Pervious Concrete Pavement for Stormwater Management

Thomas P. Ballestero
University of New Hampshire, tom.ballestero@unh.edu

James J. Houle
University of New Hampshire, James.Houle@unh.edu

Robert M. Roseen
University of New Hampshire

Follow this and additional works at: https://scholars.unh.edu/stormwater

Recommended Citation

https://scholars.unh.edu/stormwater/26

This Article is brought to you for free and open access by the Research Institutes, Centers and Programs at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in UNH Stormwater Center by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Benefits and Uses

Pervious Concrete Can Be Used In Place of Traditional Stormwater Management Measures Given The Proper Site Conditions. The Primary Advantages Include:

- Quantity and Flood Control
- Water Quality Treatment
- Recharges Groundwater
- Reduction in Stormwater Infrastructure (Piping, Catch-Basins, Ponds, Curbing, etc.)
- Suitable for Cold-Climate Applications, Maintains Recharge Capacity When Frozen
- No Standing Water or Black Ice Development During Winter Weather Conditions
- Maintains Traction While Wet
- Reduced Surface Temperatures; Minimizes the Urban Heat Island Effect
- Extended Pavement Life Due to Well Drained Base and Reduced Freeze-Thaw
- Less Lighting Needed Due to Highly Reflective Pavement Surface

Limitations

- Requires Routine (Quarterly) Vacuum Sweeping (Vacuum-Assisted Dry Sweeper Only)
- Requires a Certified Pervious Concrete Craftsman On-site During Installation
- Proper Soil Stabilization and Erosion Control are Required to Prevent Clogging
- Quality Control for Material Production and Installation are Essential for Success
- Concrete Must Cure Under Plastic for 7-Days After Installation

Cost & Maintenance

Total Project Cost is Comparable for Pervious Concrete with Reduced Stormwater Infrastructure VS. Standard Pavement Applications where Stormwater Infrastructure is Required

- Materials Cost is ~25% More Than Traditional Concrete
- Need for Skilled Craftsman Increases Installation Costs
- Long-term Maintenance is Required by Routine Quarterly Vacuum Sweeping
- Sweeping Cost May Be Off-set by Possible Reduction in Deicing Costs
- Repairs Can be Made with Standard Concrete (Not to Exceed 10% of Surface Area)

Design Criteria

- Soil Permeability is Recommended Between 0.25 - 3.0 Inches Per Hour
- Recommended Drainage Time of 24-48 Hours
- Sub-Drains Should be Used Where Proper Drainage May be an Issue to Minimize Frost Damage
- Most Appropriate for Use with Parking Lots, Low-Use Roadways, and Sidewalks
- 3-5 Feet of Vertical Separation is Needed from Seasonal High Groundwater

Typical Cross-Section

![Typical Cross-Section](image)

Additional Resources

- The UNH Stormwater Center, Pervious Concrete Specs, http://www.unh.edu/erg/cstev/