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INTRODUCTION 
 
Effects of Dispersant Use on Biological Systems 
Beginning with the use of industrial-strength detergents, dispersing agents have been employed 
in spill response for decades. The Corexit series of agents in common use today generally consist 
of non-ionic and/or anionic surfactants in a solvent base designed to enhance miscibility under 
varying temperature and salinity conditions; cationic surfactants tend to be too toxic for use. 
While dispersants generally serve to decrease the interfacial surface tension of oil, thus 
facilitating its weathering under low-energy conditions, their surface-active nature also causes 
their interaction with cell surfaces – those of single-celled organisms as well as the gills of 
vertebrates and invertebrates. 

 
Knowledge from Previous Oil Spills 
Biological Impacts 
Dispersant use is usually considered by spill responders when other means of response, such as 
containment and removal, are not deemed to be adequate1. For instance, during the Deepwater 
Horizon (DWH) spill dispersants were quickly employed when it became apparent that other 
means of response were insufficient2. However, there are usually consequences for both 
hydrocarbon bioavailability and toxic impacts, thus environmental tradeoffs must be evaluated. 
For instance, while undispersed oil generally poses the greatest threat to shorelines and surface-
dwelling organisms, most dispersed oil remains in the water column where it mainly threatens 
pelagic and benthic organisms1. This tradeoff was a prime consideration during the DWH spill3. 

 
Bioavailability of Oil Constituents 
Crude oil consists of hundreds of individual hydrocarbons, both aliphatic and aromatic; water 
solubility is directly related to temperature but inversely related to molecular mass and salinity4. 
Undispersed oil generates a relatively small particulate fraction, as the bulk of the hydrocarbons 
remain near the water surface, while dispersion results in the generation of a large particulate 
fraction, which forms a pelagic “cloud.” Adverse effects resulting from spilled oil can be a result 
of: (1) dissolved materials, (2) physical effects due to contact with oil droplets, (3) enhanced 
uptake of petroleum hydrocarbons through oil/organism interactions, or (4) a combination of 
these factors5. Both particulate (via ingestion and surface coating) and dissolved hydrocarbons 
can have adverse effects1, but bioavailability is generally defined as the hydrocarbon fraction 
available for diffusion across cell membranes (i.e. the dissolved fraction). While the intentional 
dispersion of an oil spill places a larger load of particulate hydrocarbons nearer to pelagic and/or 
benthic organisms, they are initially contained within surfactant-enclosed micelles and generally 
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unavailable for membrane diffusion. However, over time, the surfactant will dissolve and 
dissipate. 
 
The bioavailability question in relation to oil dispersal has been addressed for many years, but 
much of the research has been hampered by a lack of adequate analytical support1. Early on, 
nominal concentrations were often used to characterize exposures, but even more recently 
characterizing exposure concentrations has been a formidable challenge in regards to the 
separation of dissolved versus particulate fractions. Recent investigations involving the use of 
metabolomics have demonstrated that, while traditional bioassays have shown naturally 
dispersed oil to be significantly more potent than chemically-dispersed oil, metabolic effects are 
surprisingly similar6, 7. Recently, using semi-permeable membrane devices (SPMDs), it was 
discovered that, while chemical dispersal places more total oil in the water column, dissolved 
PAH fractions were very similar (Van Scoy, pers. comm., 2011). 

 
Testing/Field-Monitoring Procedures  
Methods Used to Assess Impacts from Dispersants and Dispersed oil 
Many methods have been developed to assess the impacts from dispersants and dispersed oils 
over the years. Starting in the 1970s and continuing through the 1990s, the main focus was on 
Corexit 9527, as it was the primary agent stockpiled for use in the United States1. In the 1990s, 
the focus shifted to the newer Corexit 9500, but as available research funding declined following 
the Exxon Valdez spill, research efforts concurrently declined. 
 
Early methods focused on ecological impacts and involved field studies following major spills1. 
Most employed commonly-used ecological tools and approaches to determine changes in 
populations and communities, with an emphasis on migrating offshore surface spills and their 
impacts on sensitive shallow nearshore water areas (coral reefs, mangroves, etc.) and shorelines 
(subtidal through intertidal zones). The impacts of deep water well blowouts (such as was 
observed with the DWH spill) on both benthic and pelagic regions have been little studied, and 
remain relatively unknown today.  

 
Analytical Chemistry and Toxicity Testing of Dispersants and Dispersed oil 
For many years the standard for analysis of crude oil, dispersants and dispersed oil has been gas 
chromatography equipped with flame-ionization detection (FID-GC)1. In recent years mass 
spectrometry (GC-MS) has replaced FID due to its increased sensitivity and availability. Rapid 
field analysis has been routinely performed by deploying a specially-equipped fluorometer– 
which detects fluorescent PAHs at very low concentrations, but is not generally useful in the 
detection of dispersants. 
 
