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A Constraint-Based Approach to
Diagnosing Software Problems in Computer
Networks

Daniel Sabin, Mihaela Sabin, Robert D. Russell and Eugene C. Freuder

Department of Computer Science, University of New Hampshire, Durham, NH 03824
USA

Abstract. Distributed software problems can be particularly mystify-
ing to diagnose, for both system users and system administrators. Model-
based diagnosis methods that have been more commonly applied to phys-
ical systems can be brought to bear on such software systems. A proto-
type system has been developed for diagnosing problems in software that
controls computer networks. Our approach divides this software into its
natural hierarchy of layers, subdividing each layer into three separately
modeled components: the interface to the layer above on the same ma-
chine, the protocol to the same layer on a remote machine, and the con-
figuration. For each component knowledge is naturally represented in the
form of constraints. User interaction modeling is accomplished through
the introduction of constraints representing user assumptions, the finite-
state machine specification of a protocol is translated to a standard CSP
representation and configuration tasks are modeled as dynamic CSPs.
Diagnosis is viewed as a partial constraint satisfaction problem (PCSP).
A PCSP algorithm has been adapted for use as a diagnostic engine. This
paper presents a case study illustrating the diagnosis of some problems
involving the widely used FT'P and DNS network software.

1 Introduction

One of the fundamental problems confronting users and managers of computer
networks today is the diagnosis of problems arising within the network itself.
The symptoms produced by such problems are often baffling since they are so
unpredictable and so unrelated to the task for which the network is being used.
Furthermore, the error messages from the system are usually so general and
vague that little can be gleaned from them as to the exact cause of (and hence
the fix to) the problem. Diagnosing under these circumstances is currently more
art than science [14]. The situation has been summarized in a cartoon that
pictures a visitor to a computing site staring at a swami sitting cross-legged in
the corner, and receiving the explanation: “That’s our network guru”.
Techniques for model-based diagnosis have been used successfully in the di-
agnosis of physical systems [10]. We have applied and extended this approach
to computer network software. We consider this software to be constructed in
a hierarchy of layers fashion as described in the ISO OSI Reference Model [12].



We subdivide each layer into three separately modeled components: the inter-
face to the layer above on the same machine (or to the user, in the case of the
application layer), the protocol to the same layer on a remote machine, and the
configuration. This decomposition is developed further in the paper.

Our approach considers diagnosis as a dynamic partial constraint satisfaction
problem. Activity constraints are used to interface the model with the “real
world” of the network, allowing the model to dynamically obtain data from
the network and to use that data to change the problem as the search for a
solution progresses. The partial solutions discovered by our system constitute
the diagnosis.

The next section concentrates on individual components, presenting exam-
ples of problems from widely used File Transfer Protocol (FTP) and Domain
Name Service (DNS) software. Sect. 3 presents the theoretical background for
our approach. Sect. 4 gives some details on how problems are represented in our
system, presents the actual dynamic partial constraint satisfaction algorithm
and shows how one of the sample problems, previously presented in Sect. 2, is
actually diagnosed by this algorithm.

This work concentrates on modeling the network infrastructure itself. We
believe it gives us a solid foundation for understanding basic problems that
occur at all levels in information networks, and that the techniques we have
developed are applicable at higher levels as well.

2 FTP Case Study

The application protocol chosen for exemplification is FTP, described in RFC
959 [19]. It provides interactive file transfer and relies on Transmission Control
Protocol (TCP) — a transport protocol in the TCP/IP hierarchy of protocols [4].

We decompose the problem domain into three components, each of which
will be modeled separately, as shown in Fig. 1.

User Interaction

Configuration Protocol

Fig. 1. Problem domain decomposition

1. The User Interaction component deals with commands given by the human
user and the expectations that the user has about the system response to
these commands.

2. The Protocol component is really the network software, and will later be
further decomposed into layers corresponding to the actual implementation
of the network software. For now it represents simply all active software.



3. The Configuration component represents all passive information about the
network and the computing environment, such as machine names and ad-
dresses, routes, connectivity, etc. This information parameterizes the soft-
ware in the protocol component.

