Species-specific nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P. mariana and P. rubens

Abstract

Picea rubens (red spruce) and P. mariana (black spruce) are closely related species which are difficult to differentiate morphologically. They are sympatric with P. glauca (white spruce) in the northern portion of their ranges. In order to identify potential interspecific polymorphisms, the chloroplast trnK intron and rpl33-psaJ-trnP region were sequenced, and the nuclear-encoded ITS region of the rDNA repeat was partially sequenced. Thirteen chloroplast and 12 nuclear candidate interspecific single nucleotide polymorphisms (SNPs) were identified. The species-specificity of several SNPs was determined by surveying DNAs amplified from trees representing range-wide provenance tests; these included 46 red spruce from 11 provenances, 84 black spruce from 30 provenances and 90 white spruce from 22 provenances. Two SNPs (1 chloroplast and 1 nuclear), which distinguish black spruce from red and white spruce, were consistent among 96–100% of the trees surveyed. Five SNPs (4 chloroplast and 1 nuclear), which distinguish white spruce from red and black spruce, were consistent among 100% of surveyed trees. These species-specific SNPs were used to identify anonymous spruce samples in a blind test, and their utility for small amounts of tissue, as little as single needles, was demonstrated. Scoring these SNPs is much less labor intensive than previous molecular methods for taxa differentiation (restriction fragment length polymorphisms or random amplified polymorphic DNAs), therefore they can be applied to large population studies.

Publication Date

7-1999

Journal Title

Theoretical and Applied Genetics

Publisher

Springer Link

Digital Object Identifier (DOI)

10.1007/s001220051206

Scientific Contribution Number

2002

Document Type

Article

Share

COinS