Toxicity bioassays have been conducted since at least the 1970s, with early methods involving a 
variety of organisms, open static or serial-dilution exposure systems, and constant concentrations 
of either dispersants and/or dispersed oil1. The varied solubility and vapor pressures of the 
different hydrocarbons made control of exposure concentrations nearly impossible, thus flow-
through systems were developed8; they facilitated better control of both constant and declining 
exposure concentrations, which can better mimic the actions of dilution in the environment9. 
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Due to the nearly endless number of permutations in variables modeling natural spill conditions, 
in more recent years a group of researchers attempted to standardize testing conditions to 
minimize variability between research groups and make results more directly comparable 
(reducing the “apples and oranges” problem). Thus, CROSERF (Chemical Response to Oil 
Spills: Ecological Effects Research Forum) was created. Utilizing the methods of Singer et al.9, 
CROSERF also sought to standardize a suite of marine test organisms (sensitive early life stages) 
and the formation of both the water-accommodated fraction of crude oil (WAF, naturally-
dispersed oil) and the chemically-enhanced water accommodated fraction of crude oil (CEWAF, 
via Corexit 9500)10. 
 
Early test methods involving crude oil and dispersants also reported nominal exposure 
concentrations, which today are no longer generally acceptable1. Bioassays now routinely 
employ either FID-GC or GC-MS to confirm exposure concentrations. However, due to the 
difficulty in separating dissolved from particulate oil, exposures are generally characterized by 
their total petroleum hydrocarbon content (TPH), which may result in the reporting of 
excessively high median-effect concentrations. Ideally, analytical methods should separately 
report dissolved and particulate hydrocarbons, but separation methods (centrifugation or 
filtering) often disturb particulates to produce an unrealistically high dissolved concentration. 

 
STATE OF KNOWLEDGE FROM THE DEEPWATER HORIZON  
 
Several hundred water and sediment samples were collected during the DWH response from 
nearshore and deepwater areas. The Operation Science Advisory Team (OSAT) analyzed the 
bulk of these samples to characterize the risk of oil and dispersants to aquatic receptors and 
humans11, including samples collected through monitoring missions implemented during the 
response. Such missions included Special Monitoring of Applied Response Technologies 
(SMART) and Measurement of Concentration and Size Distribution of Surface and Subsurface 
Small Particles. Samples were also collected as part of the Natural Resource Damage 
Assessment (NRDA), but these were not available for inclusion in this synthesis. 
 
Dispersant Indicators in Water and Tissue Samples 
The U.S. Environmental Protection Agency (USEPA) established analytical methods and 
screening levels for selected dispersant-­‐related chemicals in water samples (Table 1). 
Comparisons of measured versus screening level concentrations were widely used during the 
response to characterize risks to aquatic receptors11. Approximately 28% (2,791 samples) of the 
10,000 water samples collected for dispersant analysis were from the area with the highest 
concentration of dispersant application (Figure 1). In this area, propylene glycol, DPnB, and 
DOSS were detected in a few samples collected during the surface and sub-surface dispersant 
application periods (22 April-19 July 2010, and 30 April-15 July 2010, respectively), but none 
exceeded the recommended benchmarks. The large majority of samples collected at depths >200 
m with detected dispersant indicators (89%) were from 1,025 to 1,425 m depths consistent with 
the location of the subsurface plume (1,000-1,500 m)12-14.  
 
Dispersants in seafood tissues were analyzed by the Food and Drug Administration (FDA). 
Laboratory tests with Eastern oyster (Crassostrea virginica), blue crab (Callinectes sapidus), and 
red snapper (Lutjanus campechanus) exposed to Corexit 9500 (100 mg/L)15 indicated little to no 
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bioconcentration potential, and depuration from tissues within 24-72 h. DOSS was detected in 4 
of 299 tissue samples (concentration range: 0.011-0.1 µg/g) from seafood species collected in 
State and Federal waters between June and October 2010. Based on the FDA data (low tissue 
concentrations, low bioconcentration, fast depuration), it is unlikely that DOSS may pose a 
significant risk to aquatic receptors. 

 
 
Table 1. Analytical methods and screening levels for selected dispersant� related chemicals in 
water samples established by the EPA in response to the Deepwater Horizon oil spill 
(http://www.epa.gov/bpspill/dispersant-methods.html). 

