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Abstract

Reflexivity, elementary operators and cohomology

by
Jiankui Li

University of New Hampshire, September 2001

Let H be a separable complex Hilbert space and let B(H) be the set of all bounded
operators on H. In this dissertation, we show that if S is a n-dimensional subspace of
B(H), then S is [V/2n]-reflexive, where [t] denotes the largest integer that is less than or
equal to ¢.

We obtain some lattice-theoretic conditions on a subspace lattice £ which imply algl
is strongly rank decomposable. Let S be either a reflexive subspace or a bimodule of a
reflexive algebra. We find some conditions such that T has a rank one summand in §
and $ has strong rank decomposability. Let S(L) be the set of all operators on H that
annihilate all the operators of rank at most one in algL. Katavolos, Katsoulis and Longstaff
show that if £ is a subspace lattice generated by two atoms, then S(L) is strongly rank
decomposable. They ask whether S(L) is strongly rank decomposable if £ is an atomic
Boolean subspace latttice with more than two atoms. For any n > 3, we construct an
atomic Boolean subspace lattice £ on H with n atoms such that there is a finite rank
operator T" in S(L) such that T' does not have a rank one summand in S(£). This answers

their question negatively. We also discuss isomorphisms of reflexive algebras.

vi
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We introduce a new concept called “bounded reflexivity” for a subspace of operators
on a normed space. We explore the properties of bounded reflexivity, and we compare
the similarities and differences between bounded reflexivity and the usual reflexivity for a
subspace of operators. We discuss the relations of bounded reflexivity of subspaces of B(H)
and complete positivity of elementary operators on B(H). As applications of bounded
reflexivity, we give shorter proofs of some well known results about positivity and complete
positivity of elementary operators. By using those ideas, we study properties of a C*-
algebra in which every n-positive elementary operator is completely positive. We study
the derivations in nonselfadjoint algebras. We research derivations on a nest subalgebra of
von Neumann algebras. We also consider two cohomology theories, the norm coutinuous
cohomology and the normal cohomology on some nonselfadjoint algebras. Those algebras
contain reflexive algebras whose invariant subspace lattices are tensor products of nests and
reflexive algebras whose invariant subspace lattices are generated by two atoms. We obtain

for those algebras A that H?(A,B(H)) = H®(A, B(H)).

vii
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Introduction

Operator algebras originated in the work of von Neumann, in particular in his search
for a natural mathematical frame for Quantum Mechanics, and in the work of Gelfand and
Naimark. Operator algebras can be viewed as a discipline encompassing Noncommutative
Analysis, Geometry and Topology. Operator algebras are undoubtedly one of the mathe-
matical fields most notable for the depth of the problems, the richness of new ideas, and the
numerous connections to a variety of other fields. In addition the field offers great potential
as a unifying language and as a source of illumination, helping to explain other problems
and providing a framework for further research.

In the 1960s, because the theory of selfadjoint operators and operator algebras had un-
dergone a vigorous and moderately successful development, people began to investigate how
far the theorems of selfadjoint theory could be generalized and what forms they should take
in the new context. In [54] Kadison and Singer introduced triangular operator algebras.
Non-selfadjoint operator algebras really began with their pioneering paper “Triangular op-
erator algebras”. Nest algebras were introduced by Ringrose as generalizations of certain
triangular algebras. Now nest algebras play an important role in non-selfadjoint algebras
(see [20]). It was Ringrose’s proof that complete nests are reflexive that was the starting
point for Halmos’s introduction of reflexive algebras and lattices. We can consider that the
non-selfadjoint generalizations of von Neumann algebras are the reflexive algebras. The

notion of reflexivity was first introduced by Halmos in 1971 for subalgebras of algebra
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B(H). Loginov and Sulman [79] extend reflexivity to include subspaces B(H) which are
not necessarily algebras.

Now we introduce some basic notation and some definitions. Standard terminology and
notation will be used. The Hilbert spaces which we consider are all complex and separable.
The terms operator and subspace mean bounded operator and closed subspace respectively.
We denote by B(H) the set of all operators on H, K(H) the set of all compact operators
on H and F(H) the set of all finite rank operators on H. For any subset S of B(H), define
S = {5(") € B(H™): S € S}, where H™ is the direct sum of n copies of H and S is
the direct sum of n copies of S acting on H(™ . For z, y in H, let £ ®y denote the rank-one
operator u — (u,y)z, whose norm is [|z|||ly]|]. We let S* = {§* : § € S}. In this paper,
“C 7 is used for set inclusion while “ C ” is reserved for proper inclusion. For convenience
we disregard the distinction between a subspace of H and the orthogonal projection on it.

This dissertation contains three chapters. In Chapter One, we consider reflexivity of
subspaces of B(H), strong rank decomposability of reflexive algebras and bimodules of
reflexive algebras and algebraic isomorphisms of some reflexive algebras. In section 1.1, in
collaboration Z. Pan, the main result is Theorem 1.13. This Theorem answers a question
of Magajna [85]. In section 1.2, we obtain some lattice-theoretic conditions on a subspace
lattice £ which imply algC is strongly rank decomposable. Let S be either a reflexive
subspace or a bimodule of a reflexive algebra. We find some conditions such that T has
a rank one summand in § and S has strong rank decomposability. Let S(L) be the set
of all operators on H that annihilate all the operators of rank at most one in algl. In

[56], Katavolos, Katsoulis and Longstaff show that if £ is a subspace lattice generated by
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two atoms, then S(L£) is strongly rank decomposable. For n > 3, we construct an atomic
Boolean subspace lattice £ on H with n atoms such that there is a finite rank operator
T in S(L) such that T does not have a rank one summand in S(L). This answers their a
question in [56] negatively. In section 1.3, we discuss isomorphisms of reflexive algebras.

Chapter 2 studies bounded reflexivity and applications. In section 2.1, together with
Z. Pan, we introduce a new concept “bounded reflexivity” for a subspace of operators on a
normed space. We explore the properties of bounded reflexivity, study the similarities and
differences between bounded reflexivity and the usual reflexivity for a subspace of operators.
In section 2.2, we discuss the relation between bounded reflexivity of subspaces of B(H)
and complete positivity of elementary operators on B(H). As applications of bounded
reflexivity, we give shorter proofs of some well known results about positivity and complete
positivity of elementary operators. In section 2.3, we use the ideas in sections 2.1 and 2.2,
to study the properties of a C*-algebra on which every n-positive elementary operator is
completely positive.

In [99], Sakai proves that if A is a von Neumann algebra, then H!(A, A) = 0. It is an
open question whether for any von Neumann algebra A, H?(A,.A) = 0. For non-selfadjoint
algebras, in [64], Lance shows that if A is a nest algebra then H*(A, B(H)) = 0.

In the last chapter, we unify some results on derivations by considering derivations from
an algebra A containing all rank one operators of a nest algebra into an A-bimodule B.
We study derivations on nest subalgebra of von Neumann algebras. We also consider two
cohomology theories, the norm continuous cohomology and the normal cohomology on some

nonselfadjoint algebras. These algebras contain reflexive algebras whose invariant subspace
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lattices are tensor products of nests and reflexive algebras whose invariant subspace lattices

are generated by two atoms.
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Chapter 1
Reflexive Subspaces and Rank Decomposability

Let H be a complex separable Hilbert space. For any set F of subspaces of H, we define
algF ={T € B(H): TM C M, for any M € F}.

Obviously for any collection F of subspaces, algF is a weakly closed subalgebra of B(H)
containing I.

For any subset A of B(H), the set of invariant subspaces of A is denoted by latA. Thus
latA={M:TM C M, for any T € A, M is a subspace of H}.

Let A be a subalgebra of B(H). Obviously A C alglatA. We say that A is reflexive if
A =alglatA.

For any subspace S C B(H), define ref(S) = {T € B(H) : Tz € [Sz], for any = € H},
where [-] denotes norm closed linear span. S is called reflexive if ref(S) = S. S is called
n-reflexive if S(®) is reflexive in B(H(™). If A is a subalgebra of B(H) containing I, then

A is reflexive as an algebra if and only if A is reflexive as a subspace of B(H).
1.1 Reflexivity of finite dimensional subspaces

Let S be a subspace of B(H). A vector z € H is called a separating vector of S if

the map E; : S — Sz, § € S is injective. Let sep(S) denote the set of all separating
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vectors of S in H. The local dimension of S, denoted by k(S), is defined by k(S) =
maz{dim[Sz : S € §] : = € H}. It is clear that k(S) < dimS. If &imS < oo, it is
not hard to see that sep(S) # 0 if and only if k(S) = dim S. N-reflexivity of a subspace
of B(H) has been considered, for example, in [8, 61]. In [67], Larson proved that if S
is a finite dimensional subspace of B(H), then ref(S™) = SM + ref(S™® n F(H™)).
It follows immediately that S is n-reflexive if and only if S N F(H) is n-reflexive. Hence
we are only interested in which finite dimensional subspaces of F(H) are n-reflexive. In
[70], we show that if S is an n-dimensional subspace of B(H), then S is ([5] + 1)-reflexive.
In this section, our main result is Theorem 1.13. Theorem 1.13 proves that if S is an n-
dimensional subspace of B(H), then S is [v2n ]-reflexive. Example 1.14 shows that [v/2n ]
is the smallest integer such that all n-dimensional subspaces of B(H) are [v/2n ]-reflexive.

In the following, we always assume that S is a subspace of B(H), dim S < oo, and
S C F(H) unless stated otherwise. Before we prove our main result, we need several lemmas
and propositions.

Lemma 1.1[39]. The set sep(S) is an open subset of H.

Lemma 1.2{39]. The set sep(S) is either empty or dense in H.

Let M be a closed subspace of H and P be the orthogonal projection of H onto M.
Define Syr = {S € S : R(S) C M}, where R(S) is the range of S. Let 8§, be any vector
space complement of Sps in §. Define PS5, = {P1S: S € 8§}

Proposition 1.3. k(Sar) + k(P1S5,) < k(S)-

Proof. If P+S§, = 0, it is obvious that k(Syr) < k(S).
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If Sar = 0, it follows that S§; = S and
k(P1S§,) = maz{dim [P1Sz:S € 8] : = € H} < maz{dim [Sz]: z € H} = k(S).

Now suppose k(Sy) = m # 0 and k(P1tS§,) = | # 0. Let zp € H be a separating
vector of span{Si,...,Sm} C Sum. Similarly there exist P17y, ..., P1T; € S, such that
span{P*T}, ..., PLTi} has a separating vector. By Lemmas 1.1 and 1.2, we can choose
y € H with ||y|| small enough so that =y + y is a separating vector for span{Si, ..., Sm} and

span{P-LTh (St ] P-L'I'l}‘ For any Al! it} Am.v Bl g € Ca suppose
AS1(zo +Y) + -+ AnSm (2o + y) + mTi(zo +y) + - + wTi(z0 +y) = 0. (1.1)

Applying P to both sides of (1.1), it follows

p Py (2o + y) + - + P Ti(zo +y) = 0. (1.2)
Since zg + y is a separating vector of span{P*T1, ..., P*T;}, (1.2) yields g = ... = p; = 0.
Now (1.1) implies A; = ... = Ay, = 0, since zg + ¥ is a separating vector of span{Si, ..., Sn}-

Hence k(S) > k(Sy) + k(P+S§,). O

Proposition 1.4. Ifk(Sy) = dim M, then k(Sum) + k(PLS%,) = k(S).

Proof. By Proposition 1.3, we only need to prove k(S) < k(Snp) + k(PLS§,).

Suppose that k(Sy) = m and k(P1S§) = 1. If m +1 = dim S, it is obvious that
k(S) < k(Sm) + k(PES5). fm +1 <dim S, and m+1 < n < dim S, we take n linearly
independent operators from & in such a way that Si,...,5m, € Sum,Th,...,T;, € S§y and
m1 + 11 = n. For any nonzero z¢ in H, we show that there are Ay, ..., Apy, 1, ..., pg, , DOt all

zero, such that

A1S1zg + ... + Aml Sml.’L'o +mTizo+ ... + ni, 11(1.'1.’0 =0. (1.3)

7
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If I, <1, then m; > m, choose 1 = ... = gy, = 0. Since k(Spr} = m, it follows that there
are Ap, ..., Am,, not all zero, such that A;S1zg + ... + Am; Sm;zo = 0. Suppose that {; > [.
If span{P*+Tx,, ..., P-Ti,z0} = (0), then span{Tizo, ..., T, zo} C M. Because k(Spr) =
dim M, and I} +m1 = n > m+l, it follows that there are Ay, ..., A, , f£1, ---, i, , DOt 2ll zero,
satisfying (1.3). Without loss of generality, we may assume that {P+T}zy, ..., PATize},1 <
t < | is linearly independent, and P1Tjzy € span{P* Tz, ..., P Tizo},t +1 < j < I1.
Suppose that P+Tjzo = iil aijP Tz, t +1 < j < l3. Let B = T; — _Et:laijﬂ-. Then
= i=
Bjzg € M,t+1< j <!;. Since S;zg e M,1 <i<mjyanddim M =m <m; + -1 <

my + {1 — t, we may choose Ay, ..., A\, and pe41, .., g, ,, not all zero, such that
MS1zo + - + A Sy To + pe41Be41To + oo + py, Bryzo = 0. (1.4)

Hence

t t
A 8130+ oo+ Amy Sy Zo + pe41(Th, — Y @i e1 Ti) o + -+ p, (T, — D @i 1, Ti)zo = 0. (L.5)

i=1 i=1

By (1.5), it follows that (1.3) is true. O

Lemma 1.5[23]. Let V be a vector space over a field F and let L(V') be the set of all
linear transformations on V. Suppose S C L(V') and dim S is less than the cardinality of F.
Let z be a separating vector of S and W be a linear subspace of V' satisfying ScNW = (0).
Then for each vector y € V, there is a scalar A € F so that y + Az separates S and
Sy + Az) N W = (0).

Lemma 1.6. If k(S) =k, then there erists an M with dim M =k and dim S§; < k.

Proof. Since k(S) = k, there exist zo € H and Ay, ..., Ax € S such that

maz{dim [Sz] : z € H} = dim [A1z, ..., Axzo] = k-

8
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Let
M =[A;zo,.--, Axzo], S= span{Ay,...,Ax}, and Syr={S € S:R(S)C M}

It is enough to prove § = span{§ U Swm}- Since for any S € S, there exist Ay, ..., A\ such
that Szo = ﬁ:l AiAizo. Let Sy = S — ,é AiA;, then Sizo =0. If S; =0, then S € S. Next
we show that if S; # 0, then S; € Syy-

If S ¢ Sas, there exists y € H such that S1y ¢ M = Szg. Let W = [S1y]- Then
SzoNW = (0). By Lemma 1.5, there exists A € C such that y + Azy separates S and
S(y + Azo) N W = (0). Since Sy # 0 and S1zo = 0, it follows {A;,..., Ag, S1} is linearly
independent. Let S = span{Ai, ..., Ag, S1}. Next we prove that y+ Az separates S. For any
A€ 8t € C,if (A+tS;)(y+Azo) = 0, then A(y+Azo) = —tSyy. Since S(y+Azo)NW = (0),
it follows that ¢ = 0 and A(y + Azg) = 0. Since y + Az is a separating vector of S, we have
A = 0. Hence y + Azg separates S, which implies k(S) > & + 1, a contradiction. O

Definition 1.7. Suppose S is a subspace of B(H). We say S has property A if for
any subspace S; of S, we have k(S1) > {V2dim S1 — 1/2}, where {t} denotes the smallest
integer that is greater than or equal to ¢.

We say S has property B if there exists a nonzero subspace M of H such that k(Sar) =
dim M.

Remark It is clear that if S has property A, then so does any subspace of S. If S has
property B, then so does any subspace of B(H) containing S.

For z,y € H, let £ ® y denote the rank-one operator u — (u,y)z.

Lemma 1.8[49]. Let A,B € B(H) and S = span{A,B}. Then k(S) = 1 if and only

if one of the following holds:
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(1) dim S =1,
(2) there exist zg, 1,29 € H such that A =29 ® z1, B = 1o ® z2.

Lemma 1.9. Suppose dim S =n > 2. If k(S) < {V2n — 1/2}, then S has property

Proof. If n =2, then k(S) = 1. Lemma 1.8 now implies that S has property B.

Suppose the statement is true for all S with 2 < dim S < n —1,n > 3. For any &
with dim S = n, let k(S) = k. By Lemma 1.6, there exists a subspace M of H such that
dim M =k and dim S§; < k.

If Sar = S, clearly k(Spr) = k(S) = dim M.

If Spr C S, then let P be the orthogonal projection of H onto M. We have, for any

S PLSS, # (0), so k(P1S§,) > 1. Hence k(Spr) < k — 1, by Proposition 1. 3. Since

k < {V2n —1/2}, we have {v2n ~1/2} -1 < {/2(n —k) —1/2}. So k-1 < {V/2n —
1/2} —1 < {VZm —F) — 1/2}. Hence k(Sy) < {vZm —F) — 1/2} < {v2&m Sn7 — 1/2}.
( Since dim Sy +dim S§; = n, it follows that dim Sy = n —dim S§,. Since dim S§; <k,
it follows that dim Sar > n — k.) By the induction hypothesis, Sas has property B. It
follows that S has property B. O

Lemma 1.10. Ifdim S =n and S has property A then S is [v/2n |-reflexive, where
[t] denotes the largest integer that is less than or equal to t.

Proof. If n =1, Lemma 1.10[60] implies that S is reflexive.

Suppose the statement is true for all S with property A and dim S < n —1,n > 2.
Suppose dim S = n, S has property A, and k(S) = k. Since S has property A,k >

{v2n —1/2}. If k = n, then S has a separating vector, so S is 2-reflexive. Hence S is

10
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[V2n ]-reflexive, since n > 2 and [V2n ] > 2.

Suppose that {v2n —1/2} < kK < n—1. Let m = [y/2n]. Since k(S) = k, there
exist 71 € H and {4y,...,A} C S such that {A;z;}%, is a basis of Sz;. Suppose § =
span{Ai,...,An}. There exists a unique ¥ x n complex matrix (ai) with a;; = 0(z # j),
aj; = 1{(j < k)and Ajz; = Z:kla,-inzl, j =1,...,n. Nest we prove that if (™) ¢ ref(S(™),
then T' € S. For any zo,...,z, € H, there exist scalars ¢y, ..., ¢, such that

Tz, Az Anzi
=t : F ot tn : : (1.6)

Since T'z; € span{A;1z1, ..., Apnz1}, there exist y;, ..., ux such that

k
Tz =Y Az (1.7)
=1
By (1.6) and (1.7), we have
k n k
Tzy = Zl‘iAizg + Z ti(Aj — Z a;jAi)zg, g =2,...,m. (1.8)
=1 j=1 i=1
Let
k k
Ty=T—- ZuiAi, and B; = Aj — Zaiin. (1.9)

Note Bj =0 for j =1,...,k. By (1.8) and (1.9), we have

T1$2 Bk+1:L'2 Bn$1

=1trq1 : +.otin

T1 Tm Bk+1xm Bn_.'L'm

By the induction hypothesis, we have that span{Bkt1,..., Bn} is [V/2(n — k) ]-reflexive.
Since k > {V2n — 1/2}, we have [V2n ] -1 = m —1 > [\/2(rn — k) |. It follows that

Ty € span{Bi,1,...,Br}. Therefore T € S§. O

11
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Proposition 1.11. Ifdim [SH] =k, then S is k-reflezive.

