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Introduction 
Environmental Sensitivity Index (ESI) products are developed by the National Oceanic and 
Atmospheric Administration (NOAA) to support planning for and responding to coastal oil and 
chemical spills. ESI data describe a variety of coastal resources that are at risk from oil spills that 
include sensitive shorelines (e.g., marshes, tidal flats), biological resources (e.g., birds, shellfish 
beds), and human-use resources (e.g., public beaches, water intakes). ESI maps and datasets 
include shoreline types that are ranked according to their sensitivity to oil and chemical spills. 
This index was the original focus of ESI maps and has been a standard for industry and 
responders since the late 1970s. ESI products also include extensive data describing the 
distribution of other biological and human-use resources at risk in a coastal area, typically 
displayed along with the ranked shoreline types in map products.  
 
The NOAA Office of Response and Restoration (NOAA ORR) is interested in expanding the 
content and application of ESIs by incorporating additional, specific sensitivity scales that 
enhance their utility as planning tools for a broader suite of coastal hazards than oil and 
chemical spills. Expanding the content and applicability of ESI products will enhance the tool as 
a “one-stop shop” for coastal planners and emergency responders. The goal is that NOAA ESI 
data will be useful for broader coastal hazard planning and response by federal, state, tribal, 
and municipal agencies as well as industry and the public at large. 
 
To this end, Research Planning, Inc. (RPI) undertook the project Environmental Sensitivity Index 
(ESI) Feasibility Study of All-Hazards Indices Expansion in response to a grant issued by the 
University of New Hampshire Coastal Response Research Center (CRRC) and NOAA ORR. This 
project investigates the feasibility of expanding the applicability of ESI products to include 
additional hazards. To accomplish this, new indices were developed to rank the relative 
sensitivity of selected natural and human population resources or “receptors” to an expanded 
suite of coastal hazards or “stressors.” The methods and concepts that were developed were 
applied to a pilot area consisting of two ESI atlases in southern Florida by comparing the 
distribution of the receptors of interest with the stressor/hazard occurrence rates to evaluate 
exposure, then spatially analyzing where exposures of sensitive receptors to likely stressors 
occur. This report summarizes methods and data sources used, pilot results, and preliminary 
findings. 

Methodology Overview 
For the ESI Feasibility Study of All-Hazards Indices Expansion study, the terms of risk assessment 

are used as a conceptual framework and to describe methodology. The language used to define 

concepts such as risk, stressor, hazard, vulnerability, sensitivity, receptors, and similar concepts 

often differ by discipline, so it is useful to explicitly define terms and concepts proposed for use. 

In this context, risk is considered as the probability of an adverse outcome to a receptor of 

interest or concern due to the exposure of a given stressor or hazard. The terms “stressor” and 

“hazard” are equivalent in this document. Risk is both stressor- and receptor-specific and is 
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considered as a function of the exposure to a stressor or hazard and the sensitivity of that 

receptor to that stressor. A risk assessment thus includes: 

• A description of the probability and/or intensity of past, and future, hazards or stressors 

affecting a location; 

• An inventory of assets or receptors (e.g., natural resources, population, etc.) at a 

location; 

• A determination of exposure where these overlap;  

• An evaluation of the relative sensitivity of a given asset or receptor to that 

stressor/hazard, and; 

• Evaluation of the severity of consequences, and overall risk over all locations. 

The core of this work is the development of new indices, or ways of ranking both the natural 
resource receptors described by the ESI data and the human population receptors as described 
by social vulnerability variables, based upon their sensitivity to a list of coastal stressors or 
hazards. In the existing ESI data, the shorelines are ranked by relative sensitivity to oil spills. 
Shorelines are not ranked by relative sensitivity to other stressors or hazards. Other biological 
and human-use resources are inventoried, but are not ranked by sensitivity to any hazards. This 
work expands this sensitivity index ranking concept to include a pilot suite of additional 
resources or receptors and additional hazards or stressors. A unique index is required for each 
receptor and each stressor.  These unique indices were developed primarily by a 
comprehensive literature review.  
 
The stressors or hazards included here for analysis were determined in consultation with NOAA 
and are: 
 

• Acute coastal or storm surge flooding 

• Tropical cyclone or convective storm wind events 

• Chronic inundation 

• Marine debris events 

• Shoreline erosion 

• Contaminants from spill events 

Study Area 
As part of this work, a pilot-scale analysis was undertaken to develop an example set of multi-
hazard risk indices and analysis products for a multicounty-scale geographic area in southern 
Florida (Figure 1) using existing ESI data. This area is large enough to enable a robust evaluation 
of a diverse set of natural resource receptors and to provide a wide range of exposures to most 
of the identified stressors/hazards. Further, a pilot-scale analysis in this area, consisting of the 
spatial extents of the adjacent South Florida and Southwest Peninsular Florida ESI atlases 
(NOAA ORR, 2013; 2016a) will allow a robust evaluation of potential data gaps or issues that 
arise from assessing adjoining ESI datasets and ESI datasets of different vintages.  
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Figure 1. Study area in southern Florida representing the combined extents of the South Florida and 

Southwest Peninsular Florida ESI atlases. Dashed line indicates ESI atlas boundary. 

Grid System 
Binning spatial data into a grid system is a simple way of conducting visualization and analysis 

of complex and variably referenced spatial data. This process simplifies visual communication, 

allows more accurate visual estimates of count or density data, and facilitates smoothing and 

aggregation of data using consistent spatial framework across spatial scales. H3 (Uber 2020) is a 

discrete global grid system (Sahr et al. 2003) consisting of a multi-precision hexagonal tiling of 

the sphere with hierarchical indexes. Hexagonal gridding or tiling systems have advantages in 

that all neighbors are equidistant, which simplifies aggregation, flow modeling, etc. and scales 

from global to fine spatial scales without distortion. H3 is available both in ArcGIS (ESRI 2024) as 

well as other free and open-source software libraries, and it has been used in a variety of recent 

coastal (Bousquin 2021) and risk-assessment applications (Aini et al. 2023) that require spatial 

gridding. 

The H3 system is hierarchical such that hexagonal grids at a given resolution nest within and 

can be programmatically related to grid cells at a coarser resolution (Figure 2). Given the scale 

of features represented in ESI atlases and the scale of stressor variability, the recommended 

scale range for visualizing and analyzing the data here is between levels 5 and 8 (Table 1), 

representing phenomena that vary over scales over hundreds of meters (m) to tens of 

kilometers (km). 
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Table 1. Size statistics for subset of H3 hexagonal grid system resolution levels. Note that area 
and dimension statistics will vary slightly at different areas on the earth surface. 

H3 Scale Level Average Area (km2) Average Edge Length (km) Average Diameter (km) 

5 234.1 9.59 18.79 

6 33.46 3.72 6.94 

7 4.78 1.41 2.68 

8 0.74 0.52 1.00 

 

In the sections that follow, visualizations are generally made using H3 grid cells at scale level 7 

where each hexagon in the study area is approximately 4.78 square kilometers (km2) in area. 

Accompanying digital deliverables include four different resolution grids, each with the same 

attributes, as discussed and visualized in this report. 

 
Figure 2. Examples of H3 hexagonal grids at four different scales over a portion of the study area in the 

Ft. Meyers area. Study area boundary is in black. 

Ranking Methods 
For this project, a variety of relative ranks of hazard intensity, resource exposure, and resulting 
risk are presented at different spatial grid cell resolutions. In each case, a unique categorization 
is performed for each visualization to standardize values into a 5-category system: High, 
Medium-High, Medium, Medium-Low, and Low. This is performed in each case using a Jenks 
natural breaks optimization method (Jenks 1967) which optimizes class categories based on 
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numeric attributes by minimizing variance within classes and maximizing variance between 
classes. These categories are computed for each visualization or index calculation and stored as 
a numeric integer ranging from 1 (Low) to 5 (High). 

Evaluated Stressors 
For the ESI Feasibility Study of All-Hazards Indices Expansion study, a set of additional coastal 
hazards or stressors was selected via discussion with NOAA and other stakeholders. Stressors or 
hazards were selected to prioritize events or phenomena that fall under NOAA’s interests for 
scientific investigation or emergency response, and for which there may be significant 
differences in the distribution and intensity of hazards or stressors across the U.S. Spatial maps 
describing the distribution of each evaluated stressor or hazard were compiled using nationally 
standard datasets. Methods and data sources used for each stressor or hazard are described in 
the following sections. 
 

Acute Coastal or Storm Surge Flooding 
Acute coastal or storm surge flooding is defined as flooding of coastal areas due to the vertical 
rise above normal water level caused by a cyclonic storm (e.g., hurricane, typhoon, or tropical 
storm) or other meteorological event that generates strong, persistent onshore wind and/or 
low atmospheric pressure. In coastal regions, life and property are at greatest risk from coastal 
or storm flooding (e.g., storm surge and coastal flooding; NOAA NHC 2024a).  
 
To estimate the distribution of hazards posed by coastal and storm surge flooding over the 
study area, national storm surge hazard maps derived from the NOAA Sea, Lake, and Overland 
Surges from Hurricanes (SLOSH) data (NOAA NHC 2024a; Zachry et al. 2015) were used. These 
data map modeled storm surge inundation depth from a large ensemble of simulated tropical 
cyclones with varying storm intensity, angle of approach to the coastline, and other 
hydrodynamic variables. Initially, a weighted average of expected storm surge flooding depth 
reflected in the Maximum of Maximum Envelope of Water (MOM) product was computed as 
the mean of all categorical flooding depths, weighted by the relative historical frequency of 
landfalling hurricane category in continental US (Knapp et al. 2010a,b). 
 
Hazard intensity categories were computed for individual grid cells by summing the storm surge 
flooding depth raster pixels in each cell and multiplying this value by the total area of all raster 
pixels in each cell to yield a value of volume of storm surge per cell and ranking these values 
using the natural breaks method. Figure 3 depicts the weighted average of storm surge flooding 
depth and resulting gridded hazard intensity categories. 
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Figure 3. Weighted average of Maximum of Maximum Envelope of Water (MOM) storm surge flooding 

depth in meters from NOAA SLOSH model output (top) and resulting gridded hazard intensity 
categories (bottom). 
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Tropical Cyclone or Convective Storm Wind Events 
Damaging winds from tropical storms and convective storms (thunderstorms) are significant 
hazards. Tropical storm winds are one of many natural hazards caused by tropical cyclones. 
When winds exceed 64 knots (kt), cyclones in the Atlantic Ocean are classified as hurricanes, 
while tropical storms and tropical depression are terms used to describe weaker cyclones. The 
damaging impacts of tropical storm winds occur in conjunction with the other natural hazards 
caused by tropical cyclones, so that it is often difficult to assess the damage caused by a specific 
hazard (Blake et al. 2011). Tropical storm winds differ from convective storm winds and 
tornadoes because of their size, which can be hundreds of kilometers in diameter, and the 
relative infrequency with which they occur. Though associated wind speeds are often less 
intense, convective storms are much more common than tropical storms. Convective storms 
are most frequent during the summer months (June-August), having a near-daily occurrence in 
the afternoon. Nationally, non-tornadic convective storm winds are responsible for 
approximately one in three wind-related deaths (Black and Ashley 2010).  
 
To estimate the distribution of hazards associated with tropical storm winds, analysis of the 
NOAA IBTrACS database (Knapp et al. 2010a,b) for the period from 1851 to 2023 was carried 
out after the methods described in Emrich et al. (2022b) and Demuth et al. (2006). Briefly, 
asymmetrical wind swaths were generated for all North Atlantic tropical cyclones making 
landfall in the study area during 1851-2023 by implementing the multi-distance asymmetrical 
buffer for wind radii at 34 and 64 knots using methods similar to those described in Demuth et 
al. (2006). After generating these wind swath polygons for all tropical storms in the vicinity of 
the study area, the resulting vector polygonal swaths were intersected. For each resulting 
unique overlapping polygon, the count of unique occurrences in each speed category was 
determined. The count attributes of these polygons were converted to a raster at 1-km cell size, 
and the raster was smoothed using a moving-window median calculation with a 10-km radius. 
The average annual occurrence rate of tropical cyclone winds greater than 64 kt for each raster 
cell was computed by dividing the total number of occurrences by the 172-year evaluation 
period (1851-2023).  
 
To estimate the distribution of hazards posed by convective storm high-wind events, point data 
on the occurrence of severe (>64 kt) thunderstorm and other winds were obtained from the 
NOAA National Weather Service Storm Prediction Center Severe Weather Geographic 
Information Systems Database (SVGIS; NOAA SPC 2023). Hart and Janish (1999) provide 
additional details. As per the methods referenced in the NOAA SPC 30-year Severe Weather 
Climatology data sets (NOAA SPC 2024), a kernel density of these point events within a 120-km 
radius was computed using a subset of points from 1993 to 2023 (ESRI 2024; Silverman 1986). 
The average annual occurrence rate of convective storm winds >64 kt for each raster cell was 
computed by dividing the total number of occurrences by the 30-year evaluation period (1993-
2023). Figure 4 depicts the annual empirical occurrence rate of tropical cyclone winds >64 kt 
and annual empirical occurrence rate of severe convective storm winds >64 kt. 
 
The expected count per year of all winds >64 kt for each raster cell was computed as the sum of 
the annual occurrence probability of both winds >64 kt from tropical cyclones and the annual 
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Figure 4. Annual empirical occurrence rate of tropical cyclone winds >64 kt (1851-2023; left) and annual 

empirical occurrence rate of severe convective storm winds (>64-kt) from NOAA Storm Prediction 
Center SVGIS data (1993-2023; right). 

 
occurrence probability of winds >64 kt from convective storms. Hazard intensity categories 
were computed for individual grid cells by taking the mean of the expected occurrence rate for 
all winds >64 kt for raster pixels in each cell and ranking these values using the natural breaks 
method. Figure 5 depicts the weighted average of storm surge flooding depth and resulting 
gridded hazard intensity categories. 
 

Chronic Inundation 
High tide flooding (HTF), often referred to as “king tides,” “nuisance,” or “sunny day” flooding, 
occurs when sea level rise combines with local factors to push water levels above the normal 
high tide mark. Changes in winds or currents, and normal tidally driven water level elevation 
changes can all cause high tide flooding, inundating upland areas even during fair weather. High 
tide flooding frequency is accelerating and is more than twice as likely now as it was in 2000 
(Sweet et al. 2018). 
 
To estimate the distribution of hazards posed by chronic flooding, the extensive spatial data 
presented as part of the multi-agency analysis described in the 2022 Sea Level Rise Technical 
Report (Sweet et al. 2022) to characterize the extent and predicted frequency of chronic 
inundation events were used (see Sweet et al. 2018 for additional details). The Coastal Flood 
Threshold Inundation Extent data were obtained (NOAA OCM 2024b) describing the current 
extent of modeled HTF areas nationally. Additionally, HTF days per year were obtained from 
NOAA CO-OPS for all tide stations where available (NOAA CO-OPS 2024) from the available data 
period (2019-2023). The counts of HTF days were interpolated over the study area where HTF 
flooding extents were present using a spline interpolation method with a coarse upland 
boundary barrier (ESRI 2024) to a raster with a 1-km cell size, apportioned to each cell in the 
HFT extent rasters (3 m rasters), and resampled to 30-m cell size. The average annual HTF day 
occurrence rate for each raster cell was computed by dividing the interpolated value in all cells 
by the 5-year evaluation period (2019-2023).  



 

9 

 

 
Figure 5. Annual empirical occurrence rate of all wind events >64-knots (tropical storms and severe 

convective storms; top) and resulting gridded hazard intensity categories (bottom). 
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Hazard intensity categories were computed for individual grid cells by summing the values of 
annual HTF day occurrence rate for all raster pixels in each cell and multiplying this value by the 
total area of all raster pixels in each cell, to yield a value of the expected area of HTF per year 
per cell and ranking these values using the natural breaks method. Figure 6 depicts the 
weighted average of storm surge flooding depth and resulting gridded hazard intensity 
categories. 
 

Marine Debris Events 
Hurricanes and tropical storms, tsunamis, floods, and landslides that impact U.S. coasts can be 
a notable acute source of marine debris, distinct from chronic sources of marine debris . High 
winds, storm surges, and heavy rains transport household products, hazardous waste, and 
construction debris into the surrounding waters. Natural disasters can also create Abandoned 
and Derelict Vessels (ADVs) and other items of concern. This debris can be a hazard to 
navigation, damage habitat, and pose pollution threats. 
 
Few data exist that are suitable for nationwide estimation of hazards posed by acute 
accumulations of large marine debris generated by tropical storms and tsunamis. To estimate 
this hazard, a statistical model was developed to predict the relative likelihood of occurrence of 
event-generated marine debris. Training data for this model was compiled from internal data 
sets from recent Emergency Support Function (ESF)-10 and ESF-3 responses identifying ADVs 
and other debris items of concern for Hurricanes Irma, Maria, Florence, Michael, Laura, Sally, 
and Ida. For these hurricanes, 10,099 items were identified in NC, FL, AL, LA, PR, and the USVI 
primarily via interpretation of post-storm imagery. A raster was created covering the entirety of 
the searched extent for each debris mapping project/storm at 1-km cell size, and the count of 
ADVs and other targets per raster pixel was computed.  
 
A set of spatial rasters at 1-km cell size was developed for a suite of predictive variables over 
this same raster extent. Predictive variable rasters were generated as follows. Distance to 
shorelines was extracted from the Global Self-consistent, Hierarchical, High-resolution 
Geography database (GSHHG; Wessel and Smith 1996). A raster representing land was also 
derived from the GSHHG, and focal mean values representing proportion of land area were 
computed at 2- and 10-km radii. Focal mean values of population density extracted from the 
Gridded Population of the World, Version 4 (GPWv4; CIESIN 2018) were computed at 2- and 10-
km radii. Finally, a database of marina locations was compiled from ESI atlases (NOAA ORR 
2000a; 2000b; 2007; 2010; 2014) and supplemental state datasets (FWC 2024b; LA GOHSEP 
2024) for all states with mapped debris items. Kernel density surfaces in units of marinas per 
km2 were generated using a 2-km and 10-km search radii. Finally, the maximum categorical 
wind speed for each storm was extracted for all locations from NOAA National Hurricane Center 
best track wind swath data (NOAA NHC 2024b). All locations in the raster extent had wind 
speeds above 34 kt (tropical storm force), but only some locations had wind speeds above 64 kt 
(hurricane force). A Poisson regression model was developed using the counts of ADVs and 
other targets per 1 km2 as the independent variable and the values of the variables discussed 
above as predictor variables.  
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Figure 6. Extent and annual empirical occurrence rate of high tide flooding (HTF) derived from NOAA 

Coastal Flood Threshold Inundation Extent and CO-OPS data (top) and resulting gridded hazard 
intensity categories (bottom). 
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The final model selected was highly significant (Wald Statistic=29816.7, df=8, Prob > chi-
squared < 0.0001), used all predictor variables, and explained 39% of the variability in 
ADV/debris counts as evaluated by deviance. Model parameters are given in Table 2. 
 

Table 2. Model parameters for Poisson regression relating count of event-generated ADVs and 
other targets per 1 km2on multiple predictor variables.  

Variable Coefficient Significance 

Intercept -1.778735  < 0.000001 

Distance to shoreline (m) -0.002060 < 0.000001 

Mean population density within 2 km (count/km2) 0.000096 < 0.000001 

Mean population density within 10 km (count/km2) 0.000164 < 0.000001 

Marina density within 2 km (count/km2) 0.769921 < 0.000001 

Marina density within 10 km (count/km2) 1.368407 < 0.000001 

Land to water ratio within 2 km 1.229009 < 0.000001 

Land to water ratio within 10 km -0.496450 < 0.000001 

Wind speed greater than 64 knots 1.185371 < 0.000001 

 

This model was used to make predictions for the entirety of the study area for both conditions 
with and without winds greater than 64 kt. Each resulting predicted raster surface was 
multiplied by the rasters describing the average annual occurrence rate of tropical cyclone 
winds greater than 34 and 64 kt, respectively (as described in the section on tropical cyclone 
wind events above). These two rasters were then summed to yield a raster with the predicted 
annual count of event-generated ADVs and other targets per km2. 
 
Hazard intensity categories were computed for individual grid cells by taking the mean of the 
predicted annual count of event-generated ADVs and other targets per km2 and ranking these 
values using the natural breaks method. Figure 7 depicts the predicted annual count of event-
generated ADVs and other targets per km2 and resulting gridded hazard intensity categories. 
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Figure 7. Predicted annual count of emergency generated debris items per km2 (top) and resulting 
gridded hazard intensity categories (bottom). 
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Shoreline Erosion 
Shoreline erosion is a widespread process along most open-ocean shores of the United States 
that affects both developed and natural coastlines. Erosion can cause a variety of impacts to 
coastal communities, habitats, and the physical characteristics of the coast, including beach 
erosion, shoreline retreat, land loss, and damage to infrastructure. 
 
To estimate the hazards posed by shoreline erosion, data were integrated from several sources. 
For outer sand beach shorelines, the U.S. Geological Survey (USGS) National Assessment of 
Shoreline Change (USGS 2023; Kratzmann et al. 2021) data were used. This national dataset 
measures long- and short-term shoreline change rates at multiple transects along the open 
coasts of the U.S., primarily along exposed beach shoreline. The long-term annualized linear 
retreat rate computed at each transect was assigned to a point location at the intersection of 
that transect with the most recent shoreline. These data were filtered to retain only locations 
with shoreline retreat rates that were positive (erosional). Finally, an average annual areal land 
loss rate was computed at each location by multiplying the long-term annualized linear retreat 
rate at each location by 50 m (the alongshore spacing of the USGS transects). To evaluate 
erosion and coastal land loss in areas not covered by the USGS shoreline change data, NOAA 
Coastal Change Analysis Program (C-CAP) Regional Land Cover 30-m data (NOAA OCM 2024a) 
were used. These data were processed at native resolution to extract pixels with change from 
upland or wetland (excluding unconsolidated shore and barren areas) to water between 1996 
and 2016. The resulting locations were filtered to remove areas of change inland and along 
outer coasts where the USGS data were considered to supersede the NOAA data. The average 
annual areal land loss rate for each pixel was computed by dividing the area of each pixel (900 
m2) by the 20-year evaluation period (1996-2016). These two datasets were merged together.  
 
Hazard intensity categories were computed for individual grid cells by summing the annual 
estimated areal rate of shoreline erosion of all points in each cell to yield a value of total area 
lost per year per cell and ranking these values using the natural breaks method. Figure 8 depicts 
the annual estimated areal rate of shoreline erosion and coastal land loss and resulting gridded 
hazard intensity categories. 
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Figure 8. Location and annual estimated areal rate of shoreline erosion and coastal land loss derived 
from USGS National Assessment of Shoreline Change and NOAA Coastal Change Analysis Program 
data (top) and resulting gridded hazard intensity categories (bottom). 
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Contaminants from Spill Events 
A wide range of chemicals can contaminate coastal areas. Most contaminants enter the 
environment from industrial and commercial facilities, oil and chemical spills, or non-point 
sources. Many hazardous waste sites and industrial facilities have been contaminated for 
decades and continue to affect the environment. To estimate hazards posed by contaminants in 
coastal areas, an empirical analysis was carried out using the USCG/USEPA National Response 
Center (NRC 2024) data describing spill reports between 2003 and 2023. These data were 
compiled, and records with explicit spatial coordinates were mapped. Records without explicit 
coordinates were tabulated at the zip code or county level, as available. Background spill counts 
were computed for each zip code and county polygon in the study area in units of spills per 
km2. The count attributes of these polygons were converted to rasters at 1-km cell size. A 
kernel density surface in units of spills per km2 was generated for records with explicit 
coordinates using a 10-km kernel in ArcGIS Pro (ESRI 2024; Silverman 1986) and stored as a 
raster at 1-km cell size. Finally, both background spill count rasters and the kernel density raster 
were summed to yield a total spill count raster. and the raster was smoothed using a moving 
window median calculation with a 10-km radius. The average annual spill occurrence rate per 
km2 for each raster cell was computed by dividing the total value in all cells by the 20-year 
evaluation period (2003-2023).  
 
Hazard intensity categories were computed for individual grid cells by taking the mean annual 
spill occurrence rate per km2 in each cell and ranking these values using the natural breaks 
method. Figure 9 depicts the mean annual spill occurrence rate per km2 and resulting gridded 
hazard intensity categories. 
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Figure 9. Annual empirical occurrence rate of oil and chemical spill derived from USCG/USEPA National 
Response Center data (2003 to 2023; top) and resulting gridded hazard intensity categories 
(bottom). 
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Natural Resource Receptors 
The primary utility of ESI atlases is that they collect, compile, and communicate information on 
biology, human-use, and shoreline resources that may be at risk from oil spills in a standard 
way across all coastal areas. ESI data inherently describe a set of natural resource receptors, 
ranked according to sensitivity to oil spills, a primary coastal stressor such as those described 
above.  
 
The core of this project involves the development of new sensitivity indices for natural resource 
receptors contained in ESI atlases. While all ESI data are collected and compiled according to a 
common standard, their contents vary according to regional priorities and by the age of the 
atlas, as the ESI standard has evolved over time. In general, it is expected that sensitivity index 
development would take place primarily for Threatened and Endangered Species (including 
their Critical Habitats and other important habitats) and wetlands, coral reef, seagrass, and 
other sensitive benthic habitats. These habitats provide protection of adjacent lands, people, 
and resources during extreme storms such as hurricanes, but they are also at risk of damage 
from hurricane-generated waves, coastal erosion, sedimentation, and marine debris. Because 
there is a large number of potential species, habitats, and other natural resources contained in 
ESI atlases, a subset of resources present in the study was specifically selected for sensitivity 
index development as part of this project via discussion with NOAA and other stakeholders. 
These resources include one species or guild from each biological element mapped as part of 
ESI atlases. The resources selected for inclusion from the two ESI atlases in the study area are: 
 

• Terrestrial Mammal (Key deer) 

• Marine Mammals (West Indian manatee) 

• Shorebirds (Nesting and Wintering) 

• Wading Birds 

• Fish (Smalltooth sawfish) 

• Invertebrate (Queen conch) 

• Reptiles (Sea turtles) 

• Wetlands (Mangroves) 

• Wetlands (Seagrass) 

• Hardbottom Habitat (Coral reefs) 

Key deer (Odocoileus virginianus clavium) are listed as endangered under both federal and state 
regulations. They are the smallest subspecies of the North American white-tailed deer. They are 
the only large herbivore in the Florida Keys and can be found in every habitat, where they feed 
on dozens of native plant species. They travel through all of the Florida Keys habitats, and can 
walk, wade or swim from island to island. The 2024 Key deer population is estimated to be 700 
to 800 deer, with the greatest concentrations on Big Pine Key and No Name Key (FWC 2024a). 
Key deer were selected to represent terrestrial mammals that are listed under the Federal 
Endangered Species Act (ESA) and intimately associated with coastal habitats. 
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West Indian manatees (Trichechus manatus) are listed as threatened under both federal and 
state regulations, as well as under the Marine Mammal Protection Act. The subspecies Florida 
manatee (Trichechus manatus latirostris) primarily inhabit Florida’s coastal waters, rivers and 
springs. During the warmer months, some manatees travel up the eastern coastline into 
Georgia and the Carolinas, with a few animals traveling as far north as Massachusetts. In the 
Gulf, manatees can be found west through coastal Louisiana and occasionally as far west as 
Texas. The statewide abundance in Florida for the 2021-2022 period is 8,350-11,730 manatees 
(Gowan et al. 2023). Manatees live in marine, brackish, and freshwater systems in coastal and 
riverine areas throughout their range. They are aquatic herbivores, preferring habitats near the 
shore featuring submerged aquatic vegetation like seagrass and eelgrass. They cannot tolerate 
temperatures below 68°F for extended periods of time; during the winter months, cold 
temperatures keep the population concentrated mostly in peninsular Florida. Manatees were 
selected to represent marine mammals that are ESA-listed and intimately associated with 
coastal habitats. 
 
Nesting and wintering shorebirds are a sub-element for birds in the ESI data in the study area, 
with 23 species mapped. Shorebirds are closely associated with coastal habitats for nesting, 
feeding, and loafing. Piping plover and rufa red knot are ESA-listed as threatened; American 
oystercatcher, black skimmer, least tern, and snowy plover are state listed as threatened. Some 
species nest in dense mixed-species colonies (e.g., terns, gulls), whereas some species are 
solitary nesters (e.g., plovers, oystercatchers). Shorebirds represent a guild of coastal birds that 
are highly susceptible to disturbances that could lead to reduced nesting success, particularly 
from human disturbance and predation.  
 
Wading birds are a sub-element for birds in the ESI data for the study area. They include herons 
(little blue and tricolored herons are state listed as threatened), egrets, American flamingo, 
roseate spoonbill (state listed as threatened), ibis, limpkin, Florida sandhill crane (state listed as 
threatened), and wood stork (ESA-listed as threatened). Many nesting species establish nests in 
shrubs or trees over or adjacent to wetlands in colonies of tens to hundreds of nests, often with 
at least two species nesting in the colony. Nesting colonies also need to be near aquatic feeding 
areas. Wading birds represent a guild of coastal birds that are susceptible to disturbances that 
could lead to reduced nesting success and/or colony abandonment, particularly from 
degradation of feeding areas and physical damage to the colony vegetation. 
 
Smalltooth sawfish (Pristis pectinata) is listed as endangered under both federal and state 
regulations due to their dramatic decline in population and range due to habitat loss and 
accidental capture in fisheries. Critical habitat has been designated along the southwest coast 
of Florida, from Florida Bay to Marco Island and parts of Estero Bay, San Carlos Bay, and 
Charlotte Harbor. Juveniles are associated with mangrove and seagrass habitats in areas such as 
estuaries, river mouths, and bays year-round, preferring water salinities between 18 and 30 
parts per thousand. Adults are typically found in open-water habitats, but have been 
encountered near coral reefs and occur inshore during the spring when females give birth and 
mating is thought to occur. They are representative of marine fish that are highly dependent on 
shallow coastal habitats and are listed under ESA. 
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Queen conch (Aliger gigas) was federally listed as threatened in 2024 due to overfishing and 
poaching. This long-lived (up to 30 years) invertebrate species occurs in sandy and hard 
bottoms, coral rubble, and occasionally in seagrass beds. Queen conch was selected as 
representative of invertebrates that are reliant on nearshore coastal habitats and are ESA-
listed. 
 
Sea turtles are marine reptiles, with all five species in Florida listed as either threatened or 
endangered under both federal and state regulations. Adult females lay eggs at their natal 
beaches in Florida between April and October. Loggerhead sea turtles (Caretta caretta) are the 
most common nester, and all life stages may be present in nearshore waters of south and 
central Florida throughout the year. Adult green sea turtles (Chelonia mydas) are the second 
most common nester, and may be present in waters near nesting beaches during time periods 
surrounding the nesting season. Non-adult green sea turtles may be present in inshore seagrass 
habitats and nearshore hardbottom habitats throughout the year. Leatherback sea turtles 
(Dermochelys coriacea) nest in small numbers between March and July, and may be 
encountered in offshore waters throughout the year. Hawksbill sea turtles (Eretmochelys 
imbricata) are rare nesters in Florida, but all life stages are present throughout the year in 
nearshore reef and hardbottom habitat. Non-adult Kemp’s ridley sea turtles (Lepidochelys 
kempii) are rare nesters in Florida, but may be present throughout south Florida waters during 
all months.  
 
Mangroves are the dominant intertidal wetland habitat in southern Florida. They maintain 
water quality by trapping sediment and taking up excess nutrients from the water. There is 
increasing appreciation for their value in sequestering carbon. They play an important role in 
shoreline protection and stabilization, and they provide important habitat for a wide variety of 
species of commercial, recreational, subsistence, and conservation interest. They are one of the 
most sensitive shoreline habitats in Florida (ESI rank of 10). 
 
Seagrass beds are highly productive habitats. They serve as important carbon and nutrient sinks 
and produce substantial amounts of oxygen for sediments and the overlying water column. 
They are a food source for many animals including sea urchins, sea turtles, manatees, and some 
fish and crustaceans. They are nursery habitat that provides structure for various life stages of 
commercially and economically important fish and invertebrates. They also stabilize the 
sediment around coastal areas, protecting coastlines from tropical storms that threaten 
beaches and infrastructure. Seagrass beds can be both intertidal and subtidal in Florida.  
 
Coral reefs create specialized habitats that provide shelter, food, and breeding sites for 
numerous plants and animals. Coral reefs lay the foundation of a dynamic ecosystem with 
tremendous biodiversity. Coral reefs act like submerged breakwaters by breaking waves and 
dissipating their energy offshore before they flood coastal properties and communities. 
Annually, reefs in Florida provide flood protection benefits to more than 5,600 people and $675 
million in averted damages to property and economic activity (Storlazzi et al. 2019). Coral reefs 
in Florida have experienced declines due to a combination of global and local factors, including 
high ocean temperatures resulting in more frequent coral bleaching events, coral disease, poor 
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water quality associated with land-based sources of pollution, and other human impacts. In 
2006, elkhorn and staghorn coral were listed as threatened species under the ESA; in 2014 
boulder star coral, mountainous star coral, lobed star coral, rough cactus coral and pillar coral 
were also ESA-listed as threatened. Critical habitat for elkhorn and staghorn coral in Florida 
extends offshore from Boynton Beach to Key West and around the Dry Tortugas. 
 
Polygons and points representing each of these species, habitats or sub-elements were 
extracted from both ESI atlases and merged together by species. For species or sub-element 
with data describing both wide general distribution and more spatially constrained areas of 
importance, a subset of points and polygons were extracted for areas representing areas of 
importance only. For the West Indian manatee, smalltooth sawfish, queen conch, and sea 
turtles, polygons with high concentrations, or that were identified as breeding, nursery, or 
other significant locations were considered as important areas. For shorebirds and wading 
birds, points indicating nesting colonies were considered as important areas. No specific 
important areas were extracted for Key deer, mangroves, seagrass, and coral reefs. Figures 10 
through 19 depict the distribution of data representing these resources extracted from ESI 
atlases.   
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Figure 10. Florida key deer location data extracted from ESI atlases. Dashed line indicates ESI atlas 

boundary. 

 

 
Figure 11. West Indian manatee location data (general distribution and important areas) as extracted 

from ESI atlases. Dashed line indicates ESI atlas boundary.  
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Figure 12. Wintering and nesting shorebird data (general distribution and important areas) as extracted 

from ESI atlases. Dashed line indicates ESI atlas boundary. 

 

 
Figure 13. Wading bird data (general distribution and important areas) as extracted from ESI atlases. 

Dashed line indicates ESI atlas boundary. 
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Figure 14. Smalltooth sawfish location data (general distribution and important areas) as extracted from 

ESI atlases. Dashed line indicates ESI atlas boundary. 

 

 
Figure 15. Queen conch location data (general distribution and important areas) as extracted from ESI 

atlases. Dashed line indicates ESI atlas boundary. 
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Figure 16. Sea turtle location data (general distribution and important areas) as extracted from ESI 

atlases. Dashed line indicates ESI atlas boundary. 

 

 
Figure 17. Mangrove location data as extracted from ESI atlases. Dashed line indicates ESI atlas 

boundary. 
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Figure 18. Seagrass location data as extracted from ESI atlases. Dashed line indicates ESI atlas boundary. 

 

 
Figure 19. Coral reef location data as extracted from ESI atlases. Dashed line indicates ESI atlas 

boundary. 
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Human Population Receptors 
In addition to the information on the distribution of natural resource receptors contained in the 

ESI atlases already, it was of interest to examine the feasibility of integrating information on the 

distribution of vulnerable human populations in the investigation. A number of different 

existing indices exist that quantify the distribution of vulnerable human populations. For this 

analysis, the Social Vulnerability Index (SoVI), developed by researchers at the University of 

South Carolina and University of Central Florida (Emrich et al. 2022a; Emrich and Cutter 2011), 

was adopted. SoVI is a model that measures vulnerability to the environment which synthesizes 

a total of 29 variables extracted from U.S. Census and American Community Survey (ACS) data. 

Other such indices exist and were comparatively evaluated (Appendix A). The variables are 

grouped into six pillars of vulnerability that include employment structure, housing, population 

structure, race and ethnicity, socioeconomic status, and special needs. SoVI is derived via a 

latent variable and using principal component analysis approach and yields an index 

representing the level of vulnerability in an area (Burton and Cutter 2008; Tate et al. 2010). 

Figure 20 depicts the 5-class categorization of the SoVI index for the study area. 

 

 
Figure 20. The 5-class categorical ranking of Social Vulnerability Index (SoVI), by census tract polygon, 

summarizing the distribution of socially vulnerable human populations as part of the ESI All-Hazards 
Expansion derived from compiled ESI data. 
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Sensitivity of Natural Resource Receptors to Stressors 
Ten natural resources were selected to represent the range of sensitive biological resources 
and habitats for use in the pilot of the All-Hazards Indices Expansion of the Environmental 
Sensitivity Index (ESI) mapping products. A comprehensive literature search was conducted to 
assess the sensitivity of the ten identified natural resource receptors to each stressor/hazard 
type. Figure 21 summarizes the natural resources and shows the sensitivity rankings for each of 
the six stressors. The basis for the effects ranking is provided in the following tables, ordered by 
the listing of natural resources. 
 