Compound CAS 
Number EPA Method ID 

Reporting 
Limits 
(µg/L) 

EPA Aquatic 
Life Benchmark 

(µg/L) 
Propylene Glycol 57-55-6 EPA SW 846 

Modified 8270 
500  500,000  

2-Butoxyethanol 111-76-2 EPA R5/6 LC 125  165  
Di(Propylene Glycol) 
Butyl Ether (DPnB) 

29911-28-2 EPA R5/6 LC 1  1,000 chronic* 

2-Ethylhexanol 104-76-7 EPA SW 846 
Method 8260 

10  NA 

Dioctylsulfosuccinate, 
sodium salt (DOSS) 

577-11-7 EPA RAM-DOSS 20  360 acute  
40 chronic 

*Chronic screening level for DPnB agreed upon by BP and EPA during the DWH response 
 

 
Figure 1. Three-dimensional location of water samples collected for dispersant analysis. The 
yellow-shaded, offshore-polygon depicts the area with the highest concentration of dispersant 
application. Black symbols: samples with no detected dispersant� related chemicals; yellow 
symbols: samples with detected dispersant� related chemicals.  
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Chemically Dispersed Oil 
Response data11 were used to characterize the potential adverse effects of dispersed oil to aquatic 
receptors. Several hundred water samples were collected for chemical analysis including PAH 
quantificationi. However, not all samples for which PAHs were measured were associated with 
the use of dispersants. Therefore, samples with detected concentrations of one or more 
dispersant-­‐related chemicals were used to screen all samples with measured PAHs 
concentrations. Samples with PAH composition not consistent with the source oil were not 
included. This screening yielded a total of 605 unique water samples. Although this criterion 
may have excluded chemically dispersed samples, it is impossible to distinguish natural from 
chemical dispersion based solely on hydrocarbon composition. Potential acute and chronic 
adverse effects from exposures to PAH mixtures (under the assumptions of narcosis as the mode 
of toxicity and PAH additively) were characterized using the Equilibrium Partitioning 
Benchmark Toxic Unit (TU) approach16, ii where values greater than one suggests that the PAH 
mixture may be unacceptable for the protection of aquatic organisms16. Using this approach, 3 
and 23 of 605 samples exceeded acute and chronic benchmarks, respectively (Figure 2).  

 

 
Figure 2. Acute (pink) and chronic (yellow) exceedances of PAH mixture benchmarks in 
samples with detected indicators of dispersants. The grey-shaded offshore-polygon depicts the 
area with the highest concentration of dispersant application. Red symbol approximate wellhead 
location.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
i Analytical methods included among others EPA Method 8260B, EPA Method 8260C, EPA Method 8270C SIM, 
EPA Method 8270C, EPA Method 8270D, EPA Method 8272  
ii http://www.epa.gov/bpspill/water-benchmarks.html	
  



6	
  
	
  

 
Some of the samples identified above were collected during the SMART missions (17 May-13 
July 2010)17. This dataset is important because the greatest risks to aquatic receptors (primarily 
plankton, planktonic eggs and larval fish) are from the dispersed oil in the upper portion of the 
water column below the dispersing oil slick. Samples collected at 1 m depth after dispersant 
application exceeded acute and chronic benchmarks (5 and 13 samples, respectively) consistent 
with a 1 to 35 fold increase in the CEWAF concentration of PAHs compared to WAF samples. 
Some samples collected before and after dispersant application with acute and/or chronic 
exceedances had detected concentrations of linear alkane analytes with low solubility and 
recalcitrant characteristic (i.e., phytane, pristane) suggesting the presence of non-dissolved 
particulate oil (oil droplets).  
 
Of a total of ~16,000 unfiltered water samples collected concurrently with particle size analysis 
measurements14, 139 exceeded acute PAH benchmarks, but most (119 samples) had detected 
concentrations of phytane and pristine indicative of the oil droplets. The remainder 20 samples 
were collected early during the response (17 May 2011) within 1 km of the wellhead. However, 
none of these samples had detectable concentrations of dispersant markers (propylene glycol or 
DPnB). An important contribution of the particle size analysis data was that most of the oil 
droplets (>80%) suspended in the water column (up to ~160 microns [µm]) had a diameter of 
<70 µm. Although it was not completely resolved whether the formation of these droplets was 
the result of chemical dispersion, high concentration of small particles were also observed during 
oil dispersion in wave tank simulations (see 14). The formation of small particles and their slow 
rise through the water column (due to neutral buoyancy) are important drivers of exposure to 
aquatic receptors because particulate oil may have a different mode of toxicity (e.g., physical 
coating of body surfaces, gill uptake, ingestion; see below) than dissolved oil.  
 
The assessments of the potential effects of dispersants and dispersed oil to benthic fauna proved 
difficult. Of the 775 sediment samples collected for dispersant analysis, only 8 had detected 
concentrations of dispersant-related compounds (only propylene glycol was detected)11. Only 
two of these samples were from offshore/deepwater areas. In light of this limited information, 
effects of dispersants and dispersed oil on benthic fauna represent a data gap from the DWH oil 
spill. 

 
Toxicity Testing 
All the toxicity testing conducted during the response focused solely on assessing acute, short-
term effects and did not address chronic and declining exposures to low dispersed oil 
concentrations, or long-term effects. The large majority of toxicity testing was performed on 
water samples containing dispersants only18, 19, or laboratory and field collected samples with 
chemically dispersed oil20-23. 

