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######################################## PART 1 Basics and 
Preliminaries
######################################## PART 1 Basics and 
Preliminaries
######################################## PART 1 Basics and 
Preliminaries
######################################## PART 1 Basics and 
Preliminaries

#               SOME BEGINNING FILES, DOCUMENTATION, STARTING COMMANDS
#               SOME BEGINNING FILES, DOCUMENTATION, STARTING COMMANDS
#               SOME BEGINNING FILES, DOCUMENTATION, STARTING COMMANDS
#               SOME BEGINNING FILES, DOCUMENTATION, STARTING COMMANDS

# NOTE BENE: You will need to change the commented line below that 
begins "# setwd" to indicate 
# a valid directory in which you would like to work (if you have not 
done so already). 
# To do so, remove the number sign and insert the revised computer 
address of the working directory
# of your choice.
setwd ("C:/Users/jdmayer/Box Sync/SFW/BMIS/2018-07-20-BMISAnly")

######################## We'll redirect this week's work to an output 
file called "outputfile.txt"
######################## You'll still see output in the console, but 
it will also go to that output file.

#the output file ensures all the output will be preserved
sink("outputfile.txt")

#               TABLE OF DATA FILES FOR THIS CODE
#               TABLE OF DATA FILES FOR THIS CODE
#               TABLE OF DATA FILES FOR THIS CODE
#               TABLE OF DATA FILES FOR THIS CODE

# Throughout this code I will be manipulating data and creating new 
data "objects"
# That said, a few files will be employed repeatedly. These are: 

# Data file name      Data file description
# BMIS1998R.txt       starting file from Mayer & Gaschke 1999, 465 
cases
# dtorig              the object (aka, data.frame), or (in this case) 
matrix that BMIS1998R.txt is read into 
# dtfactr             the dtitms file with missing data removed (i.e.,
all participants with  



#                     complete responses for the 16 items), and ready 
for correlational/factor analysis

#               LOAD PACKAGES USED IN THIS CODE
#               LOAD PACKAGES USED IN THIS CODE
#               LOAD PACKAGES USED IN THIS CODE
#               LOAD PACKAGES USED IN THIS CODE

# A list of the packages to find, copy and load in 
# order to carry out what we need to do follows

# "psych"       The psych package allows us a convenient means of 
carrying out basic exploratory factor analyses
# "lavaan"      Lavaan allows for confirmatory factor analysis

install.packages("SparseM")
library(SparseM)
install.packages("car")
library(car)
install.packages("psych")
library(psych)
install.packages("lavaan")
library(lavaan)
install.packages("GPArotation")
library(GPArotation)

#                READ IN DATA FILE AND LOOK AT IT
#                READ IN DATA FILE AND LOOK AT IT
#                READ IN DATA FILE AND LOOK AT IT
#                READ IN DATA FILE AND LOOK AT IT
#                READ IN DATA FILE AND LOOK AT IT

# read in data file
dtorig <- read.table("BMIS1998R.txt", header = TRUE, sep="")

#see the beginning of the file
head (dtorig)

#see the end of the file
tail (dtorig)

#                SUMMARIZE THE DATA
#                SUMMARIZE THE DATA
#                SUMMARIZE THE DATA
#                SUMMARIZE THE DATA

#find some descriptive statistics for the data



summary (dtorig)

#                BUILD SOME VARIATIONS OF THE DATA FILE
#                BUILD SOME VARIATIONS OF THE DATA FILE
#                BUILD SOME VARIATIONS OF THE DATA FILE
#                BUILD SOME VARIATIONS OF THE DATA FILE

# set up the "dtritems" file--a copy of dtorig that will hold re-coded
items
dtritems <-(dtorig)

#                CREATE REVERSE-SCORED VERSIONS OF THE 16 MOOD ITEMS
#                CREATE REVERSE-SCORED VERSIONS OF THE 16 MOOD ITEMS
#                CREATE REVERSE-SCORED VERSIONS OF THE 16 MOOD ITEMS
#                CREATE REVERSE-SCORED VERSIONS OF THE 16 MOOD ITEMS
#                CREATE REVERSE-SCORED VERSIONS OF THE 16 MOOD ITEMS
#                CREATE REVERSE-SCORED VERSIONS OF THE 16 MOOD ITEMS