Resource / Receptor 

Stressor / Hazard 

Acute 
Coastal/ 

Storm Surge 
Flooding 

Chronic 
Inundation 

Marine Debris 
Events 

High Wind 
Events 

Shoreline 
Erosion 

Contaminants 
from Spill 
Events 

1. Terrestrial Mammals: Key deer - - - -a - -a -a 

2. Marine Mammals: West Indian manatee - - - 0a - a - 

3. Shorebirds: Nesting and wintering + b  - - 0 - - - - 

4. Wading Birds - c -  - - - - - 

5. Fish: Smalltooth sawfish 0 - 0 0 0 - 

6. Invertebrates: Queen conch --  - a - 0 - a - 

7. Reptile: Sea turtles - - - 0 - - 

8. Wetlands: Mangroves - - - d -  - - - - - - 

9. Wetlands: Seagrass - - - - - - - 

10. Hardbottom Habitat: Coral Reef - - - - - - 0 - 

 
Sensitivity Ranking Key 

- - Large negative effect 

- Small negative effect, short term 

0 No effect 

+ Small positive effect 

Footnotes: 
a No literature found. Effect ranking is based on best professional judgment.  
b See caveat for hurricane effect ranking following hurricane impacts literature summary.  
c Most effects are negative, but some species under certain circumstances may benefit from post-hurricane conditions. See hurricane impacts 
literature summary. 
d See caveat for chronic inundation effect ranking following inundation impacts literature summary. 

Figure 21. Matrix of sensitivity rankings of stressors and natural resources used in the All Hazards Indices 
Expansion of the ESI. 

 

Terrestrial Mammal (Key Deer) 
 
Table 3. Summary of hurricane (acute coastal/storm surge flooding) impacts to Key deer. 

Effect Literature Summary 

Drowning • Lopez et al. (2003) documented the drowning of one radiomarked Key deer during the landing of 
Hurricane Georges (Category 2, 1998) in the Florida Keys.  

• Study of white-tailed deer (Odocoileus virginianus seminolus) movements in southwestern Florida during 
Hurricane Irma’s landfall (Category 4, 2017) revealed behavioral responses to the hurricane. Deer 
selected higher elevation pine and hardwood forests and avoided marshes during the storm. Most deer 
left their home ranges, and no mortality was attributed to the hurricane (Abernathy et al. 2019). The 
limited habitat sizes on the small islands that Key deer inhabit may include little or no higher elevation 
refuge area, which may negatively affect their survival during a hurricane. Many small islands that 
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Effect Literature Summary 

support small Key deer populations were completely inundated by storm surge from Hurricane Georges 
(Lopez et al. 2003).  

Habitat 
degradation 

• Storm surge due to Hurricane Wilma (Category 3, 2005) resulted in the mortality of trees in pine forests 
on Sugarloaf Key and Big Pine Key, which support most (approximately 75%; Lopez et al. 2003) of the 
Key deer population. At low elevations (<1 m), survival of pine trees on Big Pine Key was less than 20%; 
whereas, at elevations >1 m, two-thirds or more of pine trees survived. On Sugarloaf Key, live pine 
seedlings were completely absent following the storm (Ross et al. 2009).  

• Following Hurricane Irma, total mortality of pine trees in slash pine forests on Big Pine Key was 32%, 
with mortality concentrated in the largest trees (52% mortality for trees ≥ 25 cm DBH). Mortality was 
attributed to extensive salt water flooding throughout the island due to storm surge, and sea level rise 
(see following section on chronic inundation impacts) exacerbated storm surge mortality by allowing 
more of the land surface to be flooded by salt water (Ross et al. 2019). 

Increased 
Key deer 
productivity 
(fawn:adult 
doe ratio) 

• On Big Pine Key and No Name Key, Key deer productivity, measured as fawn:adult doe ratios, 
significantly increased following hurricane years (0.31 for non-hurricane years and 0.64 in post-hurricane 
years; Lopez et al. 2003). This difference may be explained by higher post-hurricane food availability. 
Following Hurricane Georges, overstory on Big Pine Key and No Name Key was reduced by 
approximately 50% due to strong winds and windthrown trees. This reduction in overstory may have 
resulted in increased understory forage for Key deer in the short term from downed trees and branches 
and in the long term due to regrowth and sprouting, which in turn may have resulted in increased fitness 
for female Key deer (Lopez et al. 2003).  

Salinization of 
water holes 

• Following Hurricane Wilma, salinity in sinkholes that normally contained fresh water on Big Pine Key 
became brackish and remained brackish through June 2006 (Ross et al. 2009).  

• Following Hurricane Georges, 27% of freshwater sinkholes monitored on islands that Key deer inhabit 
were found to be no longer suitable for deer use (salinity >15 ppt) due to encroachment by storm surge. 
Impacted water holes remained at unsuitable elevated salinities for weeks or months after the storm 
(Lopez et al. 2003).  

Deposition of 
hurricane-
related debris 

• Parker et al. (2020) reported “ubiquitous hurricane-related debris” in Key deer habitat following Hurricane 
Irma.  

Note: Hurricane impacts on Key deer populations may be mixed (both + and -). Negative effects from direct mortality, 
degradation of habitat, and decreased availability of drinking water may be somewhat offset by positive effects on 
Key deer productivity.  

 
Table 4. Summary of chronic inundation impacts to Key deer. 

Effect Literature Summary 

Change and 
loss of habitat 
due to 
saltwater 
intrusion of 
the root zone 
and 
freshwater 
lens 

• Key deer prefer upland habitats (>1 m above mean sea level; pineland, hammock, developed) and avoid 
tidal or lower-elevation areas (<1 m above mean sea level; freshwater marsh, buttonwood, mangrove) 
(Lopez et al. 2004). These upland habitats are dependent on fresh groundwater to support the 
vegetation, particularly the salt-intolerant slash pine forests (Ross et al. 2009). In the Florida Keys, this 
groundwater exists as a shallow freshwater lens that lies below a shallow soil layer and a layer of oolitic 
limestone. This freshwater lens floats on top of the underlying salt water and reaches up into the 
limestone layer where it provides fresh water to root zones and terrestrial species. The areal extent and 
depth of the freshwater lens are affected by tides, rainfall, evapotransporation, and pumpage from local 
wells, and the lens can be shrunk or displaced by sea level rise (SLR). By shrinking and salination the 
freshwater lens, SLR can lead to vegetation and habitat change from the Key deer’s preferred pine forest 
and hammock habitats to mangrove and estuary habitats (Miller and Harwell 2022). Ross et al. (2009) 
attribute a transition of pine forest to more salt-tolerant vegetation types on Sugarloaf Key to a shrinking 
freshwater lens because of SLR. Their data show a decline of pine forest from 88 ha before 1935 to 30 
ha in 1991. Using SLR model projections on islands inhabited by Key deer, Miller and Harwell (2022) 
calculated reductions of dry land habitat (developed and undeveloped, respectively) of 10.6% and 18.5% 
with 0.3 m of SLR, 35.2% and 51.3% with 0.6 m of SLR, 70.3% and 78.8% with 0.9 m of SLR, and 
87.2% and 90.2% with 1.2 m of SLR. Thus, dry land will be replaced by mangroves, which Key deer 
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Effect Literature Summary 

avoid. The authors conclude that beyond 0.9 m of SLR, Key deer have few adaptation options other than 
relocation outside of the Florida Keys.  

• Chronic inundation will be punctuated by short-term, stochastic, and extreme events (e.g., king tides and 
storm surge), which will cause the elevation of root zone to be inundated with seawater well before 
projections of mean sea level reach that elevation (Miller and Harwell 2022). These events could 
accelerate habitat change.  

• In a standardized vulnerability assessment conducted on species in Florida, Reece et al. (2013a) found 
that Key deer had “exceedingly high extinction risk”, with SLR as one of the primary threats influencing 
their extinction risk (along with other barriers to dispersal and genetic swamping or competition with 
mainland deer if Key deer are relocated).  

Loss of fresh 
drinking water  

• Miller and Harwell (2022) note that along with the loss of habitat with SLR, fresh drinking water sources 
for Key deer will also be reduced.  

 
Table 5. Summary of marine debris impacts to Key deer. 

Effect Literature Summary 

Entanglement • Water deer (Hydropotes inermis) are a coastal deer species found in Korea. Hong et al. (2013) reported 
an incidence of a water deer getting entangled in a derelict gill net in the Han River estuary. Its legs were 
entangled in the net, which led to its drowning during a flood tide.  

Note: No literature was found on impacts of marine debris on Key deer, but one study was found on marine debris 
impacts on another coastal deer species found in Korea. Impacts to Key deer would likely be similar to those 
observed on coastal deer in Korea.  

 
Table 6. Summary of convective storm wind event impacts to Key deer. 

Effect Literature Summary 

Reduced 
feeding 

• Hardin (1974) found no statistically significant correlation of wind on Key deer feeding in summer, but 
found that high wind was associated with reduced feeding activities in winter. Additionally, Barrett and 
Stiling (2006) noted that Key deer were “apprehensive to feed” on days with strong wind. 

Reduced 
activity 

• Hardin (1974) found that Key deer activity (movement) decreased with increasing wind speeds. Key deer 
also bedded more in strong winds.  

Change in 
habitat use 

• Hardin (1974) observed that Key deer were “cautious and stayed in heavy cover” on days with very 
strong winds (30 mph or more).  

Note: No specific studies were found of convective storm high wind event impacts on Key deer. The one study found 
that integrated impacts of wind on Key deer examined wind as a continuous (binned) variable rather than an event. 
Storm event impact studies on Key deer focused on hurricanes (see hurricane section above).  

 

Table 7. Summary of shoreline erosion impacts to Key deer. 

Effect Literature Summary 

Potential 
habitat loss 

• Key deer generally prefer upland habitats (>1 m above mean sea level) and avoid tidal or lower-elevation 
areas (<1 m above mean sea level) (Lopez et al. 2004), but as shoreline habitats erode and migrate 
landward, available upland habitat on the islands inhabited by Key deer may decrease in area. Habitat 
loss due to urban development and sea level rise is a major threat to Key deer persistence and recovery 
(Lopez et al. 2004; Miller and Harwell 2022; Reece et al. 2013a), and shoreline erosion may indirectly 
impact Key deer populations by causing further upland habitat loss.  

Note: No literature was found on shoreline erosion impacts on Key deer, so impacts discussed are considered 
“potential” and are based on best professional judgment.  
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Table 8. Summary of contaminant/spill event impacts to Key deer. 

Effect Literature Summary 

Direct 
exposure to 
oil 

• While mammals that feed on shoreline habitats may be exposed to oil through inhalation, fur contact, or 
ingestion while grazing (Bergeon Burns et al. 2014), Key deer prefer upland habitats (>1 m above mean 
sea level; pineland, hammock, developed) and avoid tidal or lower-elevation areas (<1 m above mean sea 
level; freshwater marsh, buttonwood, mangrove) (Lopez et al. 2004). Therefore, direct marine spill impacts 
on Key deer, while possible, are considered to be minimal. 

Habitat 
disturbance 
due to 
response 
activities 

• Upland terrestrial habitats that are adjacent to oiled shorelines are often used for spill response staging 
areas, access corridors, or decontamination sites (Michel et al. 2017), which could disturb or degrade Key 
deer habitat.  

Note: No literature was found on spill impacts to Key deer, so impacts discussed are considered “potential” and are 
based on best professional judgment.  

 

Marine Mammals (West Indian Manatee) 
 
Table 9. Summary of hurricane (acute coastal/storm surge flooding) impacts to manatees.  

Effect Literature Summary 

Lower 
survival 
probability 

• Using mark-resighting statistical models and 19 years of photoidentification data, Langtimm and Beck 
(2003) found significant annual variation in adult survival of Florida manatees in northwest Florida. 
Variation coincided with years with strong hurricanes (Category 3 or greater), and analysis suggested a 
cause-effect relationship. Mean survival probability during years without strong hurricanes was 0.972. 
Survival probability dropped to 0.936 in 1985 with Hurricanes Elena, Kate, and Juan; and to 0.817 in 
1995 with Hurricanes Opal, Erin, and Allison. Proposed mechanisms for the lower survival probabilities 
during hurricane years include: stranding from storm surge, blunt injury from debris, being swept out to 
sea, and death from cold stress in colder waters following hurricanes if storms occurred in late fall.  

• In 2004 and 2005, years with several major hurricanes impacting Florida, tagged manatees were 
observed to stay in their pre- and post-storm home ranges during the storms, rather than making lateral 
movements or moving either further inland or offshore to deeper water for greater protection (Langtimm 
et al. 2006). Thus, Langtimm et al. (2006) suggest that hurricane effects on manatee survival will be 
confined to the manatees inhabiting areas within the track line of the storm.  

Emigration 
and/or 
starvation 
when food 
base 
(seagrass) is 
degraded or 
destroyed* 

• On the coast of Queensland, Australia, increased movements of dugongs occurred following extensive 
damage to seagrass beds caused by the tropical cyclone Althea in 1971. A dietary change in dugongs 
occurred along with their increased movements, with large amounts of macroalgae in addition to 
seagrass found in stomach contents of 9 out of 12 dugongs after the storm, compared to only 2 out of 16 
dugongs prior to and immediately after the storm. This dietary shift suggests that dugongs had to move 
greater distances in search of food (Heinsohn and Spain 1974).  

• In Hervey Bay, Australia, the dugong population dropped precipitously following the loss of seagrass 
habitat. In 1988, southern Hervey Bay contained an estimated 1753 (±388 s.e.) dugongs. Following two 
floods and a cyclone in 1992 that resulted in the loss of 1000 km2 of seagrass from Hervey Bay, the 
southern bay population of dugongs numbered only 71 (±40) individuals. Ninety-nine dugong carcasses 
were recovered following the loss of seagrass, with most dying 6-8 months later and emaciated from 
starvation. Many dugongs left Hervey Bay after the loss of seagrass, and some travelled upwards of 900 
km before they died. Some did successfully relocate to other areas, temporarily boosting the 
abundances of other populations (Preen and Marsh 1995).  

Decreased 
proportion of 
calves in the 
population* 

• Following the 1992 die-off of seagrass in Hervey Bay, Australia, the proportion of dugong calves in the 
regional (Hervey Bay plus Great Sandy Strait) population declined, from 22% in 1988 to only 2.2% in 
1993 (Preen and Marsh 1995).  

Note: No literature was found on these effects in Florida manatees, but these effects are well-documented in 
Australia in dugongs, another Sirenia species.  
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Table 10. Summary of chronic inundation impacts to manatees. 

Effect Literature Summary 

Loss or 
degradation 
of warm-water 
refuges 

• Most Florida manatees rely on localized warm-water refuges to survive winter, including areas of warm 
water discharge (natural springs and power plant outfalls; Laist and Reynolds III 2005; Laist and 
Reynolds 2005). Sea level rise may result in the flooding and disruption of coastal power plants whose 
outfalls create warm-water refuges (Hardy et al. 2019; Martin et al. 2011). Additionally, inundation and 
saltwater intrusion will reduce the amount of freshwater available for human consumption in Florida and 
cause greater demands for groundwater removal, which in turn will reduce natural warm-water spring 
flow that creates manatee thermal refuges. Monitoring and hydrological modeling indicate that certain 
minimum flow levels at natural springs are required to maintain manatee thermal refuges (Martin et al. 
2011).  

 
Table 11. Summary of marine debris impacts to manatees. 

Effect Literature Summary 

Lethal and 
sublethal 
effects due to 
debris 
ingestion 

• From 1978 to 1986, marine debris was found in the gastrointestinal tracts of 14.4% of examined 
salvaged dead Florida manatees, and four manatees died as a direct result of debris ingestion (Beck and 
Barros 1991). 

• From 1993 to 2012, in the Florida Fish and Wildlife Research Institute (FWRI) manatee mortality 
database, there were 37 cases of ingestion of marine debris as the probable cause of death. An 
additional 598 manatees had marine debris in their gastrointestinal tracts (non-lethal ingestion). Overall, 
9.7% of all manatee carcasses examined during this period had ingested marine debris (Reinert et al. 
2017).  

• Ingestion of marine debris by manatees can cause impaction, peritonitis, intussusception of the small 
intestine, obstruction, and perforation of the gastrointestinal tract (Beck and Barros 1991; Reinert et al. 
2017).  

• Necropsies of 26 dead manatees from Tampa Bay revealed macroplastic pieces in the gastrointestinal 
tracts of seven (26.9%) individuals and microplastic pieces in the gastrointestinal contents of 19 (73.1%) 
individuals. Five individuals contained both macro- and microplastic pieces, so the overall frequency of 
plastic ingestion was 76.9%. The physiological effects of microplastic ingestion on sirenians are unknown 
(Gowans and Siuda 2023). 

• Adimey et al. (2014) suggested that manatees incidentally ingest marine debris due to their feeding 
behavior of indiscriminate foraging in shallow habitats. 

Entanglement • Entanglement in marine debris (lines and nets) killed 11 Florida manatees from 1974 to 1986, and 
numerous living manatees at the time had missing or scarred flippers from past entanglements or flippers 
that were currently still entangled (Beck and Barros 1991). 

• From 1997 to 2009, 380 of the total 4,962 manatee strandings reported in Florida were identified as 
fishery gear interactions, and the number of reported fishery gear interaction cases increased over time 
(Adimey et al. 2014).  

• From 1993 to 2012, in the FWRI manatee mortality database, there were 13 cases of entanglement as 
the probable cause of death. Of these 13 cases, six manatees died as a result of a secondary infection 
related to the entanglement. An additional 101 manatee carcasses had external evidence of 
entanglement. Overall, 1.7% of all manatee carcasses examined during this period had evidence of 
external entanglement in marine debris (e.g., attached line, scars, amputations; Reinert et al. 2017).  

• From 1993 to 2012, 21.8% of the reported 1244 manatee rescues in the FWRI database were classified 
as entanglements, making entanglement the second leading cause for rescue. Several rescued 
manatees exhibited signs of multiple entanglements, including healed entanglement wounds (Reinert et 
al. 2017). 

• Manatee entanglements in fishery gear most commonly occurred on the flippers (Adimey et al. 2014; 
Reinert et al. 2017). 

• Entanglement observations were less common in calves than in juvenile and adult manatees. This trend 
may be due to juveniles and adults spending most of their day feeding, when they are likely to encounter 
debris; whereas, calves nurse rather than forage, which may reduce their chances of debris interaction 
(Adimey et al. 2014).  
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Table 12. Summary of convective storm wind event impacts to manatees. 

Effect Literature Summary 

Potential 
decrease in 
survival 
probability 

• While wind speed was not reported, Langtimm and Beck (2003) observed a decrease in survival 
probability of manatees in northwest Florida following a strong winter storm in March 1993 (survival 
probability of 0.972 during years with no or low intensity storms and 0.909 in 1993). Winter storms 
generally are not rated on the Saffir-Simpson Hurricane Scale, but comparisons of barometric 
pressure and storm surge heights during this winter “Storm of the Century” with the scale indicated 
that the storm was analogous to a Category 3 hurricane. This comparison suggests that this storm 
brought strong winds to the area; however, conclusions on impacts of wind during this storm event at 
the exclusion of other variables are not possible with the available data. 

Reduced winter 
counts of 
manatees with 
increased wind 
speeds 

• Manatee counts from aerial surveys in Tampa Bay from 1987 to 1994 were significantly reduced in 
the cold season as wind speeds increased; however, wind speed was not significantly related to 
year-round or warm season counts (Wright et al. 2006). Wright et al. (2006) note that higher winds 
disturb the water surface and can make aerial observations difficult, but no discussion of the 
seasonal differences in the relationship between manatee counts and wind speed is presented. 

Note: No specific studies were found of convective storm high wind event impacts on manatees. Langtimm and Beck 
(2003) suggest potential impacts from a storm event, but effects of wind specifically are not presented and cannot 
be disentangled from other storm variables. The only study found that investigated impacts of wind on manatees 
(Wright et al. 2006) examined wind as a continuous variable rather than an event.  

 
Table 13. Summary of shoreline erosion impacts to manatees. 

Effect Literature Summary 

Potential declines 
in seagrass 
habitat due to 
erosion 

• Seagrass habitats are declining worldwide and are projected to continue to decline with negative 
effects of erosion (e.g., Cabaço et al. 2008; Duarte 2002). Seagrasses are manatee’s principal food 
resource (e.g., Lefebvre et al. 2017), so impacts to seagrass habitat will likely have cascading 
impacts on manatee populations.  

Note: No literature was found on shoreline erosion impacts on manatees, so indirect impacts are assumed from 
degradation of manatee’s seagrass habitat and based on best professional judgment. See Seagrass literature 
summary for details of shoreline erosion impacts to that resource.  

 

Table 14. Summary of contaminant/spill event impacts to manatees. 

Effect Literature Summary 

Direct effects of 
oil exposure 

• Manatees can be exposed directly through inhalation, ingestion, and dermal exposure. For most 
marine mammals, the most serious threats may be from severe damage to the respiratory system 
through inhalation of toxic aromatic oil components and damage to internal organs due to ingestion of 
oil (Helm et al. 2014), but specific impacts of oil exposure on manatees are largely unknown (Wilkin 
et al. 2017). Other expected effects of oil exposure based on studies of other marine mammals 
include short-term irritation of the eyes and mucus membranes (Helm et al. 2014). Oil likely would not 
cause much harm to the thick epidermis of manatees (St Aubin and Lounsbury 1990), but sensory 
hairs that may have a function in orientation could be negatively affected if oiled (Helm et al. 2014). 

• Only anecdotal reports exist on impacts of oil spills on sirenians: 
o During the Iran-Iraq War in 1983, 53 dugong carcasses were recovered in the Arabian Gulf 

approximately 5 months after the spill, but no necropsy data were gathered (St Aubin and 
Lounsbury 1990). 

o In 1991, 14 dead dugongs were observed in the impact area of the Gulf War oil spill (Helm et al. 
2014). 

o No manatee deaths due to oil or dispersants were confirmed during the Deepwater Horizon spill 
(Helm et al. 2014). 

Indirect effects of 
oil exposure* 

• Manatees can be indirectly impacted by an oil spill if the abundance and quality of their food 
(seagrass) has been reduced as a result of the spill (Helm et al. 2014).  

Impacts of spill 
response 
activities* 

• Manatees can be susceptible to impacts from spill response activities, including collisions with boats 
and entanglement in ropes and lines (Helm et al. 2014). 
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*These effects are considered “potential”, as no case studies of these effects were found in the literature search.  

Shorebirds (Nesting and Wintering) 
 
Table 15. Summary of hurricane (acute coastal/storm surge flooding) impacts to nesting and 

wintering shorebirds. 

Effect Literature Summary 

Nesting 
habitat 
creation 
from 
overwash 

• Convertino et al. (2011) reported that along the Gulf coast of Florida, favorable snowy plover (a resident 
shorebird) nesting areas are located in regions impacted more frequently by tropical cyclones. The odds of 
snowy plover nesting in these areas the spring following a tropical cyclone was seven times higher than 
the odds in the spring following a season without a cyclone. Furthermore, they found that the occurrence 
of snowy plover nesting grounds is 8.5 times more likely in the spring following a tropical cyclone 
compared to years without a cyclone.  

• Hurricane Isabel (2003) resulted in an increase of open sand flat area (nesting habitat for American 
oystercatchers and other shorebirds) from 31 to 110% at sites in North Carolina. American oystercatcher 
nest survival at one site increased from 0.170 during baseline years to 0.772 in the year immediately 
following the hurricane (2004); whereas, the other site exhibited no effect of the hurricane on nest survival 
(Schulte and Simons 2016).  

• Hurricane Sandy (2012) resulted in the overwash of Fire Island and Westhampton Island (NY) and 
flattened dunes, buried vegetation, and breached the barrier islands. Prior to the hurricane, piping plovers 
selected nest sites farther from the ocean and bay than would be expected with random nest site 
selection. After the hurricane, piping plovers selected nest sites closer to the ocean and bay, 
predominantly in or near storm overwash habitat and newly created bayside foraging habitats. Piping 
plover breeding pair abundance increased 93% by 2018 from pre-Hurricane Sandy levels, with most pairs 
nesting in new, hurricane-created habitats (Walker et al. 2019). American oystercatchers, willets, and 
killdeer were also observed nesting in Hurricane Sandy-created habitats in this study (Walker et al. 2019). 
Zeigler et al. (2019) found that Hurricane Sandy increased piping plover habitat by 9 to 300% at sites in 
New York and New Jersey and decreased habitat by 27% at a site in Virginia (the Virginia site may have 
been too far from the epicenter of the storm to create new early successional habitat). At these study 
sites, 14 to 57% of all piping plover nests were located in newly created habitat in the 2013 breeding 
season. (While piping plovers do not nest in Florida, they are often used as an “umbrella conservation 
species” for co-occurring nesting shorebirds (Maslo et al. 2016).) 

Reduction in 
nest 
depredation 

• During non-hurricane years on North Core Banks (NC), 58% of American oystercatcher nests laid were 
lost to mammalian depredation. In the first year after Hurricane Isabel (2003), nests lost to mammalian 
predation dropped to 20%, and signs of predators (tracks and sightings) disappeared almost entirely. On 
nearby South Core Banks (NC), no reduction of mammalian predation on nests was observed (Schulte 
and Simons 2016).  

Loss of 
foraging 
habitat 

• Johnson and Baldassarre (1988) reported the destruction of piping plover feeding sites at Dauphin Island 
and Little Dauphin Island (Alabama) during Hurricane Elena in September 1985. Increased piping plover 
foraging was observed at a nearby alternate feeding site following the hurricane.  

Nest 
washout 

• Shorebird nests can be washed out with storm surges (see Denmon et al. 2013; Jodice et al. 2014; 
Schulte and Simons 2015; Schulte and Simons 2016; and Chronic Inundation section below). However, 
shorebird nesting season for many species in Florida ends before hurricane season becomes most active 
(South Florida ESI 2013; Southwest Florida ESI 2016).  

Note: Temporal and spatial aspects of storm events (when and where they occur) influence their impacts on 
shorebirds. Whether effects are + or – would largely be determined by timing of storm during nesting season 
(negative or net neutral effects if storm occurs during nesting season; positive effects on shorebird populations in 
subsequent year(s) if storm occurs after nesting season). Also, similar nearby sites impacted by a single hurricane 
can have different storm effects on shorebird populations (Schulte and Simons 2016).  

Table 16. Summary of chronic inundation impacts to nesting and wintering shorebirds. 

Effect Literature Summary 
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Reduced 
foraging and 
nesting habitat 

• Galbraith et al. (2002) projected major losses (up to 70%) of intertidal foraging habitat for shorebirds 
due to inundation from sea level rise. Sites studied were either categorized by the Ramsar Convention 
or by the Western Hemisphere Shorebird Reserve Network (WHSRN) as at least hemispheric 
importance for migratory or wintering shorebirds, and included sites in Willapa Bay (Washington), 
Humboldt and San Francisco Bays (California), Bolivar Flats (Texas), and Delaware Bay (New Jersey 
and Delaware). Losses were projected to be most severe at sites where the topography prevents 
movement of the tidal zone inland or at sites with human structures such as seawalls.  

• Von Holle et al. (2019) projected that 51% of coastal nesting habitat for Wilson’s plover, 44% of 
nesting habitat for American oystercatcher, and 50% of wintering habitat for piping plover would be 
more vulnerable to sea level rise, compared to its 2000 vulnerability, in the South Atlantic Bight (Cape 
Hatteras, NC to Sebastian Inlet, FL).  

Nest washout/ 
flooding 

• Jodice et al. (2014) reported that overwash (flooding) accounted for up to 89% of American 
oystercatcher nest loss in the Cape Romain region of South Carolina. Maximum tide height has a 
strong effect on daily survival rate of nests, and flooding is the most common cause of American 
oystercatcher nest loss in the region. Overwash from storms and spring tides was also a major source 
of American oystercatcher nest failure in the Outer Banks of North Carolina (Schulte and Simons 
2015) and in Fisherman Island National Wildlife Refuge in Virginia (Denmon et al. 2013).  

High tide roost 
inundation 

• Increased risk of inundation of American oystercatcher roosts (measured by increased duration of 
extreme high tides) on the Florida coast was associated with a 7.3% decline in annual survival, from 
0.96 to 0.89, over a 12-year study period (2007-2018; Griffin et al. 2023). 

 
Table 17. Summary of marine debris impacts to nesting and wintering shorebirds. 

Effect Literature Summary 

Lethal and 
sublethal 
effects due to 
debris 
ingestion 

• Ingested debris can accumulate in a bird’s digestive tract, which can block the digestive tract, reduce 
digestive capacity, reduce appetite and food intake, and lead to starvation (e.g., Pierce et al. 2004). 
Also, chemical contaminants from debris can be released in the digestive tract, or birds may ingest 
contaminated prey (e.g., Tanaka et al. 2013).  

• A review of shorebird plastic ingestion by Flemming et al. (2022) found that 53% of shorebird individuals 
sampled from 26 species within 16 studies contained some form of plastics pollution. Species that 
foraged at sea, on mudflats, or on beaches had a higher frequency of occurrence of plastic ingestion 
than species that foraged in upland or freshwater habitats. Also, species that used a sweeping foraging 
technique had a higher probability of ingesting plastics than those that used visual or tactile techniques.  

Entanglement • A global review of bird interactions with anthropogenic litter reported several studies with evidence of 
entanglement of shorebird species (Battisti et al. 2019). 

• Winter storm surges continuously supply litter to beaches in Italy, increasing the density of entangling 
litter (fishing lines, hooks, and nets) throughout the season. At the study site, two plover species were 
recorded to be entangled in litter from 2018-2022 (Battisti et al. 2023).  

Note: General impacts of marine debris on shorebirds are reported here. No papers were found on impacts of storm-
specific marine debris events on shorebirds. 

 
Table 18. Summary of convective storm wind event impacts to nesting and wintering 

shorebirds. 

Effect Literature Summary 

Change in 
habitat use 

• Jech and Forys (2023) surveyed piping plover, snowy plover, and Wilson’s plover on tidal mudflat and 
adjacent beach habitats in Southwest Florida outside their breeding season (surveys conducted 
September to March 2022) to examine the influence of wind and tide on their abundance and foraging. 
Abundances of piping and Wilson’s plovers increased on mudflats with decreased tide, and this increase 
was greatest when wind was low. The abundances of both species increased on the beach with 
increasing tide and wind. Snowy plover abundance increased on mudflats with decreased tide but was 
not affected by wind speed on mudflats. Snowy plover abundance on the beach increased with 
increasing wind and tide. All three species appeared to seek refuge on the beach during high winds and 
tides. Piping and snowy plovers were only observed foraging on mudflats, and Wilson’s plovers were not 
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Effect Literature Summary 

observed foraging during the study. Peck rates of piping and snowy plovers were not affected by tide or 
wind. 

*No specific studies were found of convective storm high wind event impacts on shorebirds. The only study found 
that investigated impacts of wind on Florida shorebirds examined wind as a continuous variable rather than an event. 
Storm event impact studies on shorebirds focused on hurricanes (see hurricane section above).  
 

Table 19. Summary of shoreline erosion impacts to nesting and wintering shorebirds. 

Effect Literature Summary 

Habitat loss • On Fire Island, New York, Zeigler et al. (2022) predicted reductions in piping plover nesting habitat 
area from 5.1 km2 observed in 2014-2015 to 4.3 km2, 3.6 km2, or 2.8 km2 by 2050 under three different 
shoreline change scenarios. (While piping plovers do not nest in Florida, they are often used as an 
“umbrella conservation species” for co-occurring nesting shorebirds (Maslo et al. 2016).) 

Increased 
habitat usage 
around 
breakwaters 
built to 
counteract 
shoreline 
erosion 

• Shoreline behind breakwaters built to counteract shoreline erosion off the coast of Louisiana 
supported higher piping plover densities (12.4 piping plovers per km) than unprotected shoreline (0.49 
piping plovers per km). Possible explanations for this trend include: 1) breakwaters decrease wave 
energy and increase sediment accretion; 2) more macroinvertebrate may exist on protected shoreline; 
and 3) piping plovers may congregate along protected shorelines to be more secure from predators 
because other waterbirds are also attracted to these sites (Selman and Collins 2018).  

Decreased 
shorebird 
species richness 
and abundance 

• Dugan et al. (2008) reported decreased shorebird species richness and abundance on armored 
shorelines, which experience greater erosion than unarmored shorelines. Mean species richness was 
two times greater on unarmored shoreline segments (2.2 species) than on armored segments (1.1 
species), and mean abundance was more than three times greater for unarmored segments (19.3 
birds per km) than for armored segments (5.6 birds per km). These differences were attributed to 
habitat loss, reductions in macroinvertebrate prey availability, and decreased accessibility during high 
tide. (Coastal armoring accelerates shoreline erosion, so armored shorelines are considered here as a 
treatment proxy for high erosion conditions, in the absence of other literature.) 

• Menn (2002) reported higher sanderling abundance on an accreting sandy shore in the North Sea 
relative to an adjacent eroding sandy shore, likely due to differences in invertebrate prey communities 
that were supported by the two habitat types.  

Note: No literature was found on shoreline erosion impacts on shorebirds in Florida, so studies from other regions 
are discussed. Additional studies that examined impacts to shorebirds of structures built to counteract shoreline 
erosion are included. 

 

Table 20. Summary of contaminant/spill event impacts to nesting and wintering shorebirds. 

Effect Literature Summary 

Impaired pre-
migratory 
fueling/ 
Delayed 
migration 

• Bianchini and Morrissey (2018b) captively dosed sanderling with polycyclic aromatic hydrocarbons 
(PAH) during a simulated pre-migratory fueling period, resulting in reduced body mass gain in dosed 
birds relative to controls. Changes in fat load, biochemical profiles, liver mass, and lipid content 
following dosing suggest that PAH exposure can interfere with lipid transport and metabolism, cause 
muscle damage, and result in reduced overall fat loads, which in turn can impact migratory success.  

• Inadequate premigratory fattening can result in delayed departure for breeding grounds (Henkel et al. 
2012). A field study following the Deepwater Horizon spill measured body mass, morphometrics, and 
plasma metabolites in sanderling and red knots captured during their northward migrations from sites 
in Louisiana (heavily impacted, high sediment PAH concentrations) and Texas (lower sediment PAH 
concentrations). Fueling rates for sanderling were lower in Louisiana than in Texas, and both species 
departed later for continued migration from Louisiana (Bianchini and Morrissey 2018a). Earlier arrival 
on breeding grounds is associated with increased clutch size and offspring survival (Harrison et al. 
2011). 

• Shorebirds following the Deepwater Horizon spill were likely exposed to indirect effects of the spill, 
including reduced foraging time due to oiling of foraging habitat or disturbance by spill cleanup 
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activities. Dunlin fuel stores and fattening rates during spring migration were not influenced by site 
oiling level, but were influenced by the level of disturbance from cleanup activity at study sites, with 
lower energy reserves at sites with the highest level of disturbance. This suggests that dunlin stopping 
over in the northern Gulf of Mexico during migration may have had difficulty reaching necessary fuel 
stores due to disturbance from spill cleanup activities (Henkel et al. 2014). Burger (1997) observed 
nearly 50% of foraging time of shorebirds on beaches was interrupted by cleanup personnel and 
vehicles following the Anitra spill in New Jersey. Additionally, time spent preening oiled plumage (i.e., 
time not spent foraging) was positively correlated with the percent of the bird that was oiled.  

Physiological 
effects of oil 
exposure 

• Physiological effects of oil exposure on shorebirds can be lethal or sublethal, and occur through 
several pathways: 
o Loss of waterproofing and insulating capabilities of feathers, leading to death from hypothermia 

(Leighton 1993). 
o Oil ingestion through preening of oiled feathers and/or foraging in contaminated habitats, leading 

to dehydration, starvation, infections, pneumonia, arthritis, gastrointestinal problems, and cloacal 
impaction. Oil ingestion can cause mortality primarily through acute toxic effects to the liver, 
kidney, and gastrointestinal tract (Briggs et al. 1996; Leighton 1993).  

o Sublethal toxicological effects can also result from ingested oil, including hemolytic anemia, 
reduced reproduction, and immunosuppression (Henkel et al. 2012).  

o Eye irritation from oil contact (Briggs et al. 1996). 

Prey and habitat 
switching 

• Shorebirds have been documented to switch to non-preferred prey and alternative habitats if the 
intertidal zone cannot fulfill their energy requirements. Lower quality prey and habitats could result in 
decreased fitness and reproductive success. Though prey switching has not been documented in 
shorebirds following an oil spill, this is a potential impact of oil spills on these species (Henkel et al. 
2012).  

