5-25-2017

Genome Sequencing of a Marine Spirillum, Oceanospirillum multiglobuliferum ATCC 33336T, from Japan

Joshua G. Carney
University of New Hampshire, Manchester

Ariel M. Trachtenberg
University of New Hampshire, Manchester

Bruce A. Rheaume
University of New Hampshire, Manchester

Joshua D. Linnane
University of New Hampshire, Manchester

Natalie L. Pitts
Colorado State University

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/unhmbiology_facpub

Recommended Citation
Genome Sequence of a Marine Spirillum, Oceanospirillum multiglobuliferum ATCC 33336T, Isolated from Japan

Joshua G. Carney, Ariel M. Trachtenberg, Bruce A. Rheaume, Joshua D. Linnane, Natalie L. Pitts, Donald L. Mykles, Kyle S. MacLea

Biology Program, University of New Hampshire, Manchester, New Hampshire, USA; Department of Biology, Colorado State University, Fort Collins, Colorado, USA; Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA; Department of Life Sciences, University of New Hampshire, Manchester, New Hampshire, USA

ABSTRACT Oceanospirillum multiglobuliferum ATCC 33336T is a motile gammaproteobacterium with bipolar tufted flagella, noted for its low salt tolerance compared to other marine spirilla. This strain was originally isolated from the putrid infusions of Crassostrea gigas near Hiroshima, Japan. This paper presents a draft genome sequence for O. multiglobuliferum ATCC 33336T.

Oceanospirillum multiglobuliferum ATCC 33336T (=strain OF1 or IFO 13614T) is a Gram-negative, strictly aerobic, motile gammaproteobacterium. O. multiglobuliferum (basionym Spirillum multiglobuliferum Terasaki 1973) was originally isolated from putrid infusions of the Pacific oyster, Crassostrea gigas, on a beach near Hiroshima, Japan, and shows variable morphology, with coccolid bodies predominant after 24 to 48 h of growth (1). Close relatives include Oceanospirillum linum, Oceanospirillum beijerinkii, Oceanospirillum maris, and Oceanospirillum nioese (1–4).

O. multiglobuliferum is a halophile but has the lowest tolerance for salt in Oceanospirillum, growing in 0.5% to 4% (wt/vol) NaCl-containing peptone medium (1). It uses a wide variety of molecules as sole carbon sources, including acetate, propionate, butyrate, succinate, and pyruvate; grows weakly in ethanol, n-propanol, and n-butanol; and can use ammonium ions as a sole nitrogen source (1).

O. multiglobuliferum was obtained from ATCC 33336T in freeze-dried form, rehydrated, and grown in marine peptone broth at 30°C for 72 h at 1 atm. Isolated colonies on marine peptone agar plates were picked and grown in marine peptone broth, and the Genomic-tip 500/G kit (Qiagen, Valencia, CA, USA) was used to prepare genomic DNA (gDNA) from the culture. gDNA was fragmented and tagged using the Nextera DNA library prep kit (Illumina, San Diego, CA, USA) and sequenced on an Illumina HiSeq 2500 instrument, generating 250-bp paired-end reads (Hubbard Center for Genome Studies, Durham, NH, USA). Bioinformatic removal of adapter tag sequences was performed using Trimomatic (5).

Sequencing resulted in a total of 9,428,123 reads. Reads were assembled using SPAdes version 3.6.2 (6) into 509 total contigs, and the assembly was analyzed using QUAST version 2.3 (7). After annotation with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) process (8), the assembly had a total length of 3,728,987 bp and an average coverage of 378×. The largest contig was 329,238 bp, with an N50 value of 149,564 bp. The estimated total genomic G+C content was 45.35%, very close to published values of 46.1% (1) and 45% (3,9).

PGAP identified a total of 3,580 genes, 3,413 coding sequences (CDSs), 76 RNA genes, 91 pseudogenes, and 3 clustered regularly interspaced short palindromic repeat (CRISPR) arrays in the O. multiglobuliferum genome. Prior to submission of the final

Received 31 March 2017 Accepted 4 April 2017 Published 25 May 2017

Citation Carney JG, Trachtenberg AM, Rheaume BA, Linnane ID, Pitts NL, Mykles DL, MacLea KS. 2017. Genome sequence of a marine spirillum, Oceanospirillum multiglobuliferum ATCC 33336T, isolated from Japan. Genome Announc. 5:e00396-17. https://doi.org/10.1128/genomeA.00396-17.

Copyright © 2017 Carney et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Kyle S. MacLea, kyle.maclea@unh.edu.
Another O. multiglobuliferum genome was deposited in GenBank by the Joint Genome Institute (JGI) (BioSample SAMN02745127, with project accession no. FUXG00000000 and version number FUXG01000000), which was 3,512,709 bp in length, with an N50 value of 139,127 bp and 3,141 predicted CDSs. Although lower in predicted CDSs, the richness of the JGI assembly was notably increased: hypothetical proteins were reduced from 1,506 in our assembly to 454 hypotheticals in the JGI genome. Spot-checked genes were found to be identical, consistent with their original provenance from the same ATCC 33336T strain. The completion of 2 quality genomes for O. multiglobuliferum will enable effective comparisons with O. maris DSM 6286 (BioSample no. SAMN02440652), O. beijerinckii DSM 7166 (BioSample no. SAMN02441143), and the recently sequenced O. linum.

Accession number(s). This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession no. MTSM00000000. The version described in this paper is version MTSM01000000.

ACKNOWLEDGMENTS

Sequencing was undertaken at the Hubbard Center for Genome Studies at UNH with the kind assistance of Kelley Thomas, Jordan Ramsdell, and Stephen Simpson. The following underwriters of SciFund Challenge 2 graciously and generously supported this work: Robert and Lorraine MacLea, Edwin Anderson, Jennifer MacLea, Peter Harmon, Annuka Pasi, Francis Portland, Gilbert and Jeanne Slater, and the poet K. P. Anderson. This work was a project of the Microbiology Education through Genome Annotation-New Hampshire (MEGA-NH) program.

The Biology program at UNH Manchester provided funds for sequencing. Funding awarded to K.S.M. from SciFund Challenge 2 (2012) also contributed to the supply and sequencing costs for this project. The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

