A Genome Sequence of Oceanimonas doudoroffii ATCC 27123T

Marc A. Brennan
University of New Hampshire, Manchester

Ariel M. Trachtenberg
University of New Hampshire, Manchester

William D. McClelland
University of New Hampshire, Manchester

Kyle S. MacLea
University of New Hampshire, Manchester, kyle.maclea@unh.edu

Follow this and additional works at: https://scholars.unh.edu/unhmbiology_facpub

Comments

This is an article published by American Society for Microbiology in Genome Announcements in 2017, available online: https://dx.doi.org/10.1128/genomeA.00996-17

Recommended Citation

This Article is brought to you for free and open access by the Life Sciences at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Life Sciences Faculty Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact Scholarly.Communication@unh.edu.
Genome Sequence of *Oceanimonas doudoroffii* ATCC 27123T

Marc A. Brennan,a Ariel M. Trachtenberg,b William D. McClelland,b Kyle S. MacLea,a,b,c

Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA; Biology Program, University of New Hampshire, Manchester, New Hampshire, USA; Department of Life Sciences, University of New Hampshire, Manchester, New Hampshire, USA

ABSTRACT *Oceanimonas doudoroffii* ATCC 27123T is an obligately aerobic Gram-negative rod of the class Gammaproteobacteria. It was first isolated from surface seawater off the coast of Oahu, HI, USA, in 1972. The predicted genome size is 3,832,938 bp (G+C content, 60.03%), which contains 3,524 predicted coding sequences.

Oceanimonas doudoroffii strain 70 (ATCC 27123T) is a Gram-negative obligately aerobic straight-rod marine bacterium that is motile by means of 1 to 3 flagella at each pole (1, 2). This gammaproteobacterial species was first isolated from surface seawater off the coast of Oahu, HI, USA, by Baumann et al. in 1972, along with other nonfermentative marine bacteria then thought to be pseudomonads (1). A wholesale reclassification based on DNA-rRNA hybridization methods (3) suggested that about two-thirds of *Pseudomonas* species were misclassified. Brown et al. placed *Pseudomonas doudoroffii* ATCC 27123T in a new genus, *(Oceanomonas)* (4), with spelling later corrected to *Oceanimonas* (5). *Oceanimonas doudoroffii* strain 70 (ATCC 27123) was designated the type strain for the genus, and strain GB6 was given the name *Oceanimonas baumannii* ATCC 700832 as the type strain for its species (4). In 2005, a third novel *Oceanimonas* species was discovered, *Oceanimonas smirnovii*, with strain ATCC BAA-899 (6).

O. doudoroffii is a chemoorganotroph that can grow at temperatures from 10 to 40°C (4) and requires seawater/sodium ions for growth (2), although only up to 5% NaCl (6). *O. doudoroffii* is catalase and oxidase positive, accumulates polyhydroxybutyrate (PHB), and is capable of growing on benzoate or \(p \)-hydroxybenzoate to degrade catechol or protocatechuate by means of \(o \)-cleavage (1).

O. doudoroffii ATCC 27123T was purchased from the ATCC (Manassas, VA, USA) in freeze-dried form, rehydrated, and grown in marine broth or agar (ATCC medium 2216) at 26°C for 24 h at atmospheric pressure. After successful growth, a single colony was cultured in log phase, and genomic DNA (gDNA) was isolated using the Genomic-tip 500/G kit (Qiagen, Valencia, CA, USA). gDNA was fragmented, ligated with adapters using the Nextera DNA library prep kit (Illumina, San Diego, CA, USA), and sequenced with 250-bp paired-end reads on an Illumina HiSeq 2500 platform at the Hubbard Center for Genome Studies (Durham, NH, USA). Trimmomatic was used for computational removal of adapter sequences and small fragments (7).

The draft genome of *O. doudoroffii* was assembled using SPAdes version 3.8.0 (8) into 19 final trimmed contigs. These contigs had a total length of 3,832,938 bp and an average coverage of 66.3× (9). The \(N_{10} \) value and largest contig found was 2,085,234 bp, with a G+C% of 59.79% for this single large contig. The G+C results for the genome and largest contig are in close agreement with previous reports of G+C contents by CsCl gradient, 59.7% (1), 59% (6), and 58 to 60% (2), with less agreement with the previous report by the high-performance liquid chromatography (HPLC) method, at 54% (4).

Received 9 August 2017 Accepted 10 August 2017 Published 7 September 2017 Citation Brennan MA, Trachtenberg AM, McClelland WD, MacLea KS. 2017. Genome sequence of *Oceanimonas doudoroffii* ATCC 27123T. Genome Announc 5:e00996-17. https://doi.org/10.1128/genomeA.00996-17. Copyright © 2017 Brennan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Address correspondence to Kyle S. MacLea, kyle.maclea@unh.edu.
The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) process (9) was used to find and assign names to the genes in the genome. PGAP labeled a total of 3,627 genes, 3,540 coding sequences (CDSs), 87 RNA genes, 16 pseudogenes, and 1 clustered regularly interspaced short palindromic repeat (CRISPR) array. Notably, a copy of the 16S rRNA was not found, although six copies of the 5S and three copies of the 23S rRNA were identified.

Accession number(s). This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession no. NBIM00000000. The version described in this paper is version NBIM01000000.

ACKNOWLEDGMENTS

Sequencing was undertaken at the Hubbard Center for Genome Studies at the University of New Hampshire (UNH) with the kind assistance of Kelley Thomas and Jordan Ramsdell for bioinformatics and Stephen Simpson for sample handling and processing. K.S.M. acknowledges Duncan MacLea and Annabelle MacLea for insightful discussions. This work was a project of the Microbiology Education through Genome Annotation–New Hampshire (MEGA-NH) program.

The Department of Life Sciences at UNH Manchester provided funds for sequencing. The funders had no role in the study design, data collection, or interpretation or in the decision to submit the work for publication.

REFERENCES