2014

SPDY vs HTTP/1.1: An Empirical Evaluation of Network Protocol Performance

Stephen Matthew Chambers

University of New Hampshire - Main Campus

Follow this and additional works at: https://scholars.unh.edu/student_research

Part of the OS and Networks Commons

Recommended Citation

https://scholars.unh.edu/student_research/5

This Undergraduate Research Project is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Student Research Projects by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
SPDY vs HTTP/1.1: An Empirical Evaluation of Network Protocol Performance
Background

- As the Internet evolves, the reduction of page load time has an increased importance.
- The application layer should be changed to avoid altering existing implementations.
- SPDY is a Google proprietary protocol that is deployed in the production environment already on websites such as Google, Facebook, and Twitter.
- SPDY is the working base for HTTP/2.0.

Why change?

<table>
<thead>
<tr>
<th>HTTP</th>
<th>SPDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP uses multiple connections because it can only process requests in a FIFO queue.</td>
<td>Multiplexing over a single connection.</td>
</tr>
<tr>
<td>Only the client can initiate a request.</td>
<td>Server push/Server hint: Server can either suggest a resource to request or push the request to the client unsolicited.</td>
</tr>
<tr>
<td>Sends static header data throughout connection.</td>
<td>Removes static information, such as the User-Agent and Host headers.</td>
</tr>
<tr>
<td>Optional compression encodings for data.</td>
<td>Forces header compression.</td>
</tr>
</tbody>
</table>

Experimental Setup

Client
Google Chrome v. 34.0.1847.116

Anue Network Emulator

Emulated Network
- Latency
- Periodic Packet Loss

Server
Apache v. 2.2.22
mod_spdy v. 3.0

- Client requested a web page with 100 small image files totaling ~ 3.4MB.
- PHP script used to generate distinct pages in order to avoid content caching.
- Presented results are averages of 5 runs.

Throughput and Page Load Time

Analysis

- In a high latency network with zero packet loss, SPDY outperforms HTTP in terms of throughput as it takes advantage of SPDY’s multiplexing.
- In a high packet loss network with near zero latency, SPDY outperforms HTTP. Very small latency masks packet loss problems, so SPDY can recover very quickly.
- In a bad network with high packet loss and high latency, HTTP outperforms SPDY. HTTP can perform load balancing with its multiple connections.

Next Steps

Experiments are far from exhaustive. Different application types should be tested against; video files and dynamic content would take advantage of SPDY’s Server Push and Server Hint features.