The complete FTP service is structured in two distinct processes, plus the
rules and formats, namely the protocol, for information exchange between them.
These processes, a client (local) FTP program and a server (remote) FTP dae-
mon, cooperate to accomplish the file transfer function. The client initiates the
connection and forwards user commands to the remote server. The server, in
response to the received commands, sends replies whose general format is a
completion code (including any error code), followed by a textual description of
the action taken. A user interface resides on the local machine through which
the user requests the transfer of files to and from the remote machine. In our
simple examples only two of the basic operations are used:

put local_file_name remote_file_name
get remote_file_name local_file_name

As a result, a local (remote) file is copied to (from) the remote (local) machine.

But in order to be able to communicate with the server, the client has to
establish a connection with it first. Therefore, the client needs to know the
server’s IP address. Since people prefer names, while computers prefer numbers,
programs that interface with users have to map names to numbers, and vice
versa. Programs that utilize networking need to map between the names used
by people to refer to host computers and the IP addresses (numbers) used to
communicate over the network. The Domain Name Service (DNS) [18] consists
of a method for constructing names of host computers in a hierarchical manner
and a way to resolve these names in a distributed fashion. The Berkeley Internet
Name Domain (BIND) is a set of procedures used to map DNS names to IP ad-
dresses and vice versa [1] [11]. It consists of a number of server daemons running
at various locations in the Internet, each with the responsibility of resolving a
subset of the names. On OSF/1 [5] a name is resolved as follows:

1. The file /etc/svc. conft is consulted to see what services are available and in
what order they are to be used. Possibilities are local and bind. Each service
in the list is attempted in turn until either the name is resolved or the list
is exhausted, in which case the resolution fails.

2. The local service is provided by consulting the file /etc/hosts which contains
a table of known names and IP addresses. Resolution consists of searching
for the name in the table and it fails if the name is not there.

3. The bind service is provided by contacting a server daemon called named. If
the configuration file /etc/resolv.conf is present, it is consulted to find an
ordered list of the TP addresses of server daemons to contact. Each daemon
in turn is contacted until one of them responds. Resolution fails if none of the
servers responds, or if the first one that does respond is not able to resolve
the name into an IP address. If the /etc/resolv.conf file is not present,



an attempt is made to contact a server daemon running on the local host.
In this case, resolution fails if there is no such server, or if that server is not
able to resolve the name into an TP address.

In the examples shown we have run the FTP program on two different ma-
chines whose operating systems are ULTRIX (a version of UNIX) and VMS.
Their filesystems differ in the way files are represented and named.

According to our framework for network diagnosis we can group the FTP
problems we encountered into three categories: user interaction, protocol and
configuration problems. For each category we discuss some interesting examples
for which we give the diagnosis solution produced by the diagnosis tool. The ex-
amples we will present are actual cases we have run and diagnosed. The format of
each example explains the FTP command and its execution context, formulates
the problem encountered and prints out the message produced by the diagnosis
program.

To understand why the problems of the first two categories occurred, we
mention briefly the VMS conventions in naming files, which are more restrictive
than those for the UNIX filesystem. The name format requires three different
fields for name, extension and version number. Only alphanumeric characters are
allowed (plus the $ character) to specify the name field. The file extensions are
predefined to indicate the type of the file. Other special characters are reserved
for wildcards or delimiters in the file name syntax. Thus, names such as “@Q@@”
or “II” are not accepted in the VMS filesystem. Choosing reserved characters to
name files usually produces messages such as: “file specification syntax error”,
“invalid wildcard operation” or “not a plain file”, which are self explanatory.
However, there are cases in which the FTP server responses are rather cryptic
or the transfer results are totally unexpected. We will explore these cases and
explain both the FTP execution context and its effects.

2.1 Sample User Interaction Problems

The differences between the filesystems of the local and remote machine can
cause surprising name mapping for the files transfered. Newly created file names
on the remote machine are generated when the file specification is illegal. This is
also a case of name mapping when the filesystems do not have the same naming
conventions. An example is shown in Fig. 2.

