Authors

B L. Dingus, University of UtahFollow
R Atkins, University of UtahFollow
W Benbow, University of California - Santa Cruz
D Berley, University of Maryland - College Park
M L. Chen, University of Maryland - College Park
D G. Coyne, University of California - Santa Cruz
R W. Ellsworth, George Mason University
D Evans, University of Maryland - College Park
A Falcone, University of New Hampshire - Main CampusFollow
L Fleysher, New York UniversityFollow
R Fleysher, New York UniversityFollow
G Gisler, Los Alamos National Laboratory
J A. Goodman, University of Maryland - College Park
T J. Haines, Los Alamos National LaboratoryFollow
C M. Hoffman, Los Alamos National Laboratory
S Hugenberger, University of California - Irvine
L A. Kelley, University of California - Santa Cruz
I Leonor, University of California - Irvine
M L. McConnell, University of New Hampshire - Main CampusFollow
J F. McCullough, University of California - Santa Cruz
J E. McEnery, University of UtahFollow
R S. Miller, University of New Hampshire - Main CampusFollow
A I. Mincer, New York University
M F. Morales, University of California - Santa CruzFollow
P Nemethy, New York University
James Ryan, University of New Hampshire
B Shen, University of California - Riverside
A Shoup, University of California - Irvine
C Sinnis, Los Alamos National Laboratory
A J. Smith, University of Maryland - College ParkFollow
G W. Sullivan, University of Maryland - College Park
O T. Tumer, University of California - Riverside
K Wang, University of California - Riverside
M O. Wascko, University of California - Riverside
S Westerhoff, University of California - Santa Cruz
D A. Williams, University of California - Santa CruzFollow
T Yang, University of California - Santa Cruz
G B. Yodh, University of California - Irvine

Abstract

Observation of prompt TeV γ-rays from GRBs requires a new type of detector to overcome the low duty factor and small field of view of current TeV observatories. Milagro is such a new type of very high energy (> a few 100 GeV) gamma-ray observatory, which has a large field of view of >1 steradian and 24 hours/day operation. Milagrito, a prototype for Milagro, was operated from February 1997 to May 1998. During the summer of 1998, Milagrito was dismantled and Milagro was built. Both detectors use a 80 m×60 m×8 m pond of water in which a 3 m×3 m grid of photomultiplier tubes detects the Cherenkov light produced in the water by the relativistic particles in extensive air showers. Milagrito was smaller and had only one layer of photomultipliers, but allowed the technique to be tested. Milagrito observations of the Moon’s shadow and Mrk 501 are consistent with the Monte Carlo prediction of the telescope’s parameters, such as effective area and angular resolution. Milagro will have improved flux sensitivity over Milagrito due to larger effective area, better angular resolution and cosmic-ray background rejection.

Publication Date

2000

Journal Title

AIP Conference Proceedings

Publisher

AIP Publishing

Digital Object Identifier (DOI)

10.1063/1.1361635

Document Type

Conference Proceeding

Rights

© 2000 American Institute of Physics

Share

COinS