# start by copying lively into its own vector (a column)
vlively <-dtorig[,'lively']

# look at the result
head (vlively)

# reverse code it and look at it to make sure it is right  
rlively = recode(vlively, '1=4; 2=3; 3=2; 4=1')
head (rlively)

# now add the new vector into a new datafile
# the dollar sign in the next command is shorthand for a column in dt2
dtritems$rlively <- rlively   

# repeat process for remaining 15 adjectives
vhappy <-dtorig[,'happy']
vsad <-dtorig[,'sad']
vtired <-dtorig[,'tired']
vcaring <-dtorig[,'caring']
vcontent <-dtorig[,'content']
vgloomy <-dtorig[,'gloomy']
vjittery <-dtorig[,'jittery']
vdrowsy <-dtorig[,'drowsy']
vgrouchy <-dtorig[,'grouchy']
vpeppy <-dtorig[,'peppy']
vnervous <-dtorig[,'nervous']
vcalm <-dtorig[,'calm']
vloving <-dtorig[,'loving']
vfedup <-dtorig[,'fedup']



vactive <-dtorig[,'active']

rhappy = recode(vhappy, '1=4; 2=3; 3=2; 4=1')
rsad = recode(vsad, '1=4; 2=3; 3=2; 4=1')
rtired = recode(vtired, '1=4; 2=3; 3=2; 4=1')
rcaring = recode(vcaring, '1=4; 2=3; 3=2; 4=1')
rcontent = recode(vcontent, '1=4; 2=3; 3=2; 4=1')
rgloomy = recode(vgloomy, '1=4; 2=3; 3=2; 4=1')
rjittery = recode(vjittery, '1=4; 2=3; 3=2; 4=1')
rdrowsy = recode(vdrowsy, '1=4; 2=3; 3=2; 4=1')
rgrouchy = recode(vgrouchy, '1=4; 2=3; 3=2; 4=1')
rpeppy = recode(vpeppy, '1=4; 2=3; 3=2; 4=1')
rnervous = recode(vnervous, '1=4; 2=3; 3=2; 4=1')
rcalm = recode(vcalm, '1=4; 2=3; 3=2; 4=1')
rloving = recode(vloving, '1=4; 2=3; 3=2; 4=1')
rfedup = recode(vfedup, '1=4; 2=3; 3=2; 4=1')
ractive = recode(vactive, '1=4; 2=3; 3=2; 4=1')

# now add the columns into the new data.frame (object) dtritems
# and check the result
dtritems$rhappy <- rhappy
dtritems$rsad <- rsad
dtritems$rtired <- rtired
dtritems$rcaring <- rcaring
dtritems$rcontent <- rcontent
dtritems$rgloomy <- rgloomy
dtritems$rjittery <- rjittery
dtritems$rdrowsy <- rdrowsy
dtritems$rgrouchy <- rgrouchy
dtritems$rpeppy <- rpeppy
dtritems$rnervous <- rnervous
dtritems$rcalm <- rcalm
dtritems$rloving <- rloving
dtritems$rfedup <- rfedup
dtritems$ractive <- ractive

head (dtritems)
tail (dtritems)

#                                          HANDLE MISSING DATA  
#                                          HANDLE MISSING DATA  
#                                          HANDLE MISSING DATA  
#                                          HANDLE MISSING DATA  
#                                          HANDLE MISSING DATA  
#                                          HANDLE MISSING DATA  

# This creates a new version of the datafile, dtfactr in which only 
the test items are included



# and only those with no missing data
# Omit subjno, age, sex, and overall (latter because all the data is 
missing)
dttemp1 <-subset(dtorig, select=-c(group, subjno, age, sex, overall))
head (dttemp1)

# Now ready to create dtfactr--basically, a file of complete items, by
removing the remaining cases with missing data and describe it
dtfactr <- na.omit(dttemp1)
describe(dtfactr)

ct <-(fa(dtfactr,2))

# If I use "summary" to summarize the data, I notice it lacks an 
overall N, so I'll switch to "describe" from psych
summary (dtfactr)
describe(dtfactr)