There are cases in which the files get partially changed without violating nam-
ing rules. Even if the sequence of user commands shows no error, as presented in
Fig. 3, examining the text files or running the executable files shows strange re-
sults. This may happen when the type of the transfer (ASCII or binary) does not
match the type of the file transfered. For the ASCII type, conversion to a stan-
dard text file representation on the network is necessary to allow communication
between different filesystems. The UNIX system considers the newline character
as text line delimiter, while VMS uses a line length count. Thus, for the ASCII
type of transfer, the sending and receiving sites perform the necessary transfor-
mations between the standard representation and their internal representation



FTP Command: put Q@@ @@

FTP Error Message: ——-—
FTP Context: - Local FTP running on UNIX, remote FTP running on VMS

- Local file "@ @" exists, but is not a valid file name for VMS
Problem: The transfer takes place, but the remote name is changed to "$A$A.;1"
Diagnosis: *** Remote file name has the form "$2$2.;7?2"

Fig. 2. Invalid remote file name specification

of files. It is the user’s responsibility to correlate the data representation used
and the transformation function performed during the transfer.

FTP Command: put alpha alpha

FTP Error Message: ———
FTP Context: - Local FTP running on UNIX, remote FTP running on VMS
- Local file "alpha" exists on UNIX, and is an ASCII file
- The transfer type is "binary"
Problem: The content of the transfered file is not modified, since the conversion to the

standard representation does not apply when "binary" transfer is used. As a

result, <EOL> is not recognized on VMS and lines are incorrectly displayed

Diagnosis: *** Change type to ASCII and redo the transfer

Fig. 3. Incorrect transfer type specification

2.2 Sample Protocol Problem

Sometimes illegal parameters in user transfer commands are discarded by the
FTP client and the FTP server receives incompletely specified requests. The
received error message has no useful meaning for the user, as shown in Fig. 4.

It is interesting to notice how the protocol knowledge helps isolate a problem
triggered at the user level. In this sense, a further exploration of the underlying
protocols could extend the problem domain we address.

2.3 Sample DNS Configuration Problem

We assume that all the basic configuration tasks, such as installing TCP/IP
in the kernel and configuring the network interfaces and routing, have been



FTP Command: get !l I
FTP Error Message: RETR: command not understood
FTP Context: - Local FTP running on VMS, remote FTP running on UNIX

- File "!!" exists on the remote machine, but is not a valid VMS file name

Problem: The lower level command RETR used for implementing the user GET
command requires a nonempty argument. Due to an implementation error,
the client sends to the server a RETR request with an empty argument.
The server returns an error message which is not understood by the user.

Diagnosis: *** FTP client implementation error --
RETR request with no argument

*** Invalid VMS file name "!!"

Fig. 4. Protocol implementation error

performed correctly and we look only at various configurations required by the
name service.

All the problems in this category follow the same simple scenario: the user
tries to connect to a remote host whose name is the parameter of the ftp com-
mand and the connection is refused. In all cases the remote system gives the
same error message: unknown host. However, the underlying configurations can
be vastly different. For each of these erroneous configurations our diagnostician
program figures out what the problem is and provides more useful messages, as
shown in the example in Fig. 5.

One type of configuration problem is caused by incompletely specifying the
host table when only local resolution is used. If the <remote-host>name given by
the £tp command is missing from the etc/hosts file, then this host is unknown.
This diagnosis is shown in Fig. 5.

Configuration: - Local resolution only indicated in /etc/svc.conf

- <remote-host> nameisnotin /etc/hosts
Diagnosis: *** Local resolution failed.

No <remote-host> in /etc/hosts.

Fig. 5. Local resolution with incompletely specified host table

3 Background

Model-based diagnosis techniques compare observations of the behavior of a sys-



tem being diagnosed to predictions based upon a model of the system in order
to diagnose faults [10]. The fundamental presumption behind model-based di-
agnosis is that, assuming the model is correct, all the inconsistencies between
observation and prediction arise from faults in the system. Given a model de-
scription and a set of observations, the diagnosis task is to find a set of faults
that will explain the observations. Minimal diagnoses postulate sets of faulty
components that are minimal in the sense that no proper subset provides an
explanation.

3.1 Model-based Diagnosis as Partial Constraint Satisfaction

Constraint satisfaction is a powerful and extensively used artificial intelligence
paradigm [7]. A constraint satisfaction problem (CSP) involves a set of problem
variables, a set of values for each variable and set of constraints specifying which
combinations of values are consistent. A solution to a CSP specifies a value for
each variable such that all the constraints are satisfied.