 
Toxicity from Exposures to Dispersants and Chemically Dispersed Oil 
Dispersant-only tests were performed by the USEPA18, 19 with the eight oil dispersants listed on 
the USEPA National Contingency Plan (NCP) Product Schedule. These aquatic toxicity tests 
ranked Corexit 9500A as slightly toxic to mysids, and practically non-toxic to inland 
silversides18. In vitro tests conducted to assess the endocrine induction potential of oil 
dispersants19, found cytotoxicity at concentrations between 10 and 1000 µL/L, and no 
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biologically significant activation of estrogenic or androgenic signaling pathways by any of the 
dispersants tested19. These tests found no indications of estrogenic activity for Corexit 9500A, 
and revealed generally low dispersant toxicity.  
 
Toxicity tests performed by the USEPA showed that in all cases the dispersants alone were less 
toxic than the CEWAF, which in most cases had similar toxicity to Louisiana sweet crude oil 
WAF (Table 2). These tests also showed that oil dispersed with Corexit 9500A was moderately 
toxic to two standard test species22, less toxic than oil dispersed with Dispersit SPC 1000™, and 
more toxic than oil dispersed with JD 200020. These tests also showed the low sensitivity of the 
marine rotifer Brachionus plicatilis to MC252 oil dispersed with Corexit EC9500A compared to 
that of the mysid and fish test species (Table 2). Although several hundred water, pore-water, 
and sediment samples were collected for toxicity testing (see23), the response missions guiding 
most sample collection were not targeted for dispersants and/or chemically dispersed oils (Table 
2). Some tests with samples collected during SMART (43 out of 335 tests) showed signs of 
toxicity, but most of these were inconclusive21, 23. Toxicity testing performed during subsurface 
dispersant application operations showed little toxicity to both B. plicatilis (RotoxKit M™) and 
the marine bacteria Vibrio fischeri (Microtox®)23. 
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Table 2. Summary of toxicity testing with dispersants performed during Deepwater Horizon oil spill. Only currently available 
information was included. 

Test species Test conditions Dispersants tested Endpoint Source 
Juveniles (3-5 day old) mysid 
shrimp- Americamysis bahia 

Continuous exposure (static, 
non‐renewal) to CEWAF1, 2 

Corexit® EC9500A 
24 hr-LC50: 432 µg/L 
48 hr-LC50: 186 µg/L 

20 

Dispersit SPC 1000™ 
24 hr-LC50: 390 µg/L 
48 hr-LC50: 198 µg/L 

JD 2000 
24 hr-LC50: 1,298 µg/L  
48 hr-LC50: 1,012 µg/L 

Juvenile (9‐14 days old) 
inland silverside fish- Menidia 
beryllina 

Corexit® EC9500A 
24 hr-LC50: 634 µg/L  
48 hr-LC50: 571 µg/L 

Dispersit SPC 1000™ 
24 hr-LC50: 259 µg/L  
48 hr-LC50: 173 µg/L 

JD 2000 
24 hr-LC50: 4,130 µg/L  
48 hr-LC50: 2,640 µg/L 

Newly hatched marine rotifer- 
Brachionus plicatilis 

Corexit® EC9500A 24 hr-LC50: 9,543 µg/L  
Dispersit SPC 1000™ 24 hr-LC50: 486 µg/L  
JD 2000 24 hr-LC50: 5,609 µg/L  

Inland silverside fish- M. 
beryllina Continuous exposure (static, renewal) 

to 100%, 50%, 10% water samples 
collected at 1 and 10 m depths  below 
water surface both before and after 
dispersant application 

Corexit® EC9500A 
Corexit® EC9527A 

No significant mortality above 
controls 

21 
Juvenile (3-5 day old) mysid 
shrimp- A. bahia 
Marine algae- Skeletonema 
costatum 

Reduced mean algal cell growth. 
Inconclusive results 

24-48 hours old mysid 
shrimp- A. bahia 

Continuous exposure (static, 
non‐renewal) to CEWAF and WAF1, 3

Corexit® EC9500A4 
 

48 hr-LC50-dispersant: 42 µg/L 
48 hr-LC50-CEWAF: 5.4 mg/L 
48 hr-LC50-WAF: 2.7 mg/L 

 

9-14 day old inland silverside 
fish- M. beryllina 

96 hr-LC50-dispersant: 130 µg/L 
96 hr-LC50-CEWAF: 7.6 mg/L 
96 hr-LC50-WAF: 3.5 mg/L 