Proof. Since dim S =n, S C F(H), and dim [SH| = k, there exists an orthogonal
projection P satisfying dim PH = m < oo and PSP = S. So we may assume that S is
a subspace of M,(C). Let {e;,-..,ex} be an orthonormal basis of SC™ C C™. Extend
this to an orthonormal basis {ey,..., €k, €k+1,---»em} of C™. Clearly S is a subspace of
R = {(rij) € Mn(C) : r;; = 0, for any ¢ > k}. It is easy to prove that R* is reflexive.
Since R*() has a separating vector, it follows that R*() is elementary, by Proposition 3.2
[8]- By Proposition 2.10 [8], it follows that S*(¥) is reflexive. Hence S () is reflexive. O

Theorem 1.12. Ifdim S = n,k(S) =k, then S is k-reflezive.

Proof. If S has property A, by Lemma 1.10, we have S is [v2n |-reflexive. Since
k> {v2n —1/2} > [/2n ], it follows that S is k-reflexive.

(i) Suppose S does not have property A. Thus there exists a subspace S; of S such that
k(S1) < {V2n —1/2}. By Lemma 1.9, S; has property B. Hence S has property B.

(ii) Let M be a maximal subspace of H such that k(Sy/) = dimn M. Let P be the
orthogonal projection of H onto M.

If Spr C S, we prove next PLS has property A. If property A fails, then (i) implies

that P1S has property B. Thus there exists a subspace N of H such that
k((PLtS)N) =dim N. (1.10)
By (1.10), we have N C PLH. Let M = M & N. By Proposition 1.3,

k(Syp) = k((Syr)pg) + K (PH(Sir)a)

= Kk(Sm)+ k(PtSy)

12
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= k(P1Sy)+dim M
= k((P'S)y)+dim M
= k((PtS)y)+dim M

= dim N+dim M =dim M.

Thus k(Sy;) = dim M, contradicting the maximality of M.

Suppose dim M = m and dim (P*S) =I. Let r = [V2l]. We show S is (m +r)-reflexive
by induction on I.

If { =0, then [SH] = M. By Proposition 1.11, it follows that S is m-reflexive.

Suppose the statement is true for all dim (P+S) <! -1, [ > 1. Suppose dim P1S = 1.
Since S = Spr + 8§, we have PLS = PLS§,. If {Ay, ..., A5} is a basis of S§;, we can easily
prove that {PLA;}{_; is linearly independent, so s = I. If k(PL1S) = J, then there exists
an z; € H and {4y, ...,4;} C 8§ so that {PLAzy,..., PLA;x,} is linearly independent.

Let {A;41,...,An} be a basis of Spr. It follows that {Aq,...,A,} is a basis of S. Since
P-'-Ajzz:l € span{P+A;z;, ..., PLA;z},J+1< j <n, we have
J
P*Ajz; = ayPt Az, J+1<j<land P Ajz; =0,l+1<j<n. (1.11)
i=1
If T € B(H) and T(™*") ¢ ref(S(™+7)). For any 2, ..., Zm+,r € H, there exist ¢1, ..., t, SO

that
T:Bl A]_IE]_ Anxl

=t : Foe by : . (1.12)

TTmir A1Tmir AnZTmir

Since T'z; € span{Aiz1, ..., Anz1}, it follows that P1Tz, € span{PL1Az,,...,P1 A z;}.

13
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Hence there exist vy, ..., vs so that

J
PiTzy =) viPltAiz;. (1.13)
=1
By (1.11) to (1.13), we have
J 4 n
T.’Z,'g = Z(Ui — Z tja,-j)A,-:z:g + Z tiA.i:L'g, g=2,...,m+r. (1.14)
i=1 j=J+1 i=J+1

Let

J J
C=T—Z‘viAi, Bj=Aj—Za{in, J+1<j<I, Bj=A;,l+1<j53<n. (1.15)

i=1 i=1

By (1.14) and (1.15), we have
Czy Briizo Bpzs
=ts41 : + ..+ tn : .
CZmir Bii1Tmyr BnZmir

Let S = span{By41, ..., Bn}. Then dim PLS§ <1~ J and k(Sp) = k(Sar) = dim M. Since
P1S has property A, we have that J > {v21 —1/2}. Som +r—1>m+[V2(-J)] >
m+ [m ]. By the induction hypothesis, we have C € span{Bj41, ..., Br}. Hence
T € span{Ai,...,A,} = S. By Proposition 1.4, k = k(Sy) + k(PLS$) = m + k(PLS).
Since P1S has property 4, and k(P+S) > {v/2I-1/2}, it follows that k > m+{v2[-1/2} >
m + [V2l |. Hence S is k-reflexive.

If Spr = S, then S is k-reflexive by Proposition 1.11. O

Theorem 1.13. Ifdim S =n, then S is [V2n |-reflezive.

Proof. If n = 1, 2 and 3, Theorem 3 [70] implies the result. Suppose the result holds for
dim § <n—1,n>4. Let dim S = n and suppose k(S) = k. If k < [v/2n ], by Proposition
1.12, it follows that S is [v/2n ]-reflexive.

14
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If £k > [V2n ] then k > {v/2n — 1/2}. If £ = n, then S is 2-reflexive. Hence S
is [V2n ]-reflexive. If [V2n | < k < n — 1, using the same argument as Lemma 1.10,
we have dim span{Bg+1,..-,Bn} < n — k. By the induction hypothesis, it follows that
span{Byiy1,---, Ba} is [\/2(n — k) |-reflexive. Since ¥ > {v/2n—1/2}, it follows that [v/2n ]—
1> [\/2(n — k) |- Thus span{Bgy1,--., Ba} is ([V2n ] — 1)-reflexive, so S is [v/2n ]-reflexive.
O

Example 1.14. Let S; be the set of all £ x k£ upper triangular matrices with zero
trace. We may show dimn S = 5(%1 — 1 and &; is not (k — 1)-reflexive. For any positive

integer [, one can easily show that there exists a positive integer k such that

k(k+1) C1<i< (k+1)(k+2)

5 < 5 1. (1.16)

For any positive integer [, choose k such that (1.16) holds and let m =1 — (ﬁklel —1). Let
S = Sk ® A, where A,, = {diag(ai,---,am) : a; € C}. It is easy to prove that S is not
([V2l] — 1)-reflexive.

Remarks (1) Theorem 1.13 answers a question of Magajna [85]. It indicates that
if § is n-dimensional subspace of B(H), then [v/2n ] is the smallest integer such that all
n-dimensional subspaces of B(H) are [v/2n |-reflexive.

(2) By the proof of Theorem 1.13, we have that if k(S) > n — 1, then S is 2-reflexive
and that if k(S) > n — 4, then § is 3-reflexive. This improves Theorem 3.6 [23].

In the following, we give an application of Theorem 1.13.

Theorem 1.15. If ®(-) = igjl ai(-)b; is an elementary operator on A, {a;},{b;} are sub-
sets of a C*-algebra A, then ® is completely positive if and only if ® is maz{[\/2(n — 1) ],1}-
posttive.

15
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The proof is similar to the proof of Theorem 6 [13], so we leave it to the reader.
Remark Insection 2.2.1, we improve Theorem 1.15. We show that if ¢ is [\/n ]-positive,

then ¢ is completely positive.

16
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1.2 Decomposability of finite rank operators

Let H be a complex Hilbert space. By a subspace lattice on H, we mean a collection £
of subspaces of H with (0), H in £ and such that for every family {M;} of elements of L,
both NM, and VM, belong to £, where VM, denotes the closed linear span of {M;}. Let
L be a subspace lattice on H and let £+ = {I — P : P € L}. We have algLt = (algl)".
A totally ordered subspace lattice is called a nest. A subspace lattice £ is distributive if
Kn(LvM)=(KNL)V(KnNM) holds identically in £. We say that L is complemented
if for every L € L, there exists L' € £ such that L'NL = (0) and L'NL = H. A
complemented and distributive subspace lattice is called a Boolean lattice. An element L
of a subspace lattice £ is called an atom if the condition (0) C K C L (K € L) implies
either K = (0) or K = L. A subspace lattice is atomic if each element of the lattice is the
closed linear span of the atoms it contains. If K, L € £, we denote by L_ the subspace
L.=viMeLl:LgM}byKy=V{LeL:KZL }andby Ky =A{LeL:LZK}.
By convention Hy =N = H, (0)—- = V@ = (0). Complete distributivity is a much stronger
condition than distributivity. The complete distributivity of £ is equivalent to K = Ky for
all K € £. An element L in L is completely meet primeif L 2 L. An element M in L is
completely joint prime if M & M_.

If M is a subset of H, we denote by [M] the norm closure of span{z : z € M}. Let
R and T be finite rank operators on H. We say that R is a summand of T if rankT =
rankR + rank(T — R). If S is a subset of B(H), S is said to be rank decomposable

if each finite rank operator in S is a sum of rank one operators in S. We say that S is

17
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strongly rank decomposable if, for each 7 > 1, each operator in S of rank r can be expressed
as the sum of r rank one operators in S.

Finite rank operators and rank one operators have been used extensively in the study of
nest algebras and related non-self-adjoint reflexive algebras. By [46], we know that if Lisa
nest or an atomic Boolean subspace lattice on H, then algLl is strongly rank decomposable.
In [75], we improve these results. Erdos and Power [30] prove that if NV is a nest and §
is a o-weakly closed bimodule of algN, then S is strongly rank decomposable. In [48],
Hopenwasser and Moore construct a totally atomic commutative subspace lattice £ and a
rank two operator in algL which cannot be written as a sum of rank one operators in algL.

Let S be either a reflexive subspace or a bimodule of a reflexive algebra. In this section,
we find some conditions which imply T has a rank one summand in S, where T" € SN
F(H). We also obtain some necessary and sufficient conditions such that S is strongly rank
decomposable. For n > 3, we construct an atomic Boolean subspace lattice £ on H with
n atoms for which there is a finite rank operator T in S(L) such that T does not have a
rank one summand in S(£), where S(£) is the set of all operators on H that annihilate
all the operators of rank at most one in algC. This answers a question in [56] negatively.
We obtain some lattice-theoretic conditions on a subspace lattice £ which imply algL is
strongly rank decomposable. Theorems 2.12 and 2.13 generalize the main results of [75].

In [29], Erdos gives some necessary and sufficient conditions such that a reflexive sub-
space of B(H) contains a rank one operator. In the following we obtain another equivalent

condition.

Lemma 2.1. Let S be a reflexive subspace of B(H). Then e ® f belongs to S if and

18
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only if f € (span{y: e ¢ [Sy], y € H}) .

Proof. Suppose that e ® f € S. Since S is reflexive, it follows that for any y in H,
e® f(y) = (v, f)e € [Sy]. Hence ife ¢ [Sy], (v,f) =0. So f € (span{y : e & [Sy], vy €
H})*L.

Conversely, suppose f € (span{y: e ¢ [Sy], v € H})*-. Let y € H. Since e® f(y) =
(y,f)e and f € (span{y : e & [Syl, y € H})*, it follows that e ® f(y) = (v, fle € [Sy]-
Since S is reflexive, it follows that e® f € S. O

The following Lemma will be used repeatedly.

Lemma 2.2[46]. Let T be a finite rank operator and let A be a rank one operator
in B(H). Then A is a summand of T if and only if A is of the form (Ty) ® (T*f) (or
equivalently, T(y ® f)T'), where y and f are vectors in H and (Ty, f) = 1.

Theorem 2.3. Suppose that S is a reflerive subspace of B(H) and T is a finite rank
operator in S. Then T has a rank one summand in S if and only if there is an e in H such
that e € T(H) and e ¢ span{Ty : e ¢ [Sy|, y € H}, where T'(H) is the range of T.

Proof. Suppose that e € T(H) and e ¢ span{Ty :e ¢ [Sy], y € H}. Choose g € H
such that g € (span{Ty : e ¢ [Sy], y € H})*, (e,g) = 1, and take y € H such that
Ty = e. Thus (Ty,9) = (y,T*g) = 1. Hence for any y satisfying e ¢ [Sy], we have
(9, T*g) = 0. It follows that T*g € (span{y : e ¢ [Sy], y € H})*. Using Lemma 2.1,
e®T*g = (Ty) ® (T*g) € S. Using Lemma 2.2, e® (T*g) = (Ty) ® (T*g) is a rank one
summand of T in S.

Conversely, suppose that T has a rank one summand in S. By Lemma 2.2, there exist
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m and f in H such that

Tm® f)T = (Tm)Q (T*f) € S,

and

(Tm’f) =1= (m?T‘f)'

Let Tm = e. Using Lemma 2.1, we have T f € (span{y : e ¢ [Sy], v € H})*. Hence for
any v € span{y : e & [Sy], y € H}, (v,T*f) = (Tv,f) =0. Since (e, f) = (Tm, f) =1, it
follows that e ¢ T'(span{y : e ¢ [Sy], y € H}) = span{Ty:e ¢ [Sy], y€ H}. O -

Corollary 2.4. Let M and N be nonzero subspaces of H satisfying M NN =0 and
MV N =H and let L = {(0),M,N,H}. Then every o-weakly closed algC-bimodule S is
strongly rank decomposable.

Proof. By Theorem 2.2[61] and Theorem 3.1[4], it follows that S is reflexive. By
Theorem 2[45], we know that S is determined by an order homomorphism ¢ of S. Let ¢

be any order homomorphism of £ and let
M={TeB(H):(I-¢(E))YTE=0,E e L}

By the symmetry of M and N, we only need to prove M has strong rank decomposability
in the following cases.

1)¢:M—> M, N0,

2)¢: M —> N, N— 0,

B)¢:M— N, N> M,

4)dp:M—> M, N— N,

(5) ¢: M H, N+ 0,
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For cases (1) to (4), we can easily prove the result using Theorem 2.3.

In case (5), M = {T € B(H) : TN = 0}. Let P denote the projection on N. Then T is
in M if and only if TP = 0. Hence M has strong rank decomposability. O

Remark In Corollary 2.4, we can prove that if V is any normed closed subspace of
B(H) which is algL-bimodule, then V is strongly rank decomposable.

If £ is a subspace lattice on the Hilbert space H, let S(L) denote the set of all operators

on H that annihilate all the operators of rank at most one in algL, that is
S(L)={T € B(H) : tr(TR) =0, for every R € algLl of rank at most one}.

Thus S(L) is an algC-bimodule.

Lemma 2.5[56]. For any subspace lattice L on H,
S(L)={T € B(H): T(K) C K_ for every K € L}.

Lemma 2.6[56]. Let L be a subspace lattice on H and e,f € H. The following are

equivalent.

(1) e® f € S(L),

(2) e€ L and f € (Lg)* for some L € L.

Theorem 2.7. Let L be a subspace lattice and let T € S(LC)NF(H). Then T has a rank
one summand in S(L) if and only if there ezists an L € L such that T(H)NL € T(Ly).

Proof. Suppose that there exists L € £ such that T(H)N L € T(Ly). Choose g in H
such that v € Lg, (Tv,g) = 0, and let e € L such that Ty = e, (e,g) = (Te,g) = 1. We
have

(Ty,9) = (v, T"g9) =1 and T(y®@g)T = (Ty) ® (T"g) € S(L).
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By Lemma 2.2, it follows that T has a rank one summand in S(£).

Conversely, suppose T has a rank one summand in S(£). By Lemma 2.2, there exist

e, f in H such that
T(e® f)T =(Te)®(T*f) € S(L£) and (Te, f) = 1.

By Lemma 2.6, there exists L in £ such that Te € L and T*f € (Lg) . Since Te € L,
(Te, f) =1 and for any v € Ly, (Tv, f) =0, we have that T(H)NL € T(Lg). O

Example 2.8. For n > 3, there is an atomic Boolean subspace lattice L with three
atoms such that S(£) is not strongly decomposable.

Proof. Let H be a finite dimensional Hilbert space and let A be an invertible operator in
B(H). Define L = {(z,0,0) : z € H}, L, = {(z,Az,0) : z € H} and L3 = {(z, Az, Az) :
z € H}. By Lemma 6.3[2], it follows that {L;, L2, L3} is the set of atoms of an atomic
Boolean subspace lattice.

Define T : Ly — Lo V L3, by (z,0,0) — (0,0,Pz), T : Ls - L, V L3, by (z, Az,0) —
(0,Pz,Pz),and T : L3 — LaVL,, by (z, Az, Az) — (0, Pz,0), where P is a finite projection
in B(H). We can extend T to a bounded finite rank operator in B(H & H & H). By the
definition of T, it follows that T € S(L). We have that T(H)NL; =0, T(H)N Ly, =0 and
T(H)N Lz = 0. We can check that T(H) N (L2 V L3) C T(LaV L3), T(H)N(Ly VvV L) C
T(La Vv Ly) and T(H)N(Ly V L3) C T(L, V L3). Hence by Theorem 2.7, T does not have a
rank one summand in S(£), where £ is the subspace lattice generated by L;, Ly and Lj.
Let m =n — 3 and let £; be an atomic Boolean subspace lattice with m atoms on Hilbert
space H;. Define

L=CxLi={LeM|LeLl, MecL,}
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Then £ is an atomic Boolean subspace lattice on H & H; with n atoms. Since

N A 0
algl = : A€algl, B €algly },
0 B
it follows that
R Ann A
S(L) = : Ay €S(L), A2 € S(Ly), A2 € B(H,,H) and Ay € B(H, H;)
A2 Ax
Let
N T 0
T =
00

Then T does not have a rank one summand in S(£).

Remark The above Example answers a question in [56, p31] negatively.

Theorem 2.9. Suppose that L is a subspace lattice and Rad(algL) is the radical of
algC. Let T € Rad(algL) N F(H). Then T has a rank one summand in Rad(algL) if and
only if there ezists an M in L such that T(H) N M € T(M_vV M).

Proof. Suppose that T(H)NM ¢ T(M_ v M). Choose g in (T(M_V M))+, e in
H such that (T'e,g) = 1 and Te € M. Then (e,T*g) = 1, (Tz,g) = (z,T*g) = 0 for
any z € M_V M. By T*g € (M_ VvV M)+, Te € M and Lemma 3[55), it follows that
(T'e) ® (T*g) € Rad(algLl). By Lemma 2.2, T has a rank one summand in Rad(algL).