If we assign costs to the values we can look for a solution with optimal cost.
Model-based diagnosis can be viewed as a constraint optimization problem by
associating system components with constraints that reflect their behavior, com-
ponent inputs and outputs with problem variables, and introducing assumption
variables associated with the system components, where a value of 0 for an as-
sumption variable reflects normal behavior and a value of 1 abnormal behavior
[6]. Observations force assignment of some of the problem variables. The task of
finding a minimal diagnosis corresponds to finding an optimal solution of such
a CSP.

We use a refinement of this approach based on the notion of a partial con-
straint satisfaction problem (PCSP) [8]. PCSPs were introduced for applications
that settle for partial solutions that leave some of the constraints unsatisfied, e.g.
because the problems are overconstrained or because complete solutions require
too much time to compute.

We have found that PCSPs provide an elegant approach to viewing diagnosis
in CSP terms. Regarding components as constraints, and faulty components as
failed constraints, minimal diagnoses naturally correspond to PCSP solutions
that leave minimal sets of constraints unsatisfied. These sets are minimal in that
there is no solution which leaves only a proper subset unsatisfied. Bakker et al.
[2] have taken the opposite approach, applying model-based diagnosis methods
to partial constraint satisfaction.

Combinations of branch and bound and CSP techniques have been used in
algorithms that search for a solution that leaves a minimal number of constraints
unsatisfied [8]. We have adapted one of these algorithms to search for solutions
with minimal sets of unsatisfied constraints. One of the advantages of viewing
diagnosis as a PCSP is that it permits us to bring our experience with PCSP
algorithms to bear on diagnosis.



3.2 Modeling Configuration as Dynamic Constraint Satisfaction

For synthesis tasks such as configuration and model composition, the constraint
problem is of a more dynamic nature [15] [16] [17]. Any of the elements of the CSP
might change during the search process. Mittal and Falkenhainer introduced the
notion of a dynamic constraint satisfaction problem (DCSP) by adding a new
type of constraint, called an activity constraint, on the variables considered in
each solution. Activity constraints, expressed in terms of consistent assignment
of values to some already instantiated set of variables, specify which variables and
constraints should be added to or removed from the current CSP. The problem
thus changes as search progresses.

The main advantage of this extension to the standard CSP is that inferences
can now be made about variable activity, based on the conditions under which
variables become active, avoiding irrelevant work during search.

The definitions of a dynamic constraint satisfaction problem and activity
constraints, as stated in [15], are the following:

Given

A set of variables V representing all variables that may potentially become
active and appear in a solution.

— A non-empty initial set of active variables Vi = {vy,..., v}, which is a
subset of V.
— A set of discrete, finite domains Dy, ..., Dy, with each domain D; represent-

ing the set of possible values for variable v; € V.

— A set of compatibility constraints C'C on subsets of V limiting the values
they may take on. These correspond to the standard set of CSP constraints.
In addition, if any of the variables involved in the constraint are not active,
the constraint is trivially satisfied.

— A set of activity constraints C* on subsets of V specifying constraints be-
tween the activity and possible values of problem variables. There are four
types of activity constraints, which can be divided into two groups:

1. require variable and require not, which establish the activity (inactivity)
of a variable based on an assignment of values to a set of already active
variables. A require-variable constraint is logically equivalent to:
active(Vi) A ... Aactive(V;) A P(v1,...,v;) — active(Vy), where P is a
predicate, v; is the current value assigned to variable V; Vi, 1 < i < j
and Vi € {Vi,...,V;}.

2. always require variable and always require not, which establish the ac-
tivity (inactivity) of a variable based on the activity of other variables,
independent of their current value. An always require variable constraint
is logically equivalent to:
active(Vi) A ... Nactive(V;) — active(V}), where Vi & {V1,...,V;}.

Find

— All solutions, where a solution is an assignment A which meets two criteria:



1. The variables and assignments in A satisfy C¢ U C4.
2. No subset of A is a solution.

4 Representation and Reasoning

We model each of the components of Fig. 1 — user interaction, protocol, configu-
ration — as a separate PCSP knowledge base. Protocol diagnosis has been studied
previously as a constraint satisfaction problem [3] [9] [20]. We apply a similar
approach here to the FTP protocol. We demonstrate here that user interaction
diagnosis can also be modeled as a constraint satisfaction problem, in particular
by introducing constraints that reflect user assumptions. Finally, extending the
representation used by [17], we are able to treat diagnosis of configuration tasks
as a PCSP as well.

