
University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Applied Engineering and Sciences Scholarship Applied Engineering and Sciences

10-20-2011

Free and open source software development of IT systems Free and open source software development of IT systems

Mihaela C. Sabin
University of New Hampshire, Manchester, mihaela.sabin@unh.edu

Follow this and additional works at: https://scholars.unh.edu/unhmcis_facpub

Comments
© 2011, Association for Computing Machinery, Inc. This is the author's version of the work. It is posted here for your

personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 2011

conference on Information technology education, https://dx.doi.org/10.1145/2047594.2047601.

Recommended Citation Recommended Citation
Mihaela Sabin, Free and open source software development of it systems, Proceedings of the 2011
Conference on Information Technology Education (New York, NY, USA), SIGITE ’11, ACM, 2011, pp. 27–32.

This Article is brought to you for free and open access by the Applied Engineering and Sciences at University of
New Hampshire Scholars' Repository. It has been accepted for inclusion in Applied Engineering and Sciences
Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact Scholarly.Communication@unh.edu.

https://scholars.unh.edu/
https://scholars.unh.edu/unhmcis_facpub
https://scholars.unh.edu/unhmcis
https://scholars.unh.edu/unhmcis_facpub?utm_source=scholars.unh.edu%2Funhmcis_facpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.1145/2047594.2047601
mailto:Scholarly.Communication@unh.edu

Free and Open Source Software Development of
IT Systems

Mihaela Sabin
Computer Information Systems
University of New Hampshire

Manchester, NH 03101
603 641 4144

mihaela.sabin@unh.edu

ABSTRACT
IT system development, integration, deployment, and
administration benefit significantly from free and open source
software (FOSS) tools and services. Affordability has been a
compelling reason for adopting FOSS in computing curricula and
equipping computing labs with support infrastructure. Using
FOSS systems and services, however, is just the first step in
taking advantage of how FOSS development principles and
practices can impact student learning in IT degree programs.
Above all, FOSS development of IT systems requires changes to
how students, instructors, and other contributors work
collaboratively and openly and get involved and invested in
project activities.

In this paper I examine the challenges to engage students in FOSS
development projects proposed by real clients. A six-week course
project revealed problems with adopting FOSS development and
collaboration across different activities and roles that student team
members have assumed. Despite these problems, students have
showed a genuine and strong interest in gaining more practice
with FOSS development. FOSS development teaching was further
refined in two other courses to learn about adequate teaching
strategies and the competencies that students achieve when they
participate in FOSS development of IT systems.

Categories and Subject Descriptors

K.3.2 [Computer Information Science Education]: Computer
science education, Curriculum.
General Terms
Human Factors, Experimentation, Management, Performance.

Keywords
Free and open source software, IT system development,
collaboration.

1. BACKGROUND
The Computer Information Systems (CIS) program at University
of New Hampshire in Manchester (UNHM) has built partnerships
with local nonprofits, state agencies, small businesses, and in-
house research projects to enrich curricula with authentic work

experiences and benefit community with IT solutions. In this
curricular model, 98 students worked in 26 teams on projects
proposed by eight organizations and one research faculty during
2007 to 2010 time period. Most of the projects evolved over
multiple semesters as course projects in databases, web systems,
and software engineering courses. Three projects were conducted
in internship, independent study, and summer research courses by
individual students. Only these projects have produced prototypes
that could be transferred for deployment at partnering
organizations. Two of these three projects have been adopted and
are in use at sponsoring organizations, Salvation Army in
Manchester and the Division for Juvenile Justice Services.
Integrating real-world projects in the IT curricula has widely-
recognized advantages on student learning:
1. Relevant learning. Students solve practical IT problems that

are encountered and formulated by community partners.
2. Deeper learning. Students demonstrate higher order

cognitive competencies, such as synthesis and evaluation.
3. Collaborative learning. Students work in teams.

Collaboration and communication are integral part of their
work.

However, the implementation of this model has revealed some
critical weaknesses:
1. Low rate of success with building useful prototypes.
2. Ineffective collaboration and communication, especially in

coding activities.
3. Less attention to the actual artifacts and more interest in

describing individual activities in the students’ self-
evaluations, whether reported development activities were
successful or not.

4. Very limited reusability of the system’s artifacts (models,
documents, source code, user support manuals) between
project iterations across semesters.

