=  [5(AV) -  A5(V))V*B

+ A[5(BV) +  B V S(V )V *  -  B V 5(V )V*  -  B5(V)\V*

= [5(AV) -  A 8 (V ))V *B V 2 V * 2 +  A[5(BV2) -  B 5 (V 2 )]V * 2  

= [5(A V )V *B V * 2  + A V 5 (V * B V 2 )]V ' 2 -  A B 5 (V 2 )V * 2  

= [8 (A V V * B V 2) -  A B 5 (V 2 )]V * 2  

=  [5(AB V2) -  A B 5 (V 2 )]V * 2  

=  S(A B ).

By Lemma 1.15, it follows th a t 8  is inner. For A  € A  we have th a t =  [8 (A )V  — 

A 8 (V ) +  A 8 (V)\V*  =  8 (A). Hence 8  is inner.

Case 2. If the dual nest A f1- satisfies the properties of the case 1, we consider that 8 *, 

where 8 *(A) =  (5(A*))* for A  in A* =  a lg ^A f1'- By case 1, we have 8 * is inner. Hence 8
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is inner.

Case 3. Apply Lemma 1.17 yielding either py <  P2 < Pz < • - - o r p \ > P2  > with 

Pn+i —pn (resp. pn — pn+i) mutually equivalent in AA. By considering Af-5-, we can assume
OO

that pn < Pn+i- Let p  =  V Pi and let E  = p —p\. Then E A fE  is a  maximal nest in factor
t=i

EAAE  and EAAE  is an infinite factor. Let 5\{E A E) = E S (A )E  for A  €  algM-A/". Then 5i 

is a  derivation from a lgsM E E A E  into EAAE. By the cases (1) and (2), we have th a t 5\ is 

inner. Since E  is an infinite projection, by Lemma 1.17, we have tha t 5 is inner. □

T h e o re m  1.23. Let A f be a type I I I  factor and A f be a nest in AA. I f  5 is a derivation 

from algj^Af into AA, then S is inner.

P ro o f. By Lemma 1.14, we may assume that A f is maximal in AA. Let 0 =  po < p\ < 

P2 < - - -  'naAf such tha t pn I  in strong operator topology. Then pn+i — Pn is equivalent 

to Pm+i — Pm- Let L  =  {0 ,p i ,p 2 i •••}• Similar to the proof of case 1, we can construct a 

derivation S from algM£  into Ad such th a t 6  is inner and S(A) =  5(A) for A  in a lgM ff- 

Hence 8  is inner. □

C o ro lla ry  1.24. Let AA be a type I I 0 0  or type I I I  factor and 5 be a derivation from  

algM Jf into every weakly closed A-bimodule in AA containing A  is inner.
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3.2 C oh om ology  o f certa in  op erator algebras

Let A  be a  normed algebra over C  and let A f  be a  normed space over C. A f  is said to 

be a  norm ed l e f t  A-module if A f  is a  left A-module, and there exists a  positive constant 

K  such th a t ||am || <  if[[a[[|[m ||, whenever m  £ M  and a £ A . A similar definition 

applies to norm ed righ t A-modules. A norm ed  A-module is an A-bimodule tha t is both 

a normed left A-module and a  normed right A-module. An .4-module A f  is said to be a 

dual A-module if A f  is the dual of a  normed space A f *  and for each a £  A  the mappings 

m  —>• am, m  —> m a  : A f  -» A f  are weak* continuous. Let A f  be an A-module and m  in A f ,  

and let 5m denote the mapping of A  into A f  defined by Sm (a) =  am  — m a, for a £  A . Then 

Sm is a derivation from A  into A f . Each such derivation 5m is called an inner derivation. If 

x  is an invertible element in an algebra A ,  then ad(x) denotes the isomorphism a xa x~ 1.