These three components are naturally modeled separately. They utilize dif-
ferent mechanisms to instantiate the general CSP paradigm, e.g. an intermediate
finite state machine model for protocols. Applying the diagnostic engine succes-
sively to the three separate domains, until a diagnosis is found, may reduce the
combinatorial complexity the engine faces. On the other hand, it is already clear
that there are interesting interactions between these components, which may
ultimately require a more sophisticated control architecture.

There was also a knowledge engineering, knowledge acquisition effort in devel-
oping the user interaction model. Considerable time was spent exploring different
types of interaction that can occur, and discovering different types of problems
that can arise.

4.1 User Interaction

The FTP commands specify the parameters for the data connection (data port,
transfer mode, representation type, structure, etc) and the nature of the file
system operation (store, retrieve, append, delete, etc).

Each time the user gives a command, the current state of the FTP client can
be represented as a PCSP problem. The set of variables includes the transfer
parameters: MODE, STRUCTURE, TYPE, the local and remote operating systems:
CLIENT, SERVER, the file system operation, COMMAND, and the file pathname,
PATH. In addition, there are some other variables which have no direct correspon-
dent among the entities that characterize the state of the client. They represent
instead, either the user’s perception of the result of the operation, or, to some
extent, the state of the user’s mind at that moment. The variable OUTCOME rep-
resents the outcome of an FTP operation. Since the value of this variable cannot
be determined at the time of the transfer, the user is responsible for supplying
a value (“success”, or, if something went wrong, his perception of “wrong”, e.g.
“ascii file incorrectly transferred”). Clearly, the motivation for introducing this
variable in the PCSP is that it allows us to embody faulty behaviors in the
model.



A “fault” at this level typically means a mismatch between the status of
the real world and the user’s mental representation of it. For example, data
representations are handled in FTP by a user specifying a representation type,
described in our model by the variable TYPE. When the user is specifying a value
for the TYPE variable, he is in fact just making an assumption about the actual
type of the file, represented by the value of the variable ACTUAL-TYPE. User’s
assumptions are modeled in a natural way with constraints. In this particular
case, there is an equality constraint between variables TYPE and ACTUAL-TYPE.

This difference in semantics implies that all such PCSPs will have two sets
of constraints:

1. constraints that will be part of all the PCSPs, representing the functional
specification model of FTP (accounting for both correct and incorrect be-
havior);

2. constraints that change from problem to problem:

(a) constraints modeling user’s assumptions about the real world;

(b) some FTP commands translate to unary constraints, forcing value as-
signments for the corresponding variables (e.g. the FTP command get
restricts the domain of the variable COMMAND to a single value, namely

get).

4.2 Protocol

Protocol specifications are typically represented in the form of finite automata,
often referred to as finite-state machines (FSMs). Since simple FSMs have limited
expressive power in representing such notions as timers, logical conditions, etc.,
a more powerful formalism is needed, and thus extended finite automata have
been used for protocol testing and specification analysis or diagnosis [13] [21].

The idea of using model-based techniques to diagnose communication pro-
tocols based on extended finite automata is not new. To our knowledge, at
least three protocol diagnosis systems have been proposed [3] [9] [20]. All these
approaches attempt to diagnose protocols by analyzing conflicts between obser-
vations and the protocol model. This implies that observations must somehow
be associated with the model.

The representation approach we are using is similar to the one used by Riese
in [20]. The FTP protocol specification as an extended finite transducer is trans-
lated into a standard CSP form.

Where Riese is using a specialized algorithm for solving the diagnosis prob-
lem, he calls it HMDP, we are using a variant of a standard PCSP algorithm to
produce the set of minimal diagnoses.

We make the same assumptions as Riese does, that the external observer
resides outside of the node on which the system under diagnosis is implemented,
and that the observer can time-stamp messages when they are observed.

In addition to the time stamp of the message, an observation also contains
the type of the message (STOR, RETR, etc.), the corresponding arguments, if any,
and the direction of the message, relative to the client (SEND or RECEIVE).