These weaknesses stem from a visible polarization between, on
one hand, requirements elicitation, analysis, and design activities
and, on the other hand, implementation and deployment activities.
Documents and models that students produced were not very
effective in guiding the writing of source code and planning and
conducting testing experiments, despite efforts made to apply
iterative and agile software engineering methods. Students
themselves felt that one either loves programming or hates it, and
participation in non-programming related activities was perceived
as orthogonal to implementation activities. This phenomenon has
even a more significant negative impact when artifacts that were
produced in a certain course have to be reused in following

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGITE’11, October 20–22, 2011, West Point, New York, USA.
Copyright 2011 ACM 978-1-4503-1017-8/11/10...$10.00.

semester and different course to make progress with system
development in a subsequent iteration.
The research question these shortcomings raise is how to actually
apply FOSS development principles and practices and change
student attitudes towards a much more responsible collaboration
to engage them productively and successfully in FOSS
development of IT systems.
My personal experience with FOSS [1] and Humanitarian FOSS
[2, 3] convinced me that the FOSS culture, principles, and
practices are very much suitable for a student-centered
educational environment that is inquiry-based, highly
collaborative, motivational and relevant, and inclusive of diverse
abilities, cultural backgrounds, and life experiences.
In the fall 2010 semester I decided to rethink the team projects in
an introductory course in web development and adopt a FOSS
development approach with two goals in mind:
1. To improve implementation activities and integrate them

more productively with the other software development
activities.

2. To increase student interest in and responsibility for
challenging system development and project management
activities.

The rest of the paper describes the plan for incorporating FOSS
activities in a fall 2010 course, reports on how these activities
scaled up in two other courses in spring 2011, and outlines future
work that has been informed by the lessons I learned.

2. PLANNING STEPS
Starting in fall 2010, the CIS 505 Advanced Web Authoring
course has become a required course in the CIS major. The course
enrolls sophomores in the program and juniors who have
transferred with an associate’s degree from local community
colleges. The course prerequisite is an Intro to Internet and Web
Authoring course that fulfills the general education requirement in
the Environment, Technology, and Society curricular group.

2.1 Student Demographics
UNHM is a commuter college. The large majority of students
enroll full-time while holding jobs that demand close to 20 hours
a week of their time. Two thirds of UNHM students qualify for
financial aid. The CIS program has articulation agreements with
local community colleges. In 2010-2011, close to half of the
students in the program transferred at least 50 credits from two-
year colleges. Women representation in the program is 11%,
lower than the reported 18% of 2008 computer and information
sciences undergraduate recipients who were female [8].
New Hampshire is the fourth whitest state, with minorities
accounting for about 7.2% of the state’s population in 2009. The
most diverse part of the state is the Manchester-Nashua
metropolitan area. In 2007, 50% of all the minority residents
resided in this area, with 11% of the metro area’s population being
minority [9].
At the CIS 505 course level, the demographic data from the 20
students who took the class in fall 2010 showed slight variations
from the larger picture’s data. The class had three females (15%)
and two minority students (10%). Other demographic data of
interest indicated that there were seven transfer students (35%),
four veterans (20%), and two non-CIS majors (20%), a male
Business major and a female Communication Arts major with a

minor in CIS. The breakdown by year of study had two
sophomores, nine juniors, and nine seniors.
The demographics picture informs about the challenges that
students have when a course is intentional about adopting a FOSS
development approach. Students are expected to spend 6 to 8
hours outside class in activities through which online peer
communication is pervasive and collaboration in pairs or within
teams of 3 to 6 students becomes extensive at various levels: code
base, documentation, and project management. Student time
constraints, diversity of academic backgrounds, and the mix of
other cultural and personal experiences could be barriers to how
communication and collaboration channels work.

2.2 Learning Outcomes and Assessment
In the CIS 505 course students learn to:

x Apply dynamic web programming concepts and techniques

x Create and experiment with web applications and systems

x Review, document, share, test, and deploy web applications

x Use open source collaborative software and content
management tools to develop web applications

x Communicate timely and work in teams effectively

x Argue for the use of open source software tools and adoption
of open source collaboration practices.

The course learning outcomes are assessed by measuring student
performance in two exams (40%), eight weekly homework
assignments on which students work in pairs (24%), a team
project with four iterations scheduled at the end of the semester
(24%), and in- and outside class participation (12%). Students and
instructor are the evaluators of student performance. The
instructor grades the exams, student participation, and project
status reports, which represents 66% of the final grade. Students
self-evaluate their homework assignments and submission of peer
reviews (28%) and have their contribution to the last two
iterations of the project evaluated by peers on other teams (6%).
Student grading weighs the remaining 34% of the final grade.
Assessors use rubrics for their evaluations.