Let Af be a  .4-module. We denote by C £(A , Af) the  linear space of all bounded n-linear 

mappings from A  x ... x A  into Af. The coboundary operator d, from C £ (A ,M )  into 

C£+l(A , Af), is defined by

(dp)ia i, —1°n + i) =  o.\p(a2 , 0 3 , . . . ,On+l)

n
1 ) p{a\ , ..., , aiOi+i,..., an+ i)

i=l

+ a\p(a\, 0 2 ,..., an+)an+ i.

By convention, (.4, Af) =  Af, and p : (A, Af) —> C \ (A , Af) is defined by (dm) (a) =

am  — m a  for a  in A  and m  £  Af. For n  =  0 ,1 ,2 ..., let B "+1 (A, Af) denote the range of d  

in C£+1 (A, Af) and let Z ^(A , Af) denote the  nullspace of d  in C"(A, Af). I t  can be shown
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th a t d 2  = 0 .  The quotient space

2 % (A ,M )/B ? (A ,M )

is denoted by H £(A , M ) and called the  n-dimensional cohomology group (of A  w ith  coeffi­

cients in M ). Let M  be a  dual normal .4-module. We denote by C £ (A , M )  the linear space 

of all bounded n-linear mappings from A x  ... x  A  into M  which are separately cr-weak to 

weak* continuous.

T he (normal) coboundary operator, defined as before, provides a  sequence o f linear 

mappings

M  = C ° (A ,M ) A C l( A ,M )  A C l{ A ,M )  A ...

Prom this sequence, B™(A, M ), Z™(A, M )  and the cohomology group

H Z (A ,M ) =  Z * (A , M )/B ™ (A , M )

are defined ju st as in the case of norm continuous cohomology.

Let JV" be a nest in B{H ). In [64], Lance proves th a t H™ (algAf,B(H)) =  0. In  [34], 

Gilfeater, Hopenwasser and Larson improve this result and prove th a t if C is a  finite- 

w idth commutative subspace lattice, then  H£(algC, B (H )) = 0. Nielsen[87] obtains tha t 

H 2 (a lg A f,B (H )) =  H *(algJ\f,B (H )) =  0.

We will consider two cohomology theories, the  norm  continuous cohomology and  the 

norm al cohomology. We show th a t a  class of non-selfadjoint operato r algebras has iso­

morphic continuous and normal cohomology. This class contains reflexive algebras whose 

invariant subspace lattices are tensor products of nests and reflexive algebras with two-atom 

atom ic Boolean subspace lattice.
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3.2.1 N o rm  co n tin u o u s  cohom ology

In th is section, by using the technique in the p roof o f Theorem 2.1[64], we improve 

Theorem 2.1[64].

The proofs of the following Lemmas axe easy. We leave them to  the  reader.

L e m m a  2.1[92]. Let A. be a subalgebra o fB {H ). Then H £ (A * ,B (H ))  =  H™ (A,B(H)) 

and H £(A * ,A *) = H ? (A ,A ).

L e m m a  2.2. Let A  be a subalgebra o f B{H ) and let T  be an invertible operator from  

a Hilbert space H  into a Hilbert space K . Then H £(A , B (H )) = H ^ (T A T ~ 1, B{K )).

L e m m a  2.3 . Let A  be a subalgebra o f B (H ). Suppose that there exists x  € H, x  ^  0 

such that fo r  any y  E H , x  E A , then H™(A, B (H ))  =  0.

By Lemmas 2.1 to 2.3, we easily show the following result.

C o ro lla ry  2.4. Let A  be an operator algebra in B (H ) . Let

Then H ?(A i, B (C © H )) =  0, for i =  1,2 and H £(A i, B ( H  © C)) =  0, fo r  i  =  3,4.
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L em m a 2.5[54]. I f  A  is a selfadjoint operator algebra, B  an operator algebra maximal 

with the property o f having A  as its intersection with its adjoint, N  and M  orthogonal 

projections with invariant under, and in B, and B  an operator such that B  = N B M , then 

B  lies in B.