Reduced flight 
performance 

• Small amounts of crude oil on the wings and tail of western sandpipers reduced takeoff flight 
performance by reducing distance traveled in the first 0.4 s after takeoff (29%) and decreasing takeoff 
angle (10°) relative to unoiled birds. Slower and lower takeoff would increase the probability of oiled 
birds being captured by predators, which would reduce survival and facilitate exposure of predators to 
oil (Maggini et al. 2017a).  

• Western sandpipers exposed to weathered MC252 crude oil experienced increased cost of transport 
(energy expenditure) of 22% for lightly oil birds (<20% of body surface oiled) and 45% for moderately 
oiled birds (~30% of body surface oiled) relative to unoiled controls. Oiling also resulted in larger 
wingbeat amplitudes than controls and greater wingbeat frequencies. Oiling therefore causes sublethal 
effects by increasing the difficulty and energy costs of locomotion, which could impact several aspects 
of life history (Maggini et al. 2017b). 

 

Wading Birds 
 
Table 21. Summary of hurricane (acute coastal/storm surge flooding) impacts to wading birds. 

Effect Literature Summary 

Changes in 
nesting effort 
due to 
habitat loss 
and 
degradation 

• Following Hurricane Hugo (1989), the numbers of nesting great egrets, tricolored herons, and white ibises 
declined substantially (44%, 19%, and 100%, respectively) on Pumpkinseed Island, South Carolina, in the 
nesting season after the storm (1990). The greatest decline was observed in white ibises, whose numbers 
plunged from >10,000 pairs in 1989 to 0 pairs in 1990. Conversely, numbers of nesting pairs of snowy 
egrets and glossy ibises increased (36% and 3%, respectively) in the year following the storm. The decline 
in great egret nesting effort may be explained by hurricane damage to their nesting habitat of woody 
marsh elder vegetation. The hurricane damaged an estimated 60-75% of aboveground woody marsh elder 
vegetation at this site. Snowy egrets nest directly on the ground under marsh elder, so their nesting 
habitat was not impacted as much as that of the great egret, and this may explain the increase in nesting 
numbers of snowy egrets following the storm. However, most snowy egret nests (86%) in 1990 were 
abandoned due to tidal inundation, so the increased nesting effort did not translate to increased nesting 
success. Nesting ibises are heavily dependent on freshwater prey, especially crayfishes, and hurricane 
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disturbance of freshwater feeding sites may explain the complete nesting failure of white ibises at 
Pumpkinseed Island and the nearly flat nesting of glossy ibises following the storm (Shepherd et al. 1991). 

• Following Hurricanes Gustav and Ike (both in 2008), which impacted the northern coast of the Gulf of 
Mexico, nearly all wading bird species experienced declines in breeding pairs on Isles Dernieres Barrier 
Island Refuge of Louisiana in the two breeding seasons after the storms (2009 and 2010). Numbers of 
great egret, snowy egret, tricolored heron, reddish egret, green heron, black-crowned night-heron, and 
white ibis breeding pairs decreased in the years following the storms; whereas, roseate spoonbill breeding 
pairs increased in 2009 and decreased in 2010. These overall declines in wading birds nesting were 
attributed to loss of nesting habitat due to the storms (Raynor et al. 2013). 

• Leberg et al. (2007) conducted a regionwide study across southern Louisiana in which they compared 
numbers of nesting colonial wading birds in years before Hurricanes Rita and Katrina (both in 2005) and 
numbers of nesters during and after the year with the storms. They found that one-third of the surveyed 
colonies became inactive following the storms, and others experienced large shifts in numbers of nesting 
pairs. Despite these changes, region-wide, the total numbers of nesting birds of most species increased 
following the hurricanes. The authors hypothesize that birds shifting from damaged from active colonies 
could explain the increase in total numbers of nesting birds regionally, and that monitoring colonies across 
broad geographic scales, rather than individual sites, is necessary to fully understand hurricane impacts 
(Leberg et al. 2007). 

Increased 
adult 
mortality 

• A satellite telemetry study of reddish egrets in coastal Louisiana from 2016-2021 revealed that 9 of 25 
(36%) transmitted reddish egrets experienced direct mortality immediately on or around (within 1 day of) 
the arrival of tropical cyclones (including hurricanes) in the area. Mortality was assumed to be due to 
storm-related impacts. The observed mortality rate indicates that reddish egret populations may decline 
substantially due to direct mortality from tropical cyclones, and this species may be particularly vulnerable 
to these impacts because it is a coastal specialist that is restricted to island habitats for nesting (Vasseur 
et al. 2023).  

Brood 
failure/chick 
mortality 

• Collins et al. (2021) reported failure of three reddish egret broods with young chicks in southwestern 
Louisiana following Tropical Storm Cindy (2017). Chicks were found drowned in their nests following the 
passage of the storm.  

Irruptive 
breeding 
due to 
increased 
prey 
availability 

• The flooding of freshwater wetlands in the Everglades following Hurricane Irma (2017) promoted crayfish 
production, and crayfish are important prey for breeding white ibises. Crayfish biomass in the wet season 
prior to the 2018 breeding season (post-hurricane) was 6.7x higher than in the wet season prior to the 
2017 breeding season (pre-hurricane). The higher crayfish abundances initiated irruptive, extraordinarily 
high white ibis breeding in 2018 (30,420 nests in 2018, compared to an average of 913±956 nests from 
1999 to 2016; Cocoves et al. 2021).  

 
Table 22. Summary of chronic inundation impacts to wading birds. 

Effect Literature Summary 

Reduced 
foraging and 
nesting 
habitat 

• Calle et al. (2018) modeled time-integrated intertidal habitat availability for little blue herons and great 
white herons in the Florida Keys and found that this attribute had the greatest effect size of all resource 
attributes (including traditional attributes such as substrate type, water depth, and proximity to mangroves) 
on probability of habitat use. Both species were two to three times more likely to use foraging locations 
with greater (7 h) time-integrated habitat availability than nearby sites with lower (1 h) availability. Calle et 
al. therefore suggest that habitat loss with long-term sea level rise is both temporal and spatial, as the 
negative effects of spatial habitat loss are compounded by a loss in duration of access.  

• Using a tidal inundation model to examine the availability of the range of water depths needed for little 
blue heron foraging habitat in Florida Bay and the Florida Keys, Martinez et al. (2022) found short-term 
gains and losses in foraging habitat that resulted from slight differences in annual tidal cycles. These 
results highlight how sensitive this foraging habitat is to sea level fluctuations. More study is needed to 
elucidate how little blue heron shallow-water foraging habitat use may change with sea level rise.  

• Cox et al. (2018) observed that sites in Florida with a greater amount of foraging habitat within a 5-km 
radius had a greater number of nesting reddish egrets. The authors therefore highlight the need to 
understand the effects of sea level rise (inundation) on availability of foraging habitat and note that reddish 
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egrets may be particularly vulnerable to sea level rise because they are coastal specialists, while other 
species are also found in freshwater environments. 

• Wood stork and great egret nesting colonies in the Everglades and Florida Bay collapsed in the second 
half of the 20th century, and these collapses were accompanied by decreases in roseate spoonbill nesting 
in northeast Florida Bay. These declines in wading bird nesting corresponded with reduction of freshwater 
flow to the estuary and associated sparse populations of the birds’ marsh fish prey. Thus, hydrological 
changes associated with sea level rise can have cascading effects on wading bird nesting (Davis et al. 
2005).  

Nest 
washout/ 
flooding 

• From 2016 to 2018, overwash (flooding) from extreme high tides was the primary cause of known nest 
and brood loss of reddish egrets in southwestern Louisiana, accounting for 49% of all nest failures and 
28% of all brood failures. Following overwash, pairs appeared to construct higher nests, though nest 
heights before and after overwash were not significantly different. Increased occurrence of overwash 
events is expected with sea level rise (Collins et al. 2021). 

• Ritenour et al. (2021) found that timing of inundation events impacted wading bird nest survival on Rabbit 
Island, Louisiana. Nest failure occurred when high water depths were ~0.4 m at a monitoring station, and 
from 2006 to 2018, water level records showed 29 individual inundation events. These events were 
usually associated with storms and occurred during every month of the breeding season (March through 
June). Inundation was the primary known cause for nest failure of roseate spoonbills and was responsible 
for 39% of failed nests from 2017 to 2018.  

Reductions 
in prey 
resources 

• Pearlstine et al. (2010) note that roseate spoonbills in the Everglades, Florida, are experiencing food 
resource stress as their demersal fish prey in freshwater wetlands are impacted by water management 
changes, and they suggest that sea level rise will exacerbate this problem. 

• Romañach et al. (2019) sampled fish communities that are prey resources for wading birds in the 
southwest portion of the Everglades, Florida. In this system, sea level rise and reduction of freshwater flow 
have converted freshwater marsh into estuarine mangrove habitats. The authors found that salinity 
changes altered fish production and community composition, and they hypothesize that these changes in 
prey may have cascading effects on wading birds.  

• Wading bird prey abundance changes dramatically with water level and duration of inundation (Beerens et 
al. 2011; Beerens et al. 2015; Lorenz 2013). Lorenz 2013 quantified the relationship between water level 
and roseate spoonbill prey abundance in Florida Bay and found that a series of thresholds in water level 
resulted in concentrated prey. He also found that spoonbills rely on water level-induced prey 
concentrations to have enough food to raise young. Thus, water management strategies, sea level rise, 
and/or chronic inundation may impact prey availability for wading birds.  

 
Table 23. Summary of marine debris impacts to wading birds. 

Effect Literature Summary 

Lethal and 
sublethal 
effects due to 
debris 
ingestion 

• Ingested debris can accumulate in a bird’s digestive tract, which can block the digestive tract, reduce 
digestive capacity, damage gastric tissue, reduce appetite and food intake, and lead to starvation (e.g., 
Browne et al. 2015; Pierce et al. 2004). Also, chemical contaminants from debris can be released in the 
digestive tract, or birds may ingest contaminated prey (e.g., Tanaka et al. 2013).  

• Browne et al. (2015) hypothesize that sublethal effects on birds due to ingesting plastic debris may 
cascade to population-level impacts as the compromised physiological conditions of birds that have 
ingested debris may feed and grow at slower rates and produce smaller and fewer offspring. Lethal 
effects may lead to population-level impacts as fewer individuals are available for reproduction and 
rearing young (Browne et al. 2015). 

• Vanstreels et al. (2021) documented ingestion of marine debris in 50% of great egrets sampled on the 
southeastern coast of Brazil. Ingested debris consisted of plastic fragments/pellets, filaments, and films.  

• A global review of bird interactions with anthropogenic litter reported several studies with evidence of 
debris ingestion by wading bird species (Battisti et al. 2019). 

Entanglement • Hong et al. (2013) documented black-faced spoonbills entangled in plastic strings, using plastic 
materials in nests, and with hooks impaled in their bodies. Overall, they observed great egret, black-
faced spoonbill, night heron, and grey heron individuals impacted by marine debris in coastal Korea.  
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• A global review of bird interactions with anthropogenic litter reported several studies with evidence of 
entanglement of wading bird species (Battisti et al. 2019). 

Note: No literature was found on marine debris impacts on wading birds in Florida, so studies from other regions 
are discussed. 

 
Table 24. Summary of convective storm wind event impacts to wading birds. 

Effect Literature Summary 

Significant 
correlation 
between 
wind speed 
and nest 
failure 

• Frederick and Loftus (1993) monitored 198 great egret nests during the nesting seasons of 1986 and 
1987 in the Everglades, Florida. They found a significant correlation between nest failure and maximum 
daily wind speed during the 14 days prior to nest success or failure. The authors suggest that egrets 
abandon their nests under high winds (and under low temperatures) due to reduced ability to forage.  

Influence on 
foraging 
success 

• Bates and Ballard (2014) detected an interaction between wind speed and light intensity on foraging strike 
efficiency (the proportion of successful strikes) of reddish egrets in Laguna Madre, Texas. Under low light 
conditions, strike efficiency decreased with increasing wind speed, but as ambient light increased, strike 
efficiency increased with increasing wind speed. The authors hypothesized that bright ambient light and 
high wind speeds may result in increased prey vulnerability due to a decreased ability to detect predators.  

• Rodgers (1983) observed that wind increased wave action, which decreased foraging success of herons 
in Tampa Bay, Florida.  

• Rodgers (1983) also observed that reddish egrets ran into the wind with open wings (the “openwing” 
foraging method), which allowed them to have increased lift for sustained running and improved 
maneuverability while foraging.  

• During a 3-day windy winter storm in February 1987 in coastal Louisiana, five species of wading birds 
(herons and egrets) suspended foraging and remained sheltered from the wind. Simulation modeling 
predicted 6-12% decreases in body mass over 3 days of fasting, with smaller species losing proportionally 
more mass (DuBowy 1996).  

Potential 
mortality 

• After the passage of the 3-day winter storm in coastal Louisiana mentioned above, DuBowy (1996) 
observed fewer wading birds and suggested that mortality of wading bird species had occurred with the 
storm.  

Note: The only study found of convective storm high wind event impacts on wading birds did not quantify wind as a 
variable, but only described the winter storm as “a period of very cold (<10°C), windy weather” (DuBowy 1996). The 
other studies found impacts of wind on wading birds examined wind as a continuous variable rather than an event.  

 

Table 25. Summary of shoreline erosion impacts to wading birds. 

Effect Literature Summary 

Habitat loss • In Tangier Sound, Chesapeake Bay, Virginia, a group of 15 islands experienced erosion and habitat loss 
via washovers that resulted in reduction of their area by 21% from 1993/1994 to 2007/2008. Concurrently, 
nesting wading birds (herons and egrets) declined by 51%. Watts Island, the island with the vast majority 
of observed nesting wading birds and part of a national wildlife refuge, eroded by 35% (36.3 ha to 25.4 
ha). On Watts Island, cattle egrets declined from 375 pairs in 1993 to zero in 2008, snowy egrets declined 
from 425 pairs to 85, tricolored herons declined from 48 pairs to 10, little blue herons declined from 34 
pairs to 7, and glossy ibis declined from 209 pairs to 68 over the same time period. Small numbers of 
wading birds (less than 200 pairs) likely moved from Watts to nearby Lower Bernard Island (Erwin et al. 
2011). 

• A 2016 analysis of 61 colonial waterbird rookery island units within 2.5 km of the Gulf Intracoastal 
Waterway in coastal Texas revealed that 15 island groups are at risk of disappearing completely within 50 
years, and 31 are predicted to experience at least “medium” erosion (25-50% of area lost) within 10 years. 
These islands host 7 species of colonial waterbirds, including roseate spoonbill and snowy egret. Though 
wading birds may find alternative rookery sites, the erosion of these rookery islands puts these species at 
risk of decline (Hackney et al. 2016).  
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• Erwin et al. (1995) observed that great white herons (a race of great blue herons) in the Florida Keys had 
greatest nest density on islands in the 2 to 10 ha size range and lowest for islands larger than 100 ha. 
These preferred smaller islands are more vulnerable to erosion, and the authors emphasize the 
importance of protection of these islands from erosion to conserve the great white heron metapopulation. 

Increased 
habitat 
usage in 
terraced 
marsh ponds 
built to 
counteract 
marsh 
erosion 

• Terraced marsh ponds built to counteract marsh erosion on the Chenier Plain, Louisiana, supported 77% 
higher wintering wading bird (great blue heron, tricolored heron, great egret, snowy egret, and white ibis) 
abundances than unterraced ponds. Possible explanations for this trend include: 1) terracing increases 
the proportion of marsh edge and habitat complexity, which is preferred by wading birds; and 2) terracing 
increases habitat interspersion of cover and open water, which increases macroinvertebrate prey 
densities. Thus, pond terracing may reduce erosion, whereby improving multiple ecological services, 
which may in turn benefit wading birds (O'Connell and Nyman 2011).  

Note: Only one study was found that addressed shoreline erosion impacts on wading birds in Florida, so studies from 
other regions are also discussed. An additional study that examined impacts to wading birds of structures built to 
counteract shoreline erosion are included. 

 

Table 26. Summary of contaminant/spill event impacts to wading birds. 

Effect Literature Summary 

Direct oil 
exposure 

• Following the Deepwater Horizon spill (2010), Johnson et al. (2017) monitored the frequency and extent of 
oiling of coastal waterbirds from Louisiana to the Florida panhandle. Across all sites throughout the study 
period (May through November 2010), wading birds (including herons, egrets, and ibis) were the most 
frequently oiled guild (10.3 for dark waders; 10.9% for light waders). During the peak of the oil spill (June 
and July 2010), oiling encounter rates were higher at 16.7% for dark wading birds and 16.5% for light 
wading birds. The authors suggested that the higher rates of oiling observed in wading birds than in other 
guilds may be explained by the habitat of wading birds being along the land-water interface where oil can 
accumulate, thereby increasing their risk of exposure relative to birds who spend more time in, on, or 
above the water.  

• Despite the documented oiling of wading birds following the Deepwater Horizon spill, Burger (2018) found 
that in 2011 there were no significant differences in the number of species nesting in waterbird colonies 
(including egrets, herons, roseate spoonbills, and others) as a function of shoreline oiling category; no 
differences in colony phenology as a function of shoreline oiling category; no differences in the mean 
number of chicks per nest as a function of shoreline oiling category (or the “no oil” category had similar or 
smaller numbers); and average chick sizes in nests in the “no oil” category were similar to or lower than 
chick sizes in the “light oil” and “moderate/heavy oil” categories. Thus, Burger concluded that there were 
no differences in waterbird reproductive success in the year following the spill, but both chronic and 
episodic spills in the Gulf of Mexico make it difficult to examine the effects of any single oil spill.  

Physiological 
effects of oil 
exposure 

• Physiological effects of oil exposure on wading birds can be lethal or sublethal, and occur through several 
pathways: 
o Loss of waterproofing and insulating capabilities of feathers, leading to death from hypothermia 

(Leighton 1993). 
o Oil ingestion through preening of oiled feathers and/or foraging in contaminated habitats, leading to 

dehydration, starvation, infections, pneumonia, arthritis, gastrointestinal problems, and cloacal 
impaction. Oil ingestion can cause mortality primarily through acute toxic effects to the liver, kidney, 
and gastrointestinal tract (Briggs et al. 1996; Leighton 1993). Sublethal toxicological effects can also 
result from ingested oil, including hemolytic anemia, reduced reproduction, and immunosuppression 
(Leighton 1993).  

o Eye irritation from oil contact (Briggs et al. 1996). 

Foraging 
habitat 
switching 

• Following a series of oil spills in 1990 into the Arthur Kill estuary (New York and New Jersey), in some 
cases, wading birds shifted to foraging at freshwater sites rather than in tidal estuaries (Maccarone and 
Brzorad 1995). Seven years after the spills, some freshwater sites had again become less heavily used, 
but numbers of wading birds in estuaries had still not returned to pre-spill levels. By 1997, estuaries were 
more productive as prey capture rates and foraging strike success increased compared to 1990, but 
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feeding success had still not returned to pre-spill patterns (Maccarone and Brzorad 1998). By 1999, 
wading birds had returned to once-contaminated estuaries to forage, and feeding success had returned to 
pre-spill levels (Maccarone and Brzorad 2000). 

 

Fish (Smalltooth Sawfish) 
 
Table 27. Summary of hurricane (acute coastal/storm surge flooding) impacts to smalltooth 

sawfish. 

Effect Literature Summary 

Population 
effects 

• In a study comparing number, size, and movement patterns of smalltooth sawfish using data collected 2 
years prior to and 2 years after Hurricane Charley (Category 4) in Charlotte Harbor, FL, Simpfendorfer 
and Wiley (2006) concluded that smalltooth sawfish continued to occur in habitats affected by Hurricane 
Charley. Analysis of encounter data showed that there was no detectable difference in the number of 
smalltooth sawfish occurring in areas affected by Hurricane Charley. Movement and habitat use patterns 
of juvenile sawfish did not appear to be affected by habitat damage to the nursery area. There were no 
consistent differences in the behavior and habitat use patterns of juvenile sawfish between the impact 
and control sites. This included no differences in swimming speeds, cumulative linearity of tracks or depth 
distributions between the sites. 

 
Table 28. Summary of chronic inundation impacts to smalltooth sawfish. 

Effect Literature Summary 

Habitat quality • In a study from 2010 to 2013, juvenile sawfish in the Caloosahatchee River (a highly human-altered 
nursery) moved between four nursery hotspots, depending on water salinity, moving downriver as 
salinity approached zero. In the Peace River (a more natural nursery), sawfish generally stayed within 2-
5 km of one nursery hotspot (Scharer et al. 2017). Both rivers are designated as Critical Habitat (in 
2009) for smalltooth sawfish, which was listed as endangered on April 1, 2003. 

• In a study between 2007 and 2009, Poulakis et al. (2012) found that juvenile sawfish remained in the 
Caloosahatchee River under a wide range of environmental conditions, but moved upstream as salinity 
increased. 

• In a study between 2005 and 2007, Simpfendorfer et al. (2011) found that juvenile sawfish in the 
Caloosahatchee River estuary preferred salinities between 18 and at least 24 psu. Thus, freshwater flow 
from Lake Okeechobee and its effect on salinity affects the location of individuals within the estuary. 

• Smalltooth sawfish are piscivorous and shift from shallow estuarine waters as small juveniles to a 
broader array of coastal habitats as large juveniles and adults. The species is physiologically resilient to 
anthropogenic stressors (Brame et al. 2019). 

• These studies show that juvenile smalltooth sawfish can and will move to their preferred salinity ranges 
in response to short-term (months) changes in salinity due to variations in water quality.  

• However, forced landward progression of the preferred shallow-water mangrove habitat for juveniles 
poses the greatest threat in areas where there is limited or no room for landward or lateral migration due 
to shoreline armoring and coastal development. Reductions in the availability of shallow water or 
mangroves could have numerous ecological effects on sawfish, including increased sawfish predation, 
higher metabolic stress, and decreased body condition (Brame et al. 2019). 

 
Table 29. Summary of marine debris impacts to smalltooth sawfish. 

Effect Literature Summary 

Hurricane 
debris 

• Simpfendorfer et al. (2005) surveyed mangrove areas in Charlotte Harbor damaged during Hurricane 
Charley (Category 4) several months after the storm. They found that the storm generated a large 
amount of death or complete defoliation of red mangroves, but they did not find a significant amount of 
trash accumulated in the shoreline mangrove habitats. Most sites had less than 10 items (bigger than an 
aluminum can) per 100 m segment. 
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• Seitz and Poulakis (2006) interviewed 989 individuals who reported some type of encounter with 
smalltooth sawfish in south Florida. They reported 15 incidents with entanglement in various forms of 
marine debris, including a PVC pipe, an elastic band, and monofilament, non-monofilament, and braided 
fishing lines.  

 
Table 30. Summary of convective storm wind event impacts to smalltooth sawfish. 

Effect Literature Summary 

Habitat 
degradation 

•  In an acoustic study of nursery habitat use in the Everglades National Park, Hollensead et al. (2018) 
found that juvenile sawfish had an increased probability of being encountered in narrow tidal creeks and 
shallow tidally influenced mangroves with high prop root density. Thus, impacts to mangroves in these 
areas could affect the habitat quality, though most studies after hurricanes showed mangrove damage 
was limited to areas of highest wind. Thus, it is not likely that a single convective storm could affect a 
large nursery area. 

 
Table 31. Summary of shoreline erosion impacts to smalltooth sawfish. 

Effect Literature Summary 

Habitat quality • Sawfish spend their first few years within nurseries and eventually move into a broader range of 
coastal habitats. The greatest impacts have resulted from replacement of mangrove-lined shorelines 
with man-made structures (Poulakis and Grubbs 2019). However, in southwest Florida, Critical Habitat 
designations in their most important nursery areas (Charlotte Harbor and the Everglades) will 
minimize this stressor. In these areas, shoreline erosion is less of a concern.  

 
Table 32. Summary of contaminant/spill event impacts to smalltooth sawfish. 

Effect Literature Summary 

Direct effects 
of oil exposure 

• Juvenile fish that rely on estuarine nursery habitats, in general, are more sensitive to oil spills because 
of the risk of increased exposure in shallow or narrow waterbodies and because they often have 
smaller ranges, where a spill could affect more of their preferred habitat. 

Indirect effects 
of oil exposure 

• Spills can cause tree mortality and dieback of prop roots along tidal channels (Garrity and Levings 
1993; 1994), which is the preferred habitat in Florida for juvenile sawfish. 

 

Invertebrate (Queen Conch) 
 
Table 33. Summary of hurricane (acute coastal/storm surge flooding) impacts to queen conch. 

Effect Literature Summary 

Reduced adult 
density, 
leading to 
depensation 

• Adult queen conch densities declined in the Florida Keys by over 80% immediately following the 
passage of Hurricane Irma (2017) and by ~45% following the passage of Hurricane Ian (2022). The 
mobilization of sand during passage of the storms likely buried conch and caused mortality. Following 
both hurricanes, adult queen conch populations declined below the minimum mating threshold for the 
Florida Keys, indicating depensation triggered by the hurricanes. Long-term annual monitoring 
revealed a lack of recovery 5 years after Hurricane Irma, which was attributed to queen conch’s 
density-dependent reproduction and age at sexual maturity of ~4 years (Voss et al. 2024).  

• Following Hurricane Maria (2017), Agar et al. (2020) reported that fishers in Puerto Rico had to dive in 
deeper waters for queen conch due to damage to inshore habitats. Fishers also reported lower queen 
conch catches. 

Hypothesized 
effects on 
larval transport 
and survival 

• Stoner et al. (2023) suggested likely impacts of hurricanes on queen conch veliger larva transport and 
survival due to the disruption of the mixing layer over a large scale. Disruption of benthic habitats with 
hurricanes may impact settlement and post-settlement survival; whereas, faster storm currents may 
enhance distant transport.  
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Table 34. Summary of chronic inundation impacts to queen conch. 

Effect Literature Summary 

Potential 
declines in 
seagrass and 
coral reef 
habitats with 
sea level rise 

• Seagrass and coral reef habitats are declining worldwide and are projected to continue to decline with 
increasing inundation due to sea level rise (e.g., Saunders et al. 2014; Scalpone et al. 2020). Queen 
conch primarily occurs in seagrass beds, coral reefs, and sand plains (Horn et al. 2022), so impacts to 
those habitats will likely have cascading impacts on queen conch populations.  

Note: No literature was found on direct inundation impacts on queen conch, so potential indirect impacts are 
assumed from degradation of queen conch’s seagrass and coral reef habitats and based on best professional 
judgment. See Seagrass and Coral Reef literature summaries for details of chronic inundation impacts to those 
resources. 

 
Table 35. Summary of marine debris impacts to queen conch. 

Effect Literature Summary 

Microplastic 
ingestion 

• Queen conch fecal analyses from 11 sites around the wider Caribbean, including a site in the Florida 
Keys, revealed that microplastics were present in all 175 conch sampled. No geographic pattern was 
found across the Caribbean, and mean number of microplastic pieces per queen conch ranged from 42 
to 270. Microplastic fibers were the most frequent particle type at every site (99% of particles at the 
Florida Keys site); other microplastic types found were films and spheres. These results highlight the 
relatively high levels of microplastic pollution in the Caribbean Sea compared with global averages, the 
ability of queen conch to ingest microplastics, and the ubiquity of microplastic contamination in queen 
conch throughout its distribution (Aranda et al. 2022). Horn et al. (2022) suggest that high levels of 
microplastic ingestion in queen conch may negatively affect reproduction. 

 
Table 36. Summary of convective storm wind event impacts to queen conch. 

Effect Literature Summary 

Altered vertical 
distribution of 
larvae 

• While multiple interacting environmental conditions can impact vertical distribution of queen conch 
veliger larvae, turbulence in surface waters can drive larvae lower in the water column (Stoner et al. 
2023). Stoner and Davis (1997) found that density of queen conch veligers in the top meter of the water 
column was inversely related to sea height, and that modal veliger depth was directly related to wind 
speed. Wind-caused surface turbulence overwhelmed veligers’ weak vertical swimming ability. Because 
queen conch veliger larvae have diel vertical migration (Stoner and Davis 1997), it is unclear whether 
any population-level impacts would occur as a result of a convective storm wind event.  

Altered 
horizontal 
larval transport 

• As queen conch veligers typically inhabit the upper several meters of the water column, wind forcing 
affects their horizontal transport. In a study at Lee Stocking Island in the Bahamas, Stoner and Smith 
(1998) found that across-shelf distribution of queen conch veliger larvae was affected by wind forcing. 
Seaward transport, which is unfavorable to recruitment, was driven by prevailing offshore winds, which 
suggests that recruitment of conch larvae to nursery grounds occurs during anomalous summer wind 
conditions at this site. Additionally, Stoner and Smith suggested that short-term (6-8 h) changes in wind 
stress may significantly affect across-shelf larval transport.  

Note: No specific studies were found of convective storm high wind event impacts on queen conch. The studies 
presented examined general wind conditions and wind forcing as a continuous variable, but they did not specifically 
examine wind events.  
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Table 37. Summary of shoreline erosion impacts to queen conch. 

Effect Literature Summary 

Potential 
declines in 
seagrass and 
coral reef 
habitats due to 
erosion 

• Seagrass and coral reef habitats are declining worldwide and are projected to continue to decline with 
negative effects of erosion (e.g., Cabaço et al. 2008; Duarte 2002; Morris et al. 2022; Toth et al. 2022). 
Queen conch primarily occurs in seagrass beds, coral reefs, and sand plains (Horn et al. 2022), so 
impacts to those habitats will likely have cascading impacts on queen conch populations.  

Note: No literature was found on shoreline erosion impacts on queen conch, so potential indirect impacts are 
assumed from degradation of queen conch’s seagrass and coral reef habitats and based on best professional 
judgment. See Seagrass and Coral Reef literature summaries for details of shoreline erosion impacts to those 
resources. 

 
Table 38. Summary of contaminant/spill event impacts to queen conch. 

Effect Literature Summary 

Direct effects 
of oil exposure 

• Little information on direct effects of oil exposure exists for queen conch; however, Nadeau and 
Bergquist (1977) observed that large numbers of conch were washed ashore on the third day following 
the Zoe Colocotronis spill in Puerto Rico. Additionally, many invertebrate species were observed dying 
and decomposing in nearby seagrass beds.  

• Static acute toxicity tests on queen conch veliger larvae with artificially weathered crude oil, dispersant 
(Corexit 9500), and dispersed oil revealed that dispersed oil was more toxic than crude oil for all larval 
stages, survival decreased with increased exposure time, and younger larval stages were more 
sensitive than older stages (Laramore et al. 2012).  

• Studies of other effects on other gastropod species have shown that exposure to petroleum 
hydrocarbons can impair gastropod mobility and foraging behavior at sublethal doses (Hyland and 
Miller 1979; MacFarlane et al. 2004), and acute exposure after oil spills can cause high levels of 
mortality (Blackburn et al. 2014). 

Indirect effects 
of oil 
exposure* 

• Spill impacts to queen conch habitat (including substrate destruction or modification) may have 
cascading impacts on queen conch populations. The effects of degraded habitat following a spill may 
be of greatest concern in shallow waters (Horn et al. 2022).  

*Potential indirect impacts are assumed from degradation of queen conch’s seagrass and coral reef habitats and 
based on best professional judgment. See Seagrass and Coral Reef literature summaries for details of spill impacts 
to those resources. 

 

Reptiles (Sea Turtles) 
 
Table 39. Summary of hurricane (acute coastal/storm surge flooding) impacts to sea turtles. 

Effect Literature Summary 

Nesting 
success 

• Hurricane Andrew affected turtle nests over a total of 90 miles of beaches on the east and west coasts of 
Florida. The storm surge associated with the hurricane produced the greatest mortality through nest 
flooding. The greatest surge effect was felt on beaches closest to the "eye" of the hurricane, where egg 
mortality was 100%. Further mortality occurred when surviving turtles suffocated in nests situated in the 
beach zone where sand had accreted (Milton et al. 1994). 

• In a study of 7 km of beaches along central east Florida, Lindborg et al. (2016) showed that hatching and 
emergence success over the period 2004-2014 were lowest during tropical cyclones, which corresponded 
with an increased number of complete nest wash-outs. 

• As reported by Edmiston et al. (2008), along the beaches of Apalachicola Bay, two tropical storms and a 
tropical depression in 1994 washed out nests and nest markers, and inundated most remaining nests with 
as much as 0.4-0.6 m of tightly packed sand. Three hurricanes, Allison, Erin, and Opal, impacted area 
beaches in 1995 causing severe beach erosion, leveling the entire primary dune system, and eliminating 
more than 40% of the nests on two islands. In 1998, Hurricane Earl destroyed 54% of the nests on St. 
George Island and 45% of nests on Cape St. George Island. 



 

46 

Effect Literature Summary 

• Ware et al. (2021) used wave runup models for 40 nesting beaches in the Florida Panhandle to show that, 
on average, approximately 50% of the available beach area and 34% of nesting locations per nesting 
beach face a significant risk of wave exposure, particularly during tropical storms. Field data showed that 
42.3% of all nest locations reported wave exposure, which resulted in a 45% and 46% decline in hatching 
and emergence success, respectively. 

Population 
impacts 

• In an analysis of historical hurricane paths from 1970 to 2007, Dewald et al. (2013) showed that 
hurricanes affected 97% of sea turtle beaches, seasonally overlapping with nesting and egg incubation 
periods. However, females lay 2-7 clutches at 2 week intervals; thus, impacts on sea turtle populations 
may be limited because only a portion of adult females are reproducing and only those eggs incubating at 
the time of the storm are directly impacted.  

• In spite of ten catastrophic hurricanes from 1988 to 2004 that affected a barrier island off the southern 
Florida coast, 72% of clutches produced by nesting females were undisturbed—median hatching success 
for these clutches was an astonishing 92% (Cassill 2021). The author concluded that diversified maternal 
investments over time and space by nesting females are reproductive adaptations that have successfully 
offset clutch losses, thus enabling populations of loggerhead females to meet or exceed their reproductive 
goal of replacement fitness. 

 
Table 40. Summary of chronic inundation impacts to sea turtles. 

Effect Literature Summary 

Reduced 
hatching 
success 

• Fuentes et al. (2020) modelled the geographic distribution of climatically suitable nesting habitat for 
marine turtles in the USA under future climate scenarios, and identified potential range shifts by 2050, 
determined impacts from sea-level rise, and explored changes in exposure to coastal development as a 
result of range shifts. Sea-level rise is projected to inundate 78-81% of current habitat predicted to be 
climatically suitable in the future, depending on species and scenario. Nevertheless, new beaches will also 
form, and suitable nesting habitat could be gained, with leatherback turtles potentially experiencing the 
biggest percentage gain in suitable habitat. 

• Loggerhead hatching success decreased as inundation, water content, and salinity increased on low-lying 
mangrove islands in the Ten Thousand Islands region of Florida. However, the researchers noted that 
clutches can tolerate a certain amount of inundation (Foley et al. 2006). 

• Using a dataset of over 9,000 nest inventories from five nesting areas that span the latitudinal extent of 
primary nesting locations in the United States, Lyons et al. (2022) found that nesting distance from the 
high waterline was important in determining the probability of inundation and depredation disturbance 
events, as well as clutch failure. Nests that experienced at least one inundation event were more likely to 
have no emergence than nests that experienced at least one depredation event. 

• Pike et al. (2015) showed that saltwater inundation directly lowers the viability of green turtle eggs 
collected from the world’s largest green turtle nesting rookery at Raine Island, Australia, which is 
undergoing enigmatic decline. Inundation for 1 or 3 h reduced egg viability by less than 10%; whereas, 
inundation for 6 h reduced viability by approximately 30%. 

 
Table 41. Summary of marine debris impacts to sea turtles. 

Effect Literature Summary 

Lethal and 
sublethal 
effects due to 
debris 
ingestion 

• In a study of gastrointestinal tracts of 42 post-hatchling loggerhead sea turtles stranded in Northeast 
Florida, abundant numbers of plastic fragments (hard and sheet plastic) ranging from 0.36 to 12.39 mm 
were found in 93% of the animals. The authors suggested that there were significant negative health 
consequences from ingestion in animals at this life stage (Eastman et al. 2020). 

• Of 20 juvenile loggerhead sea turtles from the North Atlantic Tropical Gyre, off the Azores, 83% were 
found to have ingested plastic items (primarily polyethylene and polypropylene), with an average of 15.83 
± 6.09 particles per animal (Pham et al. 2017). 

• In a quantitative analysis of hundreds of records, Wilcox et al. (2018) found a 50% probability of mortality 
once a sea turtle had 14 pieces of plastic in its gut. 
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Effect Literature Summary 

• Garrison and Fuentes (2019) found anthropogenic marine debris at all of the ten highest density nesting 
beaches on Florida’s Gulf coast, ranging from 16-363 items/km, with plastic and foam accounting for 
92% (n= 13,566). 

• In a field study in NW Florida, Fujisaki and Lamont (2016) found that the number of turtle nests increased 
200% and false crawls increased by 55% on a segment of shoreline where natural and anthropogenic 
debris was removed, compared to two other segments without removal, indicating that large debris may 
have an adverse impact on sea turtle nesting behavior. 