Conversely, suppose T has rank one summand in Rad(algL). It follows that there exist
e, f € H such that T(e ® f)T = (Te) @ (T*f) € Rad(algl). By Lemma 3[55], there exists
M in L such that T*f € (M_V M)+, (Te,f) = 1. Hence T(H)NM € T(M_V M). O

Let £; and £, be subspace lattices on Hilbert spaces H; and Hy. Then the ordinal sum

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L3 + Lo is defined as the set of subspaces of H; @ H> given by
L+ L={Lo0: Le LL1}JU{Hi®&M: M€ L>}.

Theorem 2.10. Let £; and Ly be subspace lattices on Hilbert spaces Hy and Ho. If S(L1)
and S(L2) are strongly rank decomposable, then S(L1 + L3) is strongly rank decomposable.

Proof. Since

A, T
alg(Ly + £3) = : A; €algl;, fori=1,2, T € B(Hy,H;)
0 A
we have
B, A
S(Ly1+ L2) = : B;eS(L;), fori=1,2and A€ B(Hy,Hy) p. (2.1)
0 B

Let T be a finite rank operator in S(£; + £2). Then

n A
T = , where T; € S(L;) fori =1, 2 and A € B(H,, Hy).

0 Ty

Suppose T7 # 0. Since §(L,) is strongly rank decomposable, we may choose e; € Hj,
f1 € H; such that T} (e; ® f1)T} is a rank one summand of T} in S(L;). Let e = e; 0. For

anyz =z1®z2 € HH® Hy, let f = f;d0 € H, ® Ho, then (z, f) = (z1, f1). It follows that

Ti(e1 ® i)Th Ti(e1 ® fL)TA
Te® f)T =

0 0
Since (Te, f) = (The1, f1) =1, (2.1) and T(e® f)T € (L1 + L3), it follows from Lemma 2.2
that T(e ® f)T is a rank one summand of T in S(L; + £L3).
If 7 = 0 and T # 0, we can similarly prove that T has a rank one summand in
S(Ly + L2).
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0 A
Suppose that T} = T» = 0. Then T = . Since B(H>», H;) is strongly rank
0 0

decomposable, it follows that T has a rank one summand in S(£; + £2).

Since T is any finite rank operator in S(L; + L), it follows that S(L; + £2) is strongly
rank decomposable. O

Let

Je={Lel: L#0)and L_ #H}, Pc={LeL:LZL_}.
By [17], we know that L € L is completely meet prime if and only if L = M_ for some
M e P..

Lemma 2.11[90]. Let K and L be subspaces of H and let F = i €e;® fi be a
rank n operator in B(H). If F(L) C K and f1 ¢ L+, then F can be 1;1n'tten as F =
& ® fi +§:2e,»®f,- with & € K.

Theorem 2.12. Let L be a subspace lattice on H such that Jp = Pr and V{L: L €
Jc} = H. Then algL is strongly rank decomposable.

Proof. Suppose that algL is not strongly rank decomposable. Then there is a rank n
operator T' = iijl e; ® fi in algL such that T does not have a rank one summand in algl.
Since H = V{M : M € J.}, it follows that there exists an M in J such that f; ¢ M+,

By Lemma 2.11, T can be written as

n
T=&®fi+) &®f,

=2
with €; € M. Let
N=n{LeJ::é €L} (2.2)
Then N € J- and é; € N.
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Now we show that €&, € N_. Suppose € ¢ N_. Since F* = fi ® é; + é:zfz ® e;, by
Lemma 2.11, we have that F* = g; ® & +§;2 7: ® h; with g, € (N_)~.

By é, € N and g; € (N_)t, we have that g; ® €; is a rank one summand of F* in
algCLt. Hence F has a rank one summand in algL, a contradiction.

Let W =N_NN. We have é&; € W and W € J.. By the assumption, W C N and
€, € W. It contradicts (2.2). O

Theorem 2.13. Let £ be a subspace laitice on H such that Jo =Pg and N{L_:L €
Jc} =0. Then algLl is strongly rank decomposable.

Proof. By Proposition 2.1[84], it follows that
Jer ={(M_)* : M € J¢}.

Since Jr = P¢, for any M € Jr, we have that (M_)L is completely joint prime. Hence
for subspace lattice £+, we have J;1 = P,1. Since N{M_ : M € J¢} = 0, it follows that
V{N : N € J..} = H. Since algL is strongly rank decomposable if and only if algl*t is
strongly rank decomposable, by Theorem 2.12, to prove the theorem, it is sufficient to show
that (L_)* € ((L-)*)- for any L € P.. Since ((L-)*)- = v{ML : M+ 2 (L_)+, Mt €
L1}, it follows that

(L-)h)- c L (2.3)

Suppose (L_)* C ((L-)*)-. By (2.3), it follows that (L_)* C L'. Hence L C L_. Since
L & L_, it is impossible. O
Corollary 2.14[75]. Let L be a subspace lattice on H. If L satisfies one of the

following conditions
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(1) VIK : K € Jc} = H and for each K in Jz, K_VK = H,

(2) {K : K€ Jc} =0 and for each K in Jz, K_.VK =H,
then algL is strongly rank decomposable.

If £ is a completely distributive subspace lattice, by [80] we have V{L : L € J} = H
and N{L_ : L € Jc} =0. By Theorem 2.12 or Theorem 2.13, we have the following result.

Corollary 2.15[90]. Let L be a finite distributive subspace lattice on H which satisfies
Jc = Pc. Then algL is strongly rank decomposable.

Lemma 2.16. Let N be a nest and let ¢ : E — E be an order homomorphism of N
into itself. Let

M={TeB(H):(I-E)YTE=0, forall E€ N}
and
S(M) = {S € B(H) : tr(RS) =0 for every R € M of rank at most one }.

Then T € S(M) if and only if T(E) C E.., where E. =V{F € N : F C E}.

Proof. By [30, p220], it follows that e ® f € M if and only if there is an £ € N such
that e € F and f € (E.)t. Hence tr(Se® f) = (Se, f) =0 for all R in M of rank at most
one if and only if S(E) C E.. O

Let NV is a nest. Define ¢ : E ~ E., where E.. = V{F € N : F C E}. It is easy to
check that ¢ is also an order homomorphism of A". By Lemma 2.16, S(M) = {T € B(H):
(I — $(E))TE =0, for all E € N}. By Lemma 1.2[30] , we know the following result is
true.

Corollary 2.17. IfN and S(M) are as in Lemma 2.16, then S(M) has strong rank
decomposabiliy.
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If £, and L, are subspace lattices, a mapping ¢ : £; — L, is called a complete lattice
homorphism if
$(Var) = Vé(ar) and ¢(Nax) =Ng(ax)
for every non-empty family {ax} of elements of £;.
Lemma 2.18. Let £; and L2 be subspace lattices on H and let ¢ : E — Ebea

complete lattice homomorphism of £, onto L5. Define
M={T € B(H): (I - EYTE =0 for all E € L,}.

Then e® f € M if and only if there ezists an M in L; such that f € (M_)1, e M.

Proof. Suppose e® f E M. Let M =nN{E € Ly: ec E}. Le¢e M =n{E € L; :
#(E) =M }. Since ¢ is a complete lattice homomorphism, it follows that ¢(M) = M.
If Ne€L£,,M Z N, then $(N) 2 (M) = M. Hence (n,f) = 0 for any n € N, and
(m,f)=0,forne M_.

Conversely, suppose that there exists an M € £; such that e € M and f € (M_)L. If
NeLiand NDM,then ND M, e® f(NNCMCN. If N € L; and N 2 M, then
e® f(N)=0. Hencee® f € M. O

Theorem 2.19. Let £;, L7 and M be as in Lemma 2.18. Suppose that V{M : M €
Jc,}=H and K_NK =0, forany K € Ji,- Then M is strongly rank decomposable.

Proof: Suppose that T € MNF(H)and T #0. Since T #0 and V{M : M € J;,} =
H, it follows that there exists £ in J, such that TE # 0. Choose e € E such that Te # 0.
Using T € M, we have Te € E. Since ¢ is a complete homomorphism of £; onto Lo, it
follows that E N E_ = 0. Hence there is fin E_" such that f(Te) =1. Using T € M, we
have T*E_" C (E_)*. Thus T*f € (E-)*. By Lemma 2.18 (T¢) ® (T*f) € M. Lemma,
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2.2 implies that T has a rank one summand in M. Since T is any non-zero finite operator,
it follows that M has strong rank decomposability. O

Theorem 2.20. Let £1,L2, M be as in Lemma 2.18. Suppose thatN{F_ : F € J¢,} =
0 and FV F_ = H for any F € Jz,. Then M has strong rank decomposability.

Since the proof is similar to the proof of Theorem 2.19, we leave it to the reader.

Lemma 2.21. Let L be a subspace lattice. f H=V{K: K€ Jc} and K_.VK=H
for any K in Jz, then K_NK =0.

Proof. Suppose K € Jz, K_NK #0. Since (KNK_)_ C K_ # H, it follows that
KNK_ € J¢. By hypothesis, (KNK_)V(KNK_)_=H. Hence ( KNK_)VK_=H
and K_ = H. This is impossible, since K € J-. O

A complex unital Banach algebra A is semni-simple if and only if it has no non-zero left
ideals consisting entirely of quasinilpotent elements. A is said to be semi-prime if it has no
non-zero left ideal whose square is zero. Clearly, A is semi-simple implies A is semi-prime.

By Theorem 1[82], and Lemma 2.21, we can obtain the following result

Corollary 2.22.  Let L be a subspace lattice satisfying V{L : L € J:} = H. The
following are equivalent.

(1) algLl is semi-simple,

(2) algL is semi-prime,

(3) foreveryLe€ Jo, LNL_=0and LVL_=H,

(4) for everyLe Jr, LVL_=H,

(5) for every L€ J;, LONL_ =0.

Remarks 1. In [82], Longstaff shows that (1) to (4) are equivalent.
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2. Corollary 2.22 implies that condition L_V L = H in Corollary 2.14(1) can be replaced

by any of the conditions (1) to (4) of Corollary 2.22.
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1.3 Isomorphisms of reflexive algebras

Let A, C B(H:) and A, C B(H3) be algebras. An algebraic isomorphism ¢ from A,
onto A3 is said to be spatial (or spatially induced ) if there exists an invertible operator
S € B(Hi, Hs) such that ¢(4) = SAS™1, for every A € A;. A slightly weaker condition
is that ¢ be quasi-spatial; in this case we drop the assumption that S be bounded but we
require that S be a closed densely defined, injective linear transformation, from H; onto a
dense subset of Hy, with the properties that

(1) if z belongs to the domain of S, then Az belongs to the domain of S, for every
A€ Ayq;

(2) if z belongs to the domain of S, then ¢(A)Sz = SAz, for every A € A;.

In [97], Ringrose proves that if alg/N; and algN> are nest algebras, then every algebraic
isomorphism from algN; onto algMN> is spatially induced. In [37], Gilfeater and Moore
partially improve the result of Ringrose, by proving that if £; is a completely distributive
commutative subspace lattice, then every rank-preserving algebraic isomorphism from alg£,
onto algLl, is quasi-spatially induced. Panaia [89] proves that if £; is a finite distributive
subspace lattice, then every rank-preserving algebraic isomorphism of algLl; onto algL; is
quasi-spatially induced. In [57], an example is given of an algebraic isomorphism between
two identical algebras determined by an atomic Boolean subspace lattice for which the
algebraic isomorphism is not spatially induced.

In this section, we prove that if £, L; (Z = 1,2) are J-subspace lattices, then every

non-zero single element of algL is rank-one, and any algebraic isomorphism between algL,
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and algLs is quasi-spatially induced. If £ is a reflexive and V-distributive subspace lattice
such that H = V{M : M € J}, we also prove (algL)" = algF, where F is atomic Boolean.

Let £ be a subspace lattice. The importance of J lies in its intimate relation with the
set of rank-one operators in algLl. The following lemma is due to Longstaff, and we will
use it repeatedly.

Lemma 3.1[80]. Let L be a subspace lattice. Then the rank-one operator e® f belongs
to algL if and only if there is L in L such that e € L and f € Lt.

Definition 3.2 A subspace lattice £ is called a J-subspace lattice if

(Wyv{L: LeJc}=H,

2yn{L_-: LeJc} =0,

(3)LvL_=H,forany L € Jg,

4 LNL_=0,forany L € J¢.

The class of J-subspace lattices is rich. Every atomic Boolean subspace is a J-subspace
lattice and for any J-subspace lattice both £1 and latalgL are J-subspace lattices. The
non-distributive pentagon subspace lattice is also in the class. We know that an atomic
Boolean lattice is determined by its atoms and a J-subspace lattice is not; different J-
subspaces can have the same sets of atoms. In [84], the connections between J-subspace
lattices and M-bases are studied

Let £ be a J-lattice and let {M;} cr be its set of atoms. Then Jz = {M;}rer. Let I

and J be disjoint subsets of . Then
(Vreer) n (VreJMr) =0.

Definition 3.3. An element T of algL is called single if whenever ATB = 0 with
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A,B€ A, then AT =00r TB=0.

Lemma 3.4[73]. Let L be a subspace lattice such that "{M_ : M € J:} =0 and
VIM : M € J:} = H. IfT is single in algL, then there ezists an M € J such that
T|ar # 0 and T|arr is an rank-one operator.

Theorem 3.5. Let L be a J-subspace lattice. Then a non-zero element T in algL is
single if and only if rankT = 1.

Proof. Let T be a non-zero single element in algf. By Lemma 3.4, there exists an M
in Jr such that T|as # 0 and T|ps is rank-one. For any L € J; and L # M, we will show
that T(H) C L_. Since M is an atom, it follows that M C L_,and T(M) C M C L_. Let
f € Lt be arbitrary. Choosee € L, e # 0 and m € ML, m #0. Let n € M with T'n # 0.

By Lemma 3.1, e® f and n ® m belong to algL. Since Tn € L_ and f € Lt it follows that
(e® /)T(n®m) = (Tn, fle@m =0. (3.1)

Since T is single and T'(n ® m) # 0, by (3.1), it follows that (e ® f)T = 0. Hence for any z
in H,

(Tz,fle=(e® f)Tz =0. (3.2)

By (3.2), we have that

Tze (LYHt=L_. (3.3)

By (3.3), it follows that T(H) CN{L_: L# M, L € J;}-

Let K be an atom and K # M. In the following, we show that

KnN{L_: L#M,L€ Jc}=0. (3.4)
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Suppose that this is not true. Then
Kn{L_: L#M, LeJc}=K. (3.5)

Since K # M and K is an atom, (3.5) implies that for any L # M, K C L_. Thus
K C K_. This contradicts the fact that KN K_ = 0. For any K # M, K € J., we
have that T(K) C K and T(K) CT(H) Cn{L_ : L # M,L € J¢}. By (3.4), it follows
that T(K) = 0. Hence T(span{L : L € J:}) C T(M). Since T is continuous and
V{L: L € Jrz} = H, it follows that T(H) C T(M). Thus T is a rank-one operator.

The converse is obvious. O

If £ is a subspace lattice on H, the ordered product L > L is the set of subspaces of
H®Hgivenby {L&M:L,MeL,MCL}

Lemma 3.6[73]. Let L be a subspace lattice as in Lernma 3.4. Then every non-zero
single element of alg(L > L) has rank-one if and only if every non-zero single element of
algLl has rank-one.

The following result is an easy conseqence of Theorem 3.5 and Lemma 3.6.

Corollary 3.7. If L is a J-lattice, then the non-zero element T of alg(L > L) is
single if and only if rank T = 1.

Theorem 3.8. Let L; and L2 be J-lattices. If ¢ is an algebraic isomorphism of algLy
onto algLls, then ¢ is quasi-spatially induced.

Using Theorem 3.8 and an argument similar to the proof of Theorem 7.2[37], we can
prove the following result.

Corollary 3.9. Let L be as in Theorem 3.8 and let 6 be a derivation on algl. Then

there is a linear transformation T such that §(A)z = T Az — ATz, for eny = € span{M :
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M e Jg}.

To prove Theorem 3.8, we need several lemmas. By Theorem 3.5, we have

Lemma 3.10. Let £; and Lo be as in Theorem 3.8. Let ¢ be an algebraic isomorphism
of algL; onto algls. Then ¢ maps rank-one operators in algl; onto rank-one operators in
algl,.

Let £;,7 = 1,2 be J-subspace lattices and ¢ be an algebraic isomorphism of algl;
onto algls. For any K € Jg,, since K € K_, we can choose fx € K and ex € K+
such that (fx,ex) = 1. Since ¢ is an algebraic isomorphism from algL; onto algls and
fx ® ex is a single element of algL,, it follows that ¢(fx ® ex) is a single element of
algl,. By Theorem 3.5, ¢(fx ® ex) is an rank-one operator in algLs, and thus is of the
form of by ® ax. Let L =N{M € L5 : bx € M}. Then by € L. In fact ax € Lt and
LeJg, IfMELyyM 2L, then by ¢ M. Since bx ® ax € algls, it follows that for
any z € M,bkg ® ax(z) = 0. Hence ax € M*. Since Lt =n{M+ : M 2 L, M € L,},
akx € Lt. Finally, since (fx ® ex)? = fk ® ek, (bx ® ax)? = ax ® bk and (bg,ax) = 1.

Lemma 3.11. Let K, L, ex, fx, ax and bg be given as above. Then the map
Sk :z+ ¢(z ® fr )bk is a linear bijection of K onto L and {SkK : K € Jr,} = J¢,-

Proof. It is clear that Sk is linear. The relation

(Skz)®arx = (¢(z®ek)bk)®akx = ¢(z®ek)(bk ® ak)
= ¢(z@ek)d(fk Dex) = d(zQex),
implies that if z € K, Sgz =0, then ¢(z®eg) = 0. Since ¢ is an algebraic isomorphism, it

follows that z = 0, and Sk is injective on K. Now we prove that Sk is surjective. For any

l € L and ! # 0, Lemma 3.1 implies that [ @ ax € algLly. Let ¢ (IR akx) =v@u € algLl,.
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Since lQ ax = (I®ax){(ak ®bk), it follows that v@u = (v®u)(fx Qex) = (fx,u)vRexk.
Hence (fg,u) # 0. Since v ® u(K) C K, it follows that v € K. If z = (fg,u)v, then
Sz = ¢(z R ex)bx = (v ®u)by = (I Qak)bx =1.