L em m a 2 .6 . Let J  be a maximal triangular algebra on H  and let A f — l a t j .  Suppose 

that E  6  l a t j  with d im (E  — E - )  < 1. Then fo r any x  €  E , y  G (EL)-1-, x  <g> y  G J .

P roo f. Since

x  <g> y  = E{x  <8 > y ) ( I  — E - )  =  E -{ x  ® y )(I  — E - )

+ (I  -  E -)E { x  (8 ) y){I - E )  +  ( E -  E - ) ( x  <g> y){E  -  £ _ )

by Lemma 2.5, it follows that E -.{x® y){I — E - )  and (I  — E - )E [ x ® y ) { I  — E )  belong to J .

Since dim {E — E - )  < 1, we have (E  — E J ){x ® y ){E  — E - )  is a  scalar multiple of E  — E _

Hence x  ® y  belongs to J .  □

T h e o re m  2 .7 . Let J  be a maximal triangular algebra on H  and let A f  =  l a t j  with 

d im (H  -  if_ ) <  1 or din(0+) <  1. Then H £ { J ,B { H ))  =  0.

P roo f. By the  Lemma 2.1, we may assume th a t dim (H  — H - )  < 1.

If dim {H  — H - )  =  1, by Lemma 2.3, it follows that H™ (J, B (H ))  =  0.

Suppose d im {H  — H J)  =  0. We can assume th a t J  is norm  closed. Choose Pn € l a t j  

with Pn I  in strong topology. For y € H , choose et- € p A  such th a t ||ex || =  1. By Lemma 

2-5, Pi(y) <8 > ex- G J .

For cr e  Z £ ( J ,B (H ) ) ,  define fa  in C£~l ( J ,  B (H ))  by

<f>i(ai,...,an- i ) y  =  ( - l ) ncr(a i,...,an_ i ,Px(y) <g> et-)ei.
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we can calculate d<f>i(a\, ...,On)x =  cr(a.i, ...,an )x  for any x  E Pi- Since {<&} is bounded, 

we have tha t {<&} has a subset which converges in ultraweak topology to an  element <f> of 

C r H J ,  B (H )). A routine calculation gives cr =  d<f>. □

3.2 .2  N o rm a l co h om ology

In this section, We study normal cohomology on non-selfadjoint algebras. If S  is a

subset of B (H ),  we denote S i the unit ball of S .

T h e o re m  2 .8 . Let A  be a subalgebra o f B (H ) such that (A  fl K (H ))i =  ( A  )i with 

I E  A . Then H ? (A , B {H )) =  H%(A, B (H )) = H ^ (A , B (H )) .

L em m a 2 .9 . Let A  be a subalgebra of B (H ) such that A i  =  ( A  )i and let r  be a

bounded bilinear form  on A  x  A . I f  r  is separately cr-weakly continuous, then r  extends to

a separately a-weakly continuous bilinear form  t  on A x  A .

P roo f. For a  fixed 6  E A , we consider the cr-weakly continuous linear functional 

T(b) : o i—>■ r (a , b) on A . Let T(b) extend to a  cr-weakly continuous linear functional S(b) 

on A . By A \ =  ( A  )i, it follows that such th a t ||5(6)|| <  |M |||& ||. Hence the mapping 

S  : b S(b) is a  bounded linear map from A  into ( A  )* w ith ||5 || <  | |r | | and

<  a, S(b) >= r (a , 6 ), for a, b E A ,  (2 .1 )

where < •, • >  denotes the pairing between A  and its predual ( A  )«.

Since r  is cr-weakly continuous in its second argument w ith  the first fixed, (2.1) implies 

th a t S  is a  continuous linear map from A  w ith the cr-weak topology into ( A  )* with the 

topology cr(( A  )»,.4). Since S  is a  bounded map from A  into ( A  )*, it follows tha t A i 

is relative cr-weakly compact in A .  Hence it follows th a t 5 '(A i) is relatively compact in 

( A  )* with respect to the topology cr(( A  )», A ); so this topology coincides, on  S (A i) ,  with
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the Hausdorff topology o {A * ,A ).  Hence S  is continuous as a  mapping from -4i, w ith the 

topology cr(A, ( A  )*) into A * with the topology cr(( A  )*,-4).

