Jackson Estuarine Laboratory

Title

Journal of Experimental Marine Biology and Ecology

Abstract

American horseshoe crabs (Limulus polyphemus) exhibit clear circadian rhythms of visual sensitivity in the laboratory and in the field they exhibit seasonal patterns of mating behavior that are closely associated with the tides. Recent reports suggest that Limulus locomotor activity may be controlled by endogenous circadian and/or circatidal clocks and that light:dark (LD) cycles may affect the rhythmic output of both of these clocks. In this study, we examined locomotor behavior in the laboratory to determine the extent of this endogenous activity and to examine the influence of LD cycles on these rhythms. Thirty-three L. polyphemus were captured during the breeding season and their activity was monitored with activity boxes and “running wheels” in seawater kept at constant temperature and salinity. Activity patterns were analyzed using visual inspection of actograms and Chi-square and Lomb–Scargle periodograms. Overall, 36% of the animals was significantly more active during L, while only 12% was more active during D (52% showed no preference). Circatidal rhythms were observed in LD in 67% of the horseshoe crabs. Surprisingly, LD cycles appeared to synchronize these rhythms at times. In DD, the majority of animals tested (63%) exhibited circatidal rhythms that persisted for at least seven days. Overall, the results demonstrate that an endogenously controlled tidal rhythm of locomotion operates during, and significantly after, the breeding season in this species. In addition, the present results are consistent with the presence of circalunidian oscillators controlling these rhythms.

Publication Date

7-13-2007

Journal Title

Journal of Experimental Marine Biology and Ecology

Publisher

Elsevier

Digital Object Identifier (DOI)

https://doi.org/10.1016/j.jembe.2007.01.009

Document Type

Article

Rights

© 2005 Elsevier B.V. All rights reserved.