It is obvious that {Sx K : K € J,} € Jr,- Conversely let L € Jz,. Choose ax € Lt
and bg € L such that (bx,ax) = 1. Since ¢! is an algebraic isomorphism from algCl,
onto algl;, an argument similar to the argument for ¢ proves that there exists K in Jg,
such that ¢~ !(bx ® ax) = fk @ ex with ex € K+, fx € K and (fi,ex) = 1. For this K,
we have that Sg is a linear bijection from K onto L. O

Lemma 3.12. Let K, L, e, fx,ax,bx be as in Lemma 3.11. Then the map Tx : £ —
(¢(fk ®x))*aK is a linear bijection of K+ onto Lt and {Tx(K%): K € Jr,} = {L::Le

jCz}-

Proof. It is obvious that Tk is linear and Ty (K+) C LL. For any = € K+, the relation

b @ (Tkz) = ((fr ® )bk ® ax = (bk ® ak)P(fx ® z) = ¢(fk ® z),

implies that ¢(fx ® ) = 0, if Tkz = 0. Hence Tk is injective. For any I € LL, [ # 0, let
¢~ Hbk ® 1) =v®u and let y = (v,ex)u. Then Txy =! and y € K.

It is clear that {Tx (K1) : K € J;,} C{LL: L € Jz,}.

Conversely, for any L € Jr,, choose b € L, and a € Lt such that (b,a) = 1. By Lemma
3.11, there exists K in Jz, such that ¢~ (b ®a) = fx @ ex, ex € K+ and fx € K with
(Fx,ex) = 1. We have that T (K1) =Lt. O

Lemma 3.13. Let Sk and Tps be as in Lemmas 3.11 and 3.12 and let K; € T, t =
1,..,t. Then for any m € M=, (iil Sk.z:, Tmm) = (z,m), where z = _Zt:lx,-, z; € K;.

= i=

Proof. Suppose that Spr(M) = N. By Lemma 3.12, Tpr (ML) = N+, If K; # M, for
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any ¢ = 1,...,n, then Lemma 3.11 implies Sk, (K;) € N_. Thus (i Sk.zi, Tpyym) =0 =
i=1

(z,m). If there exists ig such that K;, = M (say ip = 1), then

(Z Sk:zi, Tasm) = (Sk 71, Ty m) = (21 @ dlek, )bk, , (¢(fx, @ m)) ak,)

=1

= (¢((fK1 ®m)($1 ®eK1)bK1:aK1) = (¢(f1(1 ® eKl)bKuaKl)(zl’m) = (.‘171,777-)- a

Let A = span{M : M € J,}. Foranyzin H, z = ﬁ:lzz:j with z; € M; and M; € J¢,.
i=
Let Sz = _Zp:l Snm;Tj-
j=

Lemma 3.14. Let S :span{M : M € J;,} = span{N : N € J,} be the linear map
as defined above. Then S has a closed extension.

Proof. Let = = ii zi, T; € M; and M; € J;,. Suppose that Sz = 0. By Lemma
3.11, we have that if ¢ # j, Sa, N Su; = 0. Since Sy, is injective, it follows that S is also
injective. Let (0,u) be in the closure of the graph of S. Let {z,} C span{M : M € J,}
such that (znp,Sz,) = (0,u),n — co. Let v € span{NLt : N € J;,}. By Lemma 3.12,
v = iTM,.mi, M; € Jz,,mi € M;t. By Lemma 3.13, (Szn,Tr.mi) = (Tn,m), for

=1

t t
> (Tn,mi) = (Szn, Y Trr;mi) = (Szn,v). (3.6)

i=1 =1

In (3.6), when n goes to infinity, we have (u,v) = O for any v € span{NL : N € J¢,}.
Since L3 is a J-subspace lattice, it follows that ©u = 0. O

Let S denote the closed extension of S in Lemma 3.14. By (3.6), we have that if y
belongs to the domain of S then (Sy, Taym) = (y,m), for any m € M and M € J¢,. Hence
S is also injective.

Proof of Theorem 3.8.
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To show that ¢ is quasi-spatially induced, we only need to prove that (i) the domain
of S is an invariant linear manifold of algL;, and (ii) ¢(4)Sz = SAz for any z in the
domain of S. By the definition of Sk, we have that SgAr = ¢(A)Skz, for any z € K.
Hence SAz = ¢(A)Sxz, for any = € span{K : K € Jr,}- For any z in D(S), there exists
{zn} C span{K : K € Jr,} such that (z,,Sz,) = (z,Sz). Since SAz, = ¢(A)Sz, and
z, = z, ST, — Sz we have that Az, — Az and SAz, = SAz, — ¢(A)Sz. Since S is
closed, it follows that Az € D(S) and SAz = ¢(A)Sz. O

In the remainder of the section, we consider the properties of double commutants of
some reflexive algebras.

Proposition 3.15. Let L be a subspace lattice such that H =V{M : M € J:}. Then
(algL)' is abelian.

Proof. Let A, B € (algL)'. By Corollary 2.3[72], for any M € J, there exist scalars
Aa and Ag such that M C ker(A — A4I) and M C ker(B — AgI). Hence for any m € M,
ABm = BAm. Since H = {M : M € J.}, it follows that ABz = BAz, forany z € H. O

Corollary 3.16. If L is a J-subspace lattice, then (algL)' is abelian.

A subspace lattice L is called V-distributive if L N (VierL;) = Vier(L N L;), for any
index set I and any L,L; € L. A subspace lattice L is said to be completely distributive

if the following identity holds for arbitrary index sets:

VA L) = V (A Liyg)-

i€A jEB; yYellB; €A

Theorem 3.17. Let L be a reflexive subspace lattice such that H =V{M : M € J.}-
Suppose that L is V-distributive. Then

(1) (algLl)" = algF, where F is an atomic Boolean lattice.
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(2) For each finite set Ly, ...,L, of atoms of F, L1 + ... + L, is closed.
Proof. (1) By Corollary 2.3[72], for any M € J. and for each T € (algL)’ there is a

unique eigenspace M7 of T containing M. Define
Ky = 0{M7:T € (algL)'}.

By remark [72, p175], it follows that for any M, N € Jg, either Kjy = Ky or KpyN Ky = 0.
Let F be the subspace lattice generated by 0, H and all K for any M in J.. By the
hypotheses, F is V-distributive. By Proposition 3.2[84] and the fact that F is V-distributive,
we have that F is a J-subspace lattice. By Theorem 2.1[84], it follows that F is atomic
and Boolean.

(2) We prove (2) by induction. For n = 2, by Proposition 3.2[84] and (1), there exist
M€ Jz,i=1,2such that L; = Kj:,i = 1,2, where M* € J;. Since K =nN{Mir:T¢€
(algl)'},i = 1,2, where M is the unique eigenspace of T containing M*, and L; N Ly =0,
it follows that there exist T € (algL)’ and distinct scalars A\, u such that L; C ker(T — \I)
and Ly C ker(T —pI). Let P = (T — AI)/(u— \) € (algL)'. Then Py, =0,P|;, = I, and
therefore the sum of L; + Lo is closed.

Let Ly, ..., L, be distinct atoms of F. For the pairs {L, L;},7 = 2, ...,n+1, there exist
operators P; € (algl)’ such that Pi|g, =1, Pz, =0,1 =2,..,n+1. Let Q = P, --- Pyy,.
By Proposition 3.15, (algl)’ is abelian. Thus this product is independent of the order of
P;. Thus Q;|r, =0,i =2,..,n+1 and Q;|z, = 1. Hence L; + V}*}'L; is closed. By the
induction hypothesis, L1 + ... + L4 is closed. O

Suppose that £ is a commutative subspace on H and £ is not completely distributive.

Then L is V-distributive and reflexive. Let L= {L &0 : L € £} U {H & H}. Then L is
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V-distributive and reflexive such that H ® H = {M : M € J:}. This shows that Theorem
3.17 improves Theorem 5.4[62].
Remark When I finished section 1.3, W. Longstaff told me that O. Panaia has inde-

pendently proved Theorem 3.8.
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Chapter 2

Boundedly Reflexive Subspaces and Applications

2.1 Boundedly reflexive subspaces of B(H)

In this section, we study a new type of reflexivity, which we call “bounded reflexivity”,
of a subspace of operators on a normed space. The concept of “bounded reflexivity” is
implicitly contained in some papers, for instance, [50] and [76]. It plays an important role
in the study of complete positivity of elementary operators (see [16]).

Let Y be a complex normed space and B(Y') be the set of all bounded linear operators
on Y, and F(Y) the set of operators with finite rank. We use F,(Y) to denote the set of
operators in B(Y') with rank less than or equal to n. If § is a subspace of B(Y), we let
SF=SNF({). If S is a subset of B(Y) and r > 0, define S, = {T" € S: ||T|| < r}. Let
S be a subspace of B(Y'), and let refo(S) = {T € B(Y) : Ty € Sy, forally e Y}. S'is
said to be reflexive if ref(S) = S and S is said to be algebraically reflexive if ref,(S) = S.
Let refy(S) = {T € B(Y) : tilere exists My such that Ty € [Sary), forally € Y},
where [-] denotes the norm closure, and let ref,;(S) = {T € B(Y) : there exists an Mt >
0 such that Ty € Sppy, forally € Y}. S is called boundedly reflexive if S = refy(S)
and algebraically boundedly reflexive if refg,(S) = S. S is said to be boundedly (resp.
algebraically boundedly) n-reflexive, if S is boundedly (resp. algebraically boundedly)

reflexive.
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Throughout this section, X denotes a complex Banach space. If § is a weakly closed
subset of B(X), then [Sarz] = Sprz. Thus ref,,(S) = refp(S). For any z € X, define the
map ¢ : S =+ X by ¢ T =Tz for all T € S. A vector z is called a separating vector of
S if ¢, is injective and z is called a strictly separating vector of S if ¢  is bounded below
on S. Let M;s be the set of strictly separating vectors of the subset S of B(X). Then Mg
is called linearly dense in X if Ms is nonempty and for any z € Ms and y € X, the set
G={\A€ C:z+ Ay € Ms} is dense in the complex plane C.

Let H be a separable complex Hilbert space and let T(H) be the trace class operators.
For any operator T € B(H), we use W(T') to denote the weakly closed algebra generated
by T and the identity operator. Let T € B(H). T is said to be boundedly n-reflexive, if
W(T™) is boundedly reflexive. For any subset W of B(H), define Wy = {T' € T(H) :
[tr(AT)| < 1, for all A € W}. Similarly, for any subset of V of T(H), we define V® = {4 ¢
B(H) : [tr(AT)| < 1, for all T € V}. If M is a subset of B(H), welet M; ={Ae€T(H):
tr(AB) =0 for all B € M}.

2.1.1 Bounded reflexivity

The following proposition follows immediately from the definition of bounded reflexivity.

Proposition 1.1. IfS; are subspaces of B(X), fori = 1,2, ..., then ié ®S; is boundedly
n-reflexive in B(%oj1 @®X;) if and only if S; is boundedly n-reflezive, 1@ =1, 2,...

i=
It follows from the definitions that if S is reflexive then & is boundedly reflexive. The

following example shows the converse is false. In fact, S can be boundedly reflexive and

not n-reflexive for any n.
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Example 1.2. Let

(( ) ‘
a1 a2 --- Qin
0 ax ... an n
Sn = ¢ GMn(C):Zaﬁ=O>,n22.
: - : i=1
L\ 0 0 "ro Onn ) J

Then &, is boundedly reflexive.

Proof. The set of all n xn upper triangular matrices is reflexive. Thus if T € refp(Sy),

T must be an upper triangular matrix. Suppose that

ti1 ti2 --- tin
0 to ... ton
T =
\ 0 0 ... tnn )
and there exists an M7t > 0 such that for any z; = (:z:gk), ...,:z:g‘:))t € C™| there exists
3 3 K )
[ o o
k k
a| ofy ... afy)
\ 0 o ... aSl'i,) /

with ||Ag|] < Mr satisfying Tzy = Agzg, or equivalently,

t12® £ 11020 + L+ t1az® = 2B 4 oB B ¢ 4 oBe)
tzgzgk) + ...+ t2nz$1k) = agg):zzgk) + ...+ ag?:z:g‘),
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*)
Choose xgk) in such a way that :zrgk) # 0, for any %,k and limg o EZ"—)I = 0, for any

i < 7. Solving for t; from the above system of equations, we have t,, = a}l’;) and t; =

n . (k) (k)
af-f )+ ) Z4-1(a$;) -~ tij)a;y, 1 €7 < n. Since agf) is bounded and limg_,, E{k—)l = 0, for
J= 3 i

n
any ¢ < j, we have limk_,ooag?) = ti, for any 1 < 7 < n. Since Y a,(f) = 0 for any &,

=1

n
we have ) t; = 0, that is T € S,,. Hence S, is boundedly reflexive. However, S, is not
=1

(n — 1)-reflexive. Let S = iojl @®S;. By Proposition 1.1, § is boundedly reflexive, but S is
i=
not n-reflexive for any n. O
From the previous example, one might be tempted to think, for any n > 1, could n-
reflexivity imply bounded reflexivity? Although reflexivity implies bounded reflexivity, our

next example shows that 2-reflexivity does not guarantee bounded reflexivity.

Example 1.3. Let

1 0 01 0 0
I= ’E12= yE21= ’

01 00 10
and S = span{I, E12, E21}. Then S is 2-reflexive. However, S is not boundedly reflexive.

Proof. To see this, we only need to show
T= € refp(S).

For any z = (z1, z2)! € C?, it suffices to show we can find scalars #;, ¢, and t3 with |¢;] < 1,

for : = 1,2, 3 such that Tz = t; Iz + ta E12z + t3Fo1 7, or equivalently

(o) =(@) +=(5) +=(2)
T2 k) 0 Ty
If £ = 0, we choose t; = 0, t2 = 0, and ¢t3 = 0. If 2 # 0, and |z1| < [z2], we choose
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ti =1, ta =—-2,and t3 = 0. If z2 # 0, and |z,| > |z2|, we choose t; =0, t; = 0, and
t3=32.0

Theorem 1.4. Suppose that S is a weakly closed subspace of B(X) and Mg is the
set of strictly separating vectors of S. If Mg is linearly dense in H, then § is boundedly
reflezive.

Proof. By Proposition 2.3[9], Ms is an open set in H. Suppose that T' € ref(S). For
a fixed zo € Ms and any y € H, define V ={A € C: 2o+ Ay € Ms}. Foreach A € V, let
H_: () be the unique operator in Sas- such that T'(zg + Ay) = Hz 5 (A)(zo + Ay). It follows
from Proposition 2.8[9] that H, () is analytic in V. Since H; () is bounded in V and V' is
dense in C, we can extend H; () to a bounded analytic function in C. Therefore, H ,())
is a constant function. Thus there exists A € Sar,. such that T(zg + A\y) = A(zo + Ay) for
all A in C. Let A =0, to get T'zg = Azp. Since zj is a separating vector of S, A is unique.
Since T nad A are linear, we get Ty = Ay. Since y is arbitrary, T = A, ie, T €S. O

A special case of the following corollary is proved in [50].

Corol!ary 1.5. If S is a finite dimensional subspace of B(X) and S has a separating
vector, then § s boundedly reflezive. In particular, if dimS = n and every non-zero operator
in S has rank greater than or equal to n, then S is boundedly reflezive.

Proof. For any finite dimensional subspace of B(X), all separating vectors are strictly
separating vectors. By Proposition 4[39], the set of separating vectors of S is linearly dense.
The conclusion follows. If dimS = n and every nonzero operator in S has rank greater

than or equal to n, by Theorem 2[7], we have that S has a separating vector. Hence S is

boundedly reflexive. O
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Let P(t) denote the set of all complex polynomials and P(T) = {P(T) : P(t) € P(t)}-

Corollary 1.6. For every operator T € B(X), P(T) is algebraically boundedly reflez-
1ve.

Proof. If T is not an algebraic operator, then P(T) is algebraically reflexive by Theorem
1[41], so P(T) is algebraically boundedly reflexive. If T' is an algebraic operator, then P(T)
is finite dimensional and has a separating vector. The conclusion now follows from Corollary
1.5. 0

Next we give an example of an infinite dimensional subspace of B(H) with a dense
subset of H of strictly separating vectors.

Example 1.7. Let H = [? with the standard orthonormal basis {e;}2, and K € B(H)
such that C\o(K) is dense in C. Let S be the set of all bounded operators with matrix
representions of the form (z, Kz,0,...,0...) for any z € H, that is, z for the first column,
Kz for the second column, and 0’s for the other columns. Clearly § is weakly closed. Let
W = {u = (u1,u2,u3,...)* € H : uyg # 0, vl ¢ o(K)}. One can check that all vectors
in W are strictly separating vectors and the density of W in H follows from the fact that
C\o(K) is dense in C.

Next, we prove a theorem which provides an alternative description of bounded reflex-
ivity.

Theorem 1.8. Suppose that S is a subspace of B(H) and S, ={T € S: ||T|| < 1}.
Then the following are equivalent.

(1) § is boundedly n-reflezive,

(2) ((S1)o N Fr(H))® = 1.
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Proof. Suppose that (1) is true. It is obvious that ((S1)¢ N Fr(H))® 2 S;. We only
need to prove that ((Si)o N Fn(H))? € S;. For any operator T' € B(H) with ||T|| < 1,
it 7™ ¢ 8™ then T(™ ¢ ref,(S™). Therefore, there exists an zo € H(™ such that
T™zy ¢ [S™zo]. Since [S{z¢] is a convex and balanced set, there is a yo € H™ such
that Re(u,y) < 1 < (T™zq,y), for all u € [Sf“):t:o]. Equivalently, |(A™zq,y0)] <1 <
(T™x0,y0), for all A € S1. Let zo = (Z1,-,Za)"s %0 = (Y1, Yn)  and U = _anmi ® yi-

i=
We have that [tr(AU)| = |tr(A™(zo ® y0))| < 1, for any A € Si, and therefore U €
(S1)o N F,(H). Since tr(TU) = (TMzg,y0) > 1, T & ((S1)o N Fn(H))°.

Suppose that (2) is true, and let T' € ref,(S™). Since refy(S™)) C B(H)™, it follows

that T = U™ for some U € B(H). For any T = U™ € refy,(S(™), there exists a nonzero

scalar A such that ATz € [Sf")z:], for any z € H™ . Hence for any =, y € H™,

(A\T'z,y) € {(S™z,y) : S € 5} (1.1)

For any V € (S1)oNFp(H),let V = ii:l T;®Yi, T = (T1, .., Tn)%, ¥ = (Y15 o0y Yn)t € HM,

We have that
(5T, )| = tr(SV)| <1

for any S € S§;. Relation (1.1) implies that [tr(ATV)] < 1. This implies AT" € ((S1)o N
Fo(H))? =8, thus T € 8. O

Corollary 1.9 is an immediate consequence of the above theorem.

Corollary 1.9. A subspace S of B(H) is boundedly reflezive if and only if S* is
boundedly reflezive.

Corollary 1.10. A subspace S of B(H) is boundedly reflerive if and only if Sy is

w*-closed and § is algebraically boundedly reflezive.
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Remark We can view (2) of Theorem 1.8 as an alternative definition of bounded
reflexivity. One advantage of doing this is that it enables us easily to adapt the techniques
used in [10] to construct counterexamples. It follows also from Theorem 1.8 that if S is
boundedly n-reflexive, then S is boundedly m-reflexive for n < m and S is w*-closed.