Define r  on A  x A  by

r(a , 6 ) = <  a, 5(6) >

for all a €  A  and 6  6 -4 ; this r  has the quired properties. □

Similarly, we can prove the following result.

L em m a 2.10 . Let A  be as in Lemma  2.9 and let t  be a bounded n-linear fo rm  on 

A  x • • - x  A . I f  t  is separately cr-weakly continuous, then r  extends to a separately a-weakly 

continuous n-linear fo rm  r  on A  x - - - x  A .

By Lemma 2.10, we have

L em m a 2.11. Let A  be as in Lemma 2.9. Then H ™ (A,B(H )) =  H ™ (A,B (H )).

An argum ent similar to the proof of Theorem 5.3[98] yields

L em m a 2.12 . Let A  as in Lemma 2.9 and let M  be the dual o f a Banach space M I f  

(J) is a bounded n-linear map from  A y .  —  x A  into M  that is separately continuous relative 

to the a-weak topology on A  and the weak* topology on M , then (j> extends to a bounded 

n-linear map <f> from A  x  —  x A  into M , which is separately continuous relative to the 

a-weak topology on A  and weak* topology on M .

Let A  be  a  subalgebra of B( H)  and let A the set of all singular states on B( H) .  For 

each /  6  A, {V/ ,  H f }  denotes the GNS-construction of B{ H)  w ith respect to / .  Let

H  = 53 ® H f  and 7 7 : B ( H )  —y B{ H)  be the ^-homomorphism defined by
fe  a

77(x )(53 ©?/) =  2  ®nA x)€f-
f e a / e $
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Let K  =  H  © H. Define it : B (H ) —> B { K ) by

k ( x ) =

f  \
T](x) 0

\  0 * /
Then 7r(x) is a  faithful *-representation of B {H ).

L e m m a  2.13. Let A. be a subalgebra o f B (H ) and let <p be a bounded linear functional 

on ir(A). Then there exists a a-weakly continuous functional ip on B (K )  such that 4> —

P r o o f . Let o tt. Since 7r is isometric, it follows tha t ^ is a  boimded functional on 

A . Extend <j> to a boimded functional u> on B (H ) such th a t ||o;|| =  ||0 ||.

Define ip\(x{x)) =  w(x) for x  £  B (H ). Since iz is cin isometry, it follows th a t ip\ is 

well-defined and ip 1 £ (tt(B (H )))*. Let ui = f  + g, such tha t /  is singular and g £ B (H )*. 

We can prove that ip\ is cr-weakly continuous on x{B (H )). Extending ip\ to a cr-weakly 

continuous functional ip on B (K ), it is clear tha t ip extends <p. □

Suppose A  is as in Theorem 2.8. Define

P  =
0 I

we easily show that P  £ x{A) fl (tt(A )) '. Define a  : ir(A )P  —> A  by

( \
0 0

0  x

The a  is an isometric algebraic isomorphism, and is cr-weakly continuous. I f  x  £ A , then 

a(7r(x)P) £ A .

L e m m a  2.14. Let A  be as in Theorem 2.8. For n  > 1, let p £  Z £ (A ,B (H )) . Then 

there exists £ £ C*~X{A ,B (H )) such that p -  d£ £ Z ^ (A ,B (H )) .
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P ro o f. I£ A  £  tt(A), then a (A P ) £  A . So we can define left and right actions of tt(A )

on B (H )  by A  - m  =  a(A P )m , m  - A = m c t(A P ),m  £ B (H ).  By the definition, B (H )

become a  7r(.A)-module such th a t

P  • m  = m  ■ P  =  m , (2.2)

for any m  £ B (H ).  For p £  Z £(A , B (H )), since a  is isometric, we can define p\ in

