https://dx.doi.org/10.1175/JCLI-D-15-0286.1">
 

Abstract

The New England region of the northeastern United States has a land use history characterized by forest clearing for agriculture and other uses during European colonization and subsequent reforestation following widespread farm abandonment. Despite these broad changes, the potential influence on local and regional climate has received relatively little attention. This study investigated wintertime (December through March) climate impacts of reforestation in New England using a high-resolution (4 km) multiphysics ensemble of the Weather Research and Forecasting Model. In general, the conversion from mid-1800s cropland/grassland to forest led to warming, but results were sensitive to physics parameterizations. The 2-m maximum temperature (T2max) was most sensitive to choice of land surface model, 2-m minimum temperature (T2min) was sensitive to radiation scheme, and all ensemble members simulated precipitation poorly. Reforestation experiments suggest that conversion of mid-1800s cropland/grassland to present-day forest warmed T2max +0.5 to +3 K, with weaker warming during a warm, dry winter compared to a cold, snowy winter. Warmer T2max over forests was primarily the result of increased absorbed shortwave radiation and increased sensible heat flux compared to cropland/grassland. At night, T2min warmed +0.2 to +1.5 K where deciduous broadleaf forest replaced cropland/grassland, a result of decreased ground heat flux. By contrast, T2min of evergreen needleleaf forest cooled –0.5 to –2.1 K, primarily owing to increased ground heat flux and decreased sensible heat flux.

Publication Date

7-1-2016

Journal Title

Journal of Climate

Publisher

American Meteorological Society

Digital Object Identifier (DOI)

https://dx.doi.org/10.1175/JCLI-D-15-0286.1

Document Type

Article

Rights

© Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to the AMS Permissions Officer at permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).

Comments

This is an article published by American Meteorological Society in Journal of Climate in 2016, available online: https://dx.doi.org/10.1175/JCLI-D-15-0286.1

Available for download on Tuesday, August 01, 2017

Share

COinS