Using Theorem 1.8, we can prove the following result about bounded reflexivity of direct
integrals. Since the proof involves many definitions and notation, we omit it.

Proposition 1.11. Let (A,$, u) be a complete o-finite measure space. Suppose that
{¢w : w € A} is a measurable families of w*-closed linear subspaces of B(H). Then
refo(JR Pudn(w)) = [ refs(pu)dp(w).

Theorem 1.12. Let T € T(H) and S = {A € B(H) : tr(AT) = 0}. Then the
following are equivalent.

(1) rankT < n,

(2) S is n-reflezive,

(3) S is boundedly n-reflezive.

Proof. It is obvious that (1) implies (2) and (2) implies (3).

Suppose (3) is true. We will prove (1) is true. We only need to show that if rankT >
m > n, then S is not boundedly (m — 1)-reflexive. Hence S is not n-reflexive.

Suppose m > n. Choose invertible operators U, V' € B(H) such that UTV has an

I, B
operator matrix of the form ™ relative to H = C{™) @ H;. Since
C D
. . I, B
VT'SU ={A € B(H):tr( A) =0},
C D
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we may assume that

I, B
T =

C D

Note (m + 2)T € (Si)o. Theorem 1.8 now shows that to prove that S is not boundedly

(m — 1)-reflexive, it is enough to prove

(m + 2)T ¢ co((St)o O Fmea (D)) 1.

il. t
Suppose that (m + 2)T € co((S1)o N F, _1(H))'I It Choose Ai >0 with 3 A\; =1 and A;

i=1

€ (S1)o N Fr—1 (H) satisfying

t
11> MA; — (m+2)T||, < 1. (1.2)

=1

Let E;; denote the m x m matrix with 1 in (7, j) place and zeros elsewhere. Let

be an operator matrix relative to H = C(™) @ H;. Relation (1.2) implies

t
1D XiEnAiEn — (m+2)EnTEn|h < 1. (1.3)

t=1

t
Since )}~ A; =1, A; >0, by (1.3), there exists an ig such that [|E1; 4;,E11]] > m + 1. Let

i=1
An Ap
A2 Az
be a matrix representation of A;, relative to H = C(m & Hy, where A;; = (aij)mxm- Then
la11] > m + 1. Since E;; € S; for i # j and A;, € (S1)o, it follows that |tr(E;;Ai)] < 1,
and therefore
lajil < 1 for ¢ #j. (1.4)
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Similarly, since Ej; — E; € 8 for i = 2,...,m, we have [tr((E11 — Ei)Ai,)| < 1, and
therefore

la11 —ai| <1, fori=1,..,m. (1.5)

Relation (1.5) and the fact |a;;| > m + 1 imply
Iaﬁl 2>m, fort=2,...,m. (1‘6)

By (1.4), we obtain

m
Z laijl <m —1, fori=1,... m. (1.7)
Jj=1

Jj#Fi
By (1.6) and (1.7), it follows that

lasi| > f: laijl <m -1, fori=1,...,m.

i.e., A;1 is diagonal-dominant. So Aj; is invertible and rankA;; = m. This contradicts the
fact that rankA;; <m —1.0

Remark Theorem 1.12 provides a simple way of constructing subspaces of B(H)
that are boundedly (n + 1)-reflexive, but not boundedly n-reflexive. Theorem 1.12 also
generalizes Proposition 1.3{42].

The next corollary is an easy consequence of Theorem 1.12.

Corollary 1.13. Suppose that S is a subspace of M, (C) with dimS = n? — 1. Then
S is boundedly k-reflexzive if and only if S is k-reflezive.

Definition 1.14. Suppose S is a w*-closed (resp. weakly closed) subspace of B(H).

We say that S has the property W*P, (resp. W F,) if for every w*-closed (resp. weakly

closed) subspace § of S, for any A € S\S, and for any M > 0, there exists an operator
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n P
T = Y z; ® y; such that T separates A from Syy, i.e.,

=1

zn:tr(A(x,» Qui)) ¢ {Zn: tr(B(z: ® y:)) : B € Sm},

i=1 =1

or ig]_(Azi’ yi) ¢ {Z?=1(B.'L'i, y‘l) :Be SM}.

Proposition 1.15. Let S be a w*-closed (resp. weakly closed) and boundedly n-
reflezive subspace of B(H). Then every w*-closed (resp. weakly closed) subspace of S is
boundedly n-reflezive if and only if S has property W*P, (resp. WF,).

Proof. We give a proof for the case that S is w*-closed. The other case can be proved
similarly.

Suppose that S has property W*P,. Let S be a w*-closed subspace of S, and let A ¢ S.
We need to prove A™ ¢ refy(S™). If A ¢ S, then A™ ¢ S = refy,(S™). Then,

clearly, A ¢ ref,(S™). Suppose A € §\S. Since S has property W*P,, we have, for any

143 n =
M > 0, there exists a T = Y z; ® y; such that Y (Az;,y;) € {3 ini(Bzi,y:) : B € Sm}-
=1 =1
This implies Az ¢ [3&‘)1:], where z = (1, ..., Z,)t. Thus A ¢ refy(S).
Conversely, suppose that S does not have property W*P,. Then there exist a w*-

~ -~ n
closed subspace S of S, A € S\S, and M > 0 such that forany T = Y z; ® y;, we
=1

have that ii:l(A:z:,-,y,t) € {>",(Bz:,u;) : B € Sar}. This implies AMz € [S-ﬁf,‘) z], for any
z = (Z1,-.., T )?. Therefore, A™ € ref,(5(), thus S is not boundedly reflexive. O
Proposition 1.16. Let S be a subspace of M,(C), n > 2. If dimS < n? —1, then S
has property W*Pp,_;.
Proof. Let S be any subspace of S. For any A € S\S, and M > 0, there exists an
R € M,(C) that separates A from Sjs. Let T be in S,. Then for any scalar z, 2T + R

separates A from Sys. If we choose any Ry very close to R, then Ry separates A from Sy
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also. Choose such Ry so that det(zT + Ry) is not a constant function of z. Let 2z be any
solution of the equation det(zoT + Rg) = 0. Then zT + Ry separates A from Sps and
rank(zT + Ry) <n—1.0

It is not hard to show that property P,, or n-elementary, implies property W*P,.
The following example shows that property W*P, for a subspace of B(H) is weaker than
property P,, or n-elementary as defined in [8].

Example 1.17. Let E, be the n x n matrix, n > 2, with 1 in (1,n) place and zeros
elsewhere. Let S = {A € M,(C) : tr(F1,A) = 0}. By Theorem 1.12, S is reflexive, and
thus S is (n — 1)-reflexive. Let § be the subspace Sy, in Example 1.2. Clearly S C S, but S
is not (n — 1)-reflexive, and thus S does not have property P,_;. However, S has property
W=*P,_; (resp. W P,_;), by Proposition 1.16. O

Suppose that U and V are isometries acting between Hilbert spaces H and K. If A is
a subset of B(H) and B is a subset of B(K) satisfying UAV* C B and U*BV C A, then
we say that A is a spatial direct summand of B.

The next proposition follows directly from the definition of bounded reflexivity.

Proposition 1.18. Suppose U and V are isometries from H into K and S is a
subspace of B(H). Then U(refy(S))V* =refy(USV?*).

The following is similar to Lemma 3.1{10].

Lemma 1.19. Let A and B be subsets of B(H) and B(K), respectively. Suppose
thet U, V are isometries from H into K such that UAV* C B and U*BV C A. Let
Ay = {Ae A: ||Al] £ 1} end By = {B € B: ||B}l| < 1}. Let G(H) stand for

T(H), F(H), or F,(H) and G(K) stand for T(K), F(K), or F,(K), respectively. Then
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(1) U*B,V = A,

(2) V*(B1)eU = (A1)o,

(3) (Br)o =V (A1)oU",

4) V*((B1)o + G(K)U = (A1)o + G(K),

(5) ((A1)o N G(K))° = U*((B1)o N G(K))°V,

(6) (Ao N CEN = V*ea((B)o N GE)) 'U, where co denotes the conves hull.

Proof. (1) Since UA;V* C By, it follows that U*UA;V*V = A4, C U*B,V. Since
U*B,V C A;, we have U*B,V = A;.

(2) T € (Bi)o, let X = V*TU. For any A € A;, we have |tr(AX)| = [tr(AV*TU)| =
[tr(UAV*T)| < 1,s0 V*(B1)oU C (A1)o- T € (A1)o let Y = VTU™*. For any B € B, we
have [tr(BY)| = [tr(BVTU?*)| = [tr(U*BVT)| < 1, i.e, V(A1)oU* C (B1)o- This implies
(A1)o C V*(B1)oU.-

(3) This part is contained in the proof of (2).

(4) Clearly, V*G(K)U C G(K) and VG(K)U* C G(K). Hence V*G(K)U = G(H). It
follows from (2) that V*((B1)o + G(K))U = (A1) + G(K).

(5) Let X € ((A1)s NG(K))®. Let Y € (B,)o NG(H). We have V*YU € (A;1)oNG(H).
Therefore [tr(UXV*Y)| = [tr(XV*YU)| < 1, which implies UXV* € ((B;)o N G(K))°.
This shows ((A1)o N G(H))? CU*((B1)o N G(K))V.

The reverse inclusion is similar.

(6) To show “ D", let P be the projection UU™* and @ be the projection VV*. For any

X € co((Bo NGE)) M take any ¥ € ((A1)eNG(K))°. By (5), Y = U*ZV for some Z €

((B1)o N G(K))°. Therefore, [tr(YV*XU)| = [tr(U*ZVV*XU)| = |tr(ZVV*XUU*)| =
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tr(ZQX P)| < [tr(ZQX)| = [tr(XZQ)| < [ir(X2)| < 1.

It remains to prove “ C ”. For any X € co((A1)o N G(K))”.”1 and Y € ((B1)oNG(K))°,

by (5), U*YV € ((A1)o N G(K))®. Therefore, |tr(YVXU*)| = [tr(U*YV X)| < 1, which

implies VXU* € co((Bi)o N GE)) . Thus X € V*eo((Br)o N G(K)) "'v. o
Proposition 1.20. Suppose A and B are w*-closed subspaces of B(H) and B(K),
and A is a spatial direct summand of B. If B is boundedly n-reflezive, then A is boundedly

n-reflezive.

Proof. If B is boundedly reflexive, then by Theorem 2.8, co((B1)o N Fr,(K ))“'“1

(B1)o. By (2) and (6) of Lemma 1.19, V*(By)oU = (A1)o = co({A)o 0 Fn(E)) 1 =

V*co((B1)o N Fn(K))”'HlU. So A is boundedly reflexive. O

The following corollary answers a question from [42].

Corollary 1.21. For any natural number k, there is a compact operator A such that
W(A) is not boundedly k-reflezive.

Proof. Let n be large enough and let S be a subspace of M,,(C) such that S is not
boundedly k-reflexive. By Proposition 1.1[10] and Theorem 2.3[10], there exist a compact

operator A and isometries U, V satisfying

USV* C {P(A) : P is a polynomial with P(0) = 0} 1,

U*TP(A) : P is a polynomial with P(0) =0} v C s.
By the proof of Theorem 2.3[10], we can choose U*V = 0. Then we have that W(4) D
USV*, § D U*W(A)V. Now, Theorem 1.8 implies that W(A) is not boundedly k-reflexive.
a

Based on [108], it is natural to ask the following questions about bounded reflexivity.
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(1) s W(A) = {T} nrefo(W(T)) ?

(2) Is T ® T always boundedly reflexive ?

(3) If T} and T% are boundedly reflexive, is T} @ T> boundedly reflexive ?

Corollary 1.21 implies that (2) is not true. Since (1) implies (2), it follows that (1) is
not true.

To answer question (3), we need the following lemma.

Lemma 1.22. There exists a subspace S of B(H & H) so that S|ggo and Sloga are
reflezive but S is not boundely n-reflexive.

Proof. Let M be a subspace of B(H) such that M is not boundedly n-reflexive. Define
S={A®Bec B(H®H): A— B e M}. Clearly, S|ggo = B(H) ®0, Slogy =0& B(H),
they are both reflexive.

Since M is not boundedly n-reflexive, we can choose that T(?) € refy(M™)\M(™) . Let
U™ =T @0 e B(H™ @ H™). Then UM ¢ $™ and UM € refy(S™). Hence S is
not boundedly n-reflexive. O

Replacing Lemma 7[108] by Lemma 1.22 and using the same techniques as those in
Example 7[108], we can construct the following example.

Example 1.23. If1 < n < oo, then there are reflexive operators T; and 75 such that
T1 @ T> is not boundedly n-reflexive.

2.1.2 Algebraic bounded reflexivity

It follows from Corollary 1.9 that a subspace S is boundedly reflexive if and only if

S* is boundedly reflexive. Our next example shows this is generally not true for algebraic

bounded reflexivity.
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Example 1.24. There exists an algebraically boundedly reflexive subspace S of B(H)
such that §* is not algebraically boundedly reflexive.

Proof. Let {e;}32, be a orthonormal basis for a Hilbert space H, and let S = span{e; ®
e1:1=1,2,...}. Then S is algebraically boundedly reflexive and S* = span{e; ® e; : i =
1,2,....}. Weclaim that refy;,(S*) = {e1®y : y € H}. Clearly, ref,;(S*) C {e1®y :y € H}.
To see the reverse inclusion, take any z, y € H such that ||z|| = ||y]| = 1. We show
that e; ® y(z) € S3z. Let z, = _f:l(x, ei)ei. Then lim,_ ;o zn = z. Choose N so that

i=
[|zn||? > 1/2. Then there exists a ty with 0 < |tx] < 2 so that ty{|zn]||[? = (z,y). Define
Ay = tNié(a:, e;)e1 ® e;. Then ||An]| <2 and Anz = txllzn||?e1 = (z,y)e1 = €1 @ y(z).
Thus, &* is not algebraically boundedly reflexive. O

Theorem 1.25. Suppose that S is a linear subspace of B(X) with a denumerable Hamel
basts. Let S; be any vector space complement of Sk in S. Suppose that, for any subspace
FE of X with a denumerable Hamel basts, there exists a separating vector y € X for Sy such
that S;y N E =0 and Sry is finite dimensional in X. Then ref,,(S) =S +refos(Sr)- In
this case, S is algebraically boundedly reflexive if and only if Sp is algebraically boundedly
reflexive.

Before proving Theorem 1.25, we give several corollaries of the result.

Corollary 1.26. Let S and S be as in Theorem 1.25. If Sp X = span{SX : § € Sr}
is a finite dimensional subspace of X, then refqop(S) = S + refep(Sr). In particular, if S
is a finite dimensional linear subspace of B(X), then refqp(S) =S + refon(SF)-

Proof. By Lemma 3.1[67], for any subspace E of X with a denumerable Hamel basis

there exists a separating vector y € X for Sy such that S;y N E = 0. Since Spy C SrX
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and SgX is finite dimensional, the conclusion follows immediately from Theorem 1.25. O
The next example indicates that Corollary 1.26 is not true for algebraic reflexivity.
Example 1.27. Let {e;}2, be an orthonormal basis for a Hilbert space H, S¢ be

the span of {e1®e;j : j =2,3,...} and S = CI + Sp. Clearly, S satisfies the conditions of

Corollary 1.26, so the conclusion of the corollary follows. However, ref,(S) # S +refq(S).

To see this, we show that e; ® ey € S + refo(Sr) but e; ® e; € ref,(S). It follows

from Theorem 3.5[67] that Sp C refa(Sr) C Sp + F(H) = F(H), so S + ref,(Sr) =

CI + refo(Sr). For any S € ref,(SFr), we have Se; € Sre; = 0. Since e; ® ej(e1) =

e, e1®e; € refo(Sr). Thuse; ® ey ¢ S +refo(Sr)- Next, we show e; ® e; € ref,(S).

For any z € H, if z = Aej, then e; ® e1(z) = Aey = Iz. If (z,e;) = a # 0 for some 7 > 1,

let (z,e1) = B. Then e; @ e1(z) = fe; = gel ®ej{z), so e1 ®e; Erefy(S). O
Corollary 1.28. Let S and Sr be as in Theorem 1.25. If {z : Spz = 0} has finite

codimension in X, then refep(S) = S + refos(SrF).

Proof. Suppose that {z € X : Spz = 0} has finite codimension in X. Lemma
3.1[67] implies that for any subspace F of X with a denumerable Hamel basis, there exists
a separating vector y € {z € X : Spz = 0} for St such that S;y N E = 0. Clearly, for any
S € S, Sy =0, so Sry is finite dimensional. The conclusion now follows from Theorem
1.25. O

Next, we prove a technical lemma, which we need to prove Theorem 1.25.

Lemma 1.29. Let X be a finite dimensional Banach space and {u,}$2, be a sequence
in X such that lim, o0 un = u. Then there ezists a posttive integer d with d < dim(X)

such that for any € > 0, there ezist positive integers ny <, ..., < nq and scalars ty,...,t; with
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[t1] + ... + |ta] <1+ € such that u = _‘Z‘It,-uni.
i=

Proof. If u =0, we can take any positive integer d < dimX and any positive integers
ny <,..,< ng and t; = ... = tg = 0. Suppose u # 0. Let E, = span{un,un+1,....} and
dn = dimE,. It follows that {d,} is a non-increasing sequence of positive integers. Let
d =lim, ,,0d,. Thenl < d < dimX. It is easy to see that u € E,, for each n and there
exists an N such that d, =d foralln > N.

Ifd =1, then d, =1 and F,, = Cu for all n > N. This implies that u, = a,u for some
scalar a, as n > N. Since lim, 00 ¥p, = u, we have lim,_,00 @, = 1. For any € > 0, choose
ng large enough so that 0 < F.i—o[ <1+ ¢. Now, we can write u = #uno.

If d > 1, choose positive integers ny, ..., nqg—1 so that N < ny,...,ng_1 and {un,,....Un,_,,

u} form a basis of Ey. For any u, € Ey, write

d-1
Up =) a{up, + o™y (1.8)

i=1

It is not hard to show that lim,_, u, = u implies that lim, a§"’ =0fori=1,..,d-1

d—1 _(n)
and lim,_,o a™ = 1. Solving for u from (1.8), we obtain u = ;(]';yun - Z—{;uni. For
=1

d—1 _(n) (ng) d)
1 a; L e d
any € > 0, choose ng4 large enough so that [ml + i§=1 [;f;g[ <1l+e Lett;=—— form. for

t=1,..,d—1land tz= Z('I*_J' Then we have u = ié tiun, with |8+ ...+ |t4) <1+e O

Proof of Theorem 1.25.