• Debris was found in 25 of 51 sea turtle carcasses from the east and west coasts of Florida, consisting of 
plastic, monofilament line, fish hooks, rubber, aluminum foil, and tar. For the two turtles who died as a 
result of debris ingestion, the debris represented 4.6% and 5.8% of wet mass and 3.2% and 9.8% of 
volume of the gut contents, which affected gut function (Bjorndal et al. 1994). 

• In a controlled experiment with 15 captive-reared juvenile loggerhead sea turtles, Pfaller et al. (2020) 
found that the sea turtles responded to airborne odorants emanating from biofouled plastic in the same 
way that they responded to food odorants, making them at higher risk of ingestion. 

• For 54 loggerhead sea turtles from the Mediterranean Sea, 43 contained marine debris with plastic the 
most common (75.9%) but also tar, paper, Styrofoam, wood, reed, feathers, hooks, lines, and net 
fragments. The volume of debris increased proportionally to the size of the turtles (Tomás et al. 2002). 

• Of 380 neonatal sea turtles that washed ashore the Florida east coast, 78.7% had ingested plastic and 
45.3% had ingested tar. Ingested plastics included microplastics (<5 mm) and larger sizes up to 25% of 
carapace length (Rice et al. 2021). 

• In a study of 52 dead post-hatchling sea turtles from the Florida east coast, White et al. (2018) 
determined that ingestion of micronizing plastic by post-hatchling sea turtles is likely a substantial risk to 
survival of these endangered and threatened species. 

Entanglement • In a study of sea turtle strandings (n=17,763) in Florida during 1997–2009, Adimey et al. (2014) reported 
that 1,070 sea turtle cases (5%) were identified as fishery gear interactions, consisting of 75.2% hook 
and line, 16.6% trap pot gear, 6.2% fishing net, and 2.0% multiple gear. Interactions were higher in 
summer/fall and increased over time.  

 
Table 42. Summary of convective storm wind event impacts to sea turtles. 

Effect Literature Summary 

Dispersal of 
turtles at sea 

• Monzon-Arguello et al. (2012) used multidisciplinary oceanographic, atmospheric and genetic mixed stock 
analyses to show that juvenile turtles are encountered ‘downstream’ at sites predicted by currents. 
However, in some cases, unusual occurrences of juveniles are more readily explained by storm events, 
and the researchers showed that juvenile turtles may be displaced thousands of kilometers from their 
expected dispersal based on prevailing ocean currents. 

• DuBois et al. (2020) used an ocean circulation model to explore seasonal and annual variation in the 
dispersal of post-hatchling Kemp’s ridley sea turtles from nesting beaches in the western Gulf of Mexico. 
High numbers of hurricanes corresponded to shorter dispersal distances and less variance within the first 
6 months. Their findings suggest that differences in dispersal among sites and the impact of hurricane 
frequency and intensity could influence the survivorship and somatic growth rates of turtles from different 
nesting sites and hatching cohorts, either improving survival by encouraging retention in optimal pelagic 
habitat or decreasing survival by pushing hatchlings into dangerous shallow habitats. 

 

Table 43. Summary of shoreline erosion impacts to sea turtles. 

Effect Literature Summary 

Nesting 
success 

• In a seven-year study along Vero Beach, Florida, Rizkalla and Savage (2011) found that fewer loggerhead 
sea turtles attempted to nest on beaches with passive erosion due to nearshore placement of seawalls 
compared with unarmored beaches. Nests placed in front of seawalls were more likely to be washed away 
in storms. 

• Reece et al. (2013b) used a multiple regression model based on climate change, sea-level rise and land 
use that described 47% of the spatial variation in loggerhead nesting on the largest loggerhead rookery in 
the Atlantic Ocean, at Melbourne Beach, Florida from 1986 to 2006. Nests have shifted northward (likely 
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Effect Literature Summary 

in response to warming temperatures), away from intensive coastal development, and, surprisingly, 
toward areas of increased erosion. 

• Studies have shown that sea turtles nest denser and closer to the vegetation line on eroding beaches 
(Fujisaki et al. 2018; Lamont and Houser 2014). 

• Along the southeastern coast of Brazil, a study of 731 loggerhead sea turtle nests found only 6% were 
found on beach sectors with severe and extreme erosion, compared to 50% that were found on low-
urbanized beaches (Costa et al. 2023). 

• Lyons et al. (2020) predicted the future location of nesting areas within four barrier island National 
Seashores in the southeastern United States based on a sea level rise scenario for 2100 and quantified 
how impervious surfaces will inhibit future beach movement, which will impact both the total available 
nesting area and the percentage of nesting area predicted to flood following a hurricane-related storm 
surge. Contrary to their expectations, those barrier islands with the greatest levels of human infrastructure 
were not projected to experience the greatest percentage of sea turtle nesting area loss due to sea level 
rise or storm surge events. Notably, loss of nesting beach areas will not have equal impacts across the 
four Seashores; the Seashore projected to have the least amount of total nesting area lost and 
percentage nesting area lost currently has the highest nesting densities of the two study species, 
suggesting that even low levels of beach loss could have substantial impacts on future nesting densities 
and disproportionate impacts on the population growth of these species. 

 

Table 44. Summary of contaminant/spill event impacts to sea turtles. 

Effect Literature Summary 

Direct oil 
exposure 

• Physical fouling by oil is the most frequently reported effect of oil exposure on sea turtles (Wallace et al. 
2020; Shigenaka et al. 2010). Coating of oil on sea turtles at any life stage can have similar effects caused 
by smothering, clogging the mouth and nose, or creating an inability to maneuver. 

• Oil contact can cause acute toxicity in hatchlings and impair their movements and normal bodily functions 
if coated (Shigenaka et al. 2010).  

• At sea, juvenile and adult sea turtles can be weighed down by oil, obstructing their ability to surface for air, 
reducing their ability to dive for feeding, avoid predators or vessel strikes, and regulate body temperature. 
Ingesting oil either directly (i.e., eating tar balls) or indirectly (i.e., consuming contaminated foods) can 
cause acute toxicity or, in terms of tar balls, can lead to blockage of their mouths or esophageal pathways.  

• Loehefener et al. (1989) found tar balls in the mouths, esophagi, and stomachs of 65 out of 103 post-
hatchling loggerhead turtles off the east coast of Florida in a convergence zone. 

• The Deepwater Horizon oil spill was shown to negatively affect sea turtle nesting on oiled beaches in NW 
Florida, with a reduction of 43.7% relative to expected nesting rates in the absence of DWH oil and 
cleanup efforts (Lauritsen et al. 2017). 

Indirect 
effects of oil 
exposure 

• Witherington (1994) studied post-hatchlings in convergence zones, or weed lines, off the coast of Florida 
and found that 34% of individuals had tar in their mouths or esophagi, with over half with tar in their jaws. 
Hatchlings, juveniles, and adults can experience difficulty eating if their beaks and esophagi are blocked, 
which could lead to starvation.  

• Ingested oil can also cause gut blockage, decreased absorption efficiency, absorption of toxins, effects of 
general intestinal blockage (i.e., local necrosis or ulceration), interference with fat metabolism, and 
buoyancy control problems caused by buildup of fermentation gases (Shigenaka et al. 2010). Buoyancy 
control allows sea turtles to surface or dive to depth freely; without this ability, they are especially 
vulnerable to predators, vessel strikes, and disruption of normal feeding behavior.  

Spill risk • According to Wallace et al. (2020), of 2,316 oil spills of all sizes worldwide over the past 60 years, 1,432 
spills occurred within subtropical waters where sea turtles occur. However, only 22 spills reported impacts 
to sea turtles. The distribution was heavily favored toward North America (13 spills). Effects involving 
nesting females and/or hatchlings were reported more frequently than oceanic involvement of sea turtles, 
other than the occasional observational report of dead sea turtles in the waters near a spill. The potential 
for sea turtles to be impacted by oil spills is very high; however, these incidents are few in number either 
by chance occurrence or by limited reporting. 

Note: Included limited studies on oil effects on sea turtles following the Deepwater Horizon spill because its 
magnitude is not representative of the degree and extent of oil exposure considered in this assessment. 
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Wetlands (Mangroves) 
 
Table 45. Summary of hurricane (acute coastal/storm surge flooding) impacts to mangroves. 

Effect Literature Summary 

Forest 
dieback 

• Hurricane Donna (1960) caused 30-100% mortality, with higher mortality at interior sites (Craighead and 
Gilbert 1962). Delayed mortality was noted 10 years later (Craighead 1971). 

• Hurricane Andrew (1992) impacts to the Everglades National Park, Ten Thousand Islands NWR, and 
Rookery Bay NERR were 20-94% reduction in basal area in the eyepath, 1-51% in the right quadrant, and 
2-24% in the left quadrant. Taller dominant trees and stands incurred greater damage from windthrow, 
whereas subcanopy trees were affected by felled and topped canopy trees. There was large-scale 
defoliation in all areas (Doyle et al. 1995). 

• Recovery monitored for 7 years after Hurricane Andrew involved different pathways depending on 
resprouting capability, seedling survival, post-hurricane seedling recruitment, and colonization by 
herbaceous vegetation. Sites with surviving red mangrove seedling grew a dense single-species canopy. 
Sites with low survival of red mangrove seedlings were colonized by mixed species and herbaceous 
vegetation in open patches (Baldwin et al. 2001).  

• Hurricane Wilma (2005) damaged 1,250 ha of mangroves, mainly as a narrow band averaging 250 m wide 
and extending for 50 km adjacent to the Gulf of Mexico. Basin forests had higher basal area losses (mean 
75%), compared to riverine (18%) and island (20%) forests (Smith et al. 2009). 

• As a result of Hurricane Irma (2017), 10,760 ha of mangroves in southwest Florida suffered complete 
mortality within 15 months post-storm (based on airborne and satellite imagery), with largest impacts in tall 
forests (>10 m) and in forests dominated by red mangroves that were also areas with low elevation where 
the storm surge exceeded 1.4 m. Mangroves on well-drained sites (83%) resprouted new leaves within 1 
year after the storm. By contrast, poorly drained inland sites experienced the highest mortalities due to 
hypersalinization (accounting for 75% of the total dieback) (Lagomasino et al. 2021). 

• Using satellite imagery from 1985-2017, Han et al. (2018) showed large-scale damage to mangrove 
forests in the Everglades National Park after Hurricanes Floyd (1987), Andrew (1992). Charley (2004). 
Wilma (2005), and Irma (2017). However, these large mangrove die-off areas gradually recovered to pre-
hurricane levels within 3-4 years. 

Sediment 
and nutrient 
addition 

• Hurricane Irma resulted in storm deposits extending 2-5 km from the mouth of estuaries in the 
southwestern Everglades, resulting in vertical accretion that was 6.7 to 14.4 times greater than the long-
term (100 y) annual accretion rate (0.27 ± 0.04 cm y−1). Total P (TP) inputs were highest at the mouth of 
estuaries, with P concentration double that of underlying surface (top 10 cm) soils. This P deposition 
contributed 49 to 98% to the soil nutrient pool. As a result, all mangrove species showed a significant 
increase in litter foliar TP and soil porewater inorganic P concentrations in early 2018, 3 months after 
Irma’s impact (Castaneda-Moya et al. 2020). 

• Feher et al. (2020) reported abrupt increases in elevation due to sediment inputs and subsurface 
expansion along the Shark River Estuary in the Everglades during Hurricane Wilma that were followed by: 
(1) an initial post-hurricane period of elevation loss due to erosion of hurricane sediments and subsurface 
contraction; (2) a secondary period of elevation gain due primarily to accretion; and (3) an abrupt elevation 
gain due to new sediment inputs during Hurricane Irma. They suggested that storm-induced deposition of 
marine sediments may be critical to the establishment and continued persistence of mangrove 
ecosystems in non-deltaic areas that receive minimal terrigenous sediment inputs and also have a 
disturbance regime of reoccurring storms. 

Peat 
collapse 

• The 1935 Labor Day hurricane caused extensive mangrove forest mortality and a reduction in the soil 
elevation of 58.2 cm and the permanent conversion of mangrove forest to mudflat over the period 1930-
1998 due to peat collapse, compared to the accretion of 15.2 in areas where mangrove forests persisted 
(Osland et al. 2020). 
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Table 46. Summary of chronic inundation impacts to mangroves. 

Effect Literature Summary 

Drowning of 
mangroves/ 
retreat/ 
transition to 
open water 

• Carbon sequestration and trapping of sediment in mangroves can offset sea level rise to a point. In a 
global analysis, Saintilan et al. (2023) found that mangroves’ ability to vertically adjust to sea level rise is 
very likely to be exceeded (i.e., elevation deficit) at relative sea level rise between 7 and 8 mm/yr. Under 
a global warming scenario of 3°C, Florida will experience relative sea level rise >7 mm/yr, and retreat of 
mangrove habitats will be very likely. 

• However, in a local study at sites in the Everglades in South Florida, steady-state soil accretion rates 
were 0.9 to 2.4 mm/yr and recent (2001 to 2016) estimated sea level rise was 7.7 mm/yr. Despite this 
accretion deficit, mangrove “drowning” has not been observed at those sites, which suggests that short-
term environmental disturbance (e.g., storms) may contribute to non-steady state accretion and make 
up the accretion deficit (Chambers et al. 2021). 

• A model by Parkinson and Wdowinski (2022) of mangrove resilience in South Florida as a function of 
sea level rise and vertical sediment accumulation indicates that by 2040 to 2050, mangroves will begin a 
widespread conversion to intertidal and subtidal environments, which will result in plant destabilization 
and a transition to mudflats or formation of inundation ponds. By 2100, most mangrove forested areas in 
South Florida will be submerged. 

Peat collapse 
feedback loop  

• Constant inundation and burial by sediment cause stress or mortality of mangroves because gas 
exchange by aerial root structures is reduced. Subsequent loss of belowground roots and increased 
decomposition result in loss of surface elevation through peat collapse, which in turn increases the 
degree of inundation (Radabaugh et al. 2021). 

• In a mesocosm experiment, Chambers et al. (2014) found a significant decrease in mangrove soil bulk 
density with increased inundation, which could lead to peat collapse. 

Landward 
expansion of 
mangroves 

• Remote sensing analysis of 15 islands in Florida Bay that were dominated by mangroves on the coastal 
fringe showed that from 1953 to 2014, all islands had significant mangrove expansion and the landward 
expansion of mangroves replaced inland non-mangrove habitats (brackish or freshwater plants; Zhai et 
al. 2019). 

• Using a sea level and elevation model, Doyle et al. (2010) found that mangrove forests in South Florida 
are expected to replace retreating freshwater forests over the next century. 

• Sklar et al. (2021) used land cover data in coastal South Florida along with sea level rise scenarios to 
estimate sea level rise impacts on mangroves. Under a low sea level rise scenario of 0.27 m by 2070 
with mangrove accretion included in the model, mangroves were able to migrate inland while 
maintaining the current coastline. However, under a high sea level rise scenario (1.13 m by 2070), 
accretion could not compensate for inundation and mangrove coastline was lost. 

• Long-term data from the Everglades show that a 10 cm rise in sea level over the previous 50 years, 
along with reduced freshwater delivery during that time, led to landward migration of mangroves of ~1.5 
km over 54 years (Rivera-Monroy et al. 2011). 

• Sea level rise-driven mangrove encroachment of marshes in Ten Thousands Island National Wildlife 
Refuge in Florida resulted in a 35% increase in mangrove coverage from 1927 to 2005 (Krauss et al. 
2011). 

Altered 
mangrove 
growth and 
physiology 

• Ellison and Farnsworth (1997) conducted a 2.5-year greenhouse study of Rhizophora mangle with 
simulated tides and an inundation level expected to occur in the Caribbean by 2050 to 2100 to assess 
mangrove physiological and growth responses to sea level rise. By the end of the experiment, 
mangroves exposed to the increased sea level treatment were 10 to 20% smaller than the plants 
exposed to current sea level conditions. Additionally, relative to the current sea level plants, the 
increased sea level plants had lower maximum photosynthetic rates and lower relative growth rates. 

Note: Degree of chronic inundation (i.e., sea level rise) will determine whether effects on mangroves are net positive 
or negative. Under lower inundation levels, mangroves can accrete sediment to vertically adjust to sea level rise and 
can expand landward. However, under higher inundation levels, mangrove vertical adjustment cannot keep up with 
rising sea level and mangroves retreat/drown.  
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Table 47. Summary of marine debris impacts to mangroves. 

Effect Literature Summary 

Relative 
amounts 

Microplastics:  

• Microplastics have been shown to occur in mangrove surface waters and mangrove sediments at many 
locations worldwide, and different shapes of microplastics found in mangrove habitats include fibers, 
fragments, films, pellets, and granules. Microplastics are mainly created from the breakdown of 
microplastic debris (Deng et al. 2021).  

• Zhou et al. (2020) observed that, in China, sediments in mangrove areas contained more abundant 
microplastics than sediments in neighboring non-mangrove beach areas by a factor of 1.1 to 8.5. 
Additionally, the site with highest microplastic abundance was in a heavily touristed area near a 
mariculture area, and the lowest microplastic abundance was found at a site in a mangrove nature 
reserve. 

• Zhang et al. (2020) found between 5 and 10 times more microplastics in the landward zones compared to 
the seaward zones in mangroves along the Beibu Gulf in China. Microplastic abundance in the different 
zones of the mangrove forest was strongly linearly related to tidal current velocity. 

Macrodebris: 

• In Java, Indonesia, van Bijsterveldt et al. (2021) found significantly higher numbers of microplastic items 
in the landward mangrove fringe than in the seaward fringe or in the mangrove basin. An average of 17% 
of the mangrove forest floor was covered by plastic, and plastic was found up to at least 35 cm deep in 
the sediment. 

• In Papua New Guinea, Smith (2012) found mean debris loads (number of macrodebris items per m2) 
ranging from 1.2 to 78.3 at mangrove sites, and width of the debris bands ranging from 0.5 to 10 m. The 
vast majority (89.7%) of items were made of plastic. Other materials were glass, metal, paper, rubber, 
textile, and wood. 

• Gajanur and Jaafar (2022) counted 6,239 abandoned, lost, or discarded fishing gear items at mangrove 
sites around Singapore. Nets were by far the most abundant type of debris (3,260 items) in mangroves, 
followed by fishing lines (1,505 items), traps (584 items), floats and buoys (556 items), and lures, sinker, 
hooks, and rods (329 items).  

• In a literature review of mangrove macrodebris studies through 2020, Luo et al. (2021) summarized 
studies that showed average number of items per m2 ranging from 0.054 (in Colombia) to 21.23 (in 
Papua New Guinea).  

Physiological 
stress of 
mangrove 
trees 

• In a field experiment in Indonesia that covered the root zone of mangrove trees with plastic, van 
Bijsterveldt et al. (2021) found that prolonged suffocation by plastic created anoxic conditions that caused 
immediate pneumatophore growth and potential leaf loss. Leaf area was maintained in the treatment with 
50% of the root zone covered by plastic, but significantly decreased leaf area and survival were observed 
when 100% of root zone was covered by plastic. 

• Marine debris can potentially mask mangroves from solar radiation if the whole tree is entangled, or it can 
cover the pneumatophores and lead to oxygen deprivation (Kesavan et al. 2021). 

• Damage from marine debris colliding with mangrove trunks was strongly associated with crown dieback 
in Thailand (Pranchai et al. 2019). 

• Smothering of planted seedlings by marine debris has caused the failure of efforts to rehabilitate 
mangrove habitats (Smith 2012). 

Impacts on 
mangrove 
fauna 

• Anthropogenic marine debris may provide additional, transient habitat that may protect fauna from 
physical stress in mangroves. Riascos et al. (2019) reported that a variety of species, including 
periwinkles, mussels, crab, and shrimps, utilized mangrove marine debris as habitat in Colombia. 

• Gajanur and Jaafar (2022) documented the entrapment of organisms in abandoned, lost, or discarded 
fishing gear in coastal habitats, including mangroves, around Singapore. They found that plastic polymer 
nets trapped the highest diversity and abundance of organisms, and the most frequently entrapped taxa 
were horseshoe crabs, ray-finned fishes, and crustaceans. 

• Sandilyan and Kandasamy (2012) reported that the sound of rustling plastic bags in the mangrove 
canopy in India deter waterbirds that are dependent on mangrove habitats. 

• In an experiment in a mangrove forest in Brazil, Clemente et al. (2022) examined the impact of plastic 
bags on macroinvertebrate fauna. After 2 months, the plastic bag treatment (substrate covered with 
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plastic bags) macrofauna abundance decreased from 1,350 to 167 individuals; whereas, in the control 
treatment, macrofauna abundance increased from 1,004 to 5,162 individuals. 

• In a literature review of microplastics in mangrove ecosystems, Deng et al. (2021) report that 
microplastics can be taken up by and accumulate in mangrove biota, including crabs, snails, clams, and 
fishes. Ingestion is the main pathway of microplastic intake by mangrove biota. 

Note: No literature was found on impacts of marine debris on mangroves in Florida, but several studies were found 
on marine debris impacts on mangroves in other regions, particularly southeast Asia. Impacts to mangroves in Florida 
would likely be similar to those observed in other regions.  

 
Table 48. Summary of convective storm wind event impacts to mangroves. 

Effect Literature Summary 

Loss of 
vegetation and 
leaf area 

• After a strong storm with a maximum wind gust of 58 km/hr and hail in 2019, mangrove areas in 
southeastern Brazil had reduced vegetation and leaf area indices (normalized difference vegetation 
index [NDVI] reduced from 0.72 to 0.35 and leaf area indices [LAI] reduced from 4.25 to 0.63) and 
drastically reduced proportion of live trunks (93.2% pre-storm to 5.8% post-storm). Natural recovery had 
not occurred 3 years after the storm (Lima et al. 2023). 

Fruit abortion / 
premature 
detachment 

• Rhizophora mangle propagule detachment in part depends on mechanical force, which can be aided by 
wind. However, strong winds can cause either the abortion or detachment of immature fruit. Peel et al. 
(2019) observed a significant correlation between fruit shedding and maximum wind speeds at three 
mangrove sites on the Yucatan Peninsula, Mexico. Most fruits caught in traps during the study were 
immature.  

Gap creation • Duke (2001) reported that forest gaps in mangroves may be created by wind storms. This process was 
outlined in a conceptual forest development and regeneration model that Duke developed based on field 
observations in Rhizophora mangrove stands in Panama. Gap closure (recovery) occurs through 
reproductive and vegetative processes and may take decades.  

• In a black mangrove (Avicennia germinans) forest in Costa Rica, Putz et al. (1984) found that the width 
of crown gaps was positively correlated to the distance trees adjacent to the gap swayed in the wind. 
Buds, leaves, and branches knocking into each other due to wind appeared to create and maintain gaps 
around tree crowns.  

Changes in 
hydrodynamics 

• Davis et al. (2004) recounted multiple windstorm events in the Everglades (including winter storms 
lasting up to 10 days) that altered mangrove creek discharge (reversals of flow), salinity (changes up to 
20 psu), and stage (increase of nearly 3 m). These storms can account for a substantial proportion of 
annual flux of freshwater between mangroves and the adjacent Florida Bay.  

 
Table 49. Summary of shoreline erosion impacts to mangroves. 

Effect Literature Summary 

Mangrove 
loss 

• A global land use change analysis of remotely sensed images revealed that shoreline erosion was the 
greatest driver of natural mangrove loss, responsible for 27% (912 ± 41 km2) of global mangrove loss 
from 2000 to 2016 (Goldberg et al. 2020).  

• Manual interpretation of remotely sensed images from 1996 to 2010 showed that erosion-driven 
mangrove loss was widespread globally and was most commonly observed in high-energy environments 
(e.g., exposed coastlines and at river mouths; Thomas et al. 2017). 

Reduced 
seedling 
retention 

• In a study of mangrove seedling retention in Florida estuaries, Kibler et al. (2022) found that dislodgement 
of established mangrove seedlings by hydrodynamic force can occur as sediment erodes around the 
roots. Erosion of sediments can lead to uprooting at both small (around individual seedling roots) and 
large scales (through bed degradation).  

Note: Many studies have shown that mangroves protect shorelines from erosion. Studies presented here focus on 
impacts of shoreline erosion to mangroves, rather than vice versa. 
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Table 50. Summary of contaminant/spill event impacts to mangroves. 

Effect Literature Summary 

Impacts of 
oil exposure 
to mangrove 
trees 

Acute impacts: 

• Mangroves are highly vulnerable to oil spills because oil deposits on sensitive plant surfaces exposed 
during the ebb and flow of tides (Duke 2016). Oiling can kill mangroves within a few weeks to several 
months (Hoff and Michel 2014). Symptoms of acute impacts to mangroves include (as summarized by 
Hoff and Michel (2014)):  
o Seedling death 
o Leaf yellowing (chlorosis) 
o Defoliation 
o Tree death 

Chronic impacts:  

• Oil can be retained in mangrove sediments for years and can be re-released and cause chronic oiling. 
Following the Bahia Las Minas spill in Panama, oil persisted in mangrove sediments and leached out of 
sediments for at least 5 years (Burns and Yelle-Simmons 1994). 

• Additionally, chronic impacts may occur from the initial oiling event and may continue for years to decades 
and result in permanent habitat loss (Hoff and Michel 2014). 

• In a literature review, Duke (2016) summarized the chronic impacts of oiling on mangroves. Symptoms 
include: 
o Death of trees with seedling regeneration 
o Defoliation and canopy thinning 
o Leaf yellowing 
o Reduced growth of surviving trees 
o Poor seedling establishment 
o Toxic response deformities and morphological changes (e.g., pneumatophore branching; root 

abnormalities, fewer lenticels; and mutated, variegated leaves) 

• In a field experiment in Panama using Prudhoe Bay crude oil, defoliation had begun by 4 months post-
exposure and continued through 20 months post-exposure, when defoliation was observed in 78% of 
surviving trees and average estimated defoliation was 47.5%. Propagule sprouting success was also 
reduced at the oiled site. Tree death continued through 10 years post-exposure. The number of live 
mature trees and the number of seedlings in the oiled site increased at 20 years post-exposure (Renegar 
et al. 2022).  

• The magnitude of impacts to mangroves is related to oil type and concentration, duration of exposure, 
sensitivity of individual mangrove species, physical factors that control oil persistence (e.g., wave 
exposure, currents), and presence and density of burrowing animals that can allow oil penetration of 
substrate via burrows (Duke 2016; Hoff and Michel 2014). 

Impacts on 
mangrove 
fauna 

• Following the Bahia Las Minas oil spill in Panama, a wide range of mangrove-associated fauna were 
examined for impacts:  
o Pre- and post-spill comparisons of percent cover of four bivalve species and one barnacle species 

that live on mangrove roots in low wave energy habitats revealed direct mortality that varied among 
species and over time. Population reductions were greatest in brackish streams and showed no sign 
of recovery 1 year post-spill (Garrity and Levings 1993).  

o In open coast habitats, sessile invertebrates that grew on submerged prop roots included sponges, 
corals, anemones, tunicates, bryozoans, vermetids, and hydroids. In the first year after the spill, 
sessile invertebrate cover dropped to less than 5%, compared to 10% at unoiled sites (Garrity et al. 
1993).  

o Levings and Garrity (1994) observed that mangrove epibiota (algae, hydroids, and bryozoans) that 
serve as juvenile habitat for spiny lobsters were reduced by 40 to 50% for at least 5 years after oiling.  

• In mangroves in the Panama field experiment, immediate (4 days post-exposure) mortality of crabs and 
tree snails was observed, and population impacts persisted for over a year. Mangrove oysters were 
minimally impacted (Renegar et al. 2022). 
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Wetlands (Seagrass) 
 
Table 51. Summary of hurricane (acute coastal/storm surge flooding) impacts to seagrass. 

Effect Literature Summary 

Burial by 
storm-
generated 
sediments 

• In a meta-analysis of 51 studies of cyclone/hurricane damage to seagrass, Correia and Smee (2022) 
found that sediment shift/burial caused damage in 9 out of 12 studies. The degree and duration of damage 
depended on the amount of burial: most studies reported short-term impacts. 

• Steward et al. (2006) reported no scour and limited effects from burial resulting from the four 2004 
hurricanes that crossed the Indian River Lagoon. No impacts were observed 1 year post-storms. 

Plant 
damage 

• Tilmant et al. (1994) reported minor effects on seagrass (blade density) in Biscayne Bay and Florida Bay 
after Hurricane Andrew, with some blowouts enlarged toward the shelf margin. 

• Rodríguez et al. (1994) reported 10 km2 of seagrass meadows destroyed by Hurricane Hugo (winds >150 
mph) along the eastern shore of Puerto Rico, mostly by scour but also by burial by sand. 

• Hammerstrom et al. (2006) reported minimal impact from Hurricane Irene on seagrass on the West Florida 
Shelf, hypothesizing that the storm exposed buried seed banks that supported biomass recovery 1 year 
post storm. 

• Following Hurricane Georges (Category 2), Syringodium filiforme coverage was reduced by 19%; 
whereas, the strong, deep root network of Thalassia testudinum only experienced a 3% loss in the leaf 
biomass (Fourqurean and Rutten 2004).  

• Pu et al. (2014) used Landsat TM imagery to compare seagrass cover in the year before and after the 
passage of 3 hurricanes in 2004, showing a slight increase (6%) in estuaries along the central west FL 
coast. 

• Patrick et al. (2020) reported 30-100% loss of seagrass cover in areas that experienced winds of Category 
3 or 4. Damage included both complete removal (roots/rhizomes ripped from the sediment) and partial 
removal (aboveground biomass sheared off). Where rhizomes remained intact, regrowth occurred within 
1-3 months.  

• Wilson et al. (2019) used long-term monitoring data for Florida Bay and the Florida Keys NMS to find that 
impacts from Hurricane Irma were limited in spatial extent. 

Water 
quality 
changes 

• In a meta-analysis of 51 studies of cyclone/hurricane damage to seagrass, Correia and Smee (2022) 
found that changes in water quality (reduced salinity, temperature, and dissolved oxygen, and increased 
turbidity, phosphorous, and chlorophyll a), negatively influenced seagrass cover in 10 out of 11 (91%) 
studies. 

• Following the 2005 hurricane season, Cole et al. (2018) found that water quality impacts persisted for >1 
year. The duration of water quality impacts were highly variable and depend on water retention times in 
the affected bay or estuary.  

• Hurricanes can improve water quality with increased fresh water inflows, particularly in areas affected by 
very high salinity resulting from long-term droughts (Zink et al. 2020). 

Changes in 
fish and 
macro-
invertebrate 
communities 

• Following Irma, the Category 4 hurricane that affected Florida Bay, there were fish kills, reduced dissolved 
oxygen and increased turbidity and chlorophyll a that resulted in loss of seagrass-associated faunal 
species with an increase in water column species (e.g., bay anchovy) that had a rapid response to 
increased phytoplankton (Zink et al. 2020).  

 

Table 52. Summary of chronic inundation impacts to seagrass. 

Effect Literature Summary 

Changes in 
extent of 
seagrass due 
to SLR 

• Models have been used to predict the changes in seagrass cover and distribution for different SLR 
scenarios. Most studies predict large reductions in seagrass habitat extent, particularly where landward 
migration is constrained by coastal development (Nicastro et al. 2012; Saunders et al. 2013; Scalpone et 
al. 2020). Davis et al. (2016) predicted substantial seagrass losses in deeper estuarine areas and a net 
shoreward movement of seagrass beds, as long as there are new sites available for colonization.  

• In contrast, Dumbauld et al. (2022) predicted as much as 34% more eelgrass in Willapa Bay by 2100. 
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• Chen and Lin (2022) described four different mechanisms by which the species composition in shallow 
seagrass beds could respond to increased sea levels, considering increased flushing and nutrients, and 
reduction in the effects of droughts. 

• For seagrasses that are sheltered from wave action by offshore coral reefs, it is not likely that vertical 
accretion on the coral reefs will be sufficient to maintain suitable conditions for reef lagoon seagrass 
(Saunders et al. 2014).  

• McHenry et al. (2021) used models to predict that SLR could result in significant losses of current 
seagrass beds and potential restoration areas, causing contracted distributions and lower seagrass cover 
along the Florida Gulf coast. 

Changes in 
water quality 

• High temperatures and indirect impacts on water quality (high suspended sediments, eutrophication and 
hypoxia) can result in reduced seagrass extent (Short et al. 2016) and have cumulative negative impacts 
(Losciale et al. 2024). 

Changes to 
benthic 
macrofauna 

• Nicastro and Bishop (2013) ran a manipulative field experiment that indicated changes to tidal inundation 
regime will reduce seagrass-dwelling macroinvertebrates through a combination of direct and indirect 
effects. 

Carbon 
sequestration 

• Long-term sea-level rise effects such as tidal inundation and increased porewater salinity will likely 
decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones (Kauffman 
et al. 2020). 

 
Table 53. Summary of tropical storm marine debris events and chronic plastic impacts to 

seagrass. 

Effect Literature Summary 

Relative 
amounts 

Microplastics: 

• Seagrass habitats in the Florida Keys had slightly more microplastic (fibers and fragments) compared to 
adjacent sand flats (Plee and Pomory 2020).  

• Microplastics were more abundant in seagrass sediments compared to bare sediments, were adhered to 
every sample of seagrass blade, and in biota associated with seagrass in a field study of Zostera marina 
in Scotland (Jones et al. 2020). 

• No differences in total microplastic counts were found in Zostera capensis meadows compared with 
adjacent bare sediments in a very small-scale study in South Africa (Boshoff et al. 2023). 

• In a study of Zostera marina in Estonia, surface water in seagrass beds had microplastic counts similar to 
other areas of the Baltic Sea; whereas, sediments had much higher microplastic counts than previously 
recorded from adjacent unvegetated and offshore sediments, thereby suggesting a strong ability of the 
sediments in seagrass beds to retain microplastics (Kreitsberg et al. 2021). 

• Seng et al. (2020) found significantly higher microplastic densities on seagrasses compared to 
macroalgae in Singapore but no relationships between microplastic density and epibiont cover in both. 

• Goss et al. (2018) found that 75% of Thalassia blades in a study in Belize had encrusted microplastics, 
with microfibers the more dominant type. They identified potential mechanisms for microplastic 
accumulation as entrapment by epibionts, or attachment via biofilms, suggesting that macro-herbivory is 
a viable pathway for microplastic pollution to enter marine food webs. 

• In a study of two bays in China, Huang et al. (2020) found that seagrass sediments were enriched in 
microplastics by a factor of 2.1 to 2.9, and the trap effect of seagrass was non-selective regarding the 
shape, color and size of microplastics. 

• In a mesocosm study, Menicagli et al. (2021) found that both HDPE and biodegradable starch-based 
macroplastics, if deposited on marine bottoms, could make seagrasses vulnerable to sedimentation and 
reduce plant cover within meadows. 

• In a study of eight Zostera marina beds and adjacent unvegetated sites in the UK, Unsworth et al. (2021) 
found elevated counts of microplastics in all sediments, reflecting general build-up of microplastics in the 
wider environment rather than becoming concentrated within seagrass as an enhanced sink. 

• In a study of a lagoon in Portugal, Cozzolino et al. (2020) found that macroplastics (all fibers) 
accumulated in all vegetated habitat but not in nearby unvegetated areas. However, they cautioned that 

generalizations in the trapping effect of coastal vegetated areas should be done with caution, since it be 
highly variable and may depend on the plastic size, habitat and tidal position. 



 

56 

Effect Literature Summary 

• In a study of ephemeral seagrass (Halophila ovalis) beds in the Swan-Canning Estuary, Western 
Australia, Wright et al. (2023) found microplastics attached to seagrass blades and in sediments; 
however, they could not support the hypothesis that this seagrass species acts as a sink for microplastic 
particles in sediments. 

• In a study of microplastic counts in sediment cores from two sites in Spain with different adjacent land-
use patterns, Dahl et al. (2021) found that an increase in microplastics in the seagrass soil was 
associated with land-use change following the intensification of the agricultural industry in the area, with a 
clear relationship between the development of the greenhouse industry and the concentration of 
microplastics in the historical soil record. 

• In a mesocosm study using Zostera marina, Molin et al. (2023) observed a decrease in photosynthetic 
activity and respiration, which they speculated was caused by leachates from microplastics. 

• In a review of 112 studies on plastic pollution, Ouyang et al. 2022 reported that plastics are more 
abundant in mangrove forests and tidal marshes than in tidal flats and seagrass meadows, and that 
microplastics (dominated by fibers) are much more common (reported in 88.3% of the studies). 

Macro-litter: 
● In a study of two sites with two seagrass species, salt marsh, sandy beach, bare sediment and rocky 

bottom in Spain, Egea et al. (2023) found that vegetated habitats showed the highest macroplastic 
accumulation in autumn-winter seasons, especially in medium-lower tidal-elevation zones. Seagrasses 
accumulated most of the degraded macroplastics.  