18, 22 

1 CEWAF = chemically enhanced, water‐accommodated fraction; WAF = water accommodated fraction.  
2 CEWAF was prepared using a Dispersant‐to‐Oil ratio of 1:20 with fresh MC252 oil. CEWAF was analyzed using the Modified EPA Method 8270 with 
endpoints reported as total petroleum concentrations. 3 CEWAF and WAF were prepared following CROSERF methods10. CEWAF was prepared using a 
Dispersant‐to‐Oil ratio of 1:10 with fresh Louisiana sweet crude oil (lot # WP 681). CEWAF was analyzed for total petroleum hydrocarbons (TPH) following 
EPA SW-846, Method 8015B-DRO with endpoints reported as TPH concentrations.4 Only showing the results for one of the eight oil dispersants. These tests 
followed a slight modification of the USEPA Test Method 821-R-02-012
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While independent research was conducted during the response to address scientific questions 
regarding the effects of dispersants and chemically dispersed oils on biological receptors, it is 
still too early to see the results of these studies in the peer-reviewed literature. To date, one 
study25 found significant reductions in the production and viability of hydrocarbon-degrading 
bacteria (Acinetobacter and Marinobacter) in the presence of Corexit EC9500A at 
concentrations of 1-10 mg/ml. However, these concentrations were several orders of magnitude 
above the levels in the field. Preliminary studies have also shown the uptake of dispersed oil 
droplets (5 µm) in an important zooplankton species in the Gulf of Mexico, demonstrating an 
exposure pathway to meiobenthos (Lee in 26). Others (Wetzel in 26) also examined coral larval 
mortality and settlement success (Porites astreoides and Montastraea faveolata) following 
exposures to spiked and declining concentrations of CEWAF from oil dispersed with Corexit 
9500, and found evidences of adverse effects warranting further studies. 
 
Toxicological testing designed to assess the effect of dissolved (e.g., filtered) vs. particulate oil 
(e.g., whole water) in water, to our knowledge, were not part of the response; therefore, we were 
unable to analyze these types of data to infer effects to aquatic receptors. Ephemeral data 
collection of water samples for chemical analysis that takes into account dissolved vs. particulate 
oil phases are part of Natural Resource Damage Assessment (NRDA) evaluations, and these 
datasets may become available in coming years. Other data collected as part of the NRDA 
process may also include samples used to evaluate acute and chronic effect of dispersants and 
dispersed oil. 

 
Potential Effects at a Larger Ecological Scale  
The challenges of characterizing risks from dispersants and chemically disperse oil to potential 
receptors are great, particularly in such a vast area impacted by the DWH oil spill. A 
monumental effort, undertaken in recent years, which gathered an inventory of species (from 
unicellular organisms to vertebrates) of the entire Gulf of Mexico, documented at least 15,419 
species belonging to over 40 phyla27. Given such high species richness, it is virtually impossible 
to assess the effects of dispersants and dispersed oil to most receptors. Furthermore, for most 
taxa, including deepwater and benthic species, substantial gaps exist in our understanding of 
their spatial and temporal distributions, their basic biology (rates of growth, reproduction, and 
recruitment) and ecology (community structure and trophic interactions), and their sensitivity to 
stressors. Benthic habitats in the Gulf of Mexico (mesophotic and deep water coral reefs, other 
hard bottoms and soft bottoms) may be the ultimate sink of oil dispersed at the wellhead, as oil 
particles flocculate with suspended particles or are excreted with fecal pellets and settle out of 
the water column. In these habitats sessile and small species with limited mobility were likely 
unable to escape the cloud of chemically dispersed oil, and may have experienced long term, 
sub-­‐lethal effects. These communities may have also been exposed to less weathered oil than 
biological communities at the surface. The poorly understood behavior of dispersed oil at depth 
(effects of high pressure and low temperature), and the lack of understanding on the biology of 
deepwater species, makes it difficult to assess short- and long-term effects. In addition, potential 
issues associated with the collection of soft bottom samples for toxicity testing (i.e., disruption of 
the surface micro layer containing dispersed oil droplets), and the lack of standard deepwater test 
species further complicate these assessments. Information on the long-term effects of the DWH 
oil spill is being assessed under subject-specific NRDA technical working groups (TWGs). 
Funded research projects are also underway to assess the effects of dispersants, dispersant 
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constituents and naturally/chemically dispersed oil on Gulf of Mexico species (reef biota, deep 
water species, commercially important species), as well as on offshore habitats, food webs, and 
ecological interactions. 

 
Effect on Planktonic Food Webs 
After an oil spill, microorganisms are an important part of the degradation process but they also 
serve as essential members of a healthy ecosystem. Questions still remain as to how oil and 
dispersants affect microbial communities. Hamdan and Fulmer28 have shown that, even at 
prescribed concentrations, the dispersant Corexit EC9500A is toxic to microbes involved in 
hydrocarbon bioremediation, but the levels of cell death from exposures differed among species. 
Widger et al29 revealed that microbial population in water and soil samples exposed to oil and 
dispersant related to the DWH event showed reduced biodiversity, reduction in oxygen 
producing microorganisms and increased oxygen consumption by hydrocarbon metabolizing 
bacteria. In addition, selective degradation of hydrocarbons by different bacterial species can 
either increase or decrease toxic components in oil and the use of dispersant could enhance this 
toxicity30. These results indicate a species-specific tolerance of oil and dispersant and that the 
presence of hydrocarbons may enhance or reduce dispersant toxicity for some species of 
bacteria28. A better understanding is needed regarding the effect of oil bioremediation on 
microbial communities. 
 