# The describe function (from "psych" has a specific argument for 
handling missing data. So, I could
# use the "describe" function itself to see what the original (and 
reverse-coded) data looks like
# when excluding the missing data. 
describe (dtritems, na.rm = TRUE, check=TRUE)

############################################################# PART 2 
Correlations and Reliabilities 
############################################################# PART 2 
Correlations and Reliabilities 
############################################################# PART 2 
Correlations and Reliabilities 
#                        CORRELATIONAL ANALYSES
#                        CORRELATIONAL ANALYSES
#                        CORRELATIONAL ANALYSES
#                        CORRELATIONAL ANALYSES

# Using what we have learned, let's conduct some correlational 
analyses
# First, I'll copy four variables--the targeted items--into a 
data.frame using the select command
# I make sure one is reverse-scored. I want to double-check that it 
correlates r = -1.o with its original version
# the new data object will be "dt4corrs" or, data "for" correlations

dt4corrs <-subset(dtfactr, select=c(happy, lively, active, rlively))
describe (dt4corrs)
cor (dt4corrs)



# Or, you can use the function from the psych package--"use" is a 
missing values option
# Remember that R is case sensitive
lowerCor(dt4corrs, digits=2, use="pairwise")

#                        RELIABILITY ANALYSES
#                        RELIABILITY ANALYSES
#                        RELIABILITY ANALYSES
#                        RELIABILITY ANALYSES

#Now, let's find the reliability of the pleasant-unpleasant scale. 
# According to Mayer & Gashke (1988), the scale is composed of
# active, calm caring, content, happy, lively, loving and peppy, and 
(reversed)
# drowsy, fedup, gloomy, grouchy, jittery, nervous, sad, and tired. 
The reliability is supposed
# to be .83 according to the article. Is it?
# To find out, we'll first set up a file with the targeted items.

plsunp <-subset(dtritems, select=c(active, calm, caring, content, 
happy, lively, loving,
                                   peppy, rdrowsy, rfedup, rgloomy, 
rgrouchy, rjittery, rnervous, rsad, rtired))
head (plsunp)

#and now, the alpha

alpha(plsunp)

# Note 1: The default is to use pairwise correlations when missing 
data is present
# Note 2: Although we created reverse-scored versions of the items 
ourselves, in the alpha
# procedure you can use the "keys" argument to reverse-key items like 
this:
# First, you set up a new data file with the 16 original items.
plsunp2 <-subset(dtritems, select=c('lively', 'happy', 'sad', 'tired',
'caring', 
                                    'content', 'gloomy', 'jittery', 
'drowsy', 'grouchy', 
                                    'peppy', 'nervous', 'calm', 
'loving', 'fedup', 'active'))

# Second, set up a vector of columns to be reversed:
reversethese <- c('drowsy', 'fedup', 'gloomy', 'grouchy', 'jittery', 
'nervous', 'sad', 'tired')

# Third, run alpha with the additional argument as shown:



alpha(plsunp2, keys=reversethese)

######################################################################
# PART 3 Saving a handy file
######################################################################
# PART 3 Saving a handy file
######################################################################
# PART 3 Saving a handy file

#                        OUTPUT FILES WE WOULD LIKE TO KEEP
#                        OUTPUT FILES WE WOULD LIKE TO KEEP
#                        OUTPUT FILES WE WOULD LIKE TO KEEP
#                        OUTPUT FILES WE WOULD LIKE TO KEEP

# direct output to a file in the working directory, then read it back 
in again and check it
head (dtritems)
write.table(dtritems, "dtritems_BMIS_N=465.txt", append=FALSE)
write.table(dtritems, "dtritems_BMIS_N=465.txt", append=FALSE)
checkfile <- read.table("dtritems_BMIS_N=465.txt", header = TRUE, 
sep="")
head (checkfile) 
################################################################# PART
2 Factor Analysis
################################################################# PART
2 Factor Analysis
################################################################# PART
2 Factor Analysis
################################################################# PART
2 Factor Analysis