● In a study in Spain across six Posidonia oceanica meadows, Navarrete-Fernández et al. (2022) found 
that macro-litter items consisted of 80% plastic and 20% non-plastic items. Non-plastic materials 
included glass, metal, wood and paper (40%, 30%, 20% and 10%, respectively). Macro-litter 
accumulated mostly along the landward edge of the seagrass. 

● In a seasonal study across multiple habitats in Singapore, Fong et al. (2023) found that litter density in 
terms of count was generally lower in seagrass meadows and coral reefs compared to mangroves and 
beaches. Macroplastics in seagrass were dominated by glass, plastic, fishing gear, and cloth. 

Food web 
risks 

• Remy et al. (2015) found ingested artificial fibers of various sizes and colors were found in 27.6% of the 
digestive tracts of nine dominant species that feed on dead seagrass blades in Corsica, regardless of 
their trophic level or taxon. There were no seasonal, spatial, size, or species-specific significant 
differences, suggesting a constant rate of ingestion. In the gut contents of invertebrates, varying by 
trophic level, and across trophic levels, the overall ingestion of artificial fibers was low (approximately 1 
fiber per organism). 

• Tahir et al. (2020) found microplastics in sediment, water, fish, and benthic species in a seagrass area in 
Indonesia, showing a wide dispersion of microplastics contamination in the marine food web. 

• In a review of the literature, Bonanno and Orlando-Bonaca (2020) concluded that the impact of 
microplastics on seagrass ecosystems remains largely unknown.  

Nutrient 
processing 

• In mesocosm studies, Litchfield et al. (2020) reported that high levels of plastic pollution (low-density 
polyethylene shopping bags) significantly reduced the decomposition rate of eelgrass by 36% in 
comparison to controls, and significantly slowed nitrogen liberation from seagrass detritus. 

• In mesocosm studies, Balestri et al. (2017) suggested that biodegradable bags altering sediment 
geochemistry could promote the spatial segregation of seagrass clones and influence species 
coexistence. 

Note: Impacts of macro- and microplastics on seagrass are reported here. No papers were found on impacts of 
storm-specific marine debris events on seagrass. 

 
Table 54. Summary of convective storm wind event impacts to seagrass. 

Effect Literature Summary 

Habitat 
damage 

• In shallow beds of Zostera marina in the Baltic Sea, the experimental removal of the eelgrass canopy 
strongly increased the risk of mussel dislodgement during a moderate storm with a median return time of 
6.5 months. In contrast, no protection of mussels by eelgrass was found during a series of three intense 
storms, each of which had a median return time of > 11.5 yr (Reusch and Chapman 1995). 

• Following an intense storm (winds up to 140 km/h) along the Iberian Peninsula, Spain, up to 40 cm of 
sediment was eroded over 50% of 42 meadows of Posidonia oceanica. There was 10–80 % of meadow 
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cover buried under 7 cm of sediment—a survival threshold for P. oceanica. Exposed and patchy meadows 
were much more vulnerable to the overall impact than sheltered or continuous meadows (Marco-Mendez 
et al. 2024). 

Water quality • In the Florida Keys, turbidity was maximal during winter due to seasonally maximum wind conditions, 
which resulted in higher water column concentrations of particulate N and P (Lapointe and Clark 1992). 

• Strong storms caused high freshwater flows from a creek into Florida Bay, impacting water quality, 
scouring seagrass beds, and depositing a layer of 5 cm layer of mud (Davis et al. 2004). 

• After a storm event in Chesapeake Bay, Gurbisz et al. (2016) documented physical removal of plants 
around the edge of seagrass beds by high flows, followed by subsequent wind-driven resuspension of 
newly deposited sediment and attendant light-limiting conditions that were detrimental to the bed.  

 
Table 55. Summary of shoreline erosion impacts to seagrass. 

Effect Literature Summary 

Habitat 
degradation 

● In Morro Bay, CA, following massive eelgrass loss since 2010, over 90% of locations that previously had 
eelgrass experienced erosion. Elevation losses (erosion) reached 0.50 m in some places (mean loss of 
0.10 m) with as much as a 50% decrease (median decrease of 13.6%) in elevation (i.e., increase in depth) 
compared to pre-decline levels (Walter et al. 2020). 

● In Italy, in an area of a sediment-starved beach and a change to finer-grained sediment in the nearshore, 
the seagrass Posidonia oceanica, which requires stable environmental conditions and has a preference 
for coarse-grained sandy substrate, was being replaced by the pioneering and opportunistic Cymodocea 
nodosa (Cavazza et al. 2000). 

Shoreline 
stabilization 

● In situ comparisons of SAV beds adjacent to both natural and hardened shorelines in 24 sub-estuaries 
throughout the Chesapeake and Mid-Atlantic Coastal Bays indicated that shoreline hardening does impact 
adjacent SAV beds. Species diversity, evenness, and percent cover were significantly reduced in the 
presence of riprap revetment (Landry and Golden 2017). 

Note: Many studies have shown that seagrasses protect shorelines from erosion. Only one study was found that 
documented impacts to seagrasses along eroding shorelines. 

 

Table 56. Summary of contaminant/spill event impacts to seagrass. 

Effect Literature Summary 

Vegetation 
damage 

● Following the M/V Cosco Busan spill of a heavy fuel oil in San Francisco Bay, many eelgrass beds were 
exposed to oil, but there was little evidence to suggest serious injuries. Response vessels impacted 
shallow subtidal eelgrass beds, documented through side scan sonar surveys (Fonseca et al. 2017). 

● In a field experiment in Panama using Prudhoe Bay crude oil, initial short-term effects in the first 2 years 
indicated reduced seagrass growth rates within the oiled site as there were effects on leaf blade area and 
densities that continued for 10 years. 20-years post spill: an increasing trend of Thalassia testudinum 
growth rate at the oil treatment sites (Renegar et al. 2022). 

● In a review of the literature, Fonseca et al. (2017) determined that effects of oil spills on seagrass beds 
were dependent on many factors: proximity of the site to the point of oil release; oil type; tidal stage, 
range, and circulation patterns; and the location of the seagrass beds in the tidal frame. SAV are rooted 
vascular plants that cannot actively avoid contact with submerged oil that is transported in the water 
column or deposited on the substrate. Lighter oils are generally more acutely toxic and heavier oils can 
result in fouling and smothering effects. Longer-term impacts may be expected where sediments are 
contaminated, and roots and rhizomes are exposed to heavy or chronic oiling. 
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Hardbottom Habitat (Coral Reefs) 
 
Table 57. Summary of hurricane (acute coastal/storm surge flooding) impacts to coral reefs. 

Effect Literature Summary 

Physical 
damage 

• Category 5 Hurricanes Irma and María during 2017 caused unprecedented damage to coral reef 
ecosystems across northeastern Puerto Rico. Hurricanes inflicted significant site-, depth-, and life history 
trait-specific impacts to endangered corals, with substantial and widespread mechanical damage to 
branching species and moderate mechanical damage to foliose species (Hernández-Delgado et al. 2024). 

• Fong and Lirman (2008) monitored a patch reef of the branching coral Acropora palmata damaged by 
Hurricane Andrew, leading them to conclude that A. palmata is adapted to disturbances of both low 
intensity and high frequency (conditions typical of reef flat zones) and episodic high intensity and low 
frequency events (hurricanes and tropical storms). 

• Following Hurricane Andrew, Lirman and Fong (1997) monitored A. palmata damaged along the Florida 
Keys, finding that more than 50% of the A. palmata fragments were alive and that stabilization was related 
to proximity to a patch of mature colonies and substrate, with higher survival in hard substrates. 

• In a detailed study of 15 fore-reef plots in the Florida Keys, Williams and Miller (2011) found that between 
2004 and 2010, the study population showed more than 50% decline in live area, with half this decline 
occurring the 2005 hurricane season, from which recovery was minimal by 2010. 

• Study of the impacts from Hurricane Andrew off Dade County, FL, showed: greatest damage to the 
offshore reefs compared to middle and inner reefs; the algal community had 40->90% loss of benthic 
cover; the sponge community was slightly (0-25%) to heavily impacted (50-75%); soft corals had 25-50% 
loss and 0-25% on the offshore and inshore reefs, respectively; and hard corals were least affected with a 
moderate loss of benthic cover (38%) on the offshore reef and slight loss (23%) on the other inner two 
reefs (Blair et al. 1994).  

• Gleason et al. (2007) monitored the combined impacts of Hurricanes Dennis, Katrina, Rita, and Wilma in 
2005 on a population of A. palmata at Molasses Reef, FL. They found 2 of 18 colonies were lost, and a 
large section of the reef framework was dislodged and transported to the bottom of the reef spur.  

• The 2005 hurricane season (four storms) resulted in substantial loss of A. palmata from the upper Florida 
Keys fore-reef from a combination of physical removal and subsequent disease-like tissue mortality, and 
yielded few recruits of either sexual or asexual origin (Williams and Miller 2011). 

• In a meta-analysis of data for 286 coral reef sites in the Caribbean between 1980 and 2001, Gardner et al. 
(2005) found that coral cover at sites impacted by a hurricane declined at a significantly faster rate (6% 
per annum) than nonimpacted sites (2% per annum), due almost exclusively to higher rates of loss in the 
year after impact in the 1980s. There is no evidence of recovery to a pre-storm state for at least 8 years 
after impact. 

• After Hurricane Hugo passed over Buck Island, U.S. Virgin Islands in 1989, Bythell et al. (2000) reported 
that by 1996, strong coral recruitment had occurred in shallow, exposed areas that showed the greatest 
hurricane impacts, and these areas are now more species rich than in 1988, although coral cover has not 
reached pre-hurricane levels. 

Burial by 
storm-
generated 
sediments 

• Category 5 Hurricanes Irma and María during 2017 in Puerto Rico caused coral reef damage from 
localized sediment bedload (horizontal sediment transport and abrasion), and burial by hurricane-
generated rubble fields, with moderate to high localized damage to small-sized encrusting and massive 
morphotypes due to sediment bedload and burial by rubble (Hernández-Delgado et al. 2024). 

• After Hurricane Irma in the Florida Keys, there was a correlation between the magnitude of decline in 
Diadema antillarum density (a keystone grazer) and the magnitude of sediment deposition on reefs, 
suggesting that abrasion or burial from sediment transport may have contributed to D. antillarum mortality 
(Kobelt et al. 2019). 

Water 
quality 
changes 

• Manzello et al. (2007) found that hurricane-induced cooling was responsible for the documented 
differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. 
Virgin Islands during the Caribbean-wide 2005 bleaching event. 

Changes in 
associated 
communities 

• Simmons et al. (2021) monitored soundscapes at two sites in the Florida Keys for effects from Hurricane 
Irma and they reported that on short time scales, temporal patterns in the coral reef soundscape were 
relatively resilient to acoustic energy exposure during the storm, as well as changes in the benthic habitat 
and environmental conditions resulting from hurricane damage. 



 

59 

Effect Literature Summary 

• After Hurricanes Irma and Maria, Gochfeld et al. (2020) studied impacts to coral reef sponge communities, 
noting 24.9% reduction after the storms, but recruitment and/or regrowth was observed within 10 weeks 
post-hurricanes, indicating potential resilience in Caribbean sponge communities. 

• Following Hurricane Irma, a long-standing sacoglossan sea slug population, which historically numbered 
in the thousands, was completely eliminated from its habitat off a site in the Florida Keys, even though its 
habitat recovered (Middlebrooks et al. 2020). 

• Hurricanes Frances and Jeanne removed virtually all of an invasive macroalgae that covered 90% of the 
reefs off southeast Florida; however, the relief was only temporary (Lapointe et al. 2006).  

• Segura-Garcia et al. (2024) found that populations of clonal marine species with low pelagic dispersion, 
such as the sponge, Aplysina cauliformis, may benefit from increased frequency and magnitude of 
hurricanes for the maintenance of genetic diversity and to combat inbreeding, enhancing the resilience of 
Caribbean sponge communities to extreme storm events. 

 
Table 58. Summary of chronic inundation impacts to coral reefs. 

Effect Literature Summary 

Ability of 
coral reefs to 
keep up with 
SLR 

• Modeling the ability of coral reefs in Florida and the Caribbean to maintain their elevation under different 
sea level rise scenarios using carbonate budgets shows that most reefs will only be able to keep pace 
with future sea-level rise if anthropogenic CO2 emissions are reduced (Webb et al. 2023; Rodriguez-
Ruano et al. 2023; Kuffner et al. 2019; Toth et al. 2022; Morris et al. 2022). 

• In a study of vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, 
Perry et al. (2018) found that, though many reefs retain accretion rates close to recent SLR trends, few 
will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological 
recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth 
increases of more than 0.5 m by 2100. 

• Models by Cacciapaglia and van Woesik (2020) predict that only 4% of Indo-Pacific coral reefs are 
projected to keep up with SLR by the year 2100, of which most will be located near the Equator. 

 
Table 59. Summary of tropical storm marine debris events and chronic plastic impacts to coral 

reefs. 

Effect Literature Summary 

Physical 
impacts 

• In a study in Thailand, Ying et al. (2021) showed that, after 4 weeks of being covered by transparent and 
opaque plastic bags and fishing nets, some coral species had reduced photosynthetic performance, 
symbiont density, and calcification rate, particularly for the materials that were opaque. 

• In a field study of nearly 3,000 m2 in Indonesia, Mueller et al. (2022) found that branching corals, 
especially Porites cylindrica, were most affected by litter entanglement. Field experiments with P. 
cylindrica showed that attached plastic induced bleaching, necrosis, and algal overgrowth within 5 
months. 

Invasive 
species/ 
disease 
introduction 

• Parsons et al. (2023) documented the occurrence of nonindigenous sun corals (Tubastraea spp.) settled 
on polypropylene rope debris in the Florida Keys, which they say is highly abundant and widely 
distributed along the Florida Keys. 

• Applying a numerical modeling approach, Soares et al. (2023) demonstrated that rafting invasive corals 
(Tubastraea spp.) can be transported over long distances and reach the wider Caribbean in <100 days. 
They hypothesized a high risk of bioinvasion. 

• Lamb et al. (2018) assessed the influence of plastic waste on disease risk in 124,000 reef-building corals 
from 159 reefs in the Asia-Pacific region. The likelihood of disease increased from 4% to 89% when 
corals were in contact with plastic. 

Ghost fishing • Ghost traps in Florida Bay and Atlantic inshore killed 6.8±1.0 and 6.3±0.88 lobsters per trap annually, 
while Atlantic offshore traps killed fewer (3.0±0.69) lobsters, likely as a result of lower lobster abundance 
in traps. The combined effects of greater lobster mortality and greater abundance of lost traps in inshore 
areas account for the majority of the estimated 637,622±74,367 lobsters that die in ghost traps annually 
(Butler and Matthews 2015). 



 

60 

Effect Literature Summary 

• In a 2007 study by Uhrin et al. (2014), they reported that coral habitats had the greatest density of lobster 
trap debris despite trap fishers’ reported avoidance of coral reefs while fishing in the Florida Keys 
National Marine Sanctuary. The accumulation of trap debris on coral emphasizes the role of wind in 
redistributing traps and trap debris in the sanctuary. They estimated that 85,548±23,387 ghost traps and 
1,056,127±124,919 nonfishing traps or remnants of traps were present in the study area. 

• In a study where lobster traps were placed in hardbottom and reef habitats in the Florida Keys and 
monitored over three winters and 26 wind events, Lewis et al. (2009) found that injuries caused by trap 
movement included scraped, fragmented, and dislodged sessile fauna, resulting in significant damage to 
stony coral, octocoral, and sponges. Overall, sessile fauna cover along the trap movement path was 
reduced from 45% to 31%, 51% to 41%, and 41% to 35% at the 4-m, 8-m, and 12-m sites, respectively. 

 
Table 60. Summary of convective storm wind event impacts to coral reefs. 

Effect Literature Summary 

Habitat 
damage 

• Madden et al. (2023) developed a model to quantify the impact of hurricane-force winds on coral reef 
fragility, by species and damage metrics. 

Invasive 
species 
transport 

• Johnston and Purkis (2015) showed that perturbations to the Florida Current caused by hurricanes are 
relevant to the spread of invasive lionfish from Florida to the Bahamas. 

 

Table 61. Summary of shoreline erosion impacts to coral reefs. 

Effect Literature Summary 

Shoreline 
stabilization 

● Toth et al. (2023) proposed that restoration of Acropora palmata at Buck Island, U.S. Virgin Islands, if 
successful, could mitigate the most extreme impacts of coastal flooding by reversing projected trajectories 
of reef erosion and allowing reefs to keep pace with the ~0.5 m of sea-level rise expected by 2100 with 
moderate carbon emissions reductions. 

Note: Many studies show that coral reefs serve as natural barriers that protect adjacent shorelines from erosion 
during storms. Protection and restoration of coral reefs have been proposed to slow coastal erosion. No studies 
were identified that evaluated the effect of erosion of adjacent shorelines on coral reef health. 

 

Table 62. Summary of contaminant/spill event impacts to coral reefs. 

Effect Literature Summary 

Reef impacts ● There are relatively few case studies of oil spills on coral reefs, and, in some cases, oil exposure may 
have been limited. However, when coral reefs are exposed to spills, the effects can be severe and last for 
years, with intertidal and very shallow subtidal reefs particularly at risk. Corals had the longest time to 
recovery, at 3.5 to 10 years, followed by algae (1.5 to >3 years), sea urchins (0.7 to >3 years), and 
mollusks (>2 years). No impacts were detected in reef fish in the studies that examined them (Szathmary 
et al. 2024). 

 

Sensitivity of Human Resource Receptors to Stressors 
Vulnerable human resources are summarized by the SoVI. The relative sensitivity of vulnerable 
human populations to each stressor/hazard type was assessed using a qualitative assessment of 
results in FEMA’s National Risk Assessment (Zuzek et al. 2022; 2023). Stressor event 
occurrences expected to cause large economic losses to property, buildings or agriculture, 
and/or likely to result in injuries or fatalities, are assumed to have a large negative effect on 
vulnerable human populations. Stressor event occurrences expected to cause lesser economic 
losses to property, buildings or agriculture, and less likely to cause injuries or fatalities, are 
assumed to have a small negative effect on vulnerable human populations. Stressor event 
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occurrences expected to cause only minimal economic losses to property, buildings or 
agriculture, and that are unlikely to cause injuries or fatalities, are assumed to have no net 
effect on vulnerable human populations. Figure 22 shows the sensitivity rankings for vulnerable 
human populations to each of the six stressors.  
 
 

Resource / Receptor 

Stressor / Hazard 

Acute Coastal/ Storm 
Surge Flooding 

Chronic 
Inundation 

Marine Debris 
Events 

High Wind 
Events 

Shoreline 
Erosion 

Contaminants 
from Spill 
Events 

1. Socially Vulnerable Population - - - 0 - - - - 

 
Sensitivity Ranking Key 

- - Large negative effect 

- Small negative effect, short term 

0 No effect 

+ Small positive effect 

Figure 22. Matrix of sensitivity rankings of stressors and human resources used in the All-Hazards Indices 
Expansion of the ESI. 

Exposure of Receptors to Stressors 
After compiling all hazard/stressors and receptors/resources as described above, an obvious 
initial analysis and visualization is to evaluate exposure of receptors/resources to 
hazard/stressors. To this end, the location and relative hazard rank of each receptor/resource 
from each hazard are depicted in Figures 23 through 32. These results may be used to evaluate 
the spatial distribution of exposure of a given resource to a given hazard. Results are depicted 
only for natural resource receptors. Exposure of human populations to each stressor may be 
generally assessed via inspection of hazard intensities in land areas of the figures in the 
Evaluated Stressors section above. 
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Figure 23. Exposure summary of Key deer to each evaluated stressor.  
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Figure 24. Exposure summary of West Indian manatee to each evaluated stressor.  
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Figure 25. Exposure summary of shorebirds to each evaluated stressor.  
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Figure 26. Exposure summary of wading birds to each evaluated stressor.  
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Figure 27. Exposure summary of Smalltooth sawfish to each evaluated stressor.  
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Figure 28. Exposure summary of Queen conch to each evaluated stressor.  
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Figure 29. Exposure summary of sea turtles to each evaluated stressor. 
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Figure 30. Exposure summary of mangroves to each evaluated stressor. 
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Figure 31. Exposure summary of seagrass to each evaluated stressor. 
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Figure 32. Exposure summary of coral reefs to each evaluated stressor. 
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Cumulative Risk 
A more useful analysis, which makes use of the sensitivity indices developed and described 
above, is to evaluate the cumulative risk to each receptor/resource from all evaluated 
hazards/stressors. These results may be used to evaluate the spatial distribution of risk to a 
specific receptor/resource from all evaluated hazards. For natural resources, this may be useful 
for assessing the most threatened populations or habitats. For human resources, this may be 
used to assess the location where vulnerable populations are most at-risk. This concept 
incorporates: 
 

● The distribution of the density of receptor/resource 
● The distribution of the categorical intensity of the stressors/hazards, and  
● The specific sensitivity of that receptor/resource to each of the stressors/hazards.  

 
To accomplish this, a cumulative risk score was developed as follows: 
 

𝐶𝑅𝑖 =  𝑅𝑖 ∑(𝑆𝑖𝑗  𝐻𝑗)

𝑛

𝑗=1

 

 
where CRi is the cumulative risk score for resource i, 𝑛 is the number of evaluated stressors 
(here, 6), Sij is the sensitivity score for resource i to stressor j (from -1 for small positive effect 
to 2 for large negative effect), Hj is the integer value of the hazard intensity category (from 1 to 
5) for hazard/stressor j, and Ri is the integer value of the resource density category of 
receptor/resource i. The resource density category value for natural resources is considered as 
1 for general distribution areas, and 2 for important areas. For human resources, the resource 
density category value is considered as the integer representing the categorical SoVI rank (from 
1 to 5). 
 
The cumulative risk score is computed for each receptor/resource for all grid cells, and these 
values are reranked from 1 (Low) to 5 (High) using the Jenks natural breaks method. Resulting 
values for natural resource receptors are depicted in Figure 33 through 42. Values for 
vulnerable human populations are depicted in Figure 43. 
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Figure 33. Cumulative risk to Key deer from all evaluated stressors. 

 

 
Figure 34. Cumulative risk to West Indian manatee from all evaluated stressors. 
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Figure 35. Cumulative risk to wintering and nesting shorebirds from all evaluated stressors. 

 

 
Figure 36. Cumulative risk to wading birds from all evaluated stressors. 
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Figure 37. Cumulative risk to Smalltooth sawfish from all evaluated stressors. 

 

 
Figure 38. Cumulative risk to Queen conch from all evaluated stressors. 
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Figure 39. Cumulative risk to sea turtles from all evaluated stressors. 

 

 
Figure 40. Cumulative risk to mangroves from all evaluated stressors. 
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Figure 41. Cumulative risk to seagrass from all evaluated stressors. 

 

 
Figure 42. Cumulative risk to coral reefs from all evaluated stressors. 
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Figure 43. Cumulative risk to vulnerable human populations from all evaluated stressors. 

 

Aggregate Hazard 
Another useful analysis is evaluation of the aggregate hazard posed by each hazard/stressor to 
all included receptors/resources. As with cumulative risk, this analysis also integrates the 
distribution of the density of receptors/resources, the distribution of the categorical intensity of 
the stressor/hazard, and the specific sensitivity of each receptor/resource to that specific 
stressor/hazard. For both natural and human resources, this may be useful for assessing where 
hazard mitigation measures or resilience enhancements may be most useful. To accomplish 
this, an aggregate hazard score was developed as follows: 
 

𝐴𝐻𝑗 =  𝐻𝑗 ∑(𝑆𝑖𝑗 𝑅𝑖)

𝑛

𝑖=1

 

 
where AHj is the aggregate hazard score for hazard j, 𝑛 is the number of evaluated resources 
(here, 10), Sij is the sensitivity score for resource i to stressor j (from -1 for small positive effect 
to 2 for large negative effect), Hj is the integer value of the hazard intensity category (from 1 to 
5) for hazard/stressor j, and Ri is the integer value of the resource density category (1 for 
general distribution and 2 for importance area) of receptor/resource i. The aggregate hazard 
score is computed for each hazard/stressor for all grid cells, and these values are reranked from 
1 (Low) to 5 (High) using the Jenks natural breaks method. Resulting values are depicted in 
Figure 44 through 49 below.  



 

79 

 
Figure 44. Aggregate hazard from storm surge and acute flooding to all natural resource receptors. 

 

 
Figure 45. Aggregate hazard from winds greater than 64 kt to all natural resource receptors. 
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Figure 46. Aggregate hazard from chronic inundation to all natural resource receptors. 

 

 
Figure 47. Aggregate hazard from event-generated marine debris to all natural resource receptors. 
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Figure 48. Aggregate hazard from shoreline erosion to all natural resource receptors. 

 

 
Figure 49. Aggregate hazard from oil and chemical spills to all natural resource receptors. 
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Data Structure Requirements 
For the purposes of this project, it was assumed that data ESI data modified for storing 
sensitivity indices would be in the format of the ESI data delivered by NOAA to the public rather 
than the deliverables provided by contractors to NOAA. This would be the process if additional 
indices were to be developed for existing ESI data sets. As such, sensitivity index values were 
stored within the ESI data structure (Peterson et al. 2019) as a set of six signed integer 
attributes, one for each hazard/stressor, added to ESI polygon feature class and within the 
BIOFILE table (Figure 50). Table 63 summarizes the attributes used to store these sensitivity 
index values. Sensitivity index values were stored for each resource where rankings were 
developed as a signed integer: -1 for small positive effect, 0 for no effect, 1 for small negative 
effect, and 2 for large negative effect. If sensitivity indices for additional hazards were to be 
developed concurrently with development of new ESI data sets, then a similar set of signed 
integer attributes would be added to the ESI polygon feature class and within the BIORES table 
(Figure 51).  
 
Table 63. Additional attributes required to store sensitivity index values within the ESI data 

structure. 

Attribute Type Contents 

SI_SURGE Short integer Resource sensitivity index value for acute coastal or storm surge flooding 

SI_HTF Short integer Resource sensitivity index value chronic inundation 

SI_DEBRIS Short integer Resource sensitivity index value for marine debris events 

SI_TC_WIND Short integer Resource sensitivity index value for tropical cyclone or convective storm winds 

SI_EROSION Short integer Resource sensitivity index value for shoreline erosion 

SI_SPILLS Short integer Resource sensitivity index value for contaminants from spill events 

 
A standardized set of attributes were generated for polygons for each grid cell resolution used 
to spatially aggregate and summarize stressor hazard intensity categories, natural and human 
resource presence and significance, cumulative risk, and aggregate hazard. These are 
summarized in Table 64. 
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Table 64. Attributes used to store hazard intensity categories, natural and human resource 
presence and significance, cumulative risk, and aggregate hazard at each resolution of H3 
grid system. 

Attribute Type Contents 

GRID_ID Text (17) H3 Grid ID 

SURGE_M3 Double Acute raw coastal flooding stressor metric value: expected 
m3 per year 

DEBRIS_N_YR Double marine debris stressor metric value: expected items per 
year 

EROSION_M2_YR Double Shoreline erosion stressor metric value: expected m2 per 
year 

WIND_64K_N_YR Double Tropical storm wind stressor metric value: expected 
frequency per year 

HTF_DAYS_YR Double Chronic inundation stressor metric value: expected HTF 
days per year 

SPILL_KM2_N_YR Double Contaminant spill stressor metric value: expected count per 
km2 per year 

SURGE_M3_NATURAL_BREAKS Long integer 5 class categorization of storm surge hazard 

DEBRIS_N_YR_NATURAL_BREAKS Long integer 5 class categorization of marine debris hazard 

EROSION_M2_YR_NATURAL_BREAKS Long integer 5 class categorization of shoreline erosion hazard 

WIND_64K_N_YR_NATURAL_BREAKS Long integer 5 class categorization of tropical storm wind surge hazard 

HTF_DAYS_YR_NATURAL_BREAKS Long integer 5 class categorization of chronic inundation hazard 

SPILL_KM2_N_YR_NATURAL_BREAKS Long integer 5 class categorization of contaminant spill hazard 

RES_MANGROVES Long integer 3 class resource density categories for mangroves 

RES_KEY_DEER Long integer 3 class resource density categories for Key deer 

RES_CONCH Long integer 3 class resource density categories for Queen conch 

RES_CORAL Long integer 3 class resource density categories for corals 

RES_SHOREBIRDS Long integer 3 class resource density categories for shorebirds 

RES_WADING Long integer 3 class resource density categories for wading birds 

RES_TURTLES Long integer 3 class resource density categories for sea turtles 

RES_MANATEE Long integer 3 class resource density categories for manatees 

RES_SAWFISH Long integer 3 class resource density categories for sawfish 

RES_SEAGRASS Long integer 3 class resource density categories for seagrass 

AGG_SURGE Double Aggregate hazard score for storm surge hazard 

AGG_HTF Double Aggregate hazard score for marine debris hazard 

AGG_DEBRIS Double Aggregate hazard score for shoreline erosion hazard 

AGG_TC_WIND Double Aggregate hazard score for tropical storm wind surge 
hazard 

AGG_EROSION Double Aggregate hazard score for chronic inundation hazard 

AGG_SPILLS Double Aggregate hazard score for contaminant spill hazard 

MAX_SOVI Double Aggregate hazard score for storm surge hazard 

AGG_SURGE_NATURAL_BREAKS Long integer 5 class categorization of aggregate hazard from storm 
surge  

AGG_TC_WIND_NATURAL_BREAKS Long integer 5 class categorization of aggregate hazard from marine 
debris 

AGG_HTF_NATURAL_BREAKS Long integer 5 class categorization of aggregate hazard from shoreline 
erosion  

AGG_DEBRIS_NATURAL_BREAKS Long integer 5 class categorization of aggregate hazard from tropical 
storm wind surge  

AGG_EROSION_NATURAL_BREAKS Long integer 5 class categorization of aggregate hazard from chronic 
inundation  

AGG_SPILLS_NATURAL_BREAKS Long integer 5 class categorization of aggregate hazard from 
contaminant spill  
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Attribute Type Contents 

CML_KEY_DEER Long integer Cumulative risk score for Key deer  

CML_MANATEE Long integer Cumulative risk score for manatees 

CML_SHOREBIRDS Long integer Cumulative risk score for shorebirds 

CML_WADING Long integer Cumulative risk score for wading birds  

CML_SAWFISH Long integer Cumulative risk score for sawfish  

CML_CONCH Long integer Cumulative risk score Queen conch  

CML_TURTLES Long integer Cumulative risk score for sea turtles 

CML_MANGROVES Long integer Cumulative risk score for mangroves  

CML_SEAGRASS Long integer Cumulative risk score for seagrass  

CML_CORAL Long integer Cumulative risk score for corals 

CML_SOVI Long integer Cumulative risk score for vulnerable populations 

CML_KEY_DEER_NATURAL_BREAKS Long integer 5 class categorization of cumulative risk for Key deer  

CML_MANATEE_NATURAL_BREAKS Long integer 5 class categorization of cumulative risk for manatees 

CML_SHOREBIRDS_NATURAL_BREAK
S 

Long integer 5 class categorization of cumulative risk for shorebirds 

CML_WADING_NATURAL_BREAKS Long integer 5 class categorization of cumulative risk for wading birds  

CML_SAWFISH_NATURAL_BREAKS Long integer 5 class categorization of cumulative risk for sawfish  

CML_CONCH_NATURAL_BREAKS Long integer 5 class categorization of cumulative risk Queen conch  

CML_TURTLES_NATURAL_BREAKS Long integer 5 class categorization of cumulative risk for sea turtles 

CML_MANGROVES_NATURAL_BREAK
S 

Long integer 5 class categorization of cumulative risk for mangroves  

CML_SEAGRASS_NATURAL_BREAKS Long integer 5 class categorization of cumulative risk for seagrass  

CML_CORAL_NATURAL_BREAKS Long integer 5 class categorization of cumulative risk for corals 

CML_SOVI_NATURAL_BREAKS 
Long integer 5 class categorization of cumulative risk for vulnerable 

populations 
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Figure 50. Entity-relationship diagram for ESI data delivered by NOAA and specific tables modified to 

store additional sensitivity index modifiers (gold boxes). 
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Figure 51. Entity-relationship diagram for ESI deliverables to NOAA and specific tables modified to store 

additional sensitivity index modifiers. 
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Findings 
The primary focus of this project is to serve as a feasibility study. To this end, the most critical 

finding is that the overall goal of developing and applying new sensitivity indices for a wide 

spectrum of resources currently included in ESI atlases, or that may be potentially included in 

the future, to a broader range of hazards is both feasible and useful. The overall results 

visualizing the distribution of cumulative risk help visualize meaningful patterns and are useful 

in assessing the most threatened populations or habitats, or where vulnerable human 

populations are most at-risk. Few similar quantitative assessments exist at a national or 

regional scale. Aggregate hazard visualizations are also likely to have significant utility in guiding 

where hazard mitigation methods are likely to be most useful. A number of additional findings 

are summarized below which may inform and improve subsequent efforts to undertake similar 

work. 

One of the primary concerns in undertaking this work is that the source data, contents, and 

methods used to compile biological data for different ESI atlases may vary widely from atlas to 

atlas. While the biological resources mapped as part of ESI atlas compilation are as 

standardized as possible (Peterson et al. 2019), at-risk resources vary from region to region and 

data sources used to compile biological information are generally compiled at the state or 

regional level with fixed extents. Further, the criteria for resource inclusion and available 

quantity and quality of relevant data have changed over time. ESI atlases are not updated on 

fixed schedules and so publication dates of adjacent ESI atlases may differ by decades. As such, 

substantial differences may arise in the character or relative quality of biological data for the 

same resource when analysis over the extent of more than one ESI atlas is undertaken. This 

may require additional data manipulation or collection to address. Grouping of some resources 

into general distribution and important areas, as undertaken in this work, may require 

particular care, given the wide variety of concentration, and other information, across all 

resources. 

This work involved sensitivity indices for each stressor for biological resource groups of 

different specificity including habitats, species guilds (ESI sub-elements), and individual species. 

The work required to construct these sensitivity indices is substantial, involving time-consuming 

literature review and subjective application of professional judgment. Given this, in future work 

it is recommended to focus on the development of sensitivity rankings at the habitat, sub-

element or other level of guild or species group (e.g., small coastal terrestrial mammals, or 

large pelagic fish) rather than individual species. This will allow re-useability of developed 

sensitivity indices more broadly across atlases and geographies. 

Of direct interest are the timescales at which the phenomena included in this effort change and 

how that may be related to the potential required update frequency of these indices. The core 

concept of assigning indices reflecting the relative sensitivity of species, species groups, 

habitats and human populations to various hazards generally is intended to reflect largely 

immutable characteristics of those resources (e.g. the relative sensitivity of wading birds to 
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contaminant spills), and so would only need to be undertaken once per resource. The spatial 

data compiled to assess the distribution of hazards/stressors is generally compiled from long-

term data sets, required to accurately assess the hazard probabilities of relatively rare events at 

local spatial scales (e.g. tropical storms or contaminant spills) or noisy physical phenomena (e.g. 

erosion). Given this, the overall distribution of hazard probability is unlikely to meaningfully and 

discernably change except at decadal timescales. One exception may be the frequency of 

chronic inundation which has only recently been studied in detail. Finally, the distribution of 

resources themselves are, of course, variable through time. The distribution of both human 

populations and of species and habitats changes, but the data available to accurately assess 

these changes (e.g. Census data and various ecological and natural resource mapping data) 

typically are suitable for evaluating change over, generally, timescales of multiple years. All 

told, it is unlikely that any of the components of hazard risk used in this project would vary 

appreciably over timescales of less than 5 to 10 years – approaching the typical update 

frequency of ESI data themselves. It is recommended however to revisit the topic of chronic 

inundation in the near future to potentially incorporate improved spatial assessment of existing 

risk or to update indices based upon possibly rapidly changing conditions. 

The use of standardized methods for classification of numeric metrics and scores is critical to 

the visualization and communication of spatial patterns in risk and hazards depicted as part of 

this project. The primary method used here is the Jenks natural breaks method which is used to 

re-standardize hazard metric and scores to a 5-class ranks for visualization and comparison, but 

other methods may provide more statistically robust results. A challenge in adopting methods 

that depend upon statistical distributions such as the z-score method (e.g., Emrich et al. 2022b) 

is that the inclusion of large open water areas in many ESI atlases yields strong deviations from 

distributional assumptions. Additional investigation may be required on this topic. 

The methods and data sources used for hazard quantification as part of this work are fairly 

standardized. However, the intermediate spatial data and summary methods required to derive 

a single quantification of hazard occurrence frequency, intensity, and areal extent often yields 

single intermediate metrics that are confusing. For example, to accurately quantify storm surge 

hazard in a given spatial extent, a metric that incorporates probability of storm surge flooding 

occurring, the anticipated depth of flooding if present, and the extent of flooding within a 

spatial unit is required. The intermediate metric used is the average expected cubic meters of 

flooding per year, but this metric has an abstract and unintuitive physical meaning. It may be 

preferable to develop analysis methods that separately integrate concepts like occurrence rate, 

intensity and areal extent. Review of other ongoing work on this topic may be instructive (e.g., 

Zuzek et al. 2022; 2023), particularly if such efforts are undertaken for a broader suite of 

stressors/hazards. 