Although dispersed oil has been shown to negatively impact some organisms18, 20, 22, 28, 29, 
satellite observations of the northeastern region of the Gulf of Mexico in August 2010 revealed 
increased phytoplankton biomass attributed to the DWH oil spill31. It should be noted that this 
data is based on correlation and not direct evidence due to a scarcity of field observations before 
and after the spill. The region in which this phytoplankton bloom occurred overlaps with the 
Gulf’s hypoxic zone32, leading to concerns about the impact of the oil spill and dispersant use on 
the Gulf’s Dead Zone33. Bacterial decomposition of algae reduces oxygen and the presence of 
dispersed oil increases the abundance of hydrocarbon-degrading microbes which also consume 
oxygen, which could lead to further hypoxia. Dispersed oil may also be toxic to zooplankton 
grazers, resulting in increased algal blooms. However, dispersed oil could show toxicity to the 
algae itself, which may have a mitigating effect on hypoxia. Further research is required to fully 
understand how dispersed oil affects hypoxic systems.    
 
Preliminary reports suggest that, shortly after the DWH incident, oil and dispersant constituents 
became entrained in the pelagic food web34, 35. Graham35 showed that dispersed oil in the shallow 
water column has been incorporated into at least two trophic levels beyond prokaryotic 
hydrocarbon consumers. Dispersed oil has also been observed in blue crab larvae and researchers 
are finding potential signs of exposure extending throughout the water column based on the 
unusual appearance of planktonic organisms pulled up in nets (unpub. data)34, 36, 37. 
Contaminants from dispersed oil may result in long-term adverse effects such as carcinogenesis, 
impaired reproduction, shortened life-spans and decreased population numbers in planktonic 
organisms34, 38, 39. Additionally, exposure to contaminants found in oil and dispersants during 
early phases of the life cycle can lead to infertility and a host of developmental problems39-41. 
This is important because the area in the Gulf that was exposed to oil and dispersants included a 
significant portion of offshore larval and spawning grounds27, 36. However, exposure data from 
the DWH do not consistently reflect data from controlled laboratory experiments, which may not 
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accurately reproduce field conditions or exposure regimes. The ultimate long-term effects will 
depend on the concentration, location and persistence of dispersed oil and the duration and 
timing of exposure to organisms. These factors should be further tested in ecologically relevant 
conditions. 

 
Fate of the Oil and Dispersants at Depth 

 
Subsurface Plumes 
Little is known regarding dispersant behavior and oil droplet microstructure at the high pressures 
and low temperatures of the deep-sea. But, it has been documented that the treatment of oil with 
dispersant at the wellhead resulted in the formation of large, subsurface plumes made up of fine 
droplets of oil suspended in deep waters42-44 (Figure 3).  However, the formation of plumes is 
complicated due to “the interplay of gas and oil in multiphase flow, preferential solubility of 
each oil constituent, and potential gas hydrate formation”42. The effects of temperature and 
density gradients on oil droplet phases, changes in buoyancy during transport and 
transformations to the plume over time are poorly understood. It is uncertain exactly how many 
plumes existed and their exact fate is unknown, but they have the potential of persisting for 
months at depth42, 45. Research on plume formation and the behavior of dispersants in the deep-
sea is needed to model, track and predict the fate of subsurface oil and dispersant. 

 
Dispersed Oil Byproducts at Depth 
Although the ultimate fate of petroleum hydrocarbons in deep water plumes is undetermined, 
Reddy et al.46 demonstrated that most light-weight, water-soluble hydrocarbons (C1-C3) were 
retained in the deep water column, while insoluble fractions were deposited in sea floor 
sediments or transported to the surface. The retained water-soluble portions persist longer and 
have a much slower degradation rate than gas and n-alkane fractions46. Similarly, Kujawinski et 
al. 47, quantitatively revealed the sequestration of a highly water-soluble dispersant component 
(DOSS) at depth undergoing minimal rates of biodegradation (Figure 4). Dispersant applied at 
the wellhead reduced the amount of oil reaching the surface and likely increased the retention of 
dissolved petroleum hydrocarbons and dispersant components in the deep-sea. Additionally, 
MC252 oil contained lighter molecular weight hydrocarbons than typical, which would also 
result in increased retention of these soluble components in deep waters34, 46. The fate of 
dispersed oil byproducts in deep waters is unknown at this time; research is needed regarding 
their use in deep waters.  

