Title

Structural disordering in WC thin films induced by SiC additions

Abstract

An investigation has been conducted into the structural disordering in WC thin films induced by SiC additions. The effect of this disordering on film hardness is also reported. In this investigation, WC-SiC films with a SiC content varying from 11.6 to 38.2 pet were deposited using dual rf magnetron sputtering. The relative Si and W content in the films was determined using electron microprobe analysis. Analysis by X-ray diffraction (XRD) confirmed that, within this compositional range, the film structure transformed from crystalline to amorphous. The XRD patterns showed that the crystalline films consisted primarily of WC1-x, along with a small amount Of W2C; no clear evidence for a separate crystalline SiC phase was found. High-resolution transmission electron microscopy (HRTEM) studies showed that with a lower Si content, the films consisted of crystallites 3 to 5 nm in diameter embedded in an amorphous phase. As the Si content increased, the amorphous phase content increased, both as interlayers between crystallites and as particles within the crystallites. Further Si increases led to a structure consisting of a high density of interconnected amorphous particles within well-defined semicrystalline domains separated by a thin amorphous interlayer. At the highest Si content, a clear two-phase morphology evolved, consisting of two nearly amorphous but distinct phases, which suggests a fine-scale partial-phase separation between the WC and the SiC. At the atomic level, it was found that Si decreased the coherence length within the crystalline phase, resulting in a structure of mixed crystalline/highly disordered phases scaled in the range of 2 to 4 nm. Despite the significant alterations in the film structures due to SiC additions, the hardness and modulus of the films were essentially constant within the compositional range of the transition, although films with SiC contents of less than similar to 11 pet had significantly lower hardness levels. It is proposed that the effects of Si on hardness can be explained in terms of competition between the percolation threshold and the amorphization-inducing effect of Si.

Publication Date

11-1-2005

Journal Title

Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science

Publisher

MINERALS METALS MATERIALS SOC

Digital Object Identifier (DOI)

10.1007/s11661-005-0077-4

Document Type

Article

Rights

Copyright © 2005, ASM International & TMS-The Minerals, Metals and Materials Society