The methods for storing sensitivity index values within the ESI data structure used here (e.g., as 

a set of attributes, one for each hazard/stressor, attached to ESI polygon feature class and 

within the BIOFILE table) proved feasible for this work. However, this may not scale well to the 
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development of sensitivity index values for a much larger set of resources without additional 

effort. Even with only ten resources selected for index development, substantial code and 

toolset development was required to carry out the analyses presented here. Analyses requiring 

spatial summaries over one or more ESI data sets where many resources would have to be 

assigned sensitivity index values (i.e., more than the ten used here) will require additional 

automation, tool development, and alternative visualization methods. 
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Executive Summary 

Ease of data availability and increases in computational capabilities have made it possible for 

anyone with internet access and spreadsheet software to pull social data from the US Census or 

other sources and create social vulnerability measures. However, differences in the conceptual 

framework on which each model is built, input variables utilized for each model, and the 

methods used to combine the data (deductive, inductive, hierarchical) each lead to variance in 

model outputs. Simply put, all models of social vulnerability are not created equally. As such 

extreme caution should be taken when utilizing social vulnerability measures, especially if users 

are unaware that currently available social vulnerability measures are neither replicate of each 

other nor built to answer the same question.   

This report provides both a quantitative and qualitative exposition of several leading social 

vulnerability and equity models to demystify the growing landscape of indicators. The report is 

divided into several sections building upon each other, including:  

1. An introduction to the concept of social vulnerability indicators. 

2. An overview of several seminal and current models of social vulnerability and equity 

being utilized in the United States. 

3. A visual and analytic comparison of the models and datasets including ranking on 

various aspects/characteristics of each model/dataset. 

4. An overall model assessment ranking based on visual and analytic comparisons and brief 

set of takeaways for decision makers interested current social vulnerability or equity 

models or implementing their own. 

Where possibly, each measurable concept captured in this assessment was ranked from Low (1) 

to High (7) for each social vulnerability or equity dataset to present a matrix of the 

utility/goodness of each model and present a practical guide for utilizing these 

indicators/models/data in decision making. The ranking process for each measurable concept is 

detailed in Table 1 located within the analytic comparison section. 
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1.0 Introduction to Social Vulnerability Measures 

Understanding the needs of vulnerable people is important in its own right, especially among 

public health, social work, and social services professionals. However, in cases of disasters or 

emergencies where sensitive populations may require aid in adequately preparing for, 

responding to, recovering from, or mitigating hazards, emergency management officials and 

healthcare providers need detailed information to anticipate and meet often very specific 

needs. In this context, vulnerability represents the potential for loss or harm among individuals 

and communities facing hazards and disasters (Cutter et al. 20031; Sarewitz et al. 20032). 

Determining what supplies, equipment, and personnel are needed to respond effectively in 

emergency situations requires sound knowledge of a region’s social, economic, and baseline 

health conditions (Noji 1997, 20003). 

Consequently, understanding the vulnerability of a population necessitates a location-based 

assessment of both socioeconomic sensitivities, community resilience, and special medical 

needs, which may, in fact, represent different sub-populations. These underlying population or 

community vulnerabilities (social and health) complicate emergency management planning and 

action, so it is vital to identify, understand, and incorporate such information into emergency 

response planning, and link information to decision-making. Social vulnerability describes those 

characteristics of a population that affect their ability to prepare for, respond to, and recover 

from adverse events such as disasters, and includes things like lack of wealth, education, age, 

gender, race/ethnicity, and occupation. Social vulnerability is built upon the understanding that 

human characteristics intervene between natural processes and the built environment to 

redistribute the social burden of disaster impacts (Cutter 20064; Thomas et al. 20135). These 

characteristics are independent of hazard type and magnitude but when intersected with 

disasters tend to produce negative outcomes (Emrich and Cutter 20116). 

The ability to compare social vulnerability between places has become widely applied because 

of two main reasons: First, Cutter et al. (2003) and researchers at the University of South 

Carolina conducted a detailed analysis of the disaster case study literature to identify which 

characteristics were coming up over and over again for different hazards and in different parts 

of the U.S. They compared an initial list of (>200) unique characteristics to those available from 

the U.S. decennial census (1990 and 2000) to ascertain which social vulnerability indicators had 

surrogates that could be measured over time and across space, concluding that an empirical 

 
1 https://onlinelibrary.wiley.com/doi/full/10.1111/1540-6237.8402002 
2 https://pubmed.ncbi.nlm.nih.gov/12926572/ 
3 https://www.cambridge.org/core/journals/prehospital-and-disaster-medicine/article/abs/public-health-
consequences-of-disasters/02F6B8FEEAC2A36F13C0EC4A84710D73 
4 https://www.taylorfrancis.com/books/edit/10.4324/9781849771542/hazards-vulnerability-environmental-
justice-susan-cutter 
5 https://www.routledge.com/Social-Vulnerability-to-Disasters/Thomas-Phillips-Lovekamp-
Fothergill/p/book/9781466516373 
6 https://doi.org/10.1175/2011WCAS1092.1 
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and place-based (mappable) measure of social vulnerability could be created with a list of 

roughly 30 (non collinear) freely accessible census variables. From this scaled down list of 

vulnerability indicators, these geographers successfully built the first county level social 

vulnerability map of the U.S. (Figure 1).  

 
Figure 1: Seminal social vulnerability index (SoVI) model results for U.S. counties adapted from 
Cutter et al. (2003) 

Burton et al. (20227) provide a detailed exposition on the evolution of social vulnerability 

analysis, Rufat et al. (20158) delve into flood specific vulnerability, and Cutter and Morth 

(20149) highlight SoVI’s and application in science and practice. In summarizing the highlights, 

from SoVI’s initial proof that social vulnerability could be measured and mapped came 

 
7 https://www.cambridge.org/core/books/vulnerability-and-resilience-to-natural-
hazards/FCBF5405C7FEA415ECF600A6B26FBA93 
8 https://doi.org/10.1016/j.ijdrr.2015.09.013 
9 Cutter, S.L., and D.P. Morath. 2014. The evolution of the social vulnerability index (SoVI). In Measuring 
vulnerability to natural hazards: Towards disaster resilient societies, 2nd edn., ed. J. Birkmann, 304–321. New York: 
United Nations University Press. 
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expansions in time (Cutter and Finch 200810), in other places (Portugal11, China12, Brazil13) the 

application of SoVI to disaster exposure (Boruff et al. 200514, Cutter and Emrich 200615, Cutter 

et al. 200916, Emrich and Cutter 2011, Tate et al. 201517, Tate et al. 202118, Ali et al. 202319 

Schumann et al. 202420), outcomes (Drakes and Tate 202221), resilience (Burton22), and a host 

of papers examining robustness, utility, consistency, validity, and other aspects of the model 

itself (Gall 200723, Tate 201124, Tate 201225, Schmidtlein, Rufat et al. 202026, Speilman et al. 

202027). Most recently, scholarship utilizing SoVI has pivoted away from its measurement and 

toward its application for understanding how it is linked to disaster response and recovery 

decision-making for associated programs supporting disaster recovery, resilience, and 

disparities (Finch et al. 201028, Gall 201329,Muñoz and Tate 201630, Emrich et al. 202031, Drakes 

et al. 202132, Tate and Emrich 202133, Wilson et al. 202134 Emrich et al. 202235, Blackwood and 

Cutter 202336).  

SoVI has be utilized by federal (NOAA, FEMA, USACE) partners, states, and locals37 and has 

proven to be a useful resource for those attempting to understand and compare social 

 
10 https://www.pnas.org/doi/abs/10.1073/pnas.0710375105 
11 https://doi.org/10.1080/13669877.2014.910689 
12 https://link.springer.com/article/10.1007/s13753-013-0018-6 
13 https://doi.org/10.1007/s13753-016-0090-9 
14 https://doi.org/10.2112/04-0172.1 
15 https://doi.org/10.1177/0002716205285515 
16 
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e0708976f51536074aba4cf7fd5375d9c8f58c2
b 
17 https://doi.org/10.1016/j.ijdrr.2015.09.013 
18 https://link.springer.com/article/10.1007/s11069-020-04470-2 
19 https://www.sciencedirect.com/science/article/pii/S2212094723000786 
20 https://link.springer.com/article/10.1007/s11069-023-06367-2 
21 10.1088/1748-9326/ac5140 
22 https://doi.org/10.1061/(asce)1527-6988(2010)11:2(58) 
23 https://www.researchgate.net/profile/Melanie-
Gall/publication/324822909_Indices_of_social_vulnerability_to_natural_hazards_A_comparative_evaluation/links
/6100afcb169a1a0103bf7ba5/Indices-of-social-vulnerability-to-natural-hazards-A-comparative-evaluation.pdf 
24 https://doi.org/10.1080/00045608.2012.700616 
25 https://link.springer.com/article/10.1007/s11069-012-0152-2 
26 https://doi.org/10.1080/24694452.2018.1535887 
27 https://link.springer.com/article/10.1007/s11069-019-03820-z 
28 https://doi.org/10.1007/s11111-009-0099-8 
29 https://collections.unu.edu/view/UNU:1867 
30 https://doi.org/10.3390/ijerph13050507 
31 https://doi.org/10.1080/17477891.2019.1675578 
32 https://doi.org/10.1016/j.ijdrr.2020.102010 
33 https://doi.org/10.1029/2021eo154548 
34 https://doi.org/10.3389/frwa.2021.752307 
35 https://doi.org/10.1016/j.ijdrr.2022.102855 
36 https://doi.org/10.1016/j.ijdrr.2023.103722 
37 See SoVI publications at https://www.vulnerabilitymap.org/Resources/Publications 
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vulnerability among and between places. Today, UCF’s Vulnerability Mapping and Analysis 

Platform has revolutionized how social 

vulnerability can be measured and monitored. 

VMAP now enables users can create on-demand 

SoVI measures along with three other social 

vulnerability measures (CDC’s SVI38, SoVI’s 

predecessor – the Georgetown Approach39, and 

a model from Scholars at TA&M (HRRC)40). 

Even still, others have attempted to replicate, 

augment, or otherwise modify the SoVI model 

for similar purposes begging the question “Is 

Better” the enemy of “Good” or “New” the 

enemy of “Longstanding.”  

Although new models aimed at understanding 

social vulnerability and exploring equity analysis 

seem to materialize frequently, each is based on 

the same premise as SoVI – that specific and 

measurable sets of underlying socio-economic and demographic characteristics can help us 

pinpoint which places have a lower capacity to prepare for, respond to, and rebound from 

environmental shocks and stresses, such as disasters. 

This report provide a summary and comparison of the various social vulnerability and equity 

models that are in use today as well as those (such as EJ Screen and the Justice 40 Initiative) 

aimed to ensure that equity is a lynchpin in current and future efforts to build resilience and 

reduce vulnerability in the face of ever-changing shocks and stresses.   

The report takes the following format. First, a description of each model assessed provides a 

basis from which readers can understand basic details about the models (UofSC/UCF Social 

Vulnerability Index (SoVI, UofSC’s “Georgetown” model of social vulnerability, Texas A&M 

(TA&M) Hazard Reduction and Recovery Center (HRRC) Vulnerability Index, CDC Social 

Vulnerability Index (SVI), EPA EJ Screen, and the Climate Vulnerability Index (CVI)), their inputs, 

and the processes utilized to combine the data. Second, the results from a series of analytic 

operations (correlations and regressions) aimed identifying overlaps and redundancies between 

the models will aid in pinpointing key similarities and differences in the model data inputs and 

outputs. Finally, a review of important findings will support decision makers as they continue to 

utilize vulnerability and equity indicators in models. 

 
38 https://www.degruyter.com/document/doi/10.2202/1547-7355.1792/html 
39 https://www.taylorfrancis.com/chapters/edit/10.4324/9781849771542-16/evacuation-behaviour-three-mile-
island-susan-cutter-kent-barnes 
40 https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528 

The Vulnerability Mapping Analysis 

Platform (VMAP) turns complex socio-

demographic, environmental, and 

medical data into applied tools for 

emergency and crisis management 

decision makers by utilizing the most 

appropriate scientific methods. VMAP 

can help you measure and visualize 

disaster losses and human impacts 

through the lens of evidenced based 

vulnerability analysis. 

.  
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2.0 Analytic Comparisons 

The utility of a model is often linked with how well it applies to a specific situation or the 

manner in which it informs the user based on the users’ needs. Users are often looking for 

different measures of a model’s “goodness” when making decisions on its application to 

decision making. Several measures of a utility or “goodness” can be measured empirically, and 

others are more qualitative in nature, including those listed in Table 1. Each measure was 

assessed for each model/data set to create a comparison matrix for decision makers to better 

understand how each model compares to other models. 

Table 1. Select measures of model validity or “Goodness”. 

“Goodness” 
Measure 

Definition used in this 
assessment  

Quantitative/Qualitati
ve 

Measured/Included in 
this assessment 

1. #1- Conceptually 
framed in peer-
reviewed outlet 

Is model/metric or 
dataset supported by a 
peer-reviewed citation? 

Quantitative – Ranked 
based on existence of 
supporting peer 
reviewed literature. 

Score based on existence 
of peer-reviewed article (1 
= no, 7 = yes) 

2. #2- Number of 
Citations 

3.  

How often in the model 
cited in other peer-
reviewed manuscripts? 

Quantitative – Ranked 
sum of citations. 

Ranked lowest (1) to 
highest (7) based on 
number of citations 

#3- Number of 
Inputs 

Do models/data capture 
concepts? 

Quantitative - Using 
SoVI as a baseline, 
how do the other 
models compare in 
terms of number of 
inputs. 

Ranked lowest (1) to 
highest (7) based on 
number of inputs 

4. #4- Visual 
Inspection of 
Accuracy Possible 
via web 

How closely the model's 
predictions align with the 
actual observed values? 

Qualitative – Are maps 
available online? 

Scored lowest to highest 
where (1= not available, 4 
= available through VMAP, 
7 = available through 
original developer) 

5. #5- Correlation 
Analysis 

Do models contain 
collinear data? 

Quantitative – 
Correlation analysis. 

Ranked lowest (1) to 
highest (7) based on the 
percentage of inputs that 
were correlated) 

6. #6- Model based 
Correlation 
Correction 

Do models/inputs deal 
with or correct for 
collinear data 

Qualitative – Do 
models correct for 
correlation in inputs? 

Scored (1 = Does not 
correct for correlation, 7 = 
Corrects for correlation) 

7. #7- Internal 
Consistency 

Are models internally 
consistent? Should social 
models reflecting diverse 
vulnerabilities be 
internally consistent? 

Quantitative – 
Cronbach’s Alpha tests 
performed on each 
model/dataset’s 
indicators. 

Ranked two different 
ways to capture low 
internal consistency as 
“good” lowest Alpha = 7 
to highest Alpha = 1 and 
low internal consistency 
as “bad” where lowest 
Alpha = 1 and highest 
Alpha = 7 
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“Goodness” 
Measure 

Definition used in this 
assessment  

Quantitative/Qualitati
ve 

Measured/Included in 
this assessment 

8. #8- Exploratory/ 
Explanatory 
Regression 
Analysis 

Can inputs from one 
model/dataset explain 
outputs (scores from 
other datasets)? 

Quantitative – Linear 
regression yielding 
Adjusted R2 values. 

Ranked highest Adj. R2 = 7 
to lowest Adj. R2 = 1 

9. #9- Ease of Access 
via internet 

Are data easily accessible 
via internet? 

Qualitative – Can data 
be easily accessed 
online? 

Scored where no data 
available via internet = 1, 
single or non-concurrent 
year data available 
through original 
developers = 3, data 
available through VMAP 
for concurrent years = 4, 
data available through 
original developer for 
concurrent years = 7 

#10- GIS data 
provided for visual 
comparison (1 = 
No, 4 = through 
VMAP, 7 = Yes, 
through original 
developer) 

Are data in a format 
making them easily 
mappable? 

Qualitative – Are GIS 
data available via 
internet. 

Scored where no GIS data 
available via internet = 1, 
single or non-concurrent 
year GIS data available 
through original 
developers = 3, data 
available through VMAP 
for concurrent years = 4, 
data available through 
original developer for 
concurrent years = 7 

#11- Update 
frequency 

Are data available 
annually? If not, what is 
the update frequency? 

Qualitative – How 
often are data 
updated? 

Scored where no update 
schedule = 1, updated 
every 2 years = 4, updated 
annually = 7 

#12- Accessibility Are the data free or is 
there a cost associated? 

Qualitative – Is there a 
cost associated with 
the data? 

Scored where data/GIS 
costs to access = 1, 
method free but Time and 
Effort required to build 
and produce, and 
data/GIS are free = 7 

    

 

Beyond those listed and tested here, other measures of a “good” model include precision, 

robustness, and transferability. These were not tested in this assessment for a variety of 

reasons including the need for:  

- Lack of multiple study areas/case studies zones to assess precision, robustness, and 

reliability and 



 

A-7 

- Lack of specific outcome measures linking social vulnerability to ESIs which are 

themselves often huge and diverse datasets. 

However, those indicators of model “goodness” that were tested are detailed below and 

summarized in the Takeaways for Decision Makers section and Table 15 and Table 16. 

3.0 Social Vulnerability and Equity Model Review 

In this section, each social vulnerability/equity model or dataset is summarized in as much 
detail as possible through a process meant to describe the background/rationale, data inputs,  

Some aspects of each model/dataset lend themselves well to an overview in tabular format. As 
such, Table 2 provides an overview of the qualitative and quantitative measures used to 
compare/contrast the social vulnerability/equity models and datasets assessed herein. 

Table 2. How Social vulnerability/equity models and datasets define vulnerability. 

 Define or operationalize their focus (vulnerability or equity) 

UCF and 
UofSC SoVI® 

The socio-economic factors driving uneven capacity for hazard/disaster 
preparedness, response, and recovery. It highlights where resources might be used 
most effectively to minimize adverse disaster outcomes. 

UofSC 
Georgetown 
Model 

The potential for loss of property or life from environmental hazards. Social 
vulnerability refers to social groups and landscapes that have the potential for loss 
from environmental hazards events. 

Texas A&M The characteristics of a person or group in terms of their capacity to anticipate, cope 
with, resist and recover from the impacts of a natural hazard. 

CDC SVI The resilience of communities when confronted by external stresses on human 
health, stresses such as natural or human-caused disasters, or disease outbreaks. 

EJ Screen EJ Screen simply provides a way to display this information and includes a method 
for combining environmental and demographic indicators into EJ indexes. 

CEJST A geospatial mapping tool to identify disadvantaged communities that face burdens. 

CVI Baseline vulnerability indicators reflect factors that may reduce resilience or are 
potential sources of long-standing community inequity or injustice. These were 
divided into four categories: Health, Social & Economic, Infrastructure, and 
Environment. 

 

“Goodness” Measure #1- Conceptually framed in peer-reviewed outlet and 2- Number of 

Citations are scored using simple qualitative and quantitative assessment respectively. To 

answer the question (and score each measure based on its link to supporting peer reviewed 

literature, one must first identify the associated manuscript. Table 3 indicates which model or 

dataset had a supporting peer reviewed manuscript (scored 7) and those that do not (scored 1) 

in the overall scores presented in Table 15 and Table 16. Here only EJ Screen, CJEST, and CVI 

were scored 1 and all the other models and datasets scored 7. 
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Likewise, “Goodness” Measure #2- Number of citations was determined by ranking each 

model/dataset based on the number of peer-reviewed citations identified by Google Scholar. 

Here, SoVI landed on top with more than 7,700 citations and the HRRC model from Texas A&M 

ranked last with just shy of 300 citations. Refer to Table 15 and Table 16 for final scores. 

 

Table 3. Social vulnerability/equity model comparisons across several key 
aspects/characteristics. 

 
Social Vulnerability or Equity Model/Dataset 

UCF and 
UofSC SoVI® 

UofSC 
Georgetown 

Texas A&M 
(HRRC) 

CDC SVI EJ Screen CEJST CVI 

Model / Dataset Characteristic 

Li
te

ra
tu

re
 B

as
is

 

2003 – 
Social 
Vulnerability 
to 
Environmen
tal Hazards 
Cutter et al. 

2000 – 
Revealing 
the 
Vulnerability 
of People 
and Places 

2012 –
Mapping 
social 
vulnerability 
to enhance 
housing and 
neighborho
od 
resilience. 

2011 – A 
Social 
Vulnerabilit
y Index for 
Emergency 
Managers 
and 
Planners 

Online 
data/tool 
https://www.
epa.gov/ejscr
een   

Online 
data/tool
https://scr
eeningtoo
l.geoplatf
orm.gov/e
n/#3/33.4
7/-97.5  

Online 
data/tool 
https://ma
p.climatev
ulnerability
index.org/
map/cvi_o
verall/usa?
mapBound
aries=Tract
&mapFilter
=0&report
Boundaries
=Tract&ge
oContext=S
tate 

N
u

m
b

er
 o

f 
C

it
at

io
n

s 
(a

s 
o

f 
3/

31
/2

0
24

) 

> 7,775 
academic 
citations 

> 2,152 
academic 
citations 

> 285 
academic 
citations 

> 1,758 
academic 
citations 

> 1,580 
articles cite 
EJ Screen - 
https://schol
ar.google.co
m/scholar?hl
=en&as_sdt=
0%2C10&q=E
J 
Screen&btnG
=  

> 435 
articles 
cite CEJST- 
https://sc
holar.goo
gle.com/s
cholar?hl=
en&as_sd
t=0%2C10
&q=%22cli
mate+and
+Economi
c+Justice+
Screening
+Tool%22
&btnG= 

> 1,650 
articles cite 
https://sch
olar.google
.com/schol
ar?hl=en&a
s_sdt=0%2
C10&q=%2
2climate+v
ulnerability
+index%22
&btnG= 

https://www.d.umn.edu/~pfarrell/Natural%20Hazards/Readings/Cutter.%20Socail%20Vulnerability.pdf
https://www.d.umn.edu/~pfarrell/Natural%20Hazards/Readings/Cutter.%20Socail%20Vulnerability.pdf
https://www.d.umn.edu/~pfarrell/Natural%20Hazards/Readings/Cutter.%20Socail%20Vulnerability.pdf
https://www.d.umn.edu/~pfarrell/Natural%20Hazards/Readings/Cutter.%20Socail%20Vulnerability.pdf
https://www.d.umn.edu/~pfarrell/Natural%20Hazards/Readings/Cutter.%20Socail%20Vulnerability.pdf
https://www.d.umn.edu/~pfarrell/Natural%20Hazards/Readings/Cutter.%20Socail%20Vulnerability.pdf
http://www.geo.mtu.edu/volcanoes/06upgrade/Social-KateG/Attachments%20Used/SpatialDimensionVulnerability.pdf
http://www.geo.mtu.edu/volcanoes/06upgrade/Social-KateG/Attachments%20Used/SpatialDimensionVulnerability.pdf
http://www.geo.mtu.edu/volcanoes/06upgrade/Social-KateG/Attachments%20Used/SpatialDimensionVulnerability.pdf
http://www.geo.mtu.edu/volcanoes/06upgrade/Social-KateG/Attachments%20Used/SpatialDimensionVulnerability.pdf
http://www.geo.mtu.edu/volcanoes/06upgrade/Social-KateG/Attachments%20Used/SpatialDimensionVulnerability.pdf
https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528
https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528
https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528
https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528
https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528
https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528
https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528
https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528
https://svi.cdc.gov/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
https://svi.cdc.gov/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
https://svi.cdc.gov/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
https://svi.cdc.gov/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
https://svi.cdc.gov/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
https://svi.cdc.gov/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
https://svi.cdc.gov/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
https://svi.cdc.gov/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
https://www.epa.gov/ejscreen
https://www.epa.gov/ejscreen
https://www.epa.gov/ejscreen
https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5
https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5
https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5
https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5
https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5
https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5
https://scholar.google.com/scholar?hl=en&as_sdt=40005&sciodt=0%2C10&cites=4865296253105446496&scipsc=&q=cutter+social+vulnerability&oq=
https://scholar.google.com/scholar?hl=en&as_sdt=40005&sciodt=0%2C10&cites=4865296253105446496&scipsc=&q=cutter+social+vulnerability&oq=
https://scholar.google.com/scholar?hl=en&as_sdt=40005&sciodt=0%2C10&cites=4865296253105446496&scipsc=&q=cutter+social+vulnerability&oq=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=revealing+the+vulnerability+of+people&btnG=&oq=revealing+the+vuln
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=revealing+the+vulnerability+of+people&btnG=&oq=revealing+the+vuln
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=revealing+the+vulnerability+of+people&btnG=&oq=revealing+the+vuln
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=van+zandt+social+vulnerability&btnG=&oq=Van+Zandt+social+
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=van+zandt+social+vulnerability&btnG=&oq=Van+Zandt+social+
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=van+zandt+social+vulnerability&btnG=&oq=Van+Zandt+social+
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=social+vulnerability+index+cdc&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=social+vulnerability+index+cdc&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=social+vulnerability+index+cdc&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=EJScreen&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=EJScreen&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=EJScreen&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=EJScreen&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=EJScreen&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=EJScreen&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=EJScreen&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=EJScreen&btnG=
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Social Vulnerability or Equity Model/Dataset 

UCF and 
UofSC SoVI® 

UofSC 
Georgetown 

Texas A&M 
(HRRC) 

CDC SVI EJ Screen CEJST CVI 

N
u

m
b

er
 o

f 
V

ar
ia

b
le

s 
in

 
M

o
d

el
 

31 variables 
selected 
from a deep 
dive into 
disasters 
literature 

8 variables 
selected 
from 
literature 

17 variables 
selected 
from 
previous 
models and 
literature 

16 
variables 
selected 
from 
previous 
models and 
literature 

7 nationally 
consistent 
and freely 
available 
socio-
economic 
indicators 

20 demo-
graphic  

28 baseline 
social  

Ty
p

e
 o

f 
M

o
d

e
l 

Inductive - 
typically 
begin with 
more than 
20 variables, 
which are 
reduced to a 
smaller 
number of 
latent 
variables 
using 
principal 
components 
analysis and 
aggregated 
to compute 
the index 

Deductive - 
consists of 
up to 8 
normalized 
variables 
that are 
assembled 
to compute 
the index 

Quasi 
Hierarchical 
(Deductive) 
- Using a use 
a greater 
number of 
indicators 
that are 
grouped 
into 
thematic 
subindexes, 
which are 
then 
combined to 
form the 
index 

Quasi 
Hierarchi-
cal 
(Deductive) 
- Using a 
greater 
number of 
indicators 
that are 
grouped 
into 
thematic 
subindexes 
which are 
then 
combined 
to form the 
index 

No model  

EJ Screen is 
just data 

No model  

CEJST is 
just data 

Quasi 
Hierarchi-
cal 
(Deductive)  

2 themes 
with 
multiple 
sub-
categories 

In
d

ic
at

o
r 

M
e

as
u

re
m

en
t 

Place 
Specific.  

Because 
vulnerability 
is highly 
dependent 
on where 
you live, 
SoVI is 
relative to 
only those 
places 
modeled. 
Not cross 
comparative
. 

Not place 
specific.  
Absolute 
differences 
between 
places and 
scores can 
be 
compared 

Not place 
specific.  
Absolute 
differences 
between 
places and 
scores can 
be 
compared 

Not place 
specific.  
Absolute 
differences 
between 
places and 
scores can 
be 
compared 

Not place 
specific.  
Absolute 
differences 
between 
places can be 
compared 

Not place 
specific.  
Absolute 
difference
s between 
places can 
be 
compared 

Not place 
specific.  
Absolute 
differences 
between 
places and 
scores can 
be 
compared 
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Social Vulnerability or Equity Model/Dataset 

UCF and 
UofSC SoVI® 

UofSC 
Georgetown 

Texas A&M 
(HRRC) 

CDC SVI EJ Screen CEJST CVI 

A
p

p
lic

at
io

n
s 

FEMA’s 
National 
Risk Index 
(v1), Climate 
Central’s 
Surging 
Seas, Florida
’s Public 
Health Risk 
Assessment 
Tool, NOAA’
s Digital 
Coast 

 National 
Environmen
tal Public 
Health 
Tracking 
Network 

National 
Environme
ntal Public 
Health 
Tracking 
Network, 
FEMA’s 
National 
Risk Index 
(v2),  

Calls for use 
of EJ Screen 
are 
increasing, 
but specific 
program 
adoption is 
unclear 

Calls for 
use of 
CJEST are 
increasing
, but 
specific 
program 
adoption 
is unclear 

No specific 
calls for 
use or 
application 
in federal, 
state, or 
local 
programs 

 

  

https://www.fema.gov/flood-maps/products-tools/national-risk-index
https://www.fema.gov/flood-maps/products-tools/national-risk-index
https://www.fema.gov/flood-maps/products-tools/national-risk-index
https://sealevel.climatecentral.org/
https://sealevel.climatecentral.org/
https://sealevel.climatecentral.org/
https://sealevel.climatecentral.org/
https://flphrat.com/
https://flphrat.com/
https://flphrat.com/
https://flphrat.com/
https://flphrat.com/
https://coast.noaa.gov/slr/
https://coast.noaa.gov/slr/
https://coast.noaa.gov/slr/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://ephtracking.cdc.gov/
https://www.fema.gov/flood-maps/products-tools/national-risk-index
https://www.fema.gov/flood-maps/products-tools/national-risk-index
https://www.fema.gov/flood-maps/products-tools/national-risk-index
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3.1 Social Vulnerability Model (SoVI) 

 

SoVI is a model that measures vulnerability to the environment. It included 27 variables (VMAP 
> Resources. VMAP. 202341). Since 2016 two additional variables are included, and these are the 
percent of household spending more than 40% of their income on housing costs 
(QHSEBURDEN) and percent of population without health insurance (QUNINSURED), for a total 
of 29 variables. The variables are grouped into six pillars of vulnerability that include: 
Employment Structure (includes four variables), Housing (three variables), Population Structure 
(six variables), Race and Ethnicity (four variables), Socioeconomic Status (seven variables), and 
Special Needs (four variables) (Emrich, Aksha, and Zhou 202242).  

Utilizing SoVI researchers have identified areas with different indices of social vulnerability; for 
example, describe those areas with lower scores of vulnerabilities utilizing SoVI index with 
higher located in the Midwest and Northeast regions of the U.S. (Tate, Rahman, Emrich, and 
Sampson 202143). Tate, Rahman, Emrich and Sampson (2021) also highlight that, in terms of 
flooding for example, some areas that have high vulnerability to flooding have low social 
vulnerability indices and that the approach of these areas would include implementing 
strategies to reduce the exposure to floods. In 
studying SoVI as a predictor of health 
outcomes, risk behaviors, or preventative 
measures, researchers need to evaluate the 
social vulnerability index of the area and 
establish the best strategies to address the 
wellbeing of the population in terms of 
behavior and health. For example, as Tate 
Rahman, Emrich and Sampson (2021) describe 
when evaluating the risk of flood considering 
SoVI results to make decisions and address 
what they call hotspots could likely be 
extrapolated to health as well in terms of 
addressing, for example, rurality, resource 
allocation, and insurance coverage just to 
name a few questions that could be 
addressed with studies that combine SoVI and 
disease. The model has been updated since 
that publication and two previous exploratory 
variables are now included in the pillars. 
These include the Percent of population without health insurance and Percent of parcels 
classified as Heir's Properties in the Special needs pillar. 

 
41 https://www.vulnerabilitymap.org/ 
42 https://www.sciencedirect.com/science/article/pii/S2212420922000747 
43 https://link.springer.com/article/10.1007/s11069-020-04470-2 

The Social Vulnerability Index (SoVI)  

THE SOCIAL VULNERABILITY INDEX (SoVI) 

IS A WIDELY USED TOOL FOR ASSESSING 

SOCIAL VULNERABILITY TO NATURAL 

HAZARDS. IT INCORPORATES FACTORS 

SUCH AS SOCIOECONOMIC STATUS, 

DEMOGRAPHIC CHARACTERISTICS, AND 

COMMUNITY INFRASTRUCTURE TO 

PROVIDE A COMPREHENSIVE PICTURE 

OF VULNERABILITY. SOVI IS OFTEN USED 

IN DISASTER PLANNING AND RESPONSE 

TO IDENTIFY AT-RISK COMMUNITIES 

AND PRIORITIZE RESOURCES. IT IS A 

SPATIALLY EXPLICIT INDEX THAT ALLOWS 

FOR THE IDENTIFICATION OF 

VULNERABLE AREAS WITHIN A REGION. 
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SoVI has an inductive approach utilizing latent variables and using principal component analysis, 
and the index is calculated representing the level of vulnerability in an area (Burton and Cutter 
2003; Tate, Cutter, and Berry 201044; VMAP tools45 2022). This directionality issue was 
previously described by Burton and Cutter in 200846 where scholars’ expertise is required to 
improve the analysis and likely the utility of the index. Spielman et al. (2020)47 agree with 
Burton and Cutter (2008) in referring to the literature to find the contribution of the variable to 
the vulnerability model which Burton and Cutter (2008) explain the theoretical portion of 
assessing each variable in terms of directionality, explaining that this has already been 
determined by previous research establishing background knowledge. Therefore, literature 
findings appear to be the best guidance in helping to determine the direction of the association 
between the variable and outcome. In terms of this expert knowledge, Schmidtlein et al. 
(2008)48 also found that interpretation of the data generated using SoVI is also a factor as 
knowledgeable researchers have a central role in determining the absolute value of the 
components of SoVI in generating this index. Schmidtlein et al. (2008) suggest that working 
together with local experts and perhaps with the help of qualitative research in the area of 
study vulnerability could be a good guide for social vulnerability assessment and that likely SoVI 
results can also guide researchers to collaborate and explore qualitative studies in the area. 
Schmidtlein et al. (2008) also describe issues with the sensitivity of SoVI in terms of the 
generation of the index that requires expert knowledge and further qualitative analysis of the 
place.  

Several researchers describe the limitations of SoVI derived from the variable choice and due to 
subjectivity when evaluating the directionality of some variables used in the model that can be 
corrected by reviewing the literature (Burton and Cutter 2008). Spielman et al. (2020) are 
critical of the use of indices in general, favoring an approach that includes expertise input in 
terms of the issue being studied and in the place context that could lead in the selection of the 
appropriate variables to measure social vulnerability to a specific situation. Spielman et al. 
(2020) therefore suggest that researchers analyze each of the variables in the SoVI and that this 
practice could improve what they call the limitations of this index. However, Schimdtlein et al. 
(2008) evaluated SoVI’s sensitivity, finding that the index is robust in terms of not displaying 
significant alterations in vulnerability in their results related to the variable structure or to the 
scale chosen. Therefore, it is important to remember when working with the index that it is an 
inductive model that is place-specific (VMAP Social Vulnerability 2022) as there is awareness in 
this study of the critical analysis of the model that has some limitations (Spielman et al. 2020). 
Also, in working with this index to compare counties from different states in this sense, 
Schmidtlein et al. (2008) acknowledged that the place is relevant for SoVI.  

 

 

 
44 https://journals.sagepub.com/doi/abs/10.1068/b35157 
45 https://www.vulnerabilitymap.org/Mapping-Tools/Social-Vulnerability 
46 https://ascelibrary.org/doi/full/10.1061/%28ASCE%291527-6988%282008%299%3A3%28136%29 
47 https://link.springer.com/article/10.1007/S11069-019-03820-Z 
48 https://onlinelibrary.wiley.com/doi/full/10.1111/j.1539-6924.2008.01072.x 
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Table 4. SoVI pillars, sub pillars, and variables49. 