Clearly, refs(S) 2 S + refes(Sp). We only need to prove the other direction. By
Theorem 3.5[67], ref,(S) € S + F(X). Therefore, ref,;(S) € S + F(X). Thus, we only
need to show that ref,,(S) NF(X) C refep(Sr). For any T € refqp(S)NF(X), let Ran(T)
denote the range of T. For any z € X, we define E, = span{Ran(T),Az,Ran(B) : A €

S,B € Sr}. Then E; has a denumerable Hamel basis. By our assumption, there exists a
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separating vector ¥ € X for Sy so that S;yNE, = 0 and dim(Sry) < co. For a fixed vector
y and for each positive integer n, 11‘;?/ has the same property as y. Since T’ € ref;(S), there
exists a fixed Mt > 0, such that Tz € Sap.z for all z € X. In particular, for any positive

integer n, we have T'(z + 1y) € Sa.(z + Ly). Let An € Sagy. such that
T(z + Ly) = Ap(z + ~ (1.9)
z ;y = n(z + ;y) -

Suppose that A, = B, + C, with B, € & and C,, € Sp. Replacing A, by B, +C, in
equation (1.9) and solving for 1B,y, we get 1B,y = T(z + 1y) — (Bn + Cp)z — Cn(Ly).
This implies that B,y € E,. Since S;jyNE, =0, B,y = 0. This implies B, = 0, since y is

a separating vector of S;. Therefore, equation (1.9) can be reduced to
1 1
T(z+ ;y) = Cp(z + ;y) (1.10)

Solving for C,z from (1.10), we obtain

1 1
Crz=T(z+ ;y) — -Cny- (1.11)

Since [|Cr|| = [|4n|] £ M, it follows that lim,_,oo Crz = T'z. Let X = span{Ran(T), Sry}.
Since T € F(X) and dim(Sry) < oo, we have dimX < co. Equation (1.11) implies that
the sequence Cpz is in X. By Lemma 1.29, there exists d < démnX such that for e = 1
there exist positive integers n; <, ..., < nq and scalars ¢, ...,tq with [t + ... + [t4] < 2 with
T2 = ¥ t:Cpz. Since - :Cr; € Sr and || £ 6Cl| < 5 81 10nill < 5 I6lMr < 201,
we have Tz € (Sr)an2. Since z is arbitrary, we obtain that T € ref,,(Sr). O

Theorem 1.30. Let S be a subspace of B(X) with a separating vector . Suppose that

M is an invariant vector space of S containing T and M has an invariant complement N
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inX. Letyc NandletS={AcS: Ay = 0}. If S|ar is algebraically boundedly reflezive,
then S is algebraically boundedly reflerive.

Proof. Let T € ref,(S). Then there exists an Mz > 0 such that for any v € X,
Tv € Sprv- Thus there exists A € Sage such that Tz = Az. For any y € N, choose
A € Spr, with A(z +y) = T(z +y), and Ay € Sy with Ty = Ayy. Then T(z +y) =
Tz + Ty = Az + Ayy, and A(z +y) = Az + Ay. Thus we have (A — A)z = (4, - A)y.
Since M N N = 0, we have (4 — A)z = 0. Since z is a separating vector of S, A = A and
Ayy = Ay. Thus Ty = Ay. Let T =T — A. Hence we may assume that TN = 0. To prove
that T € S, it suffices to prove that TM = 0. For any u € M, there exist Ay, Ay1+y € Sy

such that
Tu= Ay, T(u+9) = Aurg(w+ 1), [4ull < Mz and [[Ausyll < Mp. (112)
By (1.12) and Ty = 0, it follows that Tu = T(u + y) = Autyu + Au+yy = Ayu. Hence
(Auty — Au)u = Ayryy. (1.13)

Using M NN = 0 and (1.13), we have that A, ,y = 0 and A,y € S. By (1.12) and
(1.13), it follows that Tu = Ay u. Hence Ty € refas(S|um)- Since refas(Siar) = Sl
we have that T|ys € S|ar and T|pr = Blas, for some B € S. Since z in M, Tz =0 and z is
a separating vector for S, we have B = 0. Hence T'|pr = 0. O

Corollary 1.31. Let S and S be as in Theorem 1.30. If dim(S|ar) is finite, then S is
algebraically boundedly reflezive.

Proof. By Theorem 1.30, it suffices to prove that 3[ M is algebraically boundedly

reflexive. Since bounded reflexivity implies algebraic bounded reflexivity, we only need

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



prove that S |ar is boundedly reflexive. Let T € re fb(S’ [M). Let T be the extension of T
to [M], where [M] is the norm closure of M. Since T € re (S |ar), there exists Mt such
that for any z € M, Tz € [Spz]- Thus for any z € [M], Tz € [Sprpz]. Since dim(S]yr)
is finite, we have that dim(S I{p)) is finite. Since [M] contains a separating vector of S, by

Corollary 1.5, we have T € S| m]- Hence T € Slar and S|as is boundedly reflexive. O
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2.2 Relations between bounded reflexivity and complete
positivity

Let S be any subspace of B(H) and dimS = n. By Theorem 1.1.13, S is [V2n |-
reflexive, where [t] denotes the largest integer that is less than or equal to ¢. By Example
1.1.14, it follows that for any n > 2, there exists a subspace S of M,,(C) with dimS =n
such that S is not ([v2n ] — 1)-reflexive.

The situation is different for bounded reflexivity. In the case of bounded reflexivity, we
can prove the following:

Thoerem 2.1. Let S be a subspace of B(H) with dimS = n. Then S is boundedly
[Vn +1 |-reflezive, where [t] denotes the largest integer that is less than or equal to t.

To prove Theorem 2.1, we first prove a lemma.

Lemma 2.2. If S is a subspace of Mry1(C) and dimS < (k + 1)2 — 2, then S*) is
boundedly reflezive.

Proof. Since dim(S;) > 2, there exists A in S such that rankA < k and A # 0.
By Theorem 1.12, M = {B € M4,(C) : tr(AB) = 0} is boundedly k-reflexive. By
Proposition 1.16, M has property W*P,. Since S C M, S is boundedly k-reflexive by
Proposition 1.15. O

Proof of Theorem 2.1.

By Corollary 1.26, we can assume that S consists of finite rank operators. Since dimS
is finite, we can assume that S is a subset of M, (C) for some n and H = C™ with

the standard orthonormal basis {e;} ;. To prove the conclusion of the theorem, we only
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need to show that if m < (k 4+ 1)2 — 2 then S is boundedly k-reflexive. We may also
assume that £ < n — 1, since the result is obvious for other k. Take T" € M, (C) so that
TF € refy(S®). We will prove T*+1) ¢ ref,(S*+1)). Suppose this is not true. Then

there exists an zg € H**1 such that
Tk+Dz, ¢ [59“)-’50] = 1(k+1)-’l?0-

Since [S§k+l)xo] is a closed convex set, it follows that there exist yg € H (k+1) and real

numbers a, b such that for any A € Sy,
Re(A®+Vzg,40) < a < b < Re(T* )z, yo). (2.1)

k+1
Let zo = (z1, ..., Zk+1)% Yo = (W1, Uk+1)* and B = 3 z; ® y;. By (2.1), it follows that
=1
for any A € Sy,

Re(tr(AB)) < a < b < Re(tr(TB)). (2.2)
Choose invertible matrices U,V € M,(C), such that

I. 0
UBV = :
0 0

where I, is r x r identity matrix with r < k + 1.

Let e = (ey, ...,er)!. By (2.1) and (2.2), it follows that for any A € Sy,
Re(P*V'AU le,e) <a < b< Re(P'VTU le,e), (2.3)

where P is the orthogonal projection from C™ onto C" @ 0. If r < k, then (2.3) would
contradict the fact T) € re fb(S(k)). Therefore we have r = k+1. Since dim(PV~1SU~1P)

<m < (k+1)2 -2, we can consider PV"!SU~!P as a subspace of Mj;(C). By Lemma
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2.2, PV~'SU~1P is boundedly k-reflexive. By T(¥) € ref,(S¥)) we have (PV-1TU-1P)(*)
€ refy((PV-ISU-1P)*)). Since PV-!SU-1P is boundedly k-reflexive, it follows that
PV-ITU-1P € PV-1SU-1P. This contradicts (2.3). Therefore S is boundedly k-reflexive.
a

The following example shows that [v/n + 1] is the smallest integer such that all n-
dimensional subspaces of B(H) are boundedly [v/n + 1]-reflexive.

Example 2.3. For any n > 3, there exist m and a subspace S of M,,(C) with
dim S = n such that S is not boundedly ([v/7n + 1] — 1)-reflexive.

Proof. For any n > 3, choose a positive integer [ such that 2 —1<n < ({+1)2-1.
Let k =n—-(%2-1), M= {T € M(C) : tr(T) = 0}, Ax = {diag(ai,-..,ax) : a; €
C,i=1,..,k} and S = M & A C M ;1(C) = M,(C), where m =1+ k. It follows from
Proposition 1.1 and Theorem 1.12 that S is boundedly [-reflexive, but S is not boundedly
(I — 1)-reflexive, where I =[\/n +1]. O

Next, we consider the relations of bounded reflexivity and complete positivity of ele-
mentary operators on B(H). One of the motivations for this paper is the following result.

Proposition 2.4[50]. Let Ay, ..., A, and T be operators in B(H) and span{Aj, ..., A,}
= &. Then the following are equivalent.

(1) AiPA} + ...+ ApPA}, > TPT* for every positive operator P € B(H),

(2) For every xz € H, there are complez numbers a\(z),...,an(z) with |ay(z)|? + ... +
lan(z)|? < 1 such that Tz = a(z)A1Z + ... + an(z)Anz.

Using the concept of bounded reflexivity, we write the above equivalent conditions as

follows:
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(1) There exists a positive scalar ¢ such that A PA} + ... + A,PA}, > tTPT* for every
positive operator P € B(H).

(2) T € refs(S)-

If we define ®(z) = f:l A;z A} —tTzT* for any operator z in B(H), then (1)’ is equivalent

i=

to saying that the elementary operator ® is positive. From (1)’ and (2)’, we know that there
exists a positive scalar ¢ such that @ is positive if and only if T’ € refy(S). This is exactly the
technique used in [76]. Without appealing to the idea of bounded reflexivity, only sufficient
conditions are obtained for complete positivity of elementary operators in [76] using the
theory of reflexivity of operator spaces. From the above, one can see that it is the bounded
reflexivity that describes the positivity of elementary operators.

Corollary 2.5. Let ®(-) = iIAi(»)B,- be an elementary operator on B(H) and let

i=

S = span{Ai,...,Ap}. Suppose that every proper subspace of S is boundedly k-reflexive.
Then ® is completely positive if and only if ® is k-positive.

Remark Corollary 2.5 improves Theorem 1{71].

The following corollary is the main result of [104]. Applying Theorem 2.1 and the
technique used in Theorem 6{76], we can give a shorter proof of it.

Corollary 2.6. If A is a C*-algebra, A;,B; € A and ®(-) = _}El A;(-)B; is an elemen-

i=

tary operator on A, then ® is completely positive if and only if ® is [\/n }-positive, where
[t] denotes the largest integer that is less than or equal to t.

In the following, we give another application of Theorem 1.12.

Corollary 2.7. For any 1 < k < n — 1, there ezists an elementary operator ® on

M, (C) such that ® is k-positive and ® is not (k + 1)-positive.
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Proof. Choose T € M,(C) such that rankT = k+1. Let S = {A € M,(C) : tr(AT) =
0}. By Theorem 1.12, S is boundedly (k + 1)-reflexive, but S is not boundedly k-reflexive.
Suppose S = span{Ay, ..., A,2_}. Since dimS = n? —1 and refp(S®)) £ S*), it follows
that refy(S*)) = M, (C)*). Hence T™) € refy(S*)). By (1)’ and (2)', there exists a t > 0
such that
n2-1

®(z) = z A;z A —tTzT*

=1

is k-positive. Since S is boundedly (k +1)-reflexive, it follows that ® is not (k + 1)-positive.
a

Corollary 2.7 gives another proof of Theorem 1[16].
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2.3 Applications

In this section, A denotes a C*-algebra. 4 denotes the space of all equivalence classes
of irreducible representations of a C*-algebra A, topologized so that the closure of a subset
W of A is the set all those R in A such that SQW ker(S) C ker(R). A positive element
z in A is called abelia‘n if the norm closure of .4z is commutative. If J is an ideal in a
C*-algebra A, then we say that J is essential in A if each non-zero closed ideal of A has
a non-zero intersection with 7. We say that A is antiltminary if it contains no non-zero
abelian elements. A is said to have a continuous trace if it is a liminary C*-algebra, Ais
Hausdorff, and if, for each T in A, there is an A in A and a neighbourhood U of T such
that for all = in U, w(A) is a one dimensional projection in H;;. An elementary operator
on A is a mapping of the form S : z — iizl a;zh;, where a; and b; are fixed elements of
A. A linear map ® on A is positive if ®(T) is positive for any positive element T in A.
We define &, = @ ® I, : Mp(A) = My(A) by & @ In((Tij)nxn) = (2(Tij))nxn- P is said
to be n-positive if & ® I, is positive. If & is n-positive for all n, then ® is said to be
completely positive. Let ||®|| = sup{||®nl| : n > 1}.

A Cr-algebra A is an eztension of a C*-algebra B by a C*-algebra C if there is a short
exact sequence

0—B—A4A—>C—0.

A C*-algebra A is said to be subhomogeneous with bounded degree n if every irreducible
representation of A is finite dimensional with dimension not greater than n, or equivalently

if A is a C*-subalgebra of M,(B) for some commutative C*-algebra B. We say that a C*-
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algebra A is antiliminal by a subhomogeneous C*-algebra with bounded n if there exists

an exact sequence

0—J —A—B—0

satisfying that 7 is subhomogeneous with bounded degree n and B is an antiliminal C*-
algebra.

Let H denote a complex Hilbert space and let B(H) denote the set of all bounded
operators on H, K(H) the set of all compact operators on H. Let H™ denote the direct
sum of n copies of H.

In [74], we prove that if A is separable and antiliminal, then every positive elementary
operator on A is completely positive. In [3], Archbold, Mathieu and Somerset establish
some equivalent conditions on A which imply that every positive elementary operator on
A is completely positive. In this section, we generalize Theorem 6{3}, the main result of {3].

By Theorem 1.2[15], we know that every n-positive linear map of A into itself is com-
pletely positive if and only if A is subhomogeneous with bounded degree n. For elementary
operators on A, we will find that the situation is very different (see Theorem 3.7).

Let

0 J—->A—->B—-0

1)

be an extension of B by J. Let S(z) = Y a;zb; be an elementary operator on A. In
=1

this paper, we use the notation of {3]. We denote the ° restriction ’ of S to an elementary

operator on J by S| 7 and the induced elementary operator on B by S/z.

Tensoring the above extension by M,

0> M0 > M, A—->M,®B—-0
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we may canonically identify (Sp)|m, 07 With (S| 7)n and (Sp)/a,e8 With (S/8)n-

Lemma 3.1(3]. Let A be an exztension of B by J. Then for everyn > 1,

(1) S is n-positive if and only if S| and S;p are n-positive.

(2) [|Sall = maz{{[(5|7)all, 1|(S/8)nll}-

Lemma 3.2[3]. The following conditions on a C*-algebra A are equivalent:

(1) Every positive elementary operator on A is completely positive.

(2) For every elementary operator S on A, ||S]| = |[S]|e-

Lemma 3.3[3]. Let A be an antiliminal C*-algebra. Then there is a dense subset W
of A such that n(A) is antiliminal for all ® in W.

Lemma 3.4[91]. FEach C*-algebra A has a largest postliminal ideal T and A/T is
antiliminary.

Lemma 3.5[91]. Let A be a postliminal C*-algebra. Then A contaims an essential

ideal which has continuous trace.

Lemma 3.6{107]. Let 6(n) be the transpose map in M,(C). Then

ki k<n,
6l = vEsT

n, if k>n.

Theorem 3.7. Let A be a C*-algebra and n > 1. The following statements are

equivalent.

(1) Every n-positive elementary operator on A is (n + 1)-positive.
(2) Every n-positive elementary operator on A is completely positive.

(3) For every elementary operator S on A, ||S,|| = |S|les-
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(4) For every elementary operator ¢ on A, ||Su|] = l|Sn+1ll-

(5) There is a dense subset ' of A, where A is the space of all equivalence classes of
irreducible representations of A, such that A — ,\Eé:[‘ @mr(A) is a faithful representation of
A with for any A € T, dimH,, <n or dimH,, = oco and m\(A) N K(Hy,) = 0, where m)
means that we pick a representation wy from the equivalence class \ in A.

(6) There ezists an ezact sequence
0—»J —>A—B—0

satisfying that J is subhomogeneous with bounded degree n and B is an antiliminal C*-
algebra.

Proof. (3) = (4). It is obvious.

(5) = (2). Suppose that S is a n-positive elementary operator on A. Let w be any
irreducible represention of A on H and let S; be the induced elementary operator on 7 (A).
Let 7, be the representation of M,(.4) on H(™ defined by Tn((ai;)) = (7(a:;))nxn- The

following commutative diagram

Sn
M. (A) M (A)
Tn(Mn(A)) Gom 7n(Mn(A))

and Lemma 1(iv)[3] show that to prove (5) = (2), we only need to prove Sy is completely positive.
If w(A) is an irreducible representation of A on H with dimH < n, then n(A) = B(H).

By Theorem 1[71], we have that every n-positive elementary operator on B(H) is completely
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positive. By Lemma 1(iv)[3], Sy is n-positive. Hence S, is completely positive. Let m be
an irreducible representation of .4 on H such that dimH = oo and n(A)NK(H) = 0. Since
7 is an irreducible representation of A on H, it follows that 7(A) = B(H). Thus we can
extend S, to an elementary operator S; on B(H). By S, is n-positive, it follows that S,
is n-positive on B(H).

By n(A)N K(H) = 0, we have
w(A)/K(H) = n(A).

Let 7 be the canonical map from B(H) into B(H)/K(H). Let ®(7(4)) = iijl 7(ai)m(z)7(b;),

if &(z) = f:l a;zb; on B(H). Thus by Theorem 4[74], S'_ﬂ. is completely positive on
i=

B(H)/K(H). Hence S, is completely positive, and Sy is completely positive.

(1) = (6)- Suppose that (6) is not true. Let Z the largest postliminal ideal of A. Then
Z is not subhomogeneous with bounded degree n.

Let 7w be an irreducible representation of Z on H such that dimH > n+1. By Theorem
6.1.5[91], we have that K(H) C w(Z). By section 2.2, we can construct an elementary
operator S on Z such that S is n-positive and Sy is not (n + 1)-positive on «(Z). Hence
S is not (n + 1)-positive. Let Siz(z) = igl a;zbh;, a;,b; € T be the elementary operator we

construct. Then S is n-positive and S is not (n + 1)-positive on Z. Let

m
§(:z:) = Zaizbi, z € A.