Each observation has a CSP variable associated with it. Considering the order
given by the time stamps, let OBS =< 01, ...,0, > be asequence of observations
and let v; be the variable associated with observation o;. The domain of values
of such a variable is simply the set of all valid state transitions described by
the extended finite transducer. Thus, to solve the CSP we have to assign one
state transition of the protocol machine to each variable corresponding to an
observation, subject to two kinds of constraints:

1. unary constraints, which check whether the value ¢; assigned to some variable
v; has the same message type, direction and number and type of arguments
as the associated observation o;;

2. binary constraints, which relate a variable v; to its neighbors v;—; and v;41
by checking whether the pairs of corresponding values ¢;, t;—1 and ¢;, t;41
respectively, are part of a sequence of transitions allowed by the protocol ma-
chine. Due to transitivity, if all the binary constraints are satisfied, a solution
to the problem will represent a complete transition sequence explaining OBS'.

When the FTP implementation is faulty, conflicts between observations and
the FTP model will result in partial satisfaction of the constraints, and the diag-
nosis algorithm applied to this PCSP will produce the set of minimal diagnosis
in terms of errors at the level of the protocol commands (e.g. incorrect/missing
arguments) and/or sets of faulty state transitions.

4.3 Configuration

We use the same approach as [15], but extend the definition of DCSP to that
of dynamic partial constraint satisfaction problem (DPCSP), by relaxing two of
the requirements in the previously presented DCSP definition.

First, we do not restrict the domains of values for variables to be predefined
finite sets of values. In some cases domains are still finite sets of values, known
from the beginning, but this is not always true. Due to the nature of our appli-
cation, the values some variables may take are known only during the search,
when these variables become active.

Second, since we are trying to solve a diagnosis problem which might have
no complete solution, the (partial) solution we accept may violate some of the
constraints, but we are still looking for an optimal solution, according to some
criterion (e.g. minimal number of violated constraints).

Studying name service configuration and modeling it using the DCSP for-
malism, we found out that quite a simple language is sufficient for specifying
the associated dynamic constraint satisfaction problem. Since a DCSP has four
basic components, a program in this language will naturally have four sections:

a section defining the set of variables and corresponding domains of values,
a section specifying the set of activity constraints,

a section specifying the set of compatibility constraints, and

a section specifying the initial set of active variables.

=~ W N —



Variable Specification Figure 6 presents the variable definition section for a
simplified model of the name service.

// Variables

VAR remote-host  ASK prompt-user(” Remote host name:”)

VAR ping-path DEF ” /sbin/ping”

VAR services-file DEF ” /etc/svec.conf”
VAR resolve-file DEF ” /etc/resolv.conf”
VAR hosts-file DEF ”/etc/hosts”

VAR ping-response ASK ping($remote-host)
VAR resolution-type ASK resolve-service($services-file, ”hosts”)

VAR hosts ASK resolve-host($hosts-file)

VAR local-server DEF ” /etc/named.pid”

VAR servers ASK resolve-name-server($resolve-file)

VAR domain ASK resolve-domain($resolve-file), local-host())

Fig. 6. Variables definition section

In order to specify a CSP using the specification language, all variables have
to be declared using a VAR statement. Each variable is completely specified by
the value of two attributes: name and domain of possible values.

When the domains are known ahead of time, we simply need a way to directly
express them as sets of values. But since the domains of values are not predefined
finite sets of values for all variables, we also need a way of specifying a procedure
by which a domain will be obtained when the variable becomes active during
search. Accordingly, the language offers two built-in mechanisms for specifying
the domain of values for a variable:

a) The user can supply a default, or predefined, domain as a set of values by
using the DEF slot of the VAR statement.

b) In case the domain of a variable is not known at specification time, the user
must supply, as the value of the ASK slot, the call to a function which, when
executed, will return the set of values in the domain. Function execution
will be triggered by the activation of the variable. The function may take
as arguments either constants (e.g. string, number) or the current value of
variables which, at the time of the call, are already active. The current value
of a variable is selected by the expression $variable, where variable is the
name of the variable.

Modeling the name service configuration, we have to provide several user-
defined functions which inspect configuration files, invoke UNIX system calls or
prompt the user in order to get the asked values for the current variable. The
prompt-user function takes one parameter, the message to be displayed. All the
functions that examine configuration files need at least one parameter, indicating
the name of the file where the possible values might be found. Some of them



require a second parameter, usually a string constant, to localize the line in the
file where the information is stored.