# Here, I'll demonstrate a few prelimnaries recommended by William 
Revelle, the author of "Psych"
# that definitely have a fun aspect to them.
# 1. pairs.panels creates a rather weird talbe with the correlations 
in the upper triangular portion
# of the matrix and thumbnail scatterplots of each correlation in the 
lower triangular portion
# 2. lowerCor is just the correlation matrix (I would generally have 
looked at this early-on)
# 3. corPLot creates a heat-map believe it or not of the correlations 
(the most fun)
# Revelle also suggests iclust, a cluster analysis, but we are doing 
factor analysis here, and that is
# a different approach so I don't include it here, although if you are
interested it is iclust(r.mat=dtfactr)
# Honorable mention, but more complex to implement/explain right away,
is a bifactor model via the 



# coefficient omega approach "> omega(dtfactr)" that checks for a 
hierarchical model.

pairs.panels(dtfactr)
lowerCor(dtfactr)
corPlot(dtfactr)
# finally, a parallel plot to illustrate the possible number of 
factors
fa.parallel(dtfactr[1:6], main="Parallel analysis of BMIS")

#                                                   EXPLORATORY FACTOR
ANALYSIS
#                                                   EXPLORATORY FACTOR
ANALYSIS
#                                                   EXPLORATORY FACTOR
ANALYSIS
#                                                   EXPLORATORY FACTOR
ANALYSIS
#                                                   EXPLORATORY FACTOR
ANALYSIS
#                                                   EXPLORATORY FACTOR
ANALYSIS

# The basic factor analysis program for R is called factanal
# and produces a maximum likelihood factor analysis

# First, we'll need a file of the original items (no reverse scoring, 
and nothing but the items themselves)
# We have created it above: dtfactr 

#                            ATTEMPT AT ORIGINAL 1998 PRINCIPLE AXIS 
EXTRACTION
#                            ATTEMPT AT ORIGINAL 1998 PRINCIPLE AXIS 
EXTRACTION
#                            ATTEMPT AT ORIGINAL 1998 PRINCIPLE AXIS 
EXTRACTION
#                            ATTEMPT AT ORIGINAL 1998 PRINCIPLE AXIS 
EXTRACTION
#                            ATTEMPT AT ORIGINAL 1998 PRINCIPLE AXIS 
EXTRACTION

# Checking the original report (and the recovered data)
# Checking the original report (and the recovered data)
# Checking the original report (and the recovered data)



# To match the original 1988 paper, we need a principle axis 
extraction
#fa is the factor analysis program developed by Bill Revelle
#check out this principal axis factoring and compare to SPSS

pa <- fa(dtfactr, 2, fm="pa", rotate="none")
print (pa)
plot(pa)
# Is it similar to the original report?

# To check the eigenvalues (helpful for a scree plot), 
# we call on the nFactors program (loaded as a part of psych), 
# and ask for the eigenvalues

ev <-eigen(cor(dtfactr))
ev

#the first set correspond to the eigenvalues of the factors

# A circumplex representation
# A circumplex representation
# A circumplex representation
# A circumplex representation

# For fun, let's take the loadings and see if they fit a circumplex 
structure--
# a simple structure around a circle
circfact <-(fa(dtfactr,2))
circfact
plot(circfact, title="circumplex Structure")
ct <-circ.tests(circfact, loading = TRUE)
ct
# check out the plot that appears (click on the plot tab in R Studio)

#                            PRINCIPLE AXIS EXTRACTIONS
#                            PRINCIPLE AXIS EXTRACTIONS
#                            PRINCIPLE AXIS EXTRACTIONS
#                            PRINCIPLE AXIS EXTRACTIONS

# The 2-factor shows the JPSP solution. The 3 and 4 factor shows a 
couple other solutions
# we looked at at the time
pa1 <- fa(dtfactr, 1, fm="pa", rotate="none")
print (pa1)

pa2 <- fa(dtfactr, 2, fm="pa", rotate="none")
print (pa2)



pa3 <- fa(dtfactr, 3, fm="pa", rotate="none")
print (pa3)

pa4 <- fa(dtfactr, 4, fm="pa", rotate="none")
print (pa4)

#                            MAXIMUM LIKELIHOOD
#                            MAXIMUM LIKELIHOOD
#                            MAXIMUM LIKELIHOOD
#                            MAXIMUM LIKELIHOOD      
#                            MAXIMUM LIKELIHOOD 