 
Oil and Dispersant in Deep Sediments 
When interacting with suspended and deposited sediments, oil droplets form oil-sediment 
aggregates (OSA) and dissolved oil partitions into sediments due to capillary action and 
surfactant ion adsorption48. Model simulations demonstrate that when oil droplets and sediment 
particles are small (less than 0.1 mm), more OSAs are formed48. During DWH, the subsurface 
injection of dispersants facilitated the formation of small particle size oil droplets14, potentially 
influencing the formation of OSAs. In addition studies have shown that due to the composition 
of the MC252 oil, conditions in the deep-sea and use of dispersants, more oil and dispersant 
remained at depth than predicted34, 46, 48. This has been supported with analysis of sediment 
samples from the sea floor which revealed the presence of oil constituents linked to MC252 oil11, 

49. Sediments collected from within 3 km of the wellhead contained MC252 oil at levels 
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exceeding aquatic life benchmarks, but these levels returned to reference standards within 10 km 
of the wellhead11, 49. Careful analysis of current data and further studies are required to provide a 
better understanding of how oil and dispersants interact with deep marine sediments. 
 
Biodegradation  
Due to the depth of the leak and difficulty in obtaining consistent samples, uncertainty and 
controversy surround the actual amount of microbial biodegradation of dispersed oil from the 
DWH spill. One study questioned the magnitude of the microbe-directed biodegradation of 
hydrocarbons in the plumes and concluded that the oil/dispersant plume may have persisted for 
months without substantial attenuation42. Other research has suggested that a variety of 
hydrocarbon-degrading microbial populations in the deep-sea responded to oil contamination by 
undergoing rapid dynamic adaption and that this implies an inherent bioremediation of oil 
contaminants in the deep-sea50. The research of Kessler et al.51 reports that aerobic 
methanotrophic bacterial communities consumed a significant portion of the total hydrocarbon 
discharge over several months. Finally, a separate study found that the plume closest to the 
wellhead with the highest levels of hydrocarbons showed the least evidence of biodegradation52. 
Yet, the authors predict attenuation of the plumes over time due to highly fluctuating cycles of 
microbial communities influenced by persistent mixing of bacteria species, oxygen and 
hydrocarbons with background waters. This lack of certainty regarding the extent of 
biodegradation by microbes in deep-sea plumes is enhanced by the lack of knowledge regarding 
the effects of dispersant and dispersed oil on deep-sea bacteria. More research is required to 
understand the impact on oil degrading bacteria when dispersants are applied at depth.  

 
DATA GAPS ON THE EFFECTS OF DISPERSANT USE 
 
Prior to the DWH, many studies were done on the toxicity of dispersants (primarily Corexit 9527 
and 9500) and dispersed oil (1, 53 and references therein; 54-56). Although studies have  filled 
critical data gaps in the knowledge and understanding on the effects of dispersants (for 
example57, 58), the experience from the DWH clearly showed that many of the data gaps 
identified earlier1, 53 still persist. In this section we build upon the NRC recommendations for 
additional studies based on the state of knowledge prior and after the DWH. However, an 
independent effort should focus on reviewing and evaluating knowledge gaps and gains from 
past spills (controlled or accidental) involving the use of dispersants. 

 
General Data Gaps 
Significant advances in the understanding of dispersant efficacy have been gained since the 
recommendations of the NRC and subsequent reports. However, all the recommendations 
regarding fate and effects are still relevant. Specific data gaps include: photo-enhanced toxicity; 
relative contribution of dissolved and particulate oil phases to toxicity; interaction of dispersed 
oil with sediment particles and effects to benthic fauna; tests with representative species, 
sensitive species and different life stages; toxicity tests that addresses delayed effects; exposures 
through different routes; toxicity from pathways other than narcosis (e.g., oxidative products, 
receptor-mediated pathways associated dissolved fractions, and smothering by oil droplets); and 
long-term effects on population and communities.  
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Comparing oil/dispersant toxicity across studies can be a challenge. Not only the preparation of 
WAFs and CEWAFs has differed over the years (e.g, differences in mixing energies, settling 
times, media treatments- filtered vs. unfiltered), but also have exposure conditions (static vs. 
flow-thru, closed vs. open systems, constant vs. spiked), and chemical analysis of exposure 
media (nominal vs. measured, particulates vs. dissolved phases, TPAH vs. TPH). Consequently, 
making comparative use of the existing toxicity data is almost impossible. Efforts should 
continue to support standardization methods and procedures (e.g., CROSERF or similar) that 
would allow greater comparability and reproducibility of toxicological data, and a more certain 
use of experimental data as scientific decision tools in future spills. 
 