2.3 Teaching Resources
The course materials were created by examining lecture notes,
assignments, exam problems, and textbook suggestions from two
colleagues teaching a similar course at other schools. Students
used Safari Books Online service offered by the university to
access the course textbooks [4, 5]. Two other references were
used for the project portion of the course: Fogel’s book on
producing open source software [6] and RMH Homebase, a
volunteer management and scheduling system designed at
Bowdoin College for the Ronald McDonald House in Portland,
Maine [7].
The course infrastructure included the course site, two wikis, a
class forum and mailing list, student online portfolios, a staging
server for testing and demo purposes, and central repositories for
the projects’ code base. WordPress, Google Groups, Google Sites,
MediaWiki, BitNami WAMP bundle, SourceForge hosting, and
two UNHM CIS servers were used to support the course
infrastructure. Live USBs with Apache, MySQL, and PHP
package were used in class for lab activities. Software developed
on student personal computers or in the lab used XAMPP,
NetBeans, and TortoiseSVN.

All course materials were openly available from the course site
that I created using WordPress publishing tools and have hosted
on the WordPress servers. The course forum and mailing list were
set up with a Google group. Students were asked to create online
portfolios with Google Sites to assemble their work in the course,
write self-evaluations, receive feedback and grades from me, and
write their peer reviews. Two MediaWiki wikis were installed and
configured to (1) document each team progress with their projects
and (2) make available wiki articles on tools and services used in
the course.

3. FIRST EXPERIENCE
3.1 Course Projects and Community Partners
The last six weeks of the semester were allocated to software
development of web applications that solve IT problems raised by
four partners: two nonprofits, YWCA of Manchester and Big
Brothers and Big Sisters of Greater Manchester (BBBS), one
government agency, the Domestic Violence Unit of the
Manchester Police Department (DV Unit), and the UNHM
Internship and Community Outreach program.
Four student teams (of four to six students per team) were formed
to work on the projects:

x DONATE, to track donors and analyze donations for YWCA
and BBBS.

x DVUnitCMS, a counseling management system that
prosecutors and counselors in the DV Unit would use to
assign and observe progress with their counseling services.

x GoInterns and Internship2Career, same project with two
names and two teams, to track internship opportunities.

3.2 Development Roles and Activities
Development responsibilities fell in two categories. The primary
role category included responsibilities for requirements and
analysis, subsystem design, and subsystem implementation. The
supportive role category included the roles of project leader, wiki
editor, technical writer, reviewer, and IT support manager. I
named the project leaders based on my knowledge of student
performance in the course and overall academic standing. I also
designated each team’s IT support manager. These roles assumed
responsibilities for configuring the SourceForge projects and
building the team’s application on the staging server for peer
review and demo presentations. All students were asked to review
work products completed by two peers from other teams for the
last two iterations of the project. The other student roles were
negotiated within the team.
In the end, each team had an analyst, one or two designers of
either the user interface or the storage subsystems, and two or
three implementers of the application logic or control subsystem.
On the supportive roles front, each team had a project leader, a
wiki editor, an IT support manager, and one or two technical
writers. All team members assumed reviewing responsibilities.

3.3 Results
Two of the four projects, DV Unit CMS and GoInterns, reached
the phase where the user interface, persistent storage, and control
subsystems were integrated. The teams of these projects had more
experienced implementers and closer and more effective
collaboration between the PHP and MySQL coders. In the other
two teams, DONATE and Internship2Career, effective
collaboration took place within the boundaries of individual

subsystems, and there was minimal communication among
implementers of different subsystems.
With a couple of exceptions, analysts and designers did not want
to and were not involved in coding activities. They either felt that
they did not have the skills or that the team was lacking the
chemistry for truly collaborative work. Their work products were
user and installation manuals and developer’s guides that outlined
the overall development process.
Everybody was expected to include their work products in the
team project, whether models, documents, or source code files,
and use version control to manage project progress and changes.
However, the use of version control for the purpose of keeping
everybody on the team informed about individual contributions
was, to say the least, problematic. The same phenomenon of
minimum use of tools and services that promote sharing was
observed about reviewers. Most of them did not check out source
code they were supposed to examine from the SourceForge
project repositories. Similarly, IT support managers were
expected to assist team members or other peers with testing
prototypes on the staging server or replicating testing
environments on the student computers. Again, there was
minimum interaction and investment in an open collaboration to
get this kind of work done.
Despite these shortcomings, twelve students have enrolled in a
more advanced, project-based, and programming-intensive
elective course in spring 2011. This is about twice the number of
students who have taken similar courses in the past. It looked like
the students and I have just started to scratch the surface of FOSS
development of IT systems using course projects and have not felt
discouraged at all by its many challenges. On the contrary!