#nowadays, maximum likelihood often is conducted. Here is an ML 
analysis for 2, 3, and 4 factors

ml1 <- fa(dtfactr, 1, fm="ml", rotate="none")
print (ml1)

ml2 <- fa(dtfactr, 2, fm="ml", rotate="none")
print (ml2)

ml3 <- fa(dtfactr, 3, fm="ml", rotate="none")
print (ml3)

ml4 <- fa(dtfactr, 4, fm="ml", rotate="none")
print (ml4)

ml5 <- fa(dtfactr, 5, fm="ml", rotate="none")
print (ml5)

# End of code for exploratory fa

#                             CATEGORICAL DATA VERSION--MAXIMUM 
LIKELIHOOD
#                             CATEGORICAL DATA VERSION--MAXIMUM 
LIKELIHOOD
#                             CATEGORICAL DATA VERSION--MAXIMUM 
LIKELIHOOD
#                             CATEGORICAL DATA VERSION--MAXIMUM 
LIKELIHOOD
#                             OPTIONAL

facat1 = fa.poly(dtfactr, fm="wls", nfactors=1, rotate="oblimin")
facat1

facat2 = fa.poly(dtfactr, fm="wls", nfactors=2, rotate="oblimin")



facat2

facat3 = fa.poly(dtfactr, fm="wls", nfactors=3, rotate="oblimin")
facat3

facat4 = fa.poly(dtfactr, fm="wls", nfactors=4, rotate="oblimin")
facat4

facat5 = fa.poly(dtfactr, fm="wls", nfactors=5, rotate="oblimin")
facat5
#                     A GOOD "EXPRESS" SOLUTION IN LAVAAN BEGINNING 
WITH THE SCALES IN JPSP 1998
#                     A GOOD "EXPRESS" SOLUTION IN LAVAAN BEGINNING 
WITH THE SCALES IN JPSP 1998
#                     A GOOD "EXPRESS" SOLUTION IN LAVAAN BEGINNING 
WITH THE SCALES IN JPSP 1998

# If we use a simplified model, keeping items loading on one scale, 
this works
# These assignments are based on placing items on the factor on which 
they load highest,
# and that meet the criterion of > .35.
# It omits items that load near-equally on both scales. For details 
see the accompanying 
# "Technical Lab Documentation" document, Table 4.2

####  STEP 1
####  STEP 1
####  STEP 1
####  STEP 1

twofact.model <- 'f1 =~ lively + happy + content + peppy + active
f2 =~ gloomy + jittery + grouchy + fedup + sad'
#then you fit your model in a particular way (using confirmatory 
factor analysis)
fit <- cfa(twofact.model, data = dtfactr)
#then you take a look at the results
summary (fit, fit.measures=TRUE, modindices = TRUE)

# For a better fit, I'll try a three-factor model based on the three-
factor ML solution
# All items on a scale (a) load highest on the scale (b) > |.35|, (c) 
< |.40| on any other
# scale (See Technical-Lab-Documentation-BMIS-Analyses-2016-09-05-
1631)

####  STEP 2



####  STEP 2
####  STEP 2
####  STEP 2

threefact.model <- 'f1 =~ lively + happy + tired + drowsy + peppy + 
active
f2 =~ sad + content + gloomy + jittery + grouchy + nervous + calm + 
fedup
f3 =~ caring + loving' 
#then you fit your model in a particular way (using confirmatory 
factor analysis)
fit <- cfa(threefact.model, data = dtfactr)
#then you take a look at the results
summary (fit, fit.measures=TRUE, modindices = TRUE)

# Next approach: Drop problematic items

# two factor model--dropping the third factor--without "content" 
(identified through MIs) and happy on both factors
twofact.model <- 'f1 =~ lively + happy + peppy + active
f2 =~ gloomy + jittery + grouchy + fedup + sad + happy'
#then you fit your model in a particular way (using confirmatory 
factor analysis)
fit <- cfa(twofact.model, data = dtfactr)
#then you take a look at the results
summary (fit, fit.measures=TRUE, modindices = TRUE)

# Much better fit: Do we still have a good alpha?

f1 <-subset(dtritems, select=c('lively', 'happy', 'peppy','active'))
f2 <-subset(dtritems, select=c('sad', 'gloomy', 'jittery', 'grouchy', 
'fedup', 'rhappy'))

alpha(f1)
alpha(f2)

sink()
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