=1
By Lemma 3.1, it follows that S is n-positive and S is not (n + 1)-positive. This is a

contradiction.

(4) = (6). We denote by Z the largest postliminal ideal of A. By Lemma 5, let J be
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an essential ideal of Z with a continuous trace. Suppeose that (6} is not true. Since J is
an essential ideal, it follows that 7 is not subhomogeneous with bounded degree n. Let
7 be an irreducible represention of J with dimH, > n + 1. Since J has a continuous
trace, we have n(J) 2 K(H) and J is a locally compact and Hausdorff space. We may
assume that 7(J) = Mp41(C). Let {E;;} be matrix units of M,;. By [31, 3.1, 3.3, 4.1],
there is an open neighbourhood V of 7 in J and {eij} € J such that w(e;;) = E;j, and
o(eii), (1 =1,..,n + 1) are rank-one projections and o(e;;), (¢ < j) are partial isometries
with initial projection o(e;;) and final projection o(e;). for all o € V. Let ej; = e;; for
j<t.

Since J is a locally compact Hausdorff space, there is a continuous function g:J —
[0,1] supported in V. Let 6 be the transpose map of M, +i(C). Let 8(z) = ZtlaiU}xV,-

i=
on My,1(C), where U;,V; € {Ej;}, as € C. For z € A4, let S(z) = Ztloziai:z:bi, where
i=

ai,b; € {eij}, w(a;) = U;, w(b;) = V;. For o € J define S,(y) = (i_ilaio(ai)yo(bi))g(o),
on g(J). Then S, = 0, for any o € F\V. For ¢ € V, by Lemma 3.6, ||(S,)i|| = g(0)k, if
k <n+1and [|(So)kl| = g(0)(n+1), if k > n+1. Hence [|(S7)al] = n, [[(Sj7)n+1ll = n+1.
Since S/g = 0, where B = A/J, by Lemma 1, ||Sy|| # |[Sn+1]|- This is a contradiction to
@) |

(6) = (5). Let W = {0 € B: o(B) N K(H,) = 0}. By the proof Lemma 3[3], we
have that W is dense in B. Let 7 be an isomorphism from A/.J onto B. For any o € B,
define n,(z) = o(7(z)) for z in A. Then =, is an irreducible representation of .A. Let
F'={r€A:n|s #0}U{n, : 0 € W}. Let z in A..Suppose that z € 7. Then there exists

7 € " such that 7(z) # 0. Suppose z # J. Since W is dense, it follows that there exists a
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o in W such that o(7(z)) # 0. Thus 7,(z) # 0. Hence I is dense in A.
(5) = (3). Let S be an elementary operator on .A. By Lemma 1(iv)[3], it follws that
forn>1,

[1Sall = sup{][(Sx)nl] : A € T}.

For A € ', by Proposition 7.9[{93], then |[(Sx)r|| = ||Sx]les- For A € T, if mA(A)NK(H)) =0,
then ||Si[] = |[Sllcs-

(2) = (1). It is obvious. O

By Lemma 3.6 and Theroem 3.7, it is easy to show

Corollary 3.8[16]. F,_1(M,(C),M,(C)) DO Po(M,(C), M,(C)) where P;(M,(C),
M, (C)) is the set of all i-positive maps from M,(C) into itself.

Remark Let A be a prime C*-algebra and let A ®; A denote the Haagerup tensor
product of A with itself. Define 8 : A ®, A - CB(A), (where CB(A) is the algebra of

completely bounded operators on A with the completely bounded norm |} - ||cs) by

6(_ a: ®5:)(c) = S(c)

n
for c € A, where S(c) = 3 aich;. By Corollary 3.9[2], # is an isometry. Hence by Theorem

t=1

7, if A is prime and antiliminal by a subhomogeneous C*-algebra with bounded n, then

n
Il th‘ ® billn = ||Sxll-
=
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Chapter 3
Derivations and Cohomology

3.1 Derivations
3.1.1 Derivations on certain subalgebras of B(H)

In this section, we unify some results on derivations by considering derivations from an
algebra A containing all rank one operators of a nest algebra into an .4-bimodule B. Cher-
noff [15] proves that every derivation from F(H) into B(H) is inner. In [18], Christensen
proves that every derivation from a nest algebra into itself or into B(H) is inner. In [18],
Christensen and Peligrad show that every derivation of a quasitriangular operator algebra
into itself is inner. Knowles [59] generalizes the result of [18] and gets that any derivation
from a nest algebra into an ideal J of B(H) is inner. Let A/ be a nest of subspaces of a
Hilbert space H, let A be a subalgebra of B(H) containing all rank one operators of algN,
and let J be a derivation from A into B(H). We prove that if one of the following conditions
holds:

1. H_ # H,

2. 04+ #0,

3. there exists a nontrivial P € N, such that P € A,
then ¢ is inner.

We also prove that for any nest, if § is a norm continuous derivation from A into B(H),

then ¢ is inner. We discuss some applications of these results.
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Let F;(H) be the subset of all operators in F(H) with rank less than or equal to 1. We
call a subalgebra A of B(H) standard provided A contains F(H). For a nest N on H,
algN is said to be the nest algebra associated with M. If A is a subalgebra of B(H), then
we say that A is a triangular operator algebra, if AN .A* is a maximal abelian selfadjoint
subalgebra of B(H). If J is maximal triangular, by Lemma 2.3.3[54], it follows that latJ
is a nest. For a maximal triangular algebra J if latA is a maximal nest, we say that A is
strongly reducible. A derivation & of an algebra A into an A-bimodule B is a linear map
satisfying 6(AB) = A§(B) + §(A)B, for any A,B € A. In this section, we do not assume
that the derivation is bounded. A derivation § is called B-inner if there exists T € B, such
that § (A) = AT —T A. When we say that a derivation é : A — B is inner, we mean B-inner.

Let N be a nest. In the following, we consider the derivation from a subalgebra A of
B(H) containing all rank one operators of alg/N into B(H).

Theorem 1.1. IfN is a nest such that H_ # H, A is a subalgebra of B(H) containing
(algN) N Fi(H), and & is a derivation from A into B(H), then § is inner.

Proof. Since H_ # H, for any f € (H_)Y, f # 0, we choose y in H such that

(y,f) = 1. For any z in H, by Lemma 3.7[96], it follows that z ® f € algN. Now define
Tz = —-0(z® f)y, for zin H.
Now for A in A,
TAz = —§(Az ® fly = —6(A)z — Ad(z ® f)y = —6(A)z + ATz.
Hence for any z € H, —T Az + ATz = 6(A)z; thus

5(A) = AT — TA.
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It remains to show that ¢ is bounded.

Let lim, y00 T, = =, and lim,_,o0 Tz, = y. Now for any rank one operator A € algh\/,
we have that § (A) and T A are bounded. It follows that AT = §(A) + T A is bounded, and
lim,_,o ATz, = ATz = Ay. Since A contains all rank one operators of algN, and every
finite rank operator of algN is a sum of some rank one operators of algN ( Proposition
3.8[20]), we have, for any finite rank operator B in algN, BT'z = By. By Theorem 3.11[20],
choose a bounded net {B} of finite rank operators in algN such that limy By = I in the
strong operator topology. We have T'z = y. By the Closed Graph Theorem, it follows that
T is bounded. O

Corollary 1.2. If N is a nest such that 04 # 0, and A is a subalgebra of B(H)
containing all rank one operators of algN, then every derivation § from A into B(H) is
inner.

Proof. Let N+ = {N1 : N € N'}. Then N is a nest such that H_ # H. Since
algN+ = (algN)*, it follows that .A* contains all rank one operators of algN L. Define
8% (A) = (6 (A*))* for any A in A*. It is easy to prove that §* is a derivation from .A* into
B(H). By Theorem 1.1, we have that 6* is inner. It follows that § is inner. O

We now consider a nest N such that H_ = H.

Lemma 1.3. Let NV be a nest, E1,E2 € N and Ey C E3. If T is a linear map from E»
into H such that ST = TS on Es for any rank one operator S of algN, then there ezists
A such that Tx = Az, for any = € E;.

Proof. For z € E1, choose y € E2 — E; such that ||y]| = 1. Since z ® y € algN, by
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hypothesis
z®Ty(y) = (@ y)Ty =Tz = (Ty,y)z.
Since every one dimensional subspace of L(E,, H) is reflexive, it follows that there exists A

such that T=AI. O
Lemma 1.4. Let N be a nest such that H_ = H, andlet M =U{N : NC H,N € N'}.

Then there exists a linear map T from M into H such that § (A) z = (AT — T A) z, for any

T in M.
Proof. Since H_ = H, we may choose an increasing sequence {P;} C N such that

P; — I in the strong operator topology. Also choose f € P, and y € H, such that

Ifll = 1, (v, f) = 1 and |[y]| < 2. Define
Tiz = ~5(z ® f)y (L.1)

for £ € P;. Using an argument similar to the proof of Theorem 1.1, we may prove that
for Ain A, §(A)z = (AT; —T;A)z for z in P;. If j > ¢, then for z € P, (AT; — T;A)z =

(AT; — T;A)z. Hence
A(T; — Tj)z = (T; — Tj) Az, for z € P,. (1.2)

By Lemma 1.3, we have T; —T; = X;; on F;_;. Now for j > 2, let 'f’J = T1+A1,;. We have, for
k>j>2, Tijz =Tiz for allz € Pj_;. Now for any z € U{P;} = U{N : N C H,N € N},
choose a § > 2 such that z € P; and let Tz = f’ja:. Then, T is well defined and for z in M,
§(A)z =(AT -TA)z. O

Remark Using the idea in the proof of Theorem 1.1, we can prove that in Lemma 1.4,
T: is a bounded operator from P; into H.
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Theorem 1.5. If N is a nest, A is a subalgebra of B(H) containing all rank one
operators of algN, and § is a norm continuous derivation from A into B(H), then § is
inner.

Proof. If N satisfies H_. # H, then by Theorem 1.1, § is inner. If N satisfies H_ = H,

then by Lemma 1.4, there exists a linear map T such that
0(A)r = (AT —TA)z, for anyz in M=U{N:NCH,N eN}.

By (1.1) and the boundedness of §, it follows that |[T;z[| < 2||d}}{]z||. Since |Aj;| < ||Tz|| +
51 < 4][6]], it follows that ||T}| < 6}[é][. Thus T is bounded on M. Let T be the unique
bounded extension of T to H. Then T is bounded and for A in A, §(4) = AT —TA. O
Theorem 1.6. Let N be a nest satisfying H. = H. If there ezists a nontrivial
projection P € N, such that P € A, and ¢ is a derivation from A into B(H), then § is
nner.
Proof. As in the proof of Lémma 1.4, we choose P, = P. Let H = P® PL. Then T

can be decomposed as

T, Ty
T =

Iy Toe
Let Q=U{N—-P:PCNeN,N#H}, T12:Q - P, T : Q = Q.
By the definition of T', T1; and 7%; are bounded. We now prove that Tis and T5;, are

bounded. Since
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we have that

0 T
5(A) =

—Tgl 0

holds on M. Since ¢ (A) is bounded, it follows that T}, is bounded. Now, for any rank one

operator A € B(H), we have PA(1 — P) € A. Hence,

PA(1 - P) PA(1 —P)Too — Ty
§(PA(1 — P)) =
0 -T2 PA(1 — P)

holds on M. Since §(PA(1 — P)) is bounded, it follows that PA(1 — P)T%, is bounded.
Hence for any f € PL and e € P,e # 0, €T32 ® f is bounded on Q. Thus there exists ¢ such
that |(Thyaz, f)| < ¢, for any = € Q, and ||z|] < 1. By the Uniform Boundedness Theorem,
we have that {||T2oz]| : [|z|| < 1} is bounded. Hence T35 is bounded. As in Theorem 1.5,
there exists a bounded extension T of T to H such that for A in A, 6(A) = AT —TA. O

Now we apply the results above to some special subalgebras of B(H). If A D F(H),
then by Theorem 1.1, we have the following:

Corollary 1.7[15]. Every derivation from a standard operator algebra into B(H) is
inner.

Corollary 1.8[18]. If § is a derivation from algN into itself, then § is inner.

Proof. By Theorems 1.1 and 1.6, there exists T in B(H) such that for any A in A,
d(A) = AT —TA. Now we prove that T is in algN . For any P in N, since 6(P) = PT—-TP
in algN, we have that (I — P)§(P)P =0 = —(I — P)TP. This completes the proof. O

Let B be a subalgebra of B(H), and let S be any subset of B(H). We denote by C(B, S)

the collection {T'€ B(H): AT —TA€ S, for A € B}.
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Lemma 1.9[58]. Let B be a nest algebra and J be an ideal in B(H). Then C(B,J) =
CI+J.

Using this Lemma and Theorem 1.6, we easily prove the following result.

Corollary 1.10. If B is an algebra containing algN, then any derivation § : B — C),
1s inner for 1 < p < oco.

Corollary 1.11. If B is a triangular operator algebra containing every rank one
operator in algN', then every derivation § from B into B(H) is inner.

Proof. Suppose N is a maximal nest containing . By hypothesis we have that
B 2 (algN) N Fy(H) 2 (algN) N Fy(H). Since B contains all rank one operators of alg NV,
we have that latB C N. By Theorem 4[27], it follows that latB = N = N . Since B is a
triangular operator algebra, it follows that N C B.

If H_ # H, then by Theorem 1.1, we have that ¢ is inner.

IfH_=H, N C B, and N is a maximal nest, by Theorem 1.6, it follows that J is inner.

Remark By Corollary 1.7, it follows that every derivation § : F(H) — B(H) is inner.
However if B is a unital algebra containing F(H) and B # B(H), then there is a derivation
from F(H) into B that is not inner, e.g.,, § = 7 with T ¢ B. Also if A = K(H) + CI,
and T ¢ A, then ér : A — A is a derivation that is not inner, but A contains all rank one
operators of B(H).

By Lemma 2.3.3[54], we know that if B is a strongly reducible maximal triangular
algebra, then latB is a nest and B contains all rank one operators of alglat(B). Hence by

Theorem 1.6 and Corollary 1.11, we have the following result:
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Corollary 1.12. Every derivation from a strongly reducible mazimal triangular algebra
into B(H) is inner.

3.1.2 Derivations on nest-subalgebras of von Neumann algebras

Let A be a nest on H. An N-interval is a projection E =M — N with M, NeN. A
commutative subspace lattice is a subspace lattice which consists of mutually commuting
projections. A commutative subspace lattice has finite-wzidth if it is generated by finitely
many nests. We have in descending order of the following classes of lattices: commutative
subspace lattices, finite-width lattices, tensor products of nests, nests. If M is a von
Neumann algebra and £ is a subspace lattice in M, we denote algspL = M Nalgl and
D = algm LN (algmL)*. IEN is a nest in M, algm N is called a nest-subalgebra of M.

Suppose § is a derivation from algumN into M and E is a M-interval. Let 6;(EAE) =
ES(A)E for any A € algmN. Then §; is a derivation from E(algmMN)E = alggmeEN
into EME. In the following, we study the derivations on nest-subalgebras of factor von
Neumann algebras.

In [25], Hongke Du and Jianhua Zhang show that every derivation on a nest-subalgebra
of a factor von Neumann algebra is inner. But their proof has some gaps. By using some
results in [94], we can only show that if A is a nest-algebra of a type II, or type III factor,
then every derivation from A into itself is inner. Lance [64] shows that A is a nest-algebra
of a type I factor then every derivation from .A into itself is inner.

Lemma 1.13. Let M be a factor von Neumeann algebra and let L be a commutative
subspace lattice in M. If § is a derivation from D, into a weakly closed algiL-bimodule

B in M containing alga L, then § is inner.
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Proof. Since L” is a commutative von Neumann algebra, by Theorem 10.8[20], it
follows that there exists m € B such that d|z» = dn. Let § = 6 — 6. For T in Dy and P

in £, by TP = PT, it follows that
8(T)P = §(TP) = 6(PT) = P5(T).

Hence §(T) belongs to D and § is a derivation from D/ into itself. By Theorem 1[99], we
have § = §, for some a € Dpr. Thus § = §jpyq and m+a € B. O

Lemma 1.14. Let M be a factor von Neumann and let A be a nest-subalgebra of M.
The following are eguivalent.

(1) Every derivation from A into itself is inner.

(2) Every derivation from A into every weakly closed A-bimodule in M containing A
iS inner.

(3) Every derivation from A into every weakly closed A-bimodule in M containing A
such that §(Dar) = 0 is inner.

(4) Every derivation from A into itself such that §(Dy) = 0 is inner.

Proof. We only prove (1)=> (2). The rest are proved using the same method. Let B be
a weakly closed .A-bimodule in M containing A. Since N’ is a commutative von Neumann
algebra, by Theorem 10.8[20], there exists an element m € B such that éjy» = &,,. Let

8 =6 — 6. Then for any @ in N, §(a) = 0. For any b € algpN, by
PL§(b)P =§(PLboP) =6(0) =0

it follows that & is a derivation from algas N into itself. By (1), it follows that § = 6, with

a in algmN . Hence § =6, + 0mp = dgym,a+m € B. O

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Remark In [25], Du and Zhang show that (1) and (4) are equivalent.

Lemma 1.15[25]. Let N7 and N3 be nests in a factor von Neumann algebra M such
that N1 C Na. If every derivation from algmNa into M is inner, then every derivation
from algsp N7 into M is inner.

Lemma 1.16{25]. Let N be a nest in an infinite factor von Neumann algebraM and
let § be a derivation from algmN into M such that §(Dy) = 0. If there ezists a infinite
N -interval E such that §, is inner, where §,(EAE) = E§(A)E for A € algmN, then § is
nner.

Lemma 1.17[94]. Let M be a factor, A be an atomic nest-subalgebra of M and ¢
be an eutomorphism of A such that ¢(z) = z for any z € Dyr. Then ¢ = au(A) for an
invertible element A in A.

Lemma 1.18{94]. Let A be a nest-subalgebra of a factor von Neumann algebra M.

For every T in M,

d(T, CI) < 2||or|all-

Corollary 1.19. Let A be an atomic nest-subalgebra of a factor von Neumann algebra M

and let ¢ be an automorphism of A such that ¢(z) = = for = in Dy and |jid — ¢|| < 1/2.

Then there is an invertible element A in A with ||A —I|| < 4||¢ —id|| such that ¢ = au(A)
Proof. By Lemma 1.17, ¢ = au(A) with A € algpN. By Lemma 2.6[35], we have that

A is unique up to a scalar factor. We can choose [|A|| = 1. For T € algpmN,
164(T)|| = [|AT — TA|| = ||(¢(T) — T)All < ll¢ —1d]| |IT]|-

By Lemma 1.18 there exists a scalar A such that ||A — \I|| < ||¢ —id]||. Since ||¢—id|] < 1/2
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and [[A[| =1, we have X\ # 0. By [[A|| =1, it follows that
A = AIf| = |1 — A

Hence ||[A — M\/[AI|| < 4||¢ — id]|- Replace 4 by A/|\|A. O

Proposition 1.20. Let A be an atomic nest-subalgebra of a factor von Neumann
algebra M. Suppose that § is a derivation from A into itself. Then § is inner.