3.4 Lessons Learned
The learning curve for adopting FOSS practices in computing
courses is steep. Working collaboratively and openly with team
members, peers, instructor, and other possible contributors
requires a significant mindset shift. Being “productively lost”
[10] in the classroom, whether one teaches or learns, bears
different stakes and risks than those faced when one volunteers to
contribute to FOSS and figures out ways to become a productive
member.
It has helped me that my first FOSS development teaching
experiment was scaled down to less than half of the semester and
counted towards less than 25% of the final grade. At the same
time, the expectations were set too high. The problems I observed
with student learning and development practices were:

x Inconsistent and sporadic use of version control

x Low impact of tutorial materials

x Prevalence of traditional ways of collaboration and little
progress with using FOSS collaboration tools effectively.

It became apparent that more emphasis should be given to (1)
describing, discussing, and demonstrating what the FOSS
development principles and practices are and (2) exposing the
consequences of deviating from what is expected of every single
member of the FOSS community. Whether a student posts a
meeting agenda, commits a SQL script revision, or updates a class
diagram in a project wiki, FOSS development activities should be
tied to assessing student learning. The old saying “if it’s not
graded, it doesn’t count” bears an undeniable truth. The quality
control cycle of FOSS development artifacts should be mapped

directly to how student learning is assessed. To achieve this
mapping, the following evaluation cycle should be applied:
1. Team members’ roles and responsibilities are examined

weekly and openly by students themselves, their peers, and
instructors.

2. Responsibilities correlate directly with the artifacts that
members are expected to produce. These correlations are also
shared openly.

3. Student learning is measured by self-evaluations, peer
reviews, and instructor grading of these artifacts.

4. NEXT ITERATION
4.1 Teaching FOSS Development
In Spring 2011 I extended FOSS development in two courses:

x CIS 520 Database Design and Development, the first
database course in the CIS program required of all majors
and which enrolls primarily sophomores and transfer
students at the junior level, and

x CIS 605 Web Application Development, an upper-level
elective whose prerequisite is CIS 505, the course I taught in
Fall 2010.

A total of 30 students took these courses (18 in CIS 520 and 12 in
CIS 605). Student demographics were comparable to those in the
CIS 505 course. There were three females (10%), two minority
students (6.7%), six veterans (20%), and four students with non-
CIS majors (13%). The breakdown by year of study had six
sophomores, 14 juniors, and ten seniors.
In the CIS 520 course students were expected to learn how to
model, design, and normalize databases, implement their designs
in SQL, develop reporting and data entry features for a database
application, and design and prototype a business application using
a database management system. The course textbooks [11, 12]
were available through the library’s Safari Books Online Service.
Assessment of student learning measured student work in eight
weekly homework assignments that used pair reviews and
programming (24%), two examinations, using both closed and
open texts and notes formats (52%), and a team project with three
iterations (24%) that was scheduled during the last six weeks of
the semester. The course project component introduced students
to FOSS development infrastructure and demanded application of
FOSS development practices.
The CIS 605 course was entirely project-oriented. Students were
expected to apply advanced web programming concepts and
techniques; work with a shared code base among developers with
various roles; integrate web applications with database and web
server applications; implement, test, document, and deploy a web
system; use FOSS practices, development, and collaboration tools
to carry out a team project; and communicate timely and work in
teams effectively with peer developers and users. I used Tucker,
Morelli, and de Silva textbook [13], which is very deliberate about
integrating a FOSS process with agile techniques, modern
collaboration tools, community involvement, and team work.
To scaffold student abilities and create opportunities for feedback
and reviews, weekly homework assignments were used as
building blocks towards each of the three project iterations (each
of which extended over 3 to 4 weeks, with the first project
iteration starting in the fourth week). There were eleven
homework assignments (44%), three project iterations (16%
each), and a project presentation (including presentation abstract

and poster) at the UNH Undergraduate Research Conference
(8%).