Constraints Specification Activity and compatibility constraints are speci-
fied in the form of boolean expressions over variables and their possible values.
The language provides the standard logical and relational operators, enhanced,
for increased flexibility, with set-based operators (e.g. test for set membership,
set inclusion, etc.). The operands can be constants, the current value of ac-
tive variables, selected using the $variable expression, built—in and user—written
functions, taking as arguments any of the above.

As an example, Fig. 7 presents the activity and compatibility constraints in
the name service configuration model. The keywords START, ARV, RV stand for
initial set of active variables (START), always require variable (ARV) and require
variable (Rv). When specifying a compatibility constraint, the user must also
supply a formatted output statement which, in case the constraint fails, will be
printed as the diagnostic message.

// Initial Set of Active Variables
START remote-host
// Activity Constraints

ARV remote-host = (ping-path ping-response)

RV $ping-response = “unknown” = (services-file resolution-type)
RV $resolution-type = “local” = (hosts-file hosts)
RV S$resolution-type = ”bind” = (resolve-file servers domain))

RV $servers = nil = local-server
// Compatibility Constraints

CON $remote-host IN $hosts

“*¥** Local resolution failed. No $remote-host in $hosts-file.”
coN $local-server != nil

“*¥** Local resolution failed. No $remote-host in $hosts-file.”
CON $servers = nil OR bind-resolve($remote-host $servers $domain)

“FE¥* BIND resolution failed.”

Fig. 7. Activity and compatibility constraints definition section



4.4 Algorithm Description

Figure 8 provides a basic branch and bound algorithm for solving dynamic par-
tial constraint satisfaction problems. It is a refinement of a partial constraint
satisfaction algorithm presented in [8].

bound «— {{con|con is a compatibility constraint }}
algorithm BRANCH&BOUND (distance, search-path, variables, values)
if (variables = @) then
if (distance = @) then
return true
for each element D) € bound do
if (distance C D) then
bound — bound \{D}
]
bound < bound U{ distance }
return false
O
if (values = @) then
return false
crrt-variable «— first variable in variables
crrt-value «— first value in values
new-distance «— distance
subsumed «— false
for each constraint C involving crrt-variable and variables in search-path
until (subsumed = true) do
if (C fails) then
new-distance — new-distance U {C'}
if (3 D € bound such that D C new-distance) then
subsumed «— true
]
if (subsumed = false) then
required-variables «— RUN-ARV(crrt-var) U RUN-RV(crrt-var, crrt-val)
new-variables «— variables \{ crrt-variable }U required-variables
if (BRANCH&BOUND(new-distance,
search-path U{ crrt-variable, crrt-value ),
new-variables, domain of first variable in new-variables))
then
return true
O
return BRANCH&BOUND(distance, search-path, variables, values \{ crrt-value })

Fig. 8. Dynamic partial constraint satisfaction algorithm

Branch and bound operates in a similar fashion to backtracking in a context
where we are seeking all solutions that violate minimal, under set inclusion, sets
of constraints. The algorithm basically keeps track of the best solutions found so
far and abandons a line of search when it becomes clear that the current partial



solution cannot lead to a better solution. In fact, the notion of failure during
search is the main difference between CSP and PCSP. A CSP search path fails
as soon as a single inconsistency is encountered. A PCSP search path will fail
only when enough inconsistencies accumulate to reach a cutoff bound.

The bound in our context is a set containing the sets of constraints left un-
satisfied by the best solutions found so far. If at any time during the search the
set of constraints violated by the current partial solution, which we call the dis-
tance, becomes a superset of any element in the bound, the current search path
is abandoned.

Once the search path is complete, i.e. all variables have been assigned a value,
if its distance is a subset of any element in the bound, then that element will
be replaced by the distance. In other words, the partial solution we found is
better than a previous solution in the sense that it violates only a subset of the
constraints violated by the previous solution.

The search process stops when either a complete solution, one that satisfies
all the constraints, is found, or when we exhausted all the values for all the
variables. Finding a complete solution is equivalent, from the diagnostic point of
view, to finding that the configuration under diagnosis is correct, i.e. it presents
no “faults”. In the second case, the bound represents exactly the set of minimal
diagnoses, that is, the set of minimal sets of constraints, one for every “best”
partial solution found.