Proof. By Proposition IT 1[94], it follows that § is bounded. Let ¢; = e, t € R be
the continuous group of automorphisms. By Lemma 1.14, we can assume that 6(Dy) = 0.
Then ¢(z) = z, for any z € Dpr and any ¢ € R. By Lemma 1.17, it follows that there

exists A; € algpmN such that ¢, = au(A4,;). By Corollary 1.19, we can choose A; such that
1Ae — I1] < 4lige —id]].

By Lemma 19.3[20], t~!||¢; —#d|| is bounded. Let D, = n(Ay/, —I). So {D,} is a bounded
net. Let D be the weak* limit of the subnet Dy, of D,,. By a second application of Lemma

19.3{20], we have

6p(T) = lim (Dn,T —TDn,) =lim nx(Ay/n, T = TAi/n,)

Hm 7x(¢1/n, — id)(A)Ayn = 6(T)- O

Lemma 1.21[36]. Let M be an infinite factor, and let N' be a mazimal nest of projections
in M. Then N contains either (perhaps both) an infinite increasing sequence p; < pa < ...
with the N -intervals pp4+1 — pn mutually equivalent in M or an infinite decreasing sequence
p1 > p2 > ... with the N -intervals p, — pp41 mutually equivalent in M.

Theorem 1.22 Let M be a type I1, factor and N be a nest in M. If § is a derivation

from algm N into M, then & is inner.
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Proof. By Lemma 1.15, we may assume that A is a maximal nest in M. By Lemma
1.21, we divide the proof into three cases.

Case 1. Let us first consider the case in which M contains an infinite sequence 0 =
po < p1 < p2 < ... with p, — I in the strong operator topology such that p,4+; — pr, are
equivalent in M. Let V; in M such that V;V,, = poy1 — pn and V,V,] = pp — pp—1. Let
V= § Vp- Then V is in algp N such that VV* = I and for any A € algam{po,p2, ---}»

n=0

AV and V*AV? belong to algumN. Let B = algrm{po,p2,-.-}. For any A € B, define

§(A) = (6(AV) — AS(V))V*. In the following we will show that § is a derivation from B

into M.

5(A)B+ A3(B) = [6(AV)— AS(V)]V*B + A[5(BV) — BS§(V)]V*
= [6(AV) - A§(V)|V*B
+A[6(BV) 4+ BV§(V)V* — BVS(V)V* — BS(V)[V*
= [5(AV) — AS(V)|V*BV2V*? ¢ A[§(BV?) — BS§(V2)]V*?
= [§(AV)V*BV*? + AV§(V*BV?)]V*2 — ABS§(V?)V*2
= [6(AVV*BV?) — AB§(V?)]V*?
= [6(ABV?) — ABs(V?)]V*?
= 3(AB).
By Lemma 1.15, it follows that & is inner. For A € A we have that §(A4) = [§(4)V —
AS(V)+ AS(V)]V* = §(A). Hence § is inner.

Case 2. If the dual nest A" satisfies the properties of the case 1, we consider that §*,

where §*(A) = (6(A*))* for A in A* = algyyN' 1. By case 1, we have &* is inner. Hence §
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is inner.

Case 3. Apply Lemma 1.17 yielding either p; < po < p3 < --- or p1 > p2 > --- with
Pn+1 — Pn (resp. pn — pny1) mutually equivalent in M. By considering N1, we can assume
that p, < pp41- Let p= iilol p; and let E = p —p;. Then ENE is a maximal nest in factor
EME and EME is an infinite factor. Let §;(FAFE) = E§(A)E for A € algyN. Then §,
is a derivation from alggrg EAF into EME. By the cases (1) and (2), we have that §; is
inner. Since E is an infinite projection, by Lemma 1.17, we have that ¢ is inner. O

Theorem 1.23. Let M be a type I[1I factor and N be a nest in M. If § is a derivation
from algp N into M, then § is inner.

Proof. By Lemma 1.14, we may assume that N is maximal in M. Let 0 = py < p; <
P2 < --- in N such that p, — I in strong operator topology. Then p,41 — pn is equivalent
to Pm+1 — Pm- Let £ = {0,p1,ps,...}. Similar to the proof of case 1, we can construct a
derivation § from algap L into M such that § is inner and 6(A) = 6(A) for A in algmN.
Hence ¢ is inner. O

Corollary 1.24. Let M be a type II or type III factor and § be a derivation from

algmN into every weakly closed A-bimodule in M containing A is inner.
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3.2 Cohomology of certain operator algebras

Let A be a normed algebra over C and let M be a normed space over C. M is said to
be a normed left A-module if M is a left A-module, and there exists a positive constant
K such that |[|am]| < Kl||a||||m||, whenever m € M and @ € A. A similar definition
applies to normed right A-modules. A normed A-module is an A-bimodule that is both
a normed left A-module and a normed right A-module. An A-module M is said to be a
dual A-module if M is the dual of a normed space M, and for each a € A the mappings
m — am,m — ma : M — M are weak® continuous. Let M be an A-module and m in M,
and let &,, denote the mapping of A into M defined by (e) = am —ma, for a € A. Then
dm is a derivation from A into M. Each such derivation &y, is called an inner derivation. If
z is an invertible element in an algebra A, then ad(z) denotes the isomorphism a — zaz™!.

Let M be a A-module. We denote by CZ(A, M) the linear space of all bounded n-linear

mappings from A X ... x A into M. The coboundary operator 8, from CZ(A, M) into

Ctt+1l(A, M), is defined by

(39) (als ---an+1) = alp(a2y Q3 -y aﬂ-l-l)
n
+>_(-1)*p(ay, -, @iy, BiGig1, -ovy Gy 1)
=1
+aip(a1,az, ..., Gn4)an41-
By convention, C%(A, M) = M, and p : C2(A, M) = CL(A, M) is defined by (dm)(a) =
am — ma for a in A and m € M. For n = 0,1, 2..., let B**1(A, M) denote the range of 9

in C?*1(A, M) and let Z*(A, M) denote the nullspace of 8 in C?(A, M). It can be shown
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that 82 = 0. The quotient space
ZZ(A,M)/BZ (A, M)

is denoted by HZ?(A, M) and called the n-dimensional cohomology group (of A with coeffi-
cients in M). Let M be a dual normal 4-module. We denote by C7 (A, M) the linear space
of all bounded n-linear mappings from A x ... x A into M which are separately o-weak to
weak® continuous.

The (normal) coboundary operator, defined as before, provides a sequence of linear

mappings

M =C%A,M) 2 CL(A, M) -2 c2(A, M) 2 .

From this sequence, B, (A, M), Z%(A, M) and the cohomology group
H (A, M) = Z;(A, M)/B,(A, M)

are defined just as in the case of norm continuous cohomology.

Let N be a nest in B(H). In [64], Lance proves that HZ(algN,B(H)) = 0. In [34],
Gilfeater, Hopenwasser and Larson improve this result and prove that if £ is a finite-
width commutative subspace lattice, then H?(algL, B(H)) = 0. Nielsen[87] obtains that
H®(algN,B(H)) = H}(algN,B(H)) = 0.

We will consider two cohomology theories, the norm continuous cohomology and the
normal cohomology. We show that a class of non-selfadjoint operator algebras has iso-
morphic continuous and normal cohomology. This class contains reflexive algebras whose
invariant subspace lattices are tensor products of nests and reflexive algebras with two-atom

atomic Boolean subspace lattice.
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3.2.1 Norm continuous cohomology

In this section, by using the technique in the proof of Theorem 2.1[64], we improve
Theorem 2.1{64].

The proofs of the following Lemmas are easy. We leave them to the reader.

Lemma 2.1[92]. Let A be a subalgebra of B(H). Then HZ(A*, B(H)) = HZ(A, B(H))
and H}(A*, A*) = HZ (A, A).

Lemma 2.2. Let A be a subalgebra of B(H) and let T be an invertible operator from
a Hilbert space H into a Hilbert space K. Then H*(A, B(H)) = H*(T AT, B(K)).

Lemma 2.3. Let A be a subalgebra of B(H). Suppose that there existsx € H, z # 0
such that for anyy € H, zQy € A, then H}(A,B(H)) =0.

By Lemmas 2.1 to 2.3, we easily show the following result.

Corollary 2.4. Let A be an operator algebra in B(H). Let

* 0
A =4 :AcAYon CoH,
* A
\ /
r( \ )
* %
Az = ¢ :Ae Ayon CH H,
\0 4 )
4 )
(A *\
Az =4 t:A€Aron HBC,
N0 *) )
(A 0\
Ag =4 :A€cAyon Ho C.
\\* *) J

Then HZ(A;, B(C® H)) =0, fori=1,2 and H*(A;, B(H ® C)) =0, fori=3,4.
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Lemma 2.5[54]. If A is a selfadjoint operator algebra, B an operator algebra mazimal
with the property of having A as its intersection with its adjoint, N and M orthogonal
projections with invariant under, and in B, and B an operator such that B = NBM, then
B lies in B.

Lemma 2.6. Let J be a mazimal triangular algebra on H and let N = latJ. Suppose
that E € latJ with dim(E—E_) <1. Then foreanyz € E, y€ (E_)-, zQ@y€ J.

Proof. Since

zQy=E(zQy)(I-E.) = E_(z®y)(I—-E_)

+(I-E_)E(z®y)I-E)+(E-E_)(z®y)(E-E.)

by Lemma 2.5, it follows that E_(z®y)(I— E_) and (I — E_)E(z®y)(I — E) belong to J.
Since dim(E — F_) <1, we have (F - E_)(z®y)(E — E_) is a scalar multiple of E — E_.

Hence £ ® y belongs to J. O

Theorem 2.7. Let J be a mazimal triangular algebra on H and let N = latJ with
dim(H — H_) <1 ordin(04) < 1. Then H}J,B(H)) =0.

Proof. By the Lemma 2.1, we may assume that dim(H — H_) < 1.

If dim(H — H_) = 1, by Lemma 2.3, it follows that H*(J, B(H)) =0.

Suppose dim(H — H_) = 0. We can assume that 7 is norm closed. Choose P, € latJ
with P, — I in strong topology. For y € H, choose e; € P;- such that [le;|| = 1. By Lemma
25, P(y)®e; € J.

For ¢ € Z*(J, B(H)), define ¢; in C*~(J, B(H)) by
¢i(a1, ..., an-1)y = (-1)"0(a1, ..; 8n-1, Fi(y) ® ei)e:.
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we can calculate d¢;(a,-...,an)z = o(ay,-..,an)z for any = € P;. Since {¢;} is bounded,
we have that {¢;} has a subset which converges in ultraweak topology to an element ¢ of
C*-1(J,B(H)). A routine calculation gives o = 8¢. O

3.2.2 Normal cohomology

In this section, We study normal cohomology on non-selfadjoint algebras. If S is a
subset of B(H), we denote S; the unit ball of S.

Theorem 2.8. Let A be a subalgebra of B(H) such that (ANK(H)); = ( 4 )1 with
I € A. Then H*(A, B(H)) = H%(A, B(H)) = H*(A, B(H)).

Lemma 2.9. Let A be a subalgebra of B(H) such that Ay = (A ), and let T be a
bounded bilinear form on A x A. If T is separately o-weakly continuous, then T extends to
a separately c-weakly continuous bilinear form T on A x A.

Proof. For a fixed b € A, we consider the o-weakly continuous linear functional
T(b) : a — 1(a,b) on A. Let T(b) extend to a o-weakly continuous linear functional S(b)
on A. By A; = ( A )1, it follows that such that [|S(b)|| < ||7]|||o]|. Hence the mapping

S : b+ S(b) is a bounded linear map from A into ( A ). with ||S}|| < ||| and
< a,S() >=7(a,b), fora, b€ A, (2.1)

where < -,- > denotes the pairing between A and its predual ( A ),.

Since T is o-weakly continuous in its second argument with the first fixed, (2.1) implies
that S is a continuous linear map from A with the o-weak topology into ( A ). with the
topology o(( A )., A). Since S is a bounded map from A into ( A )., it follows that A,
is relative o-weakly compact in .A. Hence it follows that S(A;) is relatively compact in
( A ). with respect to the topology o(( A ).,.A); so this topology coincides, on S(.A;), with
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the Hausdorff topology o(A.,.A). Hence S is continuous as a mapping from .A;, with the
topology o (A, ( A ).) into A, with the topology o(( A ).,.A).
Define 7 on A x A by

7(a,b) =< a,S(b) >

for all a € A and b € A; this T has the quired properties. O

Similarly, we can prove the following result.

Lemma 2.10. Let A be as in Lemma 2.9 and let T be a bounded n-linear form on
Ax---x A. If T is separately o-weakly continuous, then T extends to a separately o-weakly
continuous n-linear form 7 on A x --- x A.

By Lemma 2.10, we have

Lemma 2.11. Let A be as in Lemma 2.9. Then HZ(A, B(H)) = H*(A, B(H)).

An argument similar to the proof of Theorem 5.3[98] yields

Lemma 2.12. Let A as in Lemma 2.9 and let M be the dual of a Banach space M,. If
¢ is a bounded n-linear map from A x --- x A into M that is separately continuous relative
to the o-weak topology on A and the weak® topology on M, then ¢ extends to a bounded
n-linear map ¢ from A x --- x A into M, which is separately continuous relative to the
o-weak topology on A and weak® topology on M.

Let A be a subalgebra of B(H) and let A the set of all singular states on B(H). For
each f € A, {m;,Hs} denotes the GNS-construction of B(H) with respect to f. Let

H=3 ®oH fand n: B(H) —» B(H) be the *-homomorphism defined by
feA

n(z)()_ &) = Y enp(z)és.

feA fed
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Let K = H ® H. Define r : B(H) — B(K) by
n(z) 0

w(z) =
0 T

Then n(z) is a faithful *-representation of B(H).

Lemma 2.13. Let A be a subalgebra of B(H) and let ¢ be a bounded linear functional
on w(A). Then there erists a o-weakly continuous functional v on B(K) such that ¢ =
Ylr(a)-

Proof. Let ¢ = ¢om. Since 7 is isometric, it follows that ¢ is a bounded functional on
A. Extend ¢ to a bounded functional w on B(H) such that |jw|| = |||

Define ¥;1(n(z)) = w(z) for z € B(H). Since 7 is an isometry, it follows that ; is
well-defined and ¢; € (w(B(H)))*. Let w = f + g, such that f is singular and g € B(H)..
We can prove that 1, is o-weakly continuous on w(B(H)). Extending v¥; to a o-weakly
continuous functional ¥ on B(K), it is clear that ¢ extends ¢. O

Suppose A is as in Theorem 2.8. Define

P=
0 I

we easily show that P € 7(A) N (w(A))'. Define o : 7(A)P — A by
00

0 z

The « is an isometric algebraic isomorphism, and is o-weakly continuous. If € A, then
a(r(z)P) € A.

Lemma 2.14. Let A be as in Theorem 2.8. For n > 1, let p € Z*(A, B(H)). Then
there ezists £ € C*~(A, B(H)) such that p — 8¢ € Z(A, B(H)).
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Proof. If A € 7(A), then a(AP) € A. So we can define left and right actions of 7(A)
on B(H) by A-m = a(AP)m, m - A = ma(AP),m € B(H). By the definition, B(H)

become a n(A)-module such that
P-m=m-P =m, (2.2)
for any m € B(H). For p € Z*(A, B(H)), since a is isometric, we can define p; in
Ce(n(A), B(H)) by
p1(A1,---,An) = p(a(A1P),---,a(AnP)),
for all Ay, ..., A, € 7(A). A routine calculation gives
(0p1)(A1, -y Ant1) = (9p)(a(A1 P), ..., a(An11 P))

for all Ay,...,Ap41 in w(A); so p1 € Z2(n(A),B(H)). Let n € B(H)., A, A; € w(A),

1 < 7 £ n, and define
¢](A) = n(pl (Al) veey Aj—h A: AJ'-H.’ ey An)1

for 1 < j < n, By Lemma 2.13, each ¢;j is the restriction of an o-weak continuous functional
on B(K), so it is o-weak continuous on w(A). This proves that p; is separately o-weak
to weak* continuous. By Lemma 2.12, p; extends to a bounded n-linear mapping p; :
7(A) x --- x 7(A) — B(H) which is also separately o-weak to weak* continuous. It follows
from Lemma 6.2[98] that there exists £, in C%(w(A), B(H)) such that 5, — 8¢, vanishes
whenever any of its arguments lies in the span{I,2P — I}. Since P € span{I,2P — I}, it

follows from (2.2) that

(P1 — 0&1)(A1, .-, An) = P(py — 061)(A1, ..., An) = (P — 0&1)(PA1, ..., PAy)
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for all Ay,..., A, in 7(A). Now we define
€(a(A1P),...,a(Apn—1P)) = &1 (A, -y An—)

whenever Ay, ..., An_1 € 7(A). A routine calculation shows that p — 3¢ € Z%(A, B(H)). O

By a routine modification of the proof of Lemma 6.5[98], we can prove the following
result.

Lemma 2.15. Let A be as in Theorem 2.8. Then BZ(A, B(H))N Z%(A, B(H)) =
B (A, B(H)).

The Proof of Theorem 2.8.

For each p in Z7}(A, B(H)), the coset p + BJ(A, B(H)) is a subset of the coset p +

BZ(A,B(H)). Hence there is a natural homomorphism
®: p+ BL(A B(H)) — p+ BX(A, B(H))

from H} (A, B(H)) into H?(A, B(H)). By Lemma 2.11, & is injective. By Lemma 2.15,
the range of ® is H}(A, B(H)). Hence HI'(A,B(H)) = H%(A,B(H)). By Lemma 2.15,
we have HZ(A, B(H)) = H™(A, B(H)) = H(A, B(H)). O

Corollary 2.16. Let L = N} ® ... ® Ny, where N; are nests on H; and let A be
any subalgebra of algL containing all rank-one operators of algL. Then HD(A,B(H)) =
HZ(A,B(H)) =0.

Proof. By Theorem 2.6[34], we have that A satisfies the condition of Theorem 2.8.
By L is finite-width and Theorem 3.1{34], it follows that H (A, B(H)) = H*(A, B(H)) =
H( A,B(H)) = 0. O

Corollary 2.17. Let £ be an atomic Boolean subspace lattice with two atoms and let A
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be any subalgebra of algL containing all rank-one operators of algC. Then H(A, B(H)) =
HZ (A, B(H)).
Corollary 2.18. Let A be a strongly reducible mazimal triangular algebra on H. Then

H™(A, B(H)) =0.
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