Pillar Sub Pillar Description 
Variable 

Name 

Employment 
Structure 

Employment Percent Civilian Unemployment QCVLUN 

Employment Type Percent Employment in Extractive Industries QEXTRACT 

Employment Type Percent Employment in Service Industry QSERV 

Gendered 
Employment 

Percent Female Participation in Labor Force 
QFEMLBR 

Housing 

Housing Tenure Percent Renters QRENTER 

Housing Type Percent Mobile Homes QMOHO 

Housing 
Availability 

Percent Unoccupied Housing Units 
QUNOCCHU 

Population  
structure 

Age Percent Population under 5 years or 65 and over QAGEDEP 

Household 
Structure 

Percent of Children Living in 2-Parent Families 
QFAM 

Age Median Age MEDAGE 

Gender Percent Female QFEMALE 

Household Type Percent Female Headed Households QFHH 

Household Size People per Unit PPUNIT 

Race/ Ethnicity 

Race Percent Asian QASIAN 

Race Percent Black QBLACK 

Ethnicity Percent Hispanic QSPANISH 

Race Percent Native American QINDIAN 

Socioeconomic 
Status 

Poverty Percent Poverty QPOVTY 

Wealth Percent Households Earning over $200,000 Annually QRICH 

Wealth Per Capita Income PERCAP 

Social Status Percent with Less than 12th Grade Education QED12LES 

Wealth Median Housing Value  MDHSEVAL 

Wealth Median Gross Rent  MDGRENT 

Financial 
Precariousness 

Percent of Households Spending more than 40% of 
Their Income on Housing Costs 

QHSEBURDEN 

Special Needs 

Dependance 
Percent Households Receiving Social Security 
Benefits 

QSSBEN 

Access Barrier 
Percent Speaking English as a Second Language with 
Limited English Proficiency 

QSEL 

Dependance Nursing Home Residents Per Capita QNRRES 

 
49 Source Adapted from Emrich, C. T., Aksha, S. K., & Zhou, Y. (2022) and from Yu, C.-Y., Woo, A., Emrich, C. T., & 

Wang, B. (2019 
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Pillar Sub Pillar Description 
Variable 

Name 

Access Barrier Percent of Population without Health Insurance  QNOHLTH 

Access Barrier Percent of Housing Units with No Car QNOAUTO 

Access Barrier Percent of Parcels Classified as Heir's Properties QHEIRS 

 

3.2 CDC/ASTDR SVI 

The U.S. Centers for Disease Control (CDC) began producing a bi-annual social vulnerability 
model in 2014 that includes variables from the U.S. Census at census tract and county levels of 
geography, and it determines vulnerability at the census tract level (Flanagan et al. 2011)50. It is 
updated every two years to reflect changes in the population (Center for Disease Control 
CDC/ATSDR SVI frequently, 2022)51. This model is maintained by the Geospatial Research 
Analysis and Services Program (GRASP) (Center for Disease Control CDC/ATSDR SVI frequently, 
2022).  

In 2011 the first model of the CDC/ATSDR was created by GRASP (Center for Disease Control; At 
a glance, 2022)52. In March 2020 the CDC/GRASP 
released the update to the SVI of 2018 as 
expected; however, this study will use the data 
from the 2020 release that includes data from 
the ACS for the years 2016-2020 (Center for 
Disease Control, CDC/ATSDR SVI data, March 
2023)53. 

The CDC SVI at a national level allows for 
comparison of the social vulnerability, for 
example, of the SVI of one census tract 
compared to other tracts in the nation; or of one 
county to other the counties in the U.S. (Agency 
for Toxic Substances and Disease Registry, 
October 26, 2022)54. In general, the purpose of 
the CDC/ATSDR SVI is to aid in the allocation of 
emergency personnel and other resources, i.e., 
water, to identity areas in need of places to host 
population like shelters, to plan for the 
evacuation and recovering of communities in 
case of emergency or disasters (Center for 

 
50 https://www.degruyter.com/document/doi/10.2202/1547-7355.1792/html 
51 https://www.atsdr.cdc.gov/placeandhealth/svi/faq_svi.html 
52 https://www.atsdr.cdc.gov/placeandhealth/svi/at-a-
glance_svi.html#:~:text=Social%20Vulnerability%20refers%20to%20the,human%20suffering%20and%20economic
%20loss. 
53 https://www.atsdr.cdc.gov/placeandhealth/svi/index.html 
5454 https://www.atsdr.cdc.gov/placeandhealth/svi/at-a-glance_svi.html 

The CDC Social Vulnerability Index (SVI)  

THE CENTERS FOR DISEASE CONTROL 

AND PREVENTION'S SOCIAL 

VULNERABILITY INDEX (SVI) IS ANOTHER 

COMMONLY USED TOOL FOR ASSESSING 

SOCIAL VULNERABILITY. SVI FOCUSES ON 

THE SOCIAL DETERMINANTS OF HEALTH 

AND INCLUDES INDICATORS SUCH AS 

RACE/ETHNICITY, POVERTY, ACCESS TO 

TRANSPORTATION, AND HOUSING 

QUALITY. IT IS DESIGNED TO HELP 

PUBLIC HEALTH PROFESSIONALS 

UNDERSTAND AND ADDRESS HEALTH 

DISPARITIES IN AT-RISK COMMUNITIES. 

SVI PROVIDES A RANKING OF 

NEIGHBORHOODS OR CENSUS TRACTS 

BASED ON THEIR VULNERABILITY TO A 

RANGE OF HEALTH-RELATED HAZARDS. 
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Disease Control; At a glance, 2022). However, the SVI has been studied for noninfectious 
chronic conditions, infectious conditions like COVID-19 (Tipirneni et al. 2022)55 in which SVI 
performed similarly to indices like the Area Deprivation Index (ADI) when assessing mortality 
associated to the infection, highlighting the relevance of SVI indexes to evaluate outcomes at a 
census tract level even in the face of novel diseases. When evaluating themes, the CDC SVI has 
found that some themes tend to be more related to health outcomes. For example, for 
Medicare beneficiaries the themes of socioeconomic status and the one for household 
composition and disability were found to be associated with more negative outcomes after 
surgeries including the odds of being remitted or having a complication (Zhang et al. 2023)56.   

In the CDC SVI model, 16 variables are grouped under four different categories called themes: 
Socioeconomic Status, Household Characteristics, Minority Status, and Housing and 
Transportation (Vo et al. 2020; Centers for Disease Control and Prevention CDC/ATSDR SVI 
frequently asked questions Oct 26, 2022). The CDC SVI is advantageous for researchers as it is 
readily available and “free” to the public.  

This is a deductive model top-down approach 
that uses hierarchies distributed in themes 
similarly to the Texas A&M model. Flannagan et 
al. (2018)57 explain that the variables are ranked 
using a percentile rank for each variable and for 
the themes. Furthermore, as explained by 
Flannagan et al. (2018), in addition the model 
identifies tracts with high vulnerability and has 
procedures in place to avoid the interaction of 
overall scores with individual variable 
vulnerabilities. The index has scores from 0 to 1 
with the higher vulnerability associated with the 
higher scores (Karaye and Horney 2020)58.  

The CDC SVI has been used to study areas where 
accessibility to emergency assistance including to 
health care is low in populations who are socially 
vulnerable with the goal to plan and prepare for 
emergencies as well as the usage of those 
resources to help vulnerable populations (Vo et 
al. 2020)59. Some researchers, for example when 
studying COVID-19, prefer the CDC SVI as they 
describe limitations with SoVI as this later index 
is place-specific (Page-Ton and Corbin 2021)60. 

 
55 https://ajph.aphapublications.org/doi/abs/10.2105/AJPH.2022.307018 
56 https://www.sciencedirect.com/science/article/pii/S2347562523000847 
57 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179070/ 
58 https://www.sciencedirect.com/science/article/pii/S0749379720302592 
59 https://www.tandfonline.com/doi/full/10.1080/12460125.2020.1796300 
60 https://onlinelibrary.wiley.com/doi/full/10.1111/disa.12525 

TA&M Social Vulnerability 

THE STUDY "MAPPING SOCIAL 

VULNERABILITY TO ENHANCE HOUSING 

AND NEIGHBORHOOD RESILIENCE" 

PRESENTS A METHODOLOGY FOR 

MAPPING SOCIAL VULNERABILITY THAT 

EMPHASIZES HOUSING-RELATED 

INDICATORS. THIS APPROACH RECOGNIZES 

THE CRITICAL ROLE OF HOUSING 

CONDITIONS IN DETERMINING 

VULNERABILITY AND INCORPORATES 

INDICATORS SUCH AS HOUSING AGE, 

HOUSING UNIT TYPE, OVERCROWDING, 

AND HOUSING COST BURDEN. BY 

FOCUSING ON HOUSING-RELATED 

FACTORS, THIS MODEL PROVIDES INSIGHTS 

INTO THE VULNERABILITIES ASSOCIATED 

WITH INADEQUATE HOUSING AND ITS 

IMPACT ON OVERALL COMMUNITY 

RESILIENCE. 
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The CDC SVI has also been used to evaluate changes in insurance enrollment during the 
pandemic. For example, the CDC SVI identified an increase in Medicaid enrollment in North 
Carolina that corresponded to counties with higher SVI in an environment where 
unemployment increased (Shafer et al. 2021)61. 

It is important to clarify that there is a within and between state database difference in which 
within the state the scores compare social vulnerability of the counties in that state, whereas 
the between states U.S. database in which the vulnerability of a county is assessed in relation to 
all the counties in the nation (Center for Disease Control CDC/ATSDR SVI frequently, 2022) For 
the purpose of this study, we will be using the U.S based CDC/ATSDR SVI database.  

Today the CDC SVI model is being used in several publications to assess COVID-19 vulnerability 
in the U.S. Some publications have described an association of SVI with the number of 
infections (Rifat et al. 202162, Karaye and Horney 2020), and with deaths (Rifat et al. 2021). 
However, Karaye and Horney (2020) describe that, when evaluating SVI at a local level using the 
CDC model, the vulnerability varied widely depending on geographic location. In terms of 
prevention, as expected SVI was inversely associated. In the case of COVID-19, this was 
manifested by lower vaccinations uptake (Al Rifai et al. 2021).   

The CDC SVI has also been used to evaluate the impact of individual variables on COVID-19; 
Karaye and Horney (2020) found that in terms of COVID-19 numbers, housing and disability, as 
well as minority status and language were better predictors of the contagion. Furthermore, 
Islam et al. (2021)63 found that geographic areas with highly elevated social vulnerability had 
more COVID-19 contagion and negative outcomes related to the infection. In those areas 
chronic conditions were prevalent, Islam et al. (2021) explained that the findings could help 
guide the pandemic response. Other researchers have used the SVI to assess other outcomes, 
including teen pregnancy (Yee, Cunningham, and Ickovics 2019)64.   

Table 5. CDC SVI Themes with variables. 

Socioeconomic 
Status  

(Theme 1) 

Household 
Characteristics 

 (Theme 2) 

Racial and Ethnic 
Minority Status 

(Theme 3) 

Housing Type and 
Transportation 

(Theme 4) 

Persons below 150% 
poverty estimate  
E_POV150 

Persons aged 65 or older 
estimates ACS 
E_AGE65 

Minority (all 
persons except 
white, non-
Hispanic estimate) 
ACS 
E_MINRTY 

Housing in structures with 
10 or more units estimate 
2014-2018 ACS 
E_MUNIT 

Civilian (age 16+) 
unemployed 
estimate ACS 
E_UNEMP 

Persons aged 17 or 
younger estimates ACS 
E_AGE17 

 Mobile homes estimate ACS 
E-MOBILE 

 
61 https://www.healthaffairs.org/doi/full/10.1377/hlthaff.2021.00377 
62 https://www.tandfonline.com/doi/full/10.1080/09603123.2021.1979196 
63 https://bmjopen.bmj.com/content/11/7/e048086.abstract 
64 https://link.springer.com/article/10.1007/s10995-019-02792-7 
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Socioeconomic 
Status  

(Theme 1) 

Household 
Characteristics 

 (Theme 2) 

Racial and Ethnic 
Minority Status 

(Theme 3) 

Housing Type and 
Transportation 

(Theme 4) 

Housing cost burden 
E_HBURD 
 

Civilian non 
institutionalize 
population with a 
disability estimates ACS  
E_DISABL 

 At household level 
(occupied housing units) 
more people than rooms 
estimate 2014-2018 ACS 
E_CROWD  

Persons (age 25+) 
with no high school 
diploma estimate 
ACS 
E_NOHSDP 

Single-parent households 
with children under 18 
E_SNGPNT 

Households with no vehicle 
available estimate ACS 
E_NOVEH 

Adjunct variable 
uninsured in total 
civilian 
noninstitutionalized 
population 
estimates  
E_UNINSUR 

Persons (age 5+ who 
speak English “less than 
well” (Estimate ACS) 
E_LIMENG 

 Persons in group quarters 
estimate 2014-2018 ACS 
E_GROUPQ 

Adapted from Center for Disease Control and Prevention. CDC/ASTDR SVI data (2022).aa 
 

3.3 Texas A&M HRRC Model 

The Texas A&M model of social vulnerability was built as part of an academic exploration aimed 

at pinpointing community social vulnerability in the context of enhancing housing and 

neighborhood resilience. The resulting model is a quasi-hierarchical deductive model utilizing 

17 census-derived variables. The variables are grouped into second- and third-order measures 

that, when combined, generate a single index score that can be viewed as an unweighted or 

area-weighted measure (Van Zandt et al. 2012) 65. Capacity needs is included as a second-order 

measure as VanZandt et al. (2012) indicate “The ability to share information and communicate 

with others, particularly those within one’s social network can be extremely important for the 

dissemination of warning and mitigation information” (p.26). 

Table 6. Order and variables Texas A&M HRRC Model66. 

1st Order 2nd Order 3rd Order 

% single parent households with children 
    QSFAM 

Childcare Needs   
 
 
 
 
 

% Population <= 5 
    QUNDER5 

% population >=65 
    QOVER65 

 
Elder Care Needs 

 
65 https://www.tandfonline.com/doi/full/10.1080/10511482.2011.624528 
66 Modified from Masterson et al (2014) p. 104. 
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1st Order 2nd Order 3rd Order 

% population > 65 and in poverty 
    QOVER65POV 

Social  
Vulnerability  

Hot Spot % using public transportation/civilian labor  
    force 16+ employed 
   QPUBTRANSPORT 

 
Transportation 
Needs 

% occupied housing units with no auto 
    QNOAUTO_ACS 

% unoccupied housing units    
   QUNOCCHU_ACS 

  
 
Housing and 
Shelter Needs 

% units renter occupied housing units 
    QRENTER_ACS 

% non-white population 
    QNONWHITE   

% population living in group quarters 
    QGROUPQRTRS 

% housing units built 20 years old or more ago 
   QHOMEPRE2000 

% units that are mobile homes 
    QMOHO 

% population in poverty 
    QPOVTY 

% occupied units without a telephone 
    QNOPHONE 

 
 
Civic Capacity 
Needs 

% population > 25 with less than a high school education 
   QED12LES_ALT 

% population > 16 and in labor force and unemployed 
   QCVLUN 

% population > 5 who speak English not well or not at all 
    QESL_ALT 

 

HRRC’s model of social vulnerability includes characteristics at the census tract level including: 
the ability to communicate using a phone, a common language (therefore one variable includes 
the ability to speak English), and educational level and employment where individuals also 
exchange and gather information and could find a support system.  This second-order measure 
as grouped could also identify groups of individuals living in census tracts that could be also 
susceptible to diseases and who can have local support systems and shared values that could 
increase their adherence to preventative measures and reduce the prevalence of engaging in 
unhealthy behaviors. The Texas A&M model is not specific to place (unlike SoVI), and it is used 
by the National Environmental Public Health Tracking Network (similarly to the CDC SVI) (VMAP 
Mapping Tools social vulnerability models 2022). 

In building the index researchers divide the indicators have values with scores from 0-1 with 
higher scores indicating higher vulnerability (Van Zandt et al. 2012).  
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Social vulnerability analyzes predisposition to adverse events of people (Drakes et al. 2021; Van 
Zandt et al. 2012) from a lens that includes the evaluation of social aspects of communities and 
of individuals who dwell in them that also accounts for the culture, economy, dynamics of these 
factors that shape the social determinants evaluated in different studies (Van Zandt et al. 
2012). These initially studied in the realm of disaster and emergency preparedness to natural 
events extrapolated in the last 
decade to an evaluation of the 
impact of these social determinants 
on vulnerability of communities 
influencing health and health 
outcomes.  

Van Zandt et al. (2012) explain that 
social factors impact the ability to 
plan in anticipation to even as well 
and respond during the event and 
their resiliency in the aftermath. 
Communities are heterogeneous in 
terms of poverty, employment 
opportunities, violence, and in 
providing recreational opportunities 
for their populations (Van Zandt et al. 
2012). The vulnerability of that 
community exposes the risk or their 
dwellers to negative outcomes for 
example natural events (Van Zandt et 
al. 2012).  

 
Van Zandt et al 2012 explain that many times the policies in place for response and mitigation 
can be adapted to account for their vulnerability as social factors like having a reliable form of 
transportation and housing influences the individual ability to respond to unexpected events. 
People who rent lack civil engagement, low influence in community decisions, which were 
studied for disasters (Lee and Van Zandt 2019)67, but this could also extrapolate to advocacy to 
improve opportunities of recreation in communities negatively impacting health outcomes. 
Study of social vulnerability and risk, planning, resiliency, and recovery related to Hurricane 
(Peacock et al. 2015)68.  

 

3.4 Georgetown Model 

The Georgetown model of social vulnerability, created as part of an academic exploration of 
vulnerability in Georgetown County, South Carolina, is the predecessor to the current SoVI 

 
67 https://journals.sagepub.com/doi/full/10.1177/0885412218812080 
68 https://www.tandfonline.com/doi/full/10.1080/01944363.2014.980440 

Georgetown Model of Social Vulnerability 

THE GEORGETOWN MODEL, AS DESCRIBED IN 

THE STUDY "REVEALING THE VULNERABILITY OF 

PEOPLE AND PLACES: A CASE STUDY OF 

GEORGETOWN COUNTY, SOUTH CAROLINA," 

FOCUSES SPECIFICALLY ON ASSESSING SOCIAL 

VULNERABILITY TO NATURAL HAZARDS AT A 

NEIGHBORHOOD LEVEL. IT INCORPORATES A 

RANGE OF INDICATORS RELATED TO 

SOCIOECONOMIC CHARACTERISTICS, HOUSING 

QUALITY, AND ENVIRONMENTAL FACTORS. THE 

MODEL UTILIZES A MULTI-DIMENSIONAL 

APPROACH TO ANALYZE VULNERABILITY, 

CONSIDERING FACTORS SUCH AS AGE, 

POVERTY, EDUCATION, ETHNICITY, HOUSING 

CONDITIONS, AND PROXIMITY TO HAZARDOUS 

AREAS. 
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model. Georgetown combines nine variables grouped into four characteristics that include 
population and structure, differential access to resources, wealth and poverty, and level of 
physical or structural vulnerability (Cutter, Mitchell, and Scott 2000).69   

 

Table 7. Variables Georgetown Model. 

Characteristic Variable (as a number or as a ratio) 

Population and Structure -Total population Total_POP 
or 

-Ratio of tract people to total population in dataset 
Pop_MMSTD 

Total housing units 
or 

-Housing_Unit_RAT  
Ratio of housing units to total housing units in dataset 

Differential access to resources/ 
greater susceptibility to hazards due 
to physical weakness 

-Number of females 
or 

-FEMALE_RAT 
 Ratio of tract female total to total females in dataset 

-Number of nonwhite residents 
 or 

-Non-White_RAT 
Ratio of non-White population in tract to total non-White 

population in dataset 

-Number of people under 19 
or 

-AGE UNDER 19_RAT 
Ratio of under 19 population in tract to total under 19 

population in dataset 

-Number of people over 65 
or 

-AgeOver65_RAT 
Ratio of over 65 population in tract to total over 65 in 

dataset 

Wealthy or poverty -Median house value in a tract 
MHSEVAL_ALT 

Level of physical of structural 
vulnerability 

-Number of mobile homes 
or 

-MH_RAT 
Ratio of mobile homes in tract to total mobile homes in 

dataset 

 
69 https://www.taylorfrancis.com/chapters/edit/10.4324/9781849771542-16/evacuation-behaviour-three-mile-
island-susan-cutter-kent-barnes 
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Source: Revealing the 

vulnerability of People and 

Places: A case study of 

Georgetown County, South 

Carolina by Cutter, Mitchel, and 

Scott (2000)70. 

 

3.5 EJ Screen 

EJ Screen71 is a mapping 

tool developed by the U.S. 

Environmental Protection 

Agency (EPA) to support 

the analysis and 

visualization of 

environmental and socio-

demographic data in order to assess and address environmental justice (EJ) issues. This tool 

utilizes a wide range of data sources, including national demographic and environmental 

indicators, to identify communities facing disproportionate environmental burdens and 

vulnerabilities. 

One of the key aspects of EJ Screen is the inclusion of socio-demographic variables that help 

capture the characteristics of potentially vulnerable communities. These variables are selected 

based on their relevance to understanding environmental justice, and they play a significant 

role in identifying and quantifying environmental disparities. Some of the socio-demographic 

variables used in EJ Screen include race and ethnicity, income, age, educational attainment, 

linguistic isolation, and housing burden. 

 

Table 8. Variables in EJ Screen. 

 

 

 

 

 

 

 
70 https://www.tandfonline.com/doi/abs/10.1111/0004-5608.00219 
71 https://www.epa.gov/ejscreen 

Variable Name Description  

DEMOGIDX_5 Supplemental Demographic Index 

PEOPCOLORPCT % people of color 

LOWINCPCT % low income 

UNEMPPCT % unemployed 

LINGISOPCT % Limited English-speaking households 

LESSHSPCT % less than high school education 

UNDER5PCT % under age 5 

OVER64PCT % over age 64 

EPA’s Environmental Justice Screening Tool 

THE ENVIRONMENTAL JUSTICE SCREENING AND 

MAPPING TOOL, ALSO KNOWN AS EJ SCREEN, IS A 

MAPPING TOOL THAT COMBINES ENVIRONMENTAL 

AND DEMOGRAPHIC DATA TO IDENTIFY AREAS WITH 

POTENTIAL ENVIRONMENTAL JUSTICE CONCERNS. IT 

INCLUDES INDICATORS SUCH AS AIR QUALITY, 

PROXIMITY TO HAZARDOUS WASTE SITES, AND 

DEMOGRAPHIC CHARACTERISTICS. EJ SCREEN IS USED 

TO VISUALLY DEPICT AREAS THAT MAY BE 

DISPROPORTIONATELY BURDENED BY 

ENVIRONMENTAL HAZARDS AND IS OFTEN USED IN 

ENVIRONMENTAL JUSTICE RESEARCH AND 

ADVOCACY. 
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Race and ethnicity are considered critical variables in understanding environmental justice, as 

studies have consistently shown that minority communities, particularly African American and 

Hispanic populations, face a higher burden of environmental hazards. EJ Screen includes data 

on the percentage of minority residents in a particular area, allowing for the identification of 

communities with a high concentration of minority populations experiencing environmental 

injustices. 

Income levels are another important socio-demographic variable used in EJ Screen. Low-income 

communities often face disproportionate environmental burdens, as they may lack resources 

and political power to prevent or mitigate environmental hazards. EJ Screen incorporates data 

on the percentage of residents living below the poverty line or receiving government 

assistance, allowing for the identification of economically marginalized communities. 

Age is also considered in EJ Screen, as vulnerable populations such as children and the elderly 

may be more susceptible to the health impacts of environmental hazards. The tool includes 

data on the percentage of children and elderly populations, aiding in the identification of areas 

with potentially heightened vulnerability. 

Educational attainment is another socio-demographic variable used in EJ Screen. Communities 

with lower levels of education may face challenges in understanding and addressing 

environmental risks. By incorporating data on educational attainment, EJ Screen can identify 

communities that may require targeted education and outreach efforts. 

Additionally, linguistic isolation is considered as a socio-demographic variable in EJ Screen. 

Communities where a significant percentage of residents speak limited English may have 

difficulties accessing information and participating in decision-making processes related to 

environmental issues. By mapping areas with high linguistic isolation, EJ Screen helps ensure 

that language barriers are acknowledged and addressed in environmental justice efforts. 

Housing burden, which refers to the percentage of households paying a high proportion of their 

income on housing costs, is also taken into account in EJ Screen. Affordability and housing 

instability are significant factors that can influence a community's vulnerability to 

environmental hazards and contribute to overall environmental injustice. 

In conclusion, EJ Screen incorporates multiple socio-demographic variables to comprehensively 

assess and address environmental justice concerns. The inclusion of race and ethnicity, income, 

age, educational attainment, linguistic isolation, and housing burden helps identify 

communities facing disproportionate environmental burdens and vulnerabilities. By analyzing 

and visualizing these variables, the tool supports evidence-based decision making and facilitates 

the development of targeted environmental justice policies and interventions. 
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3.6 Environmental Defense 

Fund Climate Vulnerability 

Index (CVI) 

The Climate Vulnerability 

Index (CVI)72 developed by the 

Environmental Defense Fund 

(EDF)73 is a comprehensive 

tool that assesses the 

vulnerability of communities 

to the impacts of climate 

change, including socio-

demographic variables. The 

CVI incorporates multiple 

indicators to identify and 

prioritize areas that are most 

vulnerable to climate change, taking into account both biophysical and socio-demographic 

factors. 

One of the key aspects of the CVI is the inclusion of socio-demographic variables to capture the 

social and economic characteristics of vulnerable communities. These variables help to 

understand the differential impacts of climate change on different population groups and 

ensure that climate resilience efforts are equitable and inclusive. The socio-demographic 

variables used in the CVI include race and ethnicity, income, age, educational attainment, and 

housing conditions. 

Race and ethnicity are essential socio-demographic variables in the CVI, as research has 

consistently shown that minority communities often face higher climate vulnerability. The CVI 

incorporates data on the percentage of minority populations in a given area, allowing for the 

identification of communities with a concentration of minority residents who may be 

disproportionately affected by climate impacts. This indicator helps to highlight environmental 

justice concerns and address disparities in climate resilience. 

Income levels are another significant socio-demographic variable considered in the CVI. Low-

income communities often have limited resources and infrastructure to adapt to climate 

change impacts. The CVI includes data on median household income and poverty rates, 

 
72 
https://map.climatevulnerabilityindex.org/map/cvi_overall/usa?mapBoundaries=Tract&mapFilter=0&reportBound
aries=Tract&geoContext=State 
73 Environmental Defense Fund. (2018). Climate Vulnerability Index: Technical Documentation. Retrieved 

from https://www.edf.org/sites/default/files/cvi_technical_documentation_august_2018.pdf 

EDA’s Climate Vulnerability Index 

THE CLIMATE VULNERABILITY INDEX (CVI) IS A TOOL 

THAT ASSESSES VULNERABILITY TO CLIMATE CHANGE 

IMPACTS. IT INCLUDES INDICATORS SUCH AS 

EXPOSURE TO CLIMATE HAZARDS, SENSITIVITY TO 

IMPACTS, AND ADAPTIVE CAPACITY. CVI IS OFTEN 

USED IN CLIMATE CHANGE ADAPTATION PLANNING 

TO IDENTIFY AREAS THAT ARE MOST VULNERABLE 

AND PRIORITIZE ADAPTATION MEASURES. IT TAKES 

INTO ACCOUNT POTENTIAL CLIMATE IMPACTS, SUCH 

AS SEA-LEVEL RISE, EXTREME WEATHER EVENTS, AND 

CHANGING PRECIPITATION PATTERNS, AND ASSESSES 

VULNERABILITY AT VARIOUS SPATIAL SCALES. 
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allowing for the identification of economically vulnerable areas that require targeted 

interventions to enhance resilience. 

Age is also a critical socio-demographic variable in the CVI. Certain age groups, such as children 

and the elderly, are more vulnerable to the health impacts of climate change. The CVI 

incorporates data on the percentage of the population that is under the age of 5 and over the 

age of 65, helping to identify communities with potentially heightened vulnerability due to age-

related factors. 

Educational attainment is another socio-demographic variable used in the CVI. Communities 

with lower levels of education may have limited access to information and resources necessary 

for climate adaptation and mitigation. The CVI considers data on educational attainment, 

helping to identify areas that may require targeted educational and outreach efforts to enhance 

climate resilience. 

Housing conditions are also 

considered in the CVI. Vulnerable 

housing, such as inadequate 

infrastructure or high housing 

costs, can exacerbate the impacts 

of climate change on communities. 

The CVI incorporates data on 

housing quality and affordability, 

allowing for the identification of 

communities that are more 

susceptible to climate impacts due 

to housing conditions. 

In conclusion, the CVI developed by 

the Environmental Defense Fund 

incorporates various socio-demographic variables to assess the vulnerability of communities to 

climate change. By considering race and ethnicity, income, age, educational attainment, and 

housing conditions, the CVI enables equitable and inclusive decision-making in climate 

resilience planning. These socio-demographic variables help to identify and prioritize 

interventions that address the specific vulnerabilities faced by different population groups, 

ensuring more effective and socially just climate adaptation and mitigation strategies. 

3.7 Climate and Economic Justice Screening Tool74 

Executive Order 14008, titled "Tackling the Climate Crisis at Home and Abroad," was issued by 

President Biden on January 27, 2021. The order itself focuses on addressing climate change and 

promoting environmental justice by prioritizing addressing climate change in various aspects of 

 
74 https://screeningtool.geoplatform.gov/en/ 

Justice 40 Climate and Economic Justice 

Screening Tool THE JUSTICE 40 INITIATIVE IS A RECENT POLICY 

INITIATIVE IN THE UNITED STATES AIMED AT 

ADDRESSING ENVIRONMENTAL INJUSTICES AND 

ADVANCING ENVIRONMENTAL AND CLIMATE 

JUSTICE. THE INITIATIVE AIMS TO DIRECT 40% OF 

FEDERAL INVESTMENTS IN CLIMATE CHANGE 

MITIGATION, RESILIENCE, AND CLEAN ENERGY 

TOWARDS DISADVANTAGED COMMUNITIES. IT 

FOCUSES ON ENSURING THAT VULNERABLE 

COMMUNITIES RECEIVE THE NECESSARY 

RESOURCES TO MITIGATE AND ADAPT TO CLIMATE 

CHANGE AND IMPROVE THEIR OVERALL WELL-

BEING. 



 

A-25 

government policies and actions. It establishes a commitment to environmental justice and 

supports investment in disadvantaged communities. This includes efforts to advance economic 

opportunities, clean energy development, and equitable access to environmental benefits. 

The Climate and Economic Justice Screening Tool mentioned in the executive order is a 

mechanism/ framework to ensure that proposed actions and investments consider potential 

impacts on economically disadvantaged communities and prioritize equitable outcomes. The 

tool helps to identify disadvantaged census tracts across all 50 states, the District of Columbia, 

and the U.S. territories. Under the CJEST framework, communities are considered 

disadvantaged if they are in census tracts that meet the thresholds for at least one of the tool’s 

categories of burden, or if they are on land within the boundaries of Federally Recognized 

Tribes. In addition, census tracts that are completely surrounded by disadvantaged 

communities are also considered disadvantaged if they meet an adjusted low-income 

threshold.  
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Table 9. CJEST Categories of Burden and Variables. 

 

Currently, CJEST only provides data linked to 2010 census tracts, making it extremely 

complicated to compare with data from 2020 for the other models. Working between decadal 

census geographies, specifically 2010 and 2020 census tracts, presents several challenges due 

to the changes in population dynamics, shifts in boundaries, and inconsistent data. The U.S. 

Census Bureau conducts a census every ten years to gather data on the country's population, 

housing, and other demographic information. However, over time, changes in population size, 

migration patterns, and urban development necessitate updates to geographic boundaries like 

census tracts. One of the major difficulties faced while working with different census tracts is 

the shift in population distribution. Certain areas might experience significant population 

growth while others might see a decline. As a result, the boundaries of census tracts are altered 
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to accommodate these changes. This can make it challenging to compare data across different 

decennial census years as the geographic units do not align perfectly. Moreover, changes in 

census tract boundaries can also lead to inconsistencies in the data. For example, if a census 

tract is split into two or merged with another, it becomes difficult to accurately track changes in 

population and demographics. Researchers and analysts often must resort to complex 

methods, such as spatial interpolation or estimation techniques, to estimate and compare the 

data accurately. Another issue is that the release of data between different census years may 

not be synchronized. Some data may be available for the 2010 census but not yet for the 2020 

census, creating gaps in information and making it challenging to conduct meaningful analyses 

and draw accurate conclusions. Furthermore, changes in census tracts can disrupt historical 

continuity. Researchers relying on consistent geographic units across multiple census years may 

find it difficult to track changes in specific areas over time. Despite these challenges, efforts are 

made to provide crosswalks or equivalents between the old and new census geographies to 

ease the transition. In some cases, statistical techniques are applied to bridge the gaps between 

different census years, ensuring researchers can make meaningful comparisons. Although it is 

possible to utilize CJEST data (linked with 2010 geography) in an analysis with data based on 

2020 geography, such analysis would rely heavily on averages of CJEST inputs – effectively 

diminishing instance where both high and low values may occur in a single geographic unit. 

Here, we cross walked the 2010 CJEST variables to the 2020 geography to gain a sense for the 

relationships between the datasets, but it should be noted that utilizing average values is 

potentially underestimating the real differences between the datasets. 

4.0 A Review and Comparison Across Social Vulnerability Models/Date sets 

The previous section provides an overview of each model, but it does not compare across 

models. This section attempts to summarize each model in a comparative way so that readers 

can understand how each model differs or who has used it. 

The Social Vulnerability Index (SoVI), the CDC SVI (Social Vulnerability Index), EJ Screen, and the 

Climate Vulnerability Index (CVI) are all tools used to assess the vulnerability of communities to 

various social and environmental factors. However, they differ in their specific focuses, 

indicators used, and intended applications. 

The SoVI is a widely used index developed by the Hazards and Vulnerability Research Institute 

at the University of South Carolina. It primarily focuses on the social vulnerabilities of 

communities and aims to capture a wide range of social and economic factors that contribute 

to vulnerability. The SoVI incorporates indicators such as income, education, age, housing 

quality, and minority population concentrations. It is often used to identify areas that may be 

more susceptible to the impacts of natural hazards such as floods or hurricanes. The SoVI is 

primarily used for research purposes and helps inform policy interventions to enhance social 

resilience. 
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The CDC SVI is another social vulnerability index that was developed specifically by the Centers 

for Disease Control and Prevention. It also focuses on social vulnerabilities but places a 

particular emphasis on health-related factors. The CDC SVI incorporates indicators such as 

poverty, education, housing quality, minority status, and access to healthcare facilities. It is 

primarily used for public health planning and to identify areas that may require greater 

resources for health preparedness and response. The CDC SVI is often used in conjunction with 

other health-related indicators to target interventions for marginalized communities. 

EJ Screen is a mapping and screening tool developed by the Environmental Protection Agency 

(EPA). Its main focus is on environmental justice issues, including a wide range of socio-

demographic and environmental indicators. EJ Screen incorporates indicators such as race, 

income, education, proximity to pollution sources, and health risk factors. It is used to identify 

areas that may face disproportionate environmental burdens and to prioritize environmental 

justice initiatives. EJ Screen provides a visual representation of environmental disparities and 

helps inform policy decisions related to environmental equity. 

The CVI, developed by the Environmental Defense Fund, is specifically designed to assess the 

vulnerability of communities to the impacts of climate change. It incorporates both biophysical 

and socio-demographic indicators to identify areas at risk. In addition to climate-related factors, 

the CVI includes socio-demographic variables such as race, income, age, educational 

attainment, and housing conditions. The CVI helps prioritize climate resilience interventions and 

identifies areas that may require targeted assistance. It aims to ensure equitable climate 

adaptation and mitigation strategies and highlight environmental justice concerns. 

In summary, the SoVI, CDC SVI, EJ Screen, and the CVI are all valuable tools for assessing social 

vulnerability and informing decision-making processes. While they share a common goal of 

highlighting areas that may be more vulnerable to various stressors, they differ in their specific 

focuses, indicators used, and intended applications. These indexes complement each other and 

can be used in combination to provide a comprehensive understanding of vulnerabilities and 

inform targeted interventions for social and environmental resilience. 

The Georgetown model, as described in the study "Revealing the Vulnerability of People and 

Places: A Case Study of Georgetown County, South Carolina," focuses specifically on assessing 

social vulnerability to natural hazards at a neighborhood level. It incorporates a range of 

indicators related to socioeconomic characteristics, housing quality, and environmental factors. 

The model utilizes a multi-dimensional approach to analyze vulnerability, considering factors 

such as age, poverty, education, ethnicity, housing conditions, and proximity to hazardous 

areas. 

On the other hand, the study "Mapping Social Vulnerability to Enhance Housing and 

Neighborhood Resilience" presents a methodology for mapping social vulnerability that 

emphasizes housing-related indicators. This approach recognizes the critical role of housing 

conditions in determining vulnerability and incorporates indicators such as housing age, 
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housing unit type, overcrowding, and housing cost burden. By focusing on housing-related 

factors, this model provides insights into the vulnerabilities associated with inadequate housing 

and its impact on overall community resilience. 

While both studies share the goal of assessing social vulnerability, they differ in their specific 

indicators and emphasis. The Georgetown model takes a broader approach, considering a wide 

range of factors beyond housing to capture the multi-dimensional nature of vulnerability. In 

contrast, the study on housing and neighborhood resilience specifically focuses on housing-

related factors as a key driver of vulnerability. This narrower focus allows for a more nuanced 

assessment of vulnerabilities related to housing quality, affordability, and resilience. 

Both models, however, contribute valuable insights to understanding social vulnerability and 

inform targeted interventions. The Georgetown model provides a comprehensive assessment 

of vulnerability at the neighborhood level, considering a wide array of factors that contribute to 

vulnerability. In comparison, the housing-focused model hones in on a critical aspect of 

vulnerability related to housing conditions, offering specific insights into challenges associated 

with inadequate housing and outlining potential strategies to enhance housing and 

neighborhood resilience. 