C ?(ir(A ),B (H ))  by 

P \(A \ ,  • • • ,  ^ n )  =  p ( a ( A y P ) ,  - • •,  a ( A nP ) ) ,

for all A y , ..., A n £  7r(A). A  routine calculation gives

( d p i ) ( > l i , . . . , ^ „ + i)  =  (dp)  ( a ( A y P ) ,  . . . , a ( A n+yP))  

for all A y ,...,A n+\ in ir(A); so py £  Z™ (n(A),B (H )). Let 77 £  B (H )m, A, Ai £ 7t(^4), 

1 <  j  < n, and define

tf)j(A) 'ni.Px ( -^ 1  » A j —1 , A ,  A j + i , A n ),

for 1 <  j  < n, By Lemma 2.13, each (f)j is the restriction of an cr-weak continuous functional 

on B (K ),  so it is cr-weak continuous on tt(A ). This proves th a t p\ is separately cr-weak 

to weak* continuous. By Lemma 2.12, p\ extends to a boim ded n-linear mapping p x : 

■x(A) x  - - ■ x r:(A) —> B (H ) which is also separately cr-weak to  weak* continuous. It follows 

from Lemma 6.2[98] that there exists £1 in C £,(ir(A ),B (H )) such that py — d£y vanishes 

whenever any of its arguments lies in the sp a n { I ,2 P  — /} . Since P  £ span{1 ,2P  — /} , it 

follows from (2.2) tha t

(Pl - d f O O 4 ! , . . . ,A n) =  P(py  - d € y ) ( A y , . . . , A n) =  (Py — d£y)(PAy,  . . . , P A n) 
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for all A \ , —, A n in ft {A). Now we define

f  ( a ( A i P ) , a ( A n _ i ? ) )  =  f t  (-Ai, —, A i - i )

whenever A i , ..., A n - 1  6 it {A). A routine calculation shows th a t p — d£ & Z™ (A,B(H )). □ 

By a  routine modification of the proof of Lemma 6.5[98], we can prove the following 

result.

L em m a 2 .15 . Let A  be as in Theorem 2.8. Then B £ (A , B ( H )) n Z £ (A , B ( H )) =  

B Z (A , B (H )) .

T he  P r o o f o f  Theorem  2.8.

For each p in Z™(A, B (H )) ,  the coset p  +  B™(A, B {H ))  is a  subset of the coset p + 

B £ (A ,B (H )) .  Hence there is a  natural homomorphism

S :  p  + B Z (A ,B (H ))  p + B ? (A ,B (H ))

from H * (A ,B (H ))  into H ^ {A ,B {H )) . By Lemma 2.11, is injective. By Lemma 2.15, 

the range of $  is H £ (A ,B (H )) .  Hence H £ (A ,B (H ))  =  H ™ (A ,B (H )). By Lemma 2.15, 

we have H ? (A ,B (H ))  = H * {A ,B {H )) =  P£(34 , B (P )) . □

C orollary 2.16. Let C  =  M\ ® ... <8> Mn, where Mi are nests on Hi and let A  be 

any subalgebra o f algC containing all rank-one operators o f algC. Then H™(A, B( H) )  = 

H ? ( A , B ( H ) ) = 0 .

P ro o f. By Theorem 2.6[34], we have th a t A  satisfies the  condition of Theorem 2.8. 

By C is finite-width and Theorem  3.1[34], it follows th a t H™(A, B ( H )) =  H £(A , B ( H) )  — 

H Z ( A , B ( H ) ) =  0. □

C orollary 2.17. Let C, be an atomic Boolean subspace lattice with two atoms and let A

95

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



be any subalgebra ofalgC  containing all rank-one operators o fa lgC . Then H™(A, B ( H) )  =

C o ro lla ry  2 .1 8 . Let A  be a strongly reducible maximal triangular algebra on H . Then 

H ? ( A , B { H ) ) =  0.
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