For the sake of simplicity in presentation, the algorithm in Fig. 8 does not in
any way use the partial solution it finds (search-path). In fact, each element in
the bound is not only a set of constraints, but a pair: set of constraints and the
corresponding partial solution.

When we presented the language, we said that the definition of each con-
straint includes an output statement, which represents the text of the diagnostic
message, in case the constraint is violated. When the algorithm stops, each ele-
ment in the bound represents a possible minimal diagnosis for the configuration
being tested. Therefore, one diagnostic message will consists of all the strings
included in the definitions of the constraints in one such element.

The algorithm can also produce, if requested by the user, an explanation
for each diagnosis, by printing the values assigned to each variable in the corre-
sponding search path.

4.5 Sample Trace

We show in Fig. 9 a trace of our algorithm solving the problem presented in
Fig. 5. Initially, only variable remote-host is active. Since it has an ASK function
of type PROMPT-USER, the user will be asked to provide the name of the remote
host. Let’s say the user typed in xx.xx.xx. Due to the ARV constraint, variables
ping-path and ping-response become active (STEP 1). Using function PING, the
value of ping-response is set to “unknown”. One of the Rv constraints is satisfied
now and variables services-file and resolution-type are activated (STEP 2). Using
function RESOLVE-SERVICE, the algorithm decides that the value of resolution-
type is “local”. A new Rv constraint is satisfied. Accordingly, variables hosts-file



ping-path

ARY,
remote-host remote-host ping-response

m STEP 1

services-file

resolution-type resolution-type

Fig. 9. Example trace for the problem presented in Fig. 2

and hosts become active (STEP 3). Variable hosts is initialized to the list of
host names read from the etc/hosts file. Since all the variables involved in the
compatibility constraint among remote-host, hosts and resolution-type have been
instantiated, the constraint becomes active and the check fails. Because there
are no other values to try, the current assignment represents the only solution
of this DPCSP. So, the algorithm stops with the value of bound being a set with
one element, the set containing only one constraint, the one that just failed.
The diagnostic message is thus the string produced by the associated output
statement:

**% Local resolution failed.
No XX.XX.XX in /etc/hosts.

which is the current diagnosis for this problem.

5 Conclusion

The prototype system we developed for diagnosing software problems in com-
puter networks uses model-based diagnosis techniques. Given a model description
of the software system, and a set of observations describing faulty behavior when
the service is provided, the diagnosis task finds the set of errors that explain the



observations and gives precise diagnosis messages. We use a PCSP approach
to view the model-based diagnosis in CSP terms, where the interacting com-
ponents that define the service are the constraints. Since we solve a diagnosis
problem which might have no complete solution, we need to accept partial solu-
tions which violate some of the constraints. Thus, minimal diagnoses correspond
directly to PCSP solutions that leave minimal sets of constraints unsatisfied.
The dynamic nature of a configuration task is described in terms of DPCSP:
at any given point in the search process configuration components are added
or removed dynamically from the current problem. This enables our system to
obtain current information directly from the network by applying user-written
functions supplied with the model. Data thus obtained is used to guide the search
by determining which components to activate. We showed the effectiveness of
our prototype system on several sample problems for which more meaningful
diagnosis messages have been produced.

We consider two ways in which our system could be extended, to diagnose
both widely used Internet high-level services, such as NF'S, NIS| etc., and lower-
level protocols in the protocol hierarchy. To achieve the second goal, the mech-
anism used in our system is powerful enough to allow on-line diagnosis of lower
level protocols. In our initial exploration of configuration problems we chose
BIND because it is high in the protocol hierarchy, at the application level, and
there are already useful tools, such as “ping” and “nslookup”, that can be cou-
pled directly into our system to provide dynamic information. However, we need
to extend the problem domain to involve the entire protocol stack to detect
errors that might propagate up the stack. These errors may affect the system
performance or, even if an error at one level is handled properly by the protocol
at a higher level, it might signal future errors. For on-line diagnosis we need
to be able to run our system in a monitoring mode, whereby normal situations
are checked in order to detect faults before they propagate. For this, we need
to develop appropriate data gathering tools that filter the huge amount of data
exchanged by lower-level services.
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