In summary, while the Georgetown model provides a broader and more comprehensive 

assessment of social vulnerability, the housing-focused approach described in "Mapping Social 

Vulnerability to Enhance Housing and Neighborhood Resilience" delves specifically into the 

relationship between housing conditions and vulnerability. Both models are useful for 

understanding and addressing social vulnerability but with different foci and strategies. Each of 

these tools and models contributes to our understanding of social vulnerability and assists in 

targeting interventions. SoVI and the CDC SVI offer comprehensive assessments of social 

vulnerability, with the former focusing on natural hazards and the latter on health-related 

hazards. The Georgetown model and the housing-focused approach offer specific insights into 

vulnerabilities related to socioeconomic characteristics, housing conditions, and neighborhood 

resilience, with the former taking a broader multi-dimensional approach and the latter focusing 

specifically on housing-related factors. EJ Screen focuses on environmental justice concerns, 

while the Climate Vulnerability Index assesses vulnerability to climate change impacts. The 

Justice 40 Initiative is a policy initiative aimed at addressing environmental injustices and 

advancing climate justice. As such, the CJEST is a screening tool providing data for comparative 

purposes and not a model of vulnerability per-se. Finally, the CVI appears to be a composite of 

many other model data rather than a specific conceptualization of vulnerability. 

4.1 Variable Composition across models 

Although the academic and practical literature does not specify the absolute number of 

variables needed to create a good social vulnerability indicator, it is clear that any model or 

dataset should capture the essence of what makes a place or people vulnerable (Heinz Center 
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2000)75. Unfortunately, ease of access to data and the ability to rapidly put data into 

spreadsheets/mapping applications for analysis has moved some practitioners and researchers 

toward a situation where models are being develop without strong connections to concepts 

and background literature on social vulnerability. Indeed, attempts have been made to reduce 

the number of input variables (Cutter et al. 2013)76 with a clear result – that reducing inputs 

results in a measure of social vulnerability that cannot replicate a measure produced from the 

full complement of social indicators derived from disaster case study literature. 

From this perspective, it is important to first understand which models contain which indicators 

and attempt to pinpoint deficiencies in models based on the primary consideration of data 

representing all aspects of social vulnerability to environmental hazards. To that end, Table 10 

provides a listing of each variable included in each model/dataset under current consideration 

compared to the seminal social vulnerability model, Cutter et al. (2003) Social Vulnerability to 

Environmental Hazards (or SoVI).  

“Goodness” Measure #3- Number of Inputs was created by ranking each model/data based on 

the number of inputs from least (1) to most (7) put SoVI at the top of the list and UofSC’s 

Georgetown model at the bottom of the list. See Table 15 and Table 16 for overall rankings 

across all measurable characteristics. 

Table 10. Variables by social vulnerability model/dataset 

 
75 Heinz Center for Science, Economics, and the Environment. 2000. The Hidden Costs of 
Coastal Hazards: Implications for Risk Assessment and Mitigation. Covello, Cal.: Island Press. 
76 Cutter, S. L., Emrich, C. T., Morath, D. P., & Dunning, C. M. (2013). Integrating social vulnerability into federal 
flood risk management planning. Journal of Flood Risk Management, 6(4), 332-344. 
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Percent Hispanic ✓ 
✓ 

% People 
of Color 

✓ 
(% Non-
White) 

✓ 
(% Non-
White) 

✓ 
(% 

Minority) 
 ✓ 6 

Percent Poverty ✓ 
✓ 

% Low 
Income 

 ✓ ✓ 

✓ 
(% 

impover-
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✓ 6 

Percent Civilian 
Unemployment 

✓ ✓  ✓ ✓ ✓ ✓ 6 

Percent with Less 
than 12th Grade 
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✓ ✓  ✓ ✓ ✓ ✓ 6 

Percent Speaking 
English as a Second 
Language with 
Limited English 
Proficiency 

✓ ✓  ✓ ✓ ✓ ✓ 6 

Percent Mobile 
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✓  ✓ ✓ ✓  ✓ 5 
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American 
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(% Non-
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health insurance  
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Percent of Children 
in Single-Parent 
Families 
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Median Gross Rent ✓     ✓  2 

Percent Female 
Headed Households 

✓      

✓ 
(% Single 

parent 
house-
holds) 

2 

Per Capita Income ✓      ✓ 2 

Percent 
Employment in 
Extractive 
Industries 

✓       1 

Percent 
Employment in 
Service Industry 

✓       1 

Percent Female 
Participation in 
Labor Force 

✓       1 

Median Age ✓       1 

Percent Households 
Earning over 
$200,000 annually 

✓       1 

Percent of families 
spending more than 
40% of their 
earnings on 
rent/mortgage 
payments 

✓       1 

Percent Households 
Receiving Social 
Security Benefits 

✓       1 

Nursing Home 
Residents Per 
Capita 

✓       1 

Percent of 
Households with No 
Broadband 

✓       1 

Percent Living in 
Group Quarters 

   ✓ ✓  ✓ 3 

Multi-Unit 
Structures 

   ✓ ✓  ✓ 2 
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Vulnerability 
Variable 

 Vulnerability/Equity Model/Dataset ✓  
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2
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(n
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8

) 

Number of 
Models/ 

Datasets in 
which 

Indicator 
Appears 

Percent Homes 
built pre-2000 

   ✓   

✓ 
(% of 

homes 
built pre-

1970) 

2 

Percent Over Age 
over 65 + Poverty 

   ✓    1 

Percent of Labor 
Force Using Public 
Transportation 

   ✓    1 

Percent without 
Telephone 

   ✓    1 

Population 
Percentage 

  ✓     1 

Percentage of total 
Housing Units 

  ✓     1 

Number of Deaths 
by Homicide per 
100,000 people 

      ✓ 1 

Number of Deaths 
by Firearm per 
100,000 

      ✓ 1 

Number of 
Religious 
Organizations per 
1,000 people 

      ✓ 1 

Number of Civic 
and Social 
Organizations per 
1,000 people  

      ✓ 1 

Percentage of 
children in foster 
care 

      ✓ 1 

Percentage (of state 
population) who is 
an undocumented 
immigrant 

      ✓ 1 

Hate crimes by 
state per 100,000 
people. 

      ✓ 1 
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4.2 Visual Comparison 

Several of the datasets/models under current consideration do not provide data in online 

mapping format and although their data could be converted to a map through known and 

relatively simple GIS processes there are several considerations that resulted in these not being 

mapped in the current assessment, including: 

1. Data not provided in spatial format (EJ Screen)  

2. No final score provided (EJ Screen and CJEST) 

3. Data not provided in spatial format. 

4. No symbology provided to understand high vs low areas.  

“Goodness” Measure #4-Visual Inspection scored each model/data based on the ability to 

quickly visually inspect differences across space through an online mapping interface from (1= 

not available, 4 = available through VMAP, 7 = available through original developer) resulted in 

a 5-way tie for best between SoVI, Georgetown, SVI, CJEST, and CVI with HRRC coming in 

second because of their ability to be visually inspected through VMAP. Only the EJ Screen 

model does not have a mapping interface available online. See Table 15 and Table 16 for overall 

rankings across all measurable characteristics. 

Vulnerability 
Variable 

 Vulnerability/Equity Model/Dataset ✓  

So
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2
0

) 

C
V

I 
(n

=2
8

) 

Number of 
Models/ 

Datasets in 
which 

Indicator 
Appears 

Adult Population 
residing in 
correctional 
facilities  

      ✓ 1 

Redlined areas       ✓ 1 

Count of homeless 
populations by 
state 

      ✓ 1 

Percent military 
veterans 

      ✓ 1 

Percent of Housing 
Loans at risk of 
foreclosure 

      ✓ 1 
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4.2.1 SoVI 

Figure 2: Social vulnerability index (SoVI) model results for the current area of interest. 
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4.2.2 EPA’s Environmental Justice Screening Tool (EJ Screen) 

No mapping component is available at present. 

4.2.3 UofSC Georgetown Model 

Figure 3: Georgetown model of social vulnerability index results for the current area of interest. 
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4.2.4 HRRC Model of Social Vulnerability 

Figure 4: HRRC model of social vulnerability results for the current area of interest. 

 

  



 

A-38 

4.2.5 CDC’s Social Vulnerability Index (SVI) 

Figure 5: CDC SVI model of social vulnerability results for the current area of interest. 

 

4.2.6 Climate and Environmental Justice Screening Tool (CJEST) 

No mapping component is available at present. 

4.2.7 Climate Vulnerability Index (CVI) 
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Figure 6: Climate Vulnerability Index social and economic community baseline results zoomed to 
current study area. 

 

4.3 Correlation Analysis 

Collinearity is a condition that arises when two or more predictor variables in a statistical model 

are highly correlated. Variables that are “colinear” or linearly related, can cause challenges in 

statistical analyses, particularly in additive models such as Georgetown, SVI, and TA&M (HRRC) 

as well as regression models. Collinearity can pose problems such as instability of parameter 

estimates, reduced precision of coefficient estimates, and difficulty in interpreting the effects of 

individual predictors. In extreme cases, collinearity can render the estimation of regression 

coefficients impossible.   

In regression models, one of the main challenges of collinearity is that it inflates the standard 

errors of the estimated regression coefficients. This leads to wider confidence intervals, making 

it harder to determine the statistical significance of individual predictors. With increased 

standard errors, it becomes more challenging to distinguish the true effects of the independent 

variables from random variation. Consequently, hypothesis testing, model selection, and 

interpretation of coefficients become unreliable and less informative. 
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Collinearity can also be problematic in deductive models such as Georgetown, SVI, and TA&M 

(HRRC), especially those that involve the specification and testing of causal relationships. In 

deductive modeling, researchers attempt to establish cause-and-effect relationships between 

variables based on theory and prior knowledge. When collinearity exists in a deductive model, 

it can lead to challenges in interpreting and validating causal pathways. The high correlation 

between predictor variables can make it difficult to identify the unique contribution of each 

variable and determine their relative importance in the model. This, in turn, hampers the ability 

to determine the direction and magnitude of causal effects accurately. Collinearity can also lead 

to multicollinearity in deductive models, which occurs when three or more variables are highly 

correlated. In this case, disentangling the individual effects of the predictor variables on the 

outcome variable becomes even more complicated. Multicollinearity in deductive models can 

lead to a phenomenon known as specification error. This occurs when the model incorrectly 

specifies the relationships between variables due to the presence of collinearity. As a result, the 

estimated coefficients may not accurately reflect the true causal relationships, leading to biased 

and misleading results. 

4.4 Collinearity of Various Social Vulnerability/Equity Models 

“Goodness” Measure #5- Correlation Analysis was undertaken by assessing all the 

models/datasets based on the collinearity of inputs (Table 11). Results were ranked lowest (1) 

to highest (7) based on the percentage of inputs that were correlated great than 0.7 or less 

than -0.7. Here, SVI was the best with no collinear inputs and the Georgetown model was the 

worst with 62.5% of inputs collinear with each other. See Table 15 and Table 16 for overall 

rankings across all measurable characteristics. 

Table 11. Collinearity of Social Vulnerability Indicator/Model Inputs. 

Model + Collinear Inputs Correlation  

SVI – 0 of 16 inputs are collinear  

SoVI – 3 of 31 (9.7%) are collinear  

% Speaking English < “Very Well” and % Hispanic Population 0.76 

% Social Security Beneficiaries and % of Population Under 5 Years or Over 65 Years 0.78 

Per Capita Income and % of Households Earning > $200,000 0.849 

TA&M (HRRC) Model – 1 of 17 (5.8%) are collinear  

% Unemployed and % of Population Under 5 Years of Age 0.831 

Georgetown Model – 5 of 8 (62.5%) are collinear  

Population Score and Housing Unit Score 0.754 

Population Score and Female Score 0.971 

Population Score and Under 18 Score 0.844 

Housing Unit Score and Female Score 0.761 

Female Score and Under 18 Score 0.833 

Non-White Score and Age over 65 Score 0.913 

EJ Screen – 1 of 7 (14.3%) are collinear  

% Unemployed and % of Population Under 5 Years of Age  0.831 

CJEST – 1 of 20 (5%) are collinear  
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Model + Collinear Inputs Correlation  

% Below 100% and % Below 200% Federal Poverty Line 0.903 

CVI – 4/28 (14.3%) are collinear  

% Low Income and % without Health Insurance 0.752 

% low Income and % Impoverished 0.784 

% without a High School Diploma and % without Health Insurance 0.771 

% without a High School Diploma and % Low Income 0.771 

 

4.5 Correcting for Collinearity 

To address collinearity in deductive models, researchers typically employ strategies similar to 

those used in statistical models. These include variable selection techniques, such as using 

stepwise regression or information criteria like AIC or BIC, to determine the most informative 

predictors to include in the model. Additionally, techniques like Principal Components Analysis 

(PCA) - the statistical model SoVI is built upon - can be utilized to create new variables that are 

less correlated and better capture the underlying variation in the data. Principle Components 

Analysis (PCA) is a technique implemented to address collinearity issues. PCA transforms a set 

of correlated variables into linearly uncorrelated components called principal components. 

These components are orthogonal to each other and capture the maximum amount of variation 

present in the original variables. By deriving these components, PCA effectively reduces the 

dimensionality of the data. PCA can help alleviate collinearity by creating linear combinations of 

the original variables that capture the majority of the variation. As a result, these new 

components are less correlated, making them suitable for regression analysis. By using principal 

components as predictors instead of the original variables, one can mitigate the collinearity 

problem and obtain more reliable coefficient estimates. 

“Goodness” Measure #6- Model based Correlation Correction was scored based on the use of 

statistical measures such as PCA or stepwise regression to correct for collinear data where a 

model was scored (1) if it does not correct for correlation or (7) if it corrects for correlation.  

Only SoVI, which uses PCA to combine inputs through a process where variables are 

transformed orthogonally through varimax rotation to correct for PCA. The other models either 

do not have a specific method for combination or combine variables in a deductive (straight line 

additive fashion) resulting in potential double counting variables that are co-linear. 

Table 12. Social vulnerability/equity models and their effect on co-linearity. 

Model Effect on Co-Linearity in input data 

SoVI ✓ Uses Principal components analysis which overcomes collinearity. 

SVI   Quasi-Hierarchical deductive model utilizing a straight-line additive method.  
Does not overcome collinearity. 

TA&M 
(HRRC) 

  Deductive model utilizing a straight-line additive method. Does not overcome 
collinearity. 

Georgetown   Deductive model utilizing a straight-line additive method. Does not overcome 
collinearity. 
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Additionally, PCA can assist in identifying the most influential variables. The principal 

components that explain the majority of the variation in the original data can be ranked in 

terms of their importance. This aids in variable selection and prioritization, allowing researchers 

to focus on the most informative predictors to include in their model. 

It is important to note that while addressing collinearity can improve the estimation and 

interpretation of coefficients in deductive models, it does not guarantee the establishment of 

causal relationships. Collinearity is just one of many factors that need to be considered when 

constructing deductive models, and researchers should ensure that their models are grounded 

in strong theoretical foundations and supported by rigorous empirical evidence. 

Although collinearity presents challenges in most of the models assessed herein, mainly 

because it can hamper estimation, interpretation, and inference of regression coefficients, SoVI 

offers a solution by transforming correlated variables into uncorrelated components, reducing 

dimensionality, and improving the reliability of the statistical analysis. PCA is a valuable tool in 

addressing collinearity and enhancing the quality of statistical models. 

4.6 Internal Consistency Analysis 

Cronbach's alpha is a measure of internal consistency reliability, which is used to assess how 

closely related a set of items in a questionnaire or scale are as a group. It quantifies the 

reliability or consistency of the measurements obtained from multiple items or indicators that 

are intended to measure the same construct. Cronbach's alpha ranges from 0 to 1, where a 

value closer to 1 indicates higher internal consistency or reliability. It is typically used in 

psychometrics and research to evaluate the interrelatedness of items and to determine if they 

are measuring the same underlying construct. 

Cronbach's alpha can tell us several things about data: 

1. Reliability: It indicates the extent to which the items or indicators consistently measure the 

same construct. A higher alpha value suggests greater internal consistency reliability, indicating 

that the items are cohesive and closely related. 

2. Homogeneity: Alpha helps assess the homogeneity or similarity among the items. A higher 

alpha indicates greater homogeneity, meaning that the items are more similar in content and 

are measuring the same construct. 

3. Suitability for Aggregation: If a set of items has high internal consistency (high alpha value), it 

suggests that the items can be combined to form a composite score. This aggregation can 

provide a more reliable and accurate representation of the construct being measured. 

Model Effect on Co-Linearity in input data 

EJSCREEN Raw Data Only.  No modeled outputs. Does not overcome collinearity. 

CJEST Raw Data Only.  No modeled outputs. Does not overcome collinearity. 
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4. Item Redundancy: Cronbach's alpha can also reveal whether some items within a 

questionnaire or scale are redundant or unnecessary. If removing an item increases the alpha 

value, it suggests that the item is not strongly related to the other items and may be redundant. 

Overall, Cronbach's alpha is a useful tool for examining the internal consistency and reliability 

of data obtained from multiple items or indicators. It helps researchers determine if their 

measures are reliable and consistent, and whether the items are measuring the desired 

construct effectively. This test may be very useful for some hard sciences where understanding 

how well model data is aligned conceptually. However, for social vulnerability measures – 

which are multi-faceted and manifest themselves differently in every place, one might argue 

that social vulnerability models should not be internally consistent and that any model with 

high internal consistency is only measuring social vulnerability on one facet at the expense of 

other important contributors. 

“Goodness” Measure #7- Internal Consistency can be viewed from two perspectives. Some 

think that all models should have high internal consistency in order to prove reliability with the 

idea that higher Cronbach’s Alpha scores across the various measures of social vulnerability and 

equity may help us understand which models have data measuring similar concepts. Others 

believe that lower Cronbach’s scores identify models that have a breadth of data aligned with 

social vulnerability indicators that transcend individual determinants (pillars) of social 

vulnerability and therefor are not internally consistent. These lower Cronbach’s Alpha scores 

often occur with research/baseline data aimed at understanding how social vulnerability is 

created before, during, or after disasters in multi-faceted ways. 

Here, both views of Cronbach’s were utilized to gain perspective on each model/dataset and 

resulted in opposite rankings depending on how one views internal consistency (higher is better 

vs lower is better. Table 13 shows that (depending on the perspective, CJEST and SoVI are 

either the best models (with the lowest Alphas) indicating that their inputs are capturing 

different concepts of social vulnerability or that they are the worst in that their inputs are not 

internally consistent. Each of these perspectives is played out in Table 15 and Table 16 

respectively so that users can see how the internal consistency may influence the overall 

“goodness” of any given model/dataset. 

Table 13. Social vulnerability/equity models ranked (low – high) by their internal consistency.   

Social 
Vulnerability / 
Equity Model 
Inputs 

Cronbach’s Alpha 
Score (0 – 1) 

Rank Based on 
Cronbach’s Alpha (Low = 
Good) 

Rank Based on Cronbach’s 
Alpha (High = Good) 

CJEST -0.000024 7 1 

SoVI  0.096 6 2 

Georgetown  0.596 5 3 

EJ Screen 0.612 4 4 

TA&M (HRRC)  0.726 3 5 
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Social 
Vulnerability / 
Equity Model 
Inputs 

Cronbach’s Alpha 
Score (0 – 1) 

Rank Based on 
Cronbach’s Alpha (Low = 
Good) 

Rank Based on Cronbach’s 
Alpha (High = Good) 

SVI 0.725 2 6 

CVI 0.741 1 7 

 

4.7 Regression Analysis 

The current work implements a mixture of exploratory and explanatory regression analysis to 

uncover how these different models of social vulnerability and equity are linked with underlying 

data from other models. In essence, we are interested in answering the question. “Can and how 

well do variables from one model predict the overall score from other models.”   

4.7.1 Background on Explanatory Regression Analysis 

Explanatory regression analysis, also known as multiple regression analysis, is a statistical 

technique used to examine the relationship between a dependent variable and multiple 

independent variables. It aims to understand how changes in the independent variables are 

associated with changes in the dependent variable. 

In explanatory regression analysis, the dependent variable is the variable of interest that is 

being explained or predicted, while the independent variables are the factors that may 

potentially explain or influence the values of the dependent variable. The goal of explanatory 

regression analysis is to estimate the regression coefficients, also known as the beta 

coefficients or regression weights, which represent the strength and direction of the 

relationship between the independent variables and the dependent variable. The analysis 

involves fitting a regression equation to the data, typically using least squares estimation, to 

find the best-fit line or curve that minimizes the difference between the observed data and the 

predicted values. The regression equation allows us to estimate the expected value of the 

dependent variable based on the values of the independent variables. 

Explanatory regression analysis provides several benefits: 

1. Prediction: It can be used to predict the values of the dependent variable based on known 

values of the independent variables. This is particularly useful when researchers want to 

forecast outcomes based on certain predictors. 

2. Explanation: It helps identify and quantify the relationships between the independent 

variables and the dependent variable. By analyzing the regression coefficients, researchers can 

determine which independent variables have a significant impact on the dependent variable 

and in what direction. 

3. Control: Regression analysis can be used to control for confounding factors or other variables 

that may influence the relationship between the independent and dependent variables. By 
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including these variables as additional independent variables in the regression model, 

researchers can isolate the specific effects of the variables of interest. 

4. Hypothesis Testing: Regression analysis allows researchers to test hypotheses about the 

relationships between variables. By examining the significance of the regression coefficients 

and performing hypothesis tests, researchers can determine whether the observed 

relationships are statistically significant. 

Overall, explanatory regression analysis is a powerful statistical tool for investigating the 

relationships between variables, predicting outcomes, and providing evidence for causal 

relationships. 

4.7.2 Background on Exploratory Regression Analysis 

Exploratory regression analysis is a statistical technique used to explore and understand the 

relationships between variables in a dataset. It is primarily focused on discovering patterns, 

associations, and potential relationships between the variables, rather than establishing a 

causal relationship or predicting future outcomes. 

The purpose of exploratory regression analysis is to generate hypotheses or initial insights 

about the relationships between variables, which can then be further investigated using more 

rigorous statistical methods, such as explanatory regression analysis. 

In exploratory regression analysis, there may not be a specific dependent variable that is being 

explained or predicted. Instead, the focus is on examining the relationships between all the 

variables in the dataset. Exploratory regression analysis involves visually exploring scatter plots, 

correlation matrices, and other graphical techniques to identify potential relationships and 

associations between variables. 

On the other hand, explanatory regression analysis specifically aims to explain or predict the 

values of a dependent variable using one or more independent variables. It involves fitting a 

regression model to the data and estimating the regression coefficients to quantitatively 

describe the relationships between the variables. 

While exploratory regression analysis is more focused on exploring and describing the 

relationships between variables, explanatory regression analysis is concerned with 

understanding and explaining the relationships, as well as making predictions or testing 

hypotheses about the variables. 

In summary, the key difference between exploratory and explanatory regression analysis lies in 

their goals and objectives. Exploratory regression analysis focuses on exploring and discovering 

relationships between variables, while explanatory regression analysis aims to explain, predict, 

and test hypotheses about the relationships between variables. 

Outcomes related to social vulnerability have largely been conceptual or qualitative. Answering 

the question, if you have high social vulnerability, you have higher {insert outcome measure 
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here} is not a simple task because tract level measure for the US are not readily available. 

Preliminary studies of these models’ predictive power related to 30 different health outcomes 

shows the SoVI is a better predictor than to the others. We can, however, assess how each 

model inputs predict the “scores” from each of the other models. Using regression analysis in 

this way provides us a simple way of understanding how the vulnerability indicators of one 

model explain the final score of another model. “Goodness” measure #8 was assessed by 

undertaking linear regressions of each model’s dataset’s inputs as the predictor and available 

model “final scores” as the dependent variable. Here, the model with the highest explanatory 

power would be a good candidate for use because it would capture the explanatory power 

present in other models. All the model Adjusted R2 were averaged and ranked low (1) to high 

(7) based on their ability to predict the other models’ scores. Here, we see that SoVI inputs 

have (both individually and on average) higher predictive power in most instances and the 

Georgetown inputs had the lowest predictive power. See Table 15 and Table 16 for overall 

rankings across all measurable characteristics. 

Table 14. Social vulnerability/equity models ranked (high = 7 to low = 1) by their average 
adjusted R2.   
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Rank 
(low = 1 
and 
high =7) 

SoVI -- -- 0.929 0.289 0.808 -- 0.726 0.688 7 

EJ Screen  .571 -- 0.729 0.072 0.708 -- 0.602 0.5364 2 

TA&M (HRRC)  0.609 -- -- 0.181 0.742 -- 0.667 0.5498 3 

Georgetown  0.423 -- 0.420 -- 0.361 -- 0.353 0.3893 1 

SVI Inputs 0.619 -- 0.866 0.153 -- -- 0.697 0.5838 5 

CJEST Inputs 0.625 -- 0.729 0.206 0.671 -- 0.685 0.5832 4 

CVI Inputs 0.558 -- 0.758 0.222 0.886 -- -- 0.6092 6 

 

4.8 Other “Goodness” Measures Determined in this Assessment. 

Several other measures of goodness are more qualitative in nature and will be discussed here, 

including: #9- Data Available; #10- GIS Data Available, #11- Update Frequency; and #12- Data 

Accessibility/Cost. Each was scored between 1 (Low) and 7 (High) based on the following 

criteria. 

“Goodness” Method #9 was scored (1) where no tabular data available via internet, (4) where 

tabular data available through VMAP or are not available from original develop for multiple 

concurrent years, and (7) where data available through original developer. Here, all models 

have data available via the internet, however only the SoVI model has data for multiple 

concurrent years. Although the CDC SVI has data, it is only available for 2014, 2016, 2018, and 
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2020 and not for odd years or for 202277. Both the HRRC and Georgetown model data is only 

available through VMAP other models have data only for one year.  

Similarly, “Goodness” Method #10 was scored (1) where no GIS data available via internet, (4) 

where GIS data available through VMAP or are not available from original develop for multiple 

concurrent years, and (7) where GIS data available through original developer. Here, all models 

except EJ Screen have GIS data available via the internet, however, like the tabular data, several 

models, including HRRC, Georgetown, and SVI only have yearly data available via the VMAP 

interface. CJEST and CVI have spatial data only for one year. 

“Goodness” Measure #11, update frequency as scored based on data updates as described in 

the websites and associated materials for each of these models. This method appraised each 

model/dataset and scored where no update schedule = 1, updated every 2 years = 4, updated 

annually = 7. Here, only those models maintained by UCF’s VMAP are updated annually. Of note, 

although the CDC SVI model is not updated annually by the original development team, it is updated 

annually by UCF’s VMAP team.  

Finally, “Goodness” Measure #12, accessibility in terms of costs is scored (for each 

model/dataset) where data/GIS costs to access = 1, method free but Time and Effort required to build 

and produce = 4, and data/GIS are free = 7). Here, all models linked with peer reviewed manuscripts 

were scored (4) and those without manuscripts but with free data were scored (7). Of note, VMAP has 

data for four of these models at a cost, but because the methods are available, and users can create 

these datasets from scratch with time and effort these were scored a 4. However, had these models 

(SoVI, HRRC, Georgetown, and SVI) been scored a (1) it would not have changed the rank of the overall 

scores seen in Table 15 and Table 16. 

5.0 Take Aways for Decision Makers 

This assessment provided an overview of seven leading models of social vulnerability or equity 

either used by the federal government of cited in official government documents as useful for 

understanding social vulnerability or equity. Each model was assessed based on twelve (12) 

different measures of model “goodness” in an attempt to create a matrix enabling decision 

makers to understand the range of utility and a composite score for each model/dataset. 

Table 15 and Table 16 provide the overview of scores for each model/dataset based on these 

measures of “goodness” and point toward one model (SoVI) as the leader across all these 

measures with the CDC SVI coming in 2nd. Of note, the CDC SVI score is high on some 

“goodness” measures because data and GIS are available via UCF’s VMAP application. Without 

the vulnerability mapping and analysis capabilities of VMAP, the CDC SVI model would score 

considerably lower in several categories and overall. 

 
77 As of the completion of this assessment. 
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Table 15. Social vulnerability/equity models and datasets ranked by various measures assessed 
in this report (where low internal consistency = good). 

“Goodness” Measure SoVI 
EJ 

Screen 
Georgetown 

TA&M 
(HRRC) 

CDC 
SVI 

CJEST CVI “Best” 

#1- Conceptually framed 
in peer-reviewed outlet - 
Ranked based on 
existence of peer 
reviewed article (1 = no, 7 
= yes) 

7 1 7 7 7 1 1 Tie  

#2- Number of Citations - 
Ranked lowest (1) to 
highest (7) based on 
number of citations 

7 3 6 1 5 2 4 SoVI 

#3- Number of Inputs - 
Ranked lowest (1) to 
highest (7) based on 
number of inputs 

7 1 2 4 3 5 6 SoVI 

#4- Visual Inspection of 
Accuracy Possible via web 
- Scored lowest to highest 
where (1= not available, 4 
= available through VMAP, 
7 = available through 
original developer) 

7 1 7 4 7 7 7 Tie 

#5- Correlation Analysis - 
Ranked lowest (1) to 
highest (7) based on the 
percentage of inputs that 
were correlated 

4 3 1 5 7 6 3 SVI 

#6- Model based 
Correlation Correction - 
Scored (1 = Does not 
correct for correlation, 7 = 
Corrects for correlation) 

7 1 1 1 1 1 1 SoVI 

#7- Internal Consistency - 
Ranked (Lowest Alpha = 7 
to Highest Alpha = 1) 

6 4 5 3 2 7 1 CVI 

#8- Exploratory/ 
Explanatory Regression 
Analysis - Ranked Highest 
Adj. R2 = 7 to lowest Adj. 
R2 = 1 

7 2 1 3 5 4 6 SoVI 

#9- Data provided via 
internet - Scored where 
no data available via 
internet = 1, single or non-

7 3 4 4 4 3 3 SoVI 
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“Goodness” Measure SoVI 
EJ 

Screen 
Georgetown 

TA&M 
(HRRC) 

CDC 
SVI 

CJEST CVI “Best” 

concurrent year data 
available through original 
developers = 3, data 
available through VMAP 
for concurrent years = 4, 
data available through 
original developer for 
concurrent years = 7  

#10- GIS data provided for 
visual comparison - Scored 
where no GIS data 
available via internet = 1, 
single or non-concurrent 
year GIS data available 
through original 
developers = 3, data 
available through VMAP 
for concurrent years = 4, 
data available through 
original developer for 
concurrent years = 7  

7 1 4 4 4 3 3 SoVI 

#11- Update frequency - 
Scored where no update 
schedule = 1, updated 
every 2 years via original 
developer = 3, updated 
every year by VMAP = 4, 
updated annually = 7  

7 1 7 7 4 1 1 Tie 

#12- Accessibility - Scored 
where data/GIS costs to 
access = 1, method free 
but Time and Effort 
required to build and 
produce, and data/GIS are 
free = 7  

4 7 4 4 7 7 7 Tie 

Overall Score 77 28 49 47 56 47 43 SoVI 
*Lowest Cronbach’s Alpha Scores represent “goodness” in the model/data 
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Table 16. Social vulnerability/equity models and datasets ranked by various measures assessed 
in this report (where high internal consistency = good). 

“Goodness” Measure SoVI 
EJ 

Screen 
Georgetown 

TA&M 
(HRRC) 

CDC 
SVI 

CJEST CVI “Best” 

#1- Conceptually framed in 
peer-reviewed outlet - Ranked 
based on existence of peer 
reviewed article (1 = no, 7 = 
yes) 

7 1 7 7 7 1 1 Tie  

#2- Number of Citations - 
Ranked lowest (1) to highest 
(7) based on number of 
citations 

7 3 6 1 5 2 4 SoVI 

#3- Number of Inputs - 
Ranked lowest (1) to highest 
(7) based on number of inputs 

7 1 2 4 3 5 6 SoVI 

#4- Visual Inspection of 
Accuracy Possible via web - 
Scored lowest to highest 
where (1= not available, 4 = 
available through VMAP, 7 = 
available through original 
developer) 

7 1 7 4 7 7 7 Tie 

#5- Correlation Analysis - 
Ranked lowest (1) to highest 
(7) based on the percentage 
of inputs that were correlated 

4 3 1 5 7 6 3 SVI 

#6- Model based Correlation 
Correction - Scored (1 = Does 
not correct for correlation, 7 = 
Corrects for correlation) 

7 1 1 1 1 1 1 SoVI 

#7- Internal Consistency - 
Ranked (Lowest Alpha = 1 to 
Highest Alpha = 7) 

2 5 3 5 6 1 7 CVI 

#8- Exploratory/ Explanatory 
Regression Analysis - Ranked 
Highest Adj. R2 = 7 to lowest 
Adj. R2 = 1 

7 2 1 3 5 4 6 SoVI 

#9- Data provided via internet 
- Scored where no data 
available via internet = 1, 
single or non-concurrent year 
data available through original 
developers = 3, data available 
through VMAP for concurrent 
years = 4, data available 

7 4 4 4 4 4 4 SoVI 
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“Goodness” Measure SoVI 
EJ 

Screen 
Georgetown 

TA&M 
(HRRC) 

CDC 
SVI 

CJEST CVI “Best” 

through original developer for 
concurrent years = 7  

#10- GIS data provided for 
visual comparison - Scored 
where no GIS data available 
via internet = 1, single or non-
concurrent year GIS data 
available through original 
developers = 3, data available 
through VMAP for concurrent 
years = 4, data available 
through original developer for 
concurrent years = 7  

7 1 4 4 4 3 3 
SoVI, 
SVI 

#11- Update frequency - 
Scored where no update 
schedule = 1, updated every 2 
years via original developer = 
3, updated every year by 
VMAP = 4, updated annually = 
7  

7 1 7 7 4 1 1 SoVI 

#12- Accessibility - Scored 
where data/GIS costs to 
access = 1, method free but 
Time and Effort required to 
build and produce, and 
data/GIS are free = 7  

4 7 4 4 7 7 7 Tie 

Overall Score 73 30 47 49 60 42 50 SoVI 

*Highest Cronbach’s Alpha Scores represent “goodness” in the model/data 

 

Beyond the “Goodness” measures assessed herein, decision makers may also be interested in 

several aspects related to model accuracy, precision, internal consistency, robustness, and 

other tests that were not carried out in this assessment. These factors are important in 

assessing the reliability and usefulness of a model for decision-making purposes. Here are some 

key considerations: 

- Accuracy: Decision makers should consider the overall accuracy of the model in making 

predictions or estimating outcomes. This involves assessing how closely the model's 

predictions align with the actual observed values. High accuracy indicates that the 

model is reliable and trustworthy. 

- Precision: Precision refers to the level of detail and granularity in the model's 

predictions or estimates. Decision makers should evaluate the model's precision in 

order to understand its ability to provide specific and detailed information. A more 
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precise model can provide valuable insights and facilitate more informed decision-

making. 

- Internal consistency: Decision makers should assess the internal consistency of the 

model. This refers to the alignment and coherence between different components or 

variables within the model. Inconsistencies or contradictions within the model can 

undermine its reliability and make it difficult to trust its outputs. 

- Robustness: Decision makers should evaluate the robustness of the model by testing its 

performance under different scenarios or assumptions. Robustness analysis helps 

determine if the model's predictions or estimates hold up well across various conditions 

and inputs. A robust model is more likely to provide reliable insights for decision-

making. 

- Reliability: Decision makers should evaluate the reliability of the model by assessing its 

consistency and dependability. This involves examining whether the model consistently 

produces similar results when applied to the same inputs or under similar conditions. A 

reliable model is one that can be trusted to generate consistent and repeatable 

outcomes, ensuring that decisions based on the model are reliable and consistent as 

well. 

- Explanatory Power: Decision makers should also consider the model's ability to explain 

the relationships and factors underlying the phenomenon being modeled. A model with 

high explanatory power can help decision makers understand the key variables and 

mechanisms driving the outcomes of interest. This understanding aids in decision-

making, as it enables decision makers to identify the most influential factors and make 

more informed choices. 

- Other tests: Decision makers should consider additional tests or evaluations specific to 

their domain or context. These could include sensitivity analysis, validation against 

known benchmarks or industry standards, and comparison with alternative models or 

approaches. These tests help verify the model's validity and provide additional 

confidence in its outputs. 

Reliability and explanatory power complement accuracy, precision, internal consistency, and 

robustness in assessing model quality and usefulness. Decision makers should seek models that 

exhibit all these qualities to enhance their confidence in the model's predictions or estimates 

and enable more effective decision-making. Ultimately, decision makers should ensure that the 

model they rely on is accurate, precise, internally consistent, and robust. Regularly updating 

and refining the model based on new data and insights is also crucial to maintaining its 

relevance and usefulness in decision-making processes. 
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