Toxicity testing under constant exposures (e.g., LC50 tests) does not realistically and adequately 
assess the risk to aquatic receptors. Under field conditions, organisms are likely exposed to 
multiple stressors at any given time, which could result in additive, synergistic, or antagonistic 
effects. But dynamic environments are expected to dilute and mix the water column, resulting in 
rapidly declining exposure concentrations. However, constant exposures tests may serve as 
conservative estimates of toxicity. The traditional constant exposure durations in standard LC50 
(48 or 96 hours) tests should be compared to the much shorter (a few hours) and rapidly 
declining exposures experienced by marine organisms when oil is dispersed in open waters.  
 
Analyses of biological effects following an oil spill have not typically focused on the effects 
from chronic exposures to extremely low concentrations, or have explored the potential of 
changes in behavioral responses (e.g., olfactory, time-response to stimuli) as indicators of 
exposure. These endpoints are relevant as these can lead to measurable effects at the population 
and community levels (e.g., increased predation; subtle changes in trophic structure and links), 
and should be considered in future spills.  
 
Although chemical analyses used in spill response typically follow recommended protocols, 
standardization of such techniques throughout the response should be considered. 
Standardization of such procedures extends to the separation of dissolved vs. particulate oil 
phases, the use of chemical signatures, analysis of a whole suite of PAHs (beyond the 16 priority 
PAHs), as well as analysis of TPHs, and dispersant indicators. Efforts should also discuss 
acceptable method detection limits. 
 
Data Gaps from the DWH  
Temporal and spatial sampling intensity throughout the duration of the spill response should be 
considered when evaluating and interpreting short and long-term effects to aquatic receptors. 
Although several thousand samples were collected for the detection and characterization of oil 
constituents, sampling efforts specific to dispersants and dispersed oil were limited, and varied 
substantially over space and time.    
 
The effects of low temperature and high pressures on	
  both physically and chemically dispersed 
oil and dispersants are not well understood, and therefore their fate and effects in deep waters 
constitute a significant data gap. Although much information was gained from the DWH on the 
effect of dispersants on droplet size distribution at depth, future studies should focus on the 
correlation between oil droplet size distribution and oil constituent bioavailability and toxicity, 
particularly on the toxicological effects resulting from exposures to dissolved vs. particulate oil. 
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Another question that remains unanswered is the fate and effects of oil at depth if injection of 
dispersants at the wellhead had not occurred.   
 
Most toxicity testing of dispersant and dispersed oil during the DWH response focused on 2 or 3 
species, which have limited capabilities when characterizing risks to several hundred likely 
receptors. In addition, these tests did not sufficiently address potential differences in sensitivity 
to organisms living in the water-column in the Gulf of Mexico. Furthermore, the toxicity testing 
conducted during the response did not address the potential effects of dispersants and dispersed 
oil to deepwater species inhabiting areas where low temperatures can inhibit or reduce 
biodegradation and affect uptake and depuration kinetics. Sediment sampling of offshore 
deepwater bottoms was relatively limited, and so were the toxicity testing of these samples. 
Thus, these efforts may have not adequately quantified the impacts of subsurface injection of 
dispersants on these habitats, though assessments can use the state of knowledge from other 
spills (e.g., IXTOC, Sea Empress, Montera). 
 
Limited in-situ testing was available to assess adverse effects to aquatic receptors. Rotifer 
toxicity tests, which are logistically simple to perform, were conducted onboard ships and used 
as a decision tool during subsurface application of dispersants. However, these tests are 
considerably less sensitive than tests performed with early life stages of fish or crustaceans. Tests 
species amenable to field testing aboard ship aside from rototox should be explored in the near 
future. 
 
There were no studies on the photo-induced toxicity of chemically dispersed oil at the water 
surface. Studies should consider the increased toxicity of some PAHs in the presence of UV light 
by including exposures to natural sunlight or ultraviolet light. Also, most of the toxicity 
assessments conducted during the response were confined to PAHs (either total PAHs or 
comparisons versus benchmarks), and did not take into account other oil-related constituents 
(e.g., diesel range organics, normal alkanes, isoparaffins, heterocycles and unresolved complex 
mixtures) which may also contribute to the overall toxicity of dispersed oils.  
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Figure 3. A 35 km long oil plume at ~1000-1200 m depth near the DWH wellhead (indicated by 
black star) discovered using mass spectrometry and fluorescence data to detect monoaromatic 
petroleum hydrocarbon concentrations (from42). 

	
  
Figure 4. Ultrahigh resolution mass spectrometry and liquid chromatography were used to 
identify and quantify the surfactant DOSS in deepwater during and after DWH oil flow. The first 
two panels show the general theories of the fate of oil with and without dispersant application at 
the wellhead. The third panel suggests that dispersant remained in the deep waters plume, 
associated with oil and gas phases, and that dissolved surfactant could not be distinguished from 
surfactant coating oil droplets (from47). 
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