4.2 FOSS Development Student Competencies
From my experience with these two courses it became apparent
that students participate productively and successfully in FOSS
development of IT systems if they learn to be:

x Skilled communicators with peer developers, end-users, and
clients.

x Adept at working with a shared code base and using version
control functions to manage complex code development.

x Active, inquisitive, and prompt participants in discussion
threads that frame on-going team conversations hosted by a
project mailing list or forum.

x “Compulsive” documenters and skilled technical writers,
who know very well the merit of documenting system
development and project management activities.

x Experienced with development tools (coding, debugging,
unit testing, and automatic generation of code
documentation) and familiar with at least one programming
language.

x Experienced with building a prototype or release installation
and setting the infrastructure where the system’s features can
be demonstrated and tested.

x Engaged with the IT system’s end-users and clients in all
phases of the development process, and responsive to their
needs as reflected in models, documents, and manuals that
“speak” the user’s language.

x Familiar with the range of roles developers assume when
building and maintaining an IT system, and some exposure to
the responsibilities of each those roles, whether analyst,
designer, coder, tester, technical writer, IT support engineer,
team leader, architect, or reviewer.

5. CONCLUSION
The experience with an open source approach to IT system
development in three CIS courses inspired other students and
faculty to improve team work activities by using wikis to feature
course projects and version control to manage the source code.
These practices can be easily adopted by courses in which projects
weigh at least 25% of the final grade. The projects can become a
learning resource that provides case studies and examples after
which other projects can be modeled. They can be also revised
and developed further.
Upper-level courses that are project-oriented and the capstone
project course are ideal candidates for building a FOSS student
community. This community will promote the FOSS culture
values of sharing knowledge and skills, mentoring peers, and
contributing fixes, features, documentation, manuals, and other
artifacts that can improve IT systems at different stages of
development and use.

6. REFERENCES
[1] “Growing the Humanitarian FOSS Community”. 2010.

Second Annual HFOSS Education Symposium, jointly held
with SIGCSE 2010 (Milwaukee, OH, Mach 2010).

[2] HFOSS 2010 Faculty Workshop. Computer Science
Department, Trinity College. (Hartford, CT, May 2010).
Retrieved June 3, 2011 from

http://teaching.hfoss.org/index.php/HFOSS_2010_Faculty_
Workshop.

[3] Professors’ Open Source Summer Experience (POSSE)
Workshop. 2010. Worcester State University (Worcester,
MA, June 2010). Retrieved June 3, 2011 from
http://teachingopensource.org/index.php/POSSE_Worcester_
State.

[4] Nixon, Robin. 2009. Learning PHP, MySQL, and JavaScript.
O’Reilly Media, Inc.

[5] Robson, Elisabeth and Eric T. Freeman. 2005. Head First
HTML with CSS & XHTML. O’Reilly Media, Inc.

[6] Fogel, Karl. 2010. Producing open source software: How to
run a successful free software project. Creative Commons
Attribution Share Alike 3.0. Retrieved June 3, 2011 from
http://producingoss.com/.

[7] RMH Homebase 1.5 on SourceForge.net. 2010. Retrieved
June 3, 2011 from
http://sourceforge.net/projects/rmhhomebase/.

[8] “Women and Information Technology by the Numbers.”
2009. National Center for Women and Information

Technology. Retrieved June 3, 2011 from
http://www.ncwit.org/pdf/BytheNumbers09.pdf.

[9] Johnson, Kenneth M. and Robert Macieski. “Demographic
Trends in the Manchester-Nashua Metropolitan Area.” 2009.
UNH Carsey Institute New England Issue Brief, no. 16,
2009.

[10] DeKoenigsberg, G. et al. 2010. Practical open source
software exploration: How to be productively lost, the open
source way. TeachingOpenSourceway.org. Retrieved June 3,
2011 from
http://teachingopensource.org/index.php/Textbook_Release_
0.8.

[11] Oppel, A. 2010. Data Modeling: A Beginner’s Guide.
McGraw Hill.

[12] Beaulieu, A. Learning SQL: Master SQL Fundamentals.
2009. Second edition. O’Reilly Media, Inc.

[13] Tucker, Allen, Ralph Morelli, and Chamindra de Silva. 2010.
Software Development: An Open Source Approach. CRC
Press.

	Free and open source software development of IT systems
	Comments
	Recommended Citation

	15-sabin